# Spectral Coherence {:.no_toc} ## Top Questions to [David Rotermund](mailto:davrot@uni-bremen.de) ## Test data ```python import numpy as np import matplotlib.pyplot as plt f_base: float = 50 f_delta: float = 50 rng = np.random.default_rng(1) n = 10000 dt = 1.0 / 1000.0 x = dt * 2.0 * np.pi * (f_base + f_delta * 2 * (rng.random((n,)) - 0.5)) x = np.cumsum(x, axis=0) y: np.ndarray = np.sin(x) t: np.ndarray = np.arange(0, n) * dt np.savez("testdata.npz", y=y, t=t) plt.plot(t, y) plt.xlabel("Time [s]") plt.xlim(0, 0.5) plt.show() ``` ![image0.png](image0.png) Let us look at wavelet power of the time series: ```python import numpy as np import matplotlib.pyplot as plt import pywt # Calculate the wavelet scales we requested def calculate_wavelet_scale( number_of_frequences: int, frequency_range_min: float, frequency_range_max: float, dt: float, ) -> np.ndarray: s_spacing: np.ndarray = (1.0 / (number_of_frequences - 1)) * np.log2( frequency_range_max / frequency_range_min ) scale: np.ndarray = np.power(2, np.arange(0, number_of_frequences) * s_spacing) frequency_axis_request: np.ndarray = frequency_range_min * np.flip(scale) return 1.0 / (frequency_axis_request * dt) def get_y_ticks( reduction_to_ticks: int, frequency_axis: np.ndarray, round: int ) -> tuple[np.ndarray, np.ndarray]: output_ticks = np.arange( 0, frequency_axis.shape[0], int(np.floor(frequency_axis.shape[0] / reduction_to_ticks)), ) if round < 0: output_freq = frequency_axis[output_ticks] else: output_freq = np.round(frequency_axis[output_ticks], round) return output_ticks, output_freq def get_x_ticks( reduction_to_ticks: int, dt: float, number_of_timesteps: int, round: int ) -> tuple[np.ndarray, np.ndarray]: time_axis = dt * np.arange(0, number_of_timesteps) output_ticks = np.arange( 0, time_axis.shape[0], int(np.floor(time_axis.shape[0] / reduction_to_ticks)) ) if round < 0: output_time_axis = time_axis[output_ticks] else: output_time_axis = np.round(time_axis[output_ticks], round) return output_ticks, output_time_axis def calculate_cone_of_influence(dt: float, frequency_axis: np.ndarray): wave_scales = 1.0 / (frequency_axis * dt) cone_of_influence: np.ndarray = np.ceil(np.sqrt(2) * wave_scales).astype(np.int64) return cone_of_influence def mask_cone_of_influence( complex_spectrum: np.ndarray, cone_of_influence: np.ndarray, fill_value: float = np.NaN, ) -> np.ndarray: assert complex_spectrum.shape[0] == cone_of_influence.shape[0] for frequency_id in range(0, cone_of_influence.shape[0]): # Front side start_id: int = 0 end_id: int = int( np.min((cone_of_influence[frequency_id], complex_spectrum.shape[1])) ) complex_spectrum[frequency_id, start_id:end_id] = fill_value start_id = np.max( ( complex_spectrum.shape[1] - cone_of_influence[frequency_id] - 1, 0, ) ) end_id = complex_spectrum.shape[1] complex_spectrum[frequency_id, start_id:end_id] = fill_value return complex_spectrum t = np.load("testdata.npz")["t"] y = np.load("testdata.npz")["y"] dt = t[1] - t[0] # The wavelet we want to use mother = pywt.ContinuousWavelet("cmor1.5-1.0") # Parameters for the wavelet transform number_of_frequences: int = 25 # frequency bands frequency_range_min: float = 15 # Hz frequency_range_max: float = 200 # Hz wave_scales = calculate_wavelet_scale( number_of_frequences=number_of_frequences, frequency_range_min=frequency_range_min, frequency_range_max=frequency_range_max, dt=dt, ) complex_spectrum, frequency_axis = pywt.cwt( data=y, scales=wave_scales, wavelet=mother, sampling_period=dt ) cone_of_influence = calculate_cone_of_influence(dt, frequency_axis) complex_spectrum = mask_cone_of_influence( complex_spectrum=complex_spectrum, cone_of_influence=cone_of_influence, fill_value=np.NaN, ) plt.imshow(abs(complex_spectrum) ** 2, cmap="hot", aspect="auto") plt.colorbar() y_ticks, y_labels = get_y_ticks( reduction_to_ticks=10, frequency_axis=frequency_axis, round=1 ) x_ticks, x_labels = get_x_ticks( reduction_to_ticks=10, dt=dt, number_of_timesteps=complex_spectrum.shape[1], round=2 ) plt.yticks(y_ticks, y_labels) plt.xticks(x_ticks, x_labels) plt.xlabel("Time [sec]") plt.ylabel("Frequency [Hz]") plt.show() ``` ![image1.png](image1.png)