# Linear algebra {:.no_toc} ## The goal Overview over the linear algebra functions of Numpy. Questions to [David Rotermund](mailto:davrot@uni-bremen.de) **There more functions in the [scipy linalg package](https://docs.scipy.org/doc/scipy/reference/linalg.html)!!!** ## The @ operator @ => Matrix product​ \* => outer product A[i] * B[i]​ The @ operator is preferable to other methods when computing the matrix product between 2d arrays. The numpy.matmul function implements the @ operator. ```python import numpy as np a = np.arange(0, 3).reshape(3, 1) b = np.arange(4, 7).reshape(1, 3) print(a) print() print(b) print() print(a @ b) print() print(b @ a) ``` Output: ```python [[0] [1] [2]] [[4 5 6]] [[ 0 0 0] [ 4 5 6] [ 8 10 12]] [[17]] ``` For comparison the outer product: ```python import numpy as np a = np.arange(0, 3).reshape(3, 1) b = np.arange(4, 7).reshape(1, 3) print(a * b) print() print(b * a) ``` Output: ```python [[ 0 0 0] [ 4 5 6] [ 8 10 12]] [[ 0 0 0] [ 4 5 6] [ 8 10 12]] ``` ## [numpy.linalg](https://numpy.org/doc/stable/reference/routines.linalg.html) ### [Matrix and vector products](https://numpy.org/doc/stable/reference/routines.linalg.html#matrix-and-vector-products) ||| |---|---| |[**dot(a, b[, out])**](https://numpy.org/doc/stable/reference/generated/numpy.dot.html#numpy.dot)|**Dot product of two arrays.**| |[linalg.multi_dot(arrays, *[, out])](https://numpy.org/doc/stable/reference/generated/numpy.linalg.multi_dot.html#numpy.linalg.multi_dot)|Compute the dot product of two or more arrays in a single function call, while automatically selecting the fastest evaluation order.| |[**vdot(a, b, /)**](https://numpy.org/doc/stable/reference/generated/numpy.vdot.html#numpy.vdot)|**Return the dot product of two vectors.**| |[**inner(a, b, /)**](https://numpy.org/doc/stable/reference/generated/numpy.inner.html#numpy.inner)|**Inner product of two arrays.**| |[**outer(a, b[, out])**](https://numpy.org/doc/stable/reference/generated/numpy.outer.html#numpy.outer)|**Compute the outer product of two vectors.**| |[matmul(x1, x2, /[, out, casting, order, ...])](https://numpy.org/doc/stable/reference/generated/numpy.matmul.html#numpy.matmul)|Matrix product of two arrays.| |[**tensordot(a, b[, axes])**](https://numpy.org/doc/stable/reference/generated/numpy.tensordot.html#numpy.tensordot)|**Compute tensor dot product along specified axes.**| |[einsum(subscripts, *operands[, out, dtype, ...])](https://numpy.org/doc/stable/reference/generated/numpy.einsum.html#numpy.einsum)|Evaluates the Einstein summation convention on the operands.| |[einsum_path(subscripts, *operands[, optimize])](https://numpy.org/doc/stable/reference/generated/numpy.einsum_path.html#numpy.einsum_path)|Evaluates the lowest cost contraction order for an einsum expression by considering the creation of intermediate arrays.| |[linalg.matrix_power(a, n)](https://numpy.org/doc/stable/reference/generated/numpy.linalg.matrix_power.html#numpy.linalg.matrix_power)|Raise a square matrix to the (integer) power n.| |[kron(a, b)](https://numpy.org/doc/stable/reference/generated/numpy.kron.html#numpy.kron)|Kronecker product of two arrays.| ### [Decompositions](https://numpy.org/doc/stable/reference/routines.linalg.html#decompositions) ||| |---|---| |[linalg.cholesky(a)](https://numpy.org/doc/stable/reference/generated/numpy.linalg.cholesky.html#numpy.linalg.cholesky)|Cholesky decomposition.| |[linalg.qr(a[, mode])](https://numpy.org/doc/stable/reference/generated/numpy.linalg.qr.html#numpy.linalg.qr)|Compute the qr factorization of a matrix.| |[**linalg.svd(a[, full_matrices, compute_uv, ...])**](https://numpy.org/doc/stable/reference/generated/numpy.linalg.svd.html#numpy.linalg.svd)|**Singular Value Decomposition.**| ### [Matrix eigenvalues](https://numpy.org/doc/stable/reference/routines.linalg.html#matrix-eigenvalues) ||| |---|---| |[**linalg.eig(a)**](https://numpy.org/doc/stable/reference/generated/numpy.linalg.eig.html#numpy.linalg.eig)|**Compute the eigenvalues and right eigenvectors of a square array.**| |[linalg.eigh(a[, UPLO])](https://numpy.org/doc/stable/reference/generated/numpy.linalg.eigh.html#numpy.linalg.eigh)|Return the eigenvalues and eigenvectors of a complex Hermitian (conjugate symmetric) or a real symmetric matrix.| |[linalg.eigvals(a)](https://numpy.org/doc/stable/reference/generated/numpy.linalg.eigvals.html#numpy.linalg.eigvals)|Compute the eigenvalues of a general matrix.| |[linalg.eigvalsh(a[, UPLO])](https://numpy.org/doc/stable/reference/generated/numpy.linalg.eigvalsh.html#numpy.linalg.eigvalsh)|Compute the eigenvalues of a complex Hermitian or real symmetric matrix.| ### [Norms and other numbers](https://numpy.org/doc/stable/reference/routines.linalg.html#norms-and-other-numbers) ||| |---|---| |[**linalg.norm(x[, ord, axis, keepdims])**](https://numpy.org/doc/stable/reference/generated/numpy.linalg.norm.html#numpy.linalg.norm)|**Matrix or vector norm.**| |[linalg.cond(x[, p])](https://numpy.org/doc/stable/reference/generated/numpy.linalg.cond.html#numpy.linalg.cond)|Compute the condition number of a matrix.| |[**linalg.det(a)**](https://numpy.org/doc/stable/reference/generated/numpy.linalg.det.html#numpy.linalg.det)|**Compute the determinant of an array.**| |[linalg.matrix_rank(A[, tol, hermitian])](https://numpy.org/doc/stable/reference/generated/numpy.linalg.matrix_rank.html#numpy.linalg.matrix_rank)|Return matrix rank of array using SVD method| |[linalg.slogdet(a)](https://numpy.org/doc/stable/reference/generated/numpy.linalg.slogdet.html#numpy.linalg.slogdet)|Compute the sign and (natural) logarithm of the determinant of an array.| |[**trace(a[, offset, axis1, axis2, dtype, out])**](https://numpy.org/doc/stable/reference/generated/numpy.trace.html#numpy.trace)|**Return the sum along diagonals of the array.**| ### [Solving equations and inverting matrices](https://numpy.org/doc/stable/reference/routines.linalg.html#solving-equations-and-inverting-matrices) ||| |---|---| |[**linalg.solve(a, b)**](https://numpy.org/doc/stable/reference/generated/numpy.linalg.solve.html#numpy.linalg.solve)|**Solve a linear matrix equation, or system of linear scalar equations.**| |[**linalg.tensorsolve(a, b[, axes])**](https://numpy.org/doc/stable/reference/generated/numpy.linalg.tensorsolve.html#numpy.linalg.tensorsolve)|**Solve the tensor equation a x = b for x.**| |[linalg.lstsq(a, b[, rcond])](https://numpy.org/doc/stable/reference/generated/numpy.linalg.lstsq.html#numpy.linalg.lstsq)|Return the least-squares solution to a linear matrix equation.| |[**linalg.inv(a)**](https://numpy.org/doc/stable/reference/generated/numpy.linalg.inv.html#numpy.linalg.inv)|**Compute the (multiplicative) inverse of a matrix.**| |[**linalg.pinv(a[, rcond, hermitian])**](https://numpy.org/doc/stable/reference/generated/numpy.linalg.pinv.html#numpy.linalg.pinv)|**Compute the (Moore-Penrose) pseudo-inverse of a matrix.**| |[**linalg.tensorinv(a[, ind])**](https://numpy.org/doc/stable/reference/generated/numpy.linalg.tensorinv.html#numpy.linalg.tensorinv)|**Compute the 'inverse' of an N-dimensional array.**|