# [Statistics](https://numpy.org/doc/stable/reference/routines.statistics.html#statistics) {:.no_toc} ## The goal There are other (more extensive) statistics packages like​ * [scipy.stats​](https://docs.scipy.org/doc/scipy/reference/stats.html) * [pingouin](https://pingouin-stats.org/build/html/index.html) * [statsmodels](https://www.statsmodels.org/stable/index.html) Questions to [David Rotermund](mailto:davrot@uni-bremen.de) ## [Fisher Exact Test](https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.fisher_exact.html#scipy.stats.fisher_exact) The [Fisher Exact Test](https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.fisher_exact.html#scipy.stats.fisher_exact) is not part of the numpy package. But we need it in machine learning. ```python scipy.stats.fisher_exact(table, alternative='two-sided') ``` > Perform a Fisher exact test on a 2x2 contingency table. ## [Order statistics](https://numpy.org/doc/stable/reference/routines.statistics.html#order-statistics) ||| |---|---| |[ptp](https://numpy.org/doc/stable/reference/generated/numpy.ptp.html#numpy.ptp)(a[, axis, out, keepdims]) |Range of values (maximum - minimum) along an axis.| |[percentile](https://numpy.org/doc/stable/reference/generated/numpy.percentile.html#numpy.percentile)(a, q[, axis, out, ...]) |Compute the q-th percentile of the data along the specified axis.| |[nanpercentile](https://numpy.org/doc/stable/reference/generated/numpy.nanpercentile.html#numpy.nanpercentile)(a, q[, axis, out, ...]) |Compute the qth percentile of the data along the specified axis, while ignoring nan values.| |[quantile](https://numpy.org/doc/stable/reference/generated/numpy.quantile.html#numpy.quantile)(a, q[, axis, out, overwrite_input, ...]) |Compute the q-th quantile of the data along the specified axis.| |[nanquantile](https://numpy.org/doc/stable/reference/generated/numpy.nanquantile.html#numpy.nanquantile)(a, q[, axis, out, ...]) |Compute the qth quantile of the data along the specified axis, while ignoring nan values.| ## [Averages and variances](https://numpy.org/doc/stable/reference/routines.statistics.html#averages-and-variances) ||| |---|---| |[median](https://numpy.org/doc/stable/reference/generated/numpy.median.html#numpy.median)(a[, axis, out, overwrite_input, keepdims])|Compute the median along the specified axis.| |[average](https://numpy.org/doc/stable/reference/generated/numpy.average.html#numpy.average)(a[, axis, weights, returned, keepdims])|Compute the weighted average along the specified axis.| |[mean](https://numpy.org/doc/stable/reference/generated/numpy.mean.html#numpy.mean)(a[, axis, dtype, out, keepdims, where])|Compute the arithmetic mean along the specified axis.| |[std](https://numpy.org/doc/stable/reference/generated/numpy.std.html#numpy.std)(a[, axis, dtype, out, ddof, keepdims, where])|Compute the standard deviation along the specified axis.| |[var](https://numpy.org/doc/stable/reference/generated/numpy.var.html#numpy.var)(a[, axis, dtype, out, ddof, keepdims, where])|Compute the variance along the specified axis.| |[nanmedian](https://numpy.org/doc/stable/reference/generated/numpy.nanmedian.html#numpy.nanmedian)(a[, axis, out, overwrite_input, ...])|Compute the median along the specified axis, while ignoring NaNs.| |[nanmean](https://numpy.org/doc/stable/reference/generated/numpy.nanmean.html#numpy.nanmean)(a[, axis, dtype, out, keepdims, where])|Compute the arithmetic mean along the specified axis, ignoring NaNs.| |[nanstd](https://numpy.org/doc/stable/reference/generated/numpy.nanstd.html#numpy.nanstd)(a[, axis, dtype, out, ddof, ...])|Compute the standard deviation along the specified axis, while ignoring NaNs.| |[nanvar](https://numpy.org/doc/stable/reference/generated/numpy.nanvar.html#numpy.nanvar)(a[, axis, dtype, out, ddof, ...]) |Compute the variance along the specified axis, while ignoring NaNs.| ## [Correlating](https://numpy.org/doc/stable/reference/routines.statistics.html#correlating) ||| |---|---| |[corrcoef](https://numpy.org/doc/stable/reference/generated/numpy.corrcoef.html#numpy.corrcoef)(x[, y, rowvar, bias, ddof, dtype])|Return Pearson product-moment correlation coefficients.| |[correlate](https://numpy.org/doc/stable/reference/generated/numpy.correlate.html#numpy.correlate)(a, v[, mode])|Cross-correlation of two 1-dimensional sequences.| |[cov](https://numpy.org/doc/stable/reference/generated/numpy.cov.html#numpy.cov)(m[, y, rowvar, bias, ddof, fweights, ...])|Estimate a covariance matrix, given data and weights.| ## [Histograms](https://numpy.org/doc/stable/reference/routines.statistics.html#histograms) ||| |---|---| |[histogram](https://numpy.org/doc/stable/reference/generated/numpy.histogram.html#numpy.histogram)(a[, bins, range, density, weights])|Compute the histogram of a dataset.| |[histogram2d](https://numpy.org/doc/stable/reference/generated/numpy.histogram2d.html#numpy.histogram2d)(x, y[, bins, range, density, ...])|Compute the bi-dimensional histogram of two data samples.| |[histogramdd](https://numpy.org/doc/stable/reference/generated/numpy.histogramdd.html#numpy.histogramdd)(sample[, bins, range, density, ...])|Compute the multidimensional histogram of some data.| |[bincount](https://numpy.org/doc/stable/reference/generated/numpy.bincount.html#numpy.bincount)(x, /[, weights, minlength])|Count number of occurrences of each value in array of non-negative ints.| |[histogram_bin_edges](https://numpy.org/doc/stable/reference/generated/numpy.histogram_bin_edges.html#numpy.histogram_bin_edges)(a[, bins, range, weights])|Function to calculate only the edges of the bins used by the histogram function.| |[digitize](https://numpy.org/doc/stable/reference/generated/numpy.digitize.html#numpy.digitize)(x, bins[, right])|Return the indices of the bins to which each value in input array belongs.|