# Piecewise {:.no_toc} ## Top Questions to [David Rotermund](mailto:davrot@uni-bremen.de) ## [numpy.piecewise](https://numpy.org/doc/stable/reference/generated/numpy.piecewise.html) ```python numpy.piecewise(x, condlist, funclist, *args, **kw) ``` > Evaluate a piecewise-defined function. > > Given a set of conditions and corresponding functions, evaluate each function on the input data wherever its condition is true. ```python import numpy as np a = np.arange(1, 11) b = np.piecewise(a, [a < 5, a == 0, a > 5], [-1, 0, 1]) print(a) # -> [ 1 2 3 4 5 6 7 8 9 10] print(b) # -> [-1 -1 -1 -1 0 1 1 1 1 1] ``` Instead of values we can use functions (Or you can use lambda functions...​): ```python import numpy as np def function_a(input): return input**2 def function_b(input): return np.sqrt(input) a = np.arange(1, 11) b = np.piecewise(a, [a < 5, a == 0, a > 5], [function_a, 0, function_b]) print(a) # -> [ 1 2 3 4 5 6 7 8 9 10] print(b) # -> [ 1 4 9 16 0 2 2 2 3 3] ``` **However, the results for the sqrt are strange.** Here we see a case where the automatic dtype switch to float64 failed.​ This is why I overzealously mange / define the dtypes.​ ```python import numpy as np def function_a(input): return input**2 def function_b(input): return np.sqrt(input) a = np.arange(1, 11).astype(dtype=np.float32) b = np.piecewise(a, [a < 5, a == 0, a > 5], [function_a, 0, function_b]) print(a) # -> [ 1. 2. 3. 4. 5. 6. 7. 8. 9. 10.] print(b) # -> [ 1. 4. 9. 16. 0. 2.45 2.65 2.83 3. 3.16] ```