# [numpy.save](https://numpy.org/doc/stable/reference/generated/numpy.save.html) and [numpy.load](https://numpy.org/doc/stable/reference/generated/numpy.load.html) {:.no_toc} ## The goal Let's [save and load data under numpy](https://numpy.org/doc/stable/reference/routines.io.html). This can be more complicated than expected. Questions to [David Rotermund](mailto:davrot@uni-bremen.de) ## [np.save](https://numpy.org/doc/stable/reference/generated/numpy.save.html) and [np.load](https://numpy.org/doc/stable/reference/generated/numpy.load.html) A normal np.save and np.load cycle may look like this: ```python import numpy as np rng = np.random.default_rng() a_original: np.ndarray = rng.random((100, 10)) np.save("a.npy", a_original) a_load: np.ndarray = np.load("a.npy") print(np.abs(a_original - a_load).sum()) # -> 0.0 ``` ## [np.savez](https://numpy.org/doc/stable/reference/generated/numpy.savez.html) We can save more than one variable into one file. We need to use np.savez for this. Now the file extension is npz instead of npy. This is required!  ```python import numpy as np rng = np.random.default_rng() a_original = rng.random((100, 10)) b_original = rng.random((100, 10)) c_original = rng.random((100, 10)) np.savez("c.npz", a_original=a_original, b_original=b_original, c_original=c_original) np_file = np.load("c.npz") np_file_keys: list = list(np_file.keys()) print(np_file_keys) # -> ['a_original', 'b_original', 'c_original'] ``` Please don't use savez like this because this can cause human errors down the road: ```python import numpy as np rng = np.random.default_rng() a_original = rng.random((100, 10)) b_original = rng.random((100, 10)) c_original = rng.random((100, 10)) # np.savez("c.npz", a_original=a_original, b_original=b_original, c_original=c_original) np.savez("d.npz", a_original, b_original, c_original) np_file = np.load("d.npz") np_file_keys: list = list(np_file.keys()) print(np_file_keys) # -> ['arr_0', 'arr_1', 'arr_2'] ``` You don't need to keep the variable name but keep it human readable: ```python import numpy as np rng = np.random.default_rng() a_original = rng.random((100, 10)) b_original = rng.random((100, 10)) c_original = rng.random((100, 10)) d_original = rng.random((100, 10)) np.savez("e.npz", what=a_original, a=b_original, nice=c_original, day=d_original) np_file = np.load("e.npz") np_file_keys: list = list(np_file.keys()) print(np_file_keys) # -> ['what', 'a', 'nice', 'day'] ``` Now we can work with the file and the stored variables:  ```python import numpy as np rng = np.random.default_rng() a_original = rng.random((100, 10)) b_original = rng.random((100, 10)) c_original = rng.random((100, 10)) np.savez("c.npz", a_original=a_original, b_original=b_original, c_original=c_original) np_file = np.load("c.npz") print(np.abs(a_original - np_file["a_original"]).sum()) # -> 0.0 print(np.abs(b_original - np_file["b_original"]).sum()) # -> 0.0 print(np.abs(c_original - np_file["c_original"]).sum()) # -> 0.0 ``` ## [np.savez_compressed](https://numpy.org/doc/stable/reference/generated/numpy.savez_compressed.html) We can compress the data too: ```python import numpy as np rng = np.random.default_rng() a_original = rng.random((100, 10)) b_original = rng.random((100, 10)) c_original = rng.random((100, 10)) np.savez_compressed( "f.npz", a_original=a_original, b_original=b_original, c_original=c_original ) np_file = np.load("f.npz") print(np.abs(a_original - np_file["a_original"]).sum()) # -> 0.0 print(np.abs(b_original - np_file["b_original"]).sum()) # -> 0.0 print(np.abs(c_original - np_file["c_original"]).sum()) # -> 0.0 ``` ## Text files [numpy.savetxt](https://numpy.org/doc/stable/reference/generated/numpy.savetxt.html) and [numpy.loadtxt](https://numpy.org/doc/stable/reference/generated/numpy.loadtxt.html) ```python numpy.savetxt(fname, X, fmt='%.18e', delimiter=' ', newline='\n', header='', footer='', comments='# ', encoding=None) ``` > Save an array to a text file. ```python import numpy as np rng = np.random.default_rng() a_original = rng.random((100, 10)) np.savetxt("data.txt", a_original) ``` ```python numpy.loadtxt(fname, dtype=, comments='#', delimiter=None, converters=None, skiprows=0, usecols=None, unpack=False, ndmin=0, encoding='bytes', max_rows=None, *, quotechar=None, like=None) ``` > Load data from a text file. ```python import numpy as np rng = np.random.default_rng() a_original = rng.random((100, 10)) np.savetxt("data.txt", a_original) a_load = np.loadtxt("data.txt") print(a_original.shape) # -> (100, 10) print(a_load.shape) # -> (100, 10) print(np.abs(a_original - a_load).sum()) # -> 0.0 ``` ### [numpy.genfromtxt](https://numpy.org/doc/stable/reference/generated/numpy.genfromtxt.html) {: .topic-optional} This is an optional topic! ```python numpy.genfromtxt(fname, dtype=, comments='#', delimiter=None, skip_header=0, skip_footer=0, converters=None, missing_values=None, filling_values=None, usecols=None, names=None, excludelist=None, deletechars=" !#$%&'()*+, -./:;<=>?@[\\]^{|}~", replace_space='_', autostrip=False, case_sensitive=True, defaultfmt='f%i', unpack=None, usemask=False, loose=True, invalid_raise=True, max_rows=None, encoding='bytes', *, ndmin=0, like=None) ``` > Load data from a text file, with missing values handled as specified. > > Each line past the first skip_header lines is split at the delimiter character, and characters following the comments character are discarded.