# Boolean matricies and logic functions {:.no_toc} ## The goal Questions to [David Rotermund](mailto:davrot@uni-bremen.de) ## Boolean matrices There are different ways to get a Boolean matrix. For example the result of a **np.isfinite()** (checks if the values in a matrix are infite values) is a Boolean matrix. ```python import numpy as np a = 1.0 / np.arange(0, 6).reshape((2, 3)) print(a) print() print(np.isfinite(a)) ``` Output: ```python [[ inf 1. 0.5 ] [0.33333333 0.25 0.2 ]] [[False True True] [ True True True]] :4: RuntimeWarning: divide by zero encountered in divide a = 1.0 / np.arange(0, 6).reshape((2, 3)) ``` However, there are other ways to produce Boolean matrixes: ```python import numpy as np a = np.arange(0, 6).reshape((2, 3)) print(a) print() print((a > 1)) ``` Output: ```python [[0 1 2] [3 4 5]] [[False False True] [ True True True]] ``` ## Calculating with boolean matrices You can treat them a matricies that are filled with 0 (False) and 1 (True): ```python import numpy as np a = np.arange(0, 6).reshape((2, 3)) print(a) print() print((a > 1) * (a < 4)) ``` Output: ```python [[0 1 2] [3 4 5]] [[False False True] [ True False False]] ``` Or you can use Boolean logical matrix functions: ```python import numpy as np a = np.arange(0, 6).reshape((2, 3)) print(a) print() print(np.logical_and((a > 1), (a < 4))) ``` Output: ```python [[0 1 2] [3 4 5]] [[False False True] [ True False False]] ``` ## [np.nonzero()](https://numpy.org/doc/stable/reference/generated/numpy.nonzero.html) ```python numpy.nonzero(a) ``` > Return the indices of the elements that are non-zero. We can use nonzero for extracting the positions where the boolean value is true: ```python import numpy as np a = np.arange(0, 6).reshape((2, 3)) print(a) print() print(np.nonzero(a > 1)) ``` Output: ```python [[0 1 2] [3 4 5]] (array([0, 1, 1, 1]), array([2, 0, 1, 2])) ``` For reversing it, you can use this: ```python import numpy as np a = np.arange(0, 6).reshape((2, 3)) a = (a > 1) print(a) idx = np.nonzero(a) print() b = np.zeros((2, 3), dtype=bool) b[idx] = True print(b) ``` Output: ```python [[False False True] [ True True True]] [[False False True] [ True True True]] ``` ## [Logic functions](https://numpy.org/doc/stable/reference/routines.logic.html) ### [Truth value testing](https://numpy.org/doc/stable/reference/routines.logic.html#truth-value-testing) ||| |---|---| |[all(a[, axis, out, keepdims, where])](https://numpy.org/doc/stable/reference/generated/numpy.all.html#numpy.all)|Test whether all array elements along a given axis evaluate to True.| |[any(a[, axis, out, keepdims, where])](https://numpy.org/doc/stable/reference/generated/numpy.any.html#numpy.any)|Test whether any array element along a given axis evaluates to True.| ### [Array contents](https://numpy.org/doc/stable/reference/routines.logic.html#array-contents) ||| |---|---| |[isfinite(x, /[, out, where, casting, order, ...])](https://numpy.org/doc/stable/reference/generated/numpy.isfinite.html#numpy.isfinite)|Test element-wise for finiteness (not infinity and not Not a Number).| |[isinf(x, /[, out, where, casting, order, ...])](https://numpy.org/doc/stable/reference/generated/numpy.isinf.html#numpy.isinf)|Test element-wise for positive or negative infinity.| |[isnan(x, /[, out, where, casting, order, ...])](https://numpy.org/doc/stable/reference/generated/numpy.isnan.html#numpy.isnan)|Test element-wise for NaN and return result as a boolean array.| |[isnat(x, /[, out, where, casting, order, ...])](https://numpy.org/doc/stable/reference/generated/numpy.isnat.html#numpy.isnat)|Test element-wise for NaT (not a time) and return result as a boolean array.| |[isneginf(x[, out])](https://numpy.org/doc/stable/reference/generated/numpy.isneginf.html#numpy.isneginf)|Test element-wise for negative infinity, return result as bool array.| |[isposinf(x[, out])](https://numpy.org/doc/stable/reference/generated/numpy.isposinf.html#numpy.isposinf)|Test element-wise for positive infinity, return result as bool array.| ### [Array type testing](https://numpy.org/doc/stable/reference/routines.logic.html#array-type-testing) ||| |---|---| |[iscomplex(x)](https://numpy.org/doc/stable/reference/generated/numpy.iscomplex.html#numpy.iscomplex)|Returns a bool array, where True if input element is complex.| |[iscomplexobj(x)](https://numpy.org/doc/stable/reference/generated/numpy.iscomplexobj.html#numpy.iscomplexobj)|Check for a complex type or an array of complex numbers.| |[isfortran(a)](https://numpy.org/doc/stable/reference/generated/numpy.isfortran.html#numpy.isfortran)|Check if the array is Fortran contiguous but not C contiguous.| |[isreal(x)](https://numpy.org/doc/stable/reference/generated/numpy.isreal.html#numpy.isreal)|Returns a bool array, where True if input element is real.| |[isrealobj(x)](https://numpy.org/doc/stable/reference/generated/numpy.isrealobj.html#numpy.isrealobj)|Return True if x is a not complex type or an array of complex numbers.| |[isscalar(element)](https://numpy.org/doc/stable/reference/generated/numpy.isscalar.html#numpy.isscalar)|Returns True if the type of element is a scalar type.| ### [Logical operations](https://numpy.org/doc/stable/reference/routines.logic.html#logical-operations) ||| |---|---| |[logical_and(x1, x2, /[, out, where, ...])](https://numpy.org/doc/stable/reference/generated/numpy.logical_and.html#numpy.logical_and)|Compute the truth value of x1 AND x2 element-wise.| |[logical_or(x1, x2, /[, out, where, casting, ...])](https://numpy.org/doc/stable/reference/generated/numpy.logical_or.html#numpy.logical_or)|Compute the truth value of x1 OR x2 element-wise.| |[logical_not(x, /[, out, where, casting, ...])](https://numpy.org/doc/stable/reference/generated/numpy.logical_not.html#numpy.logical_not)|Compute the truth value of NOT x element-wise.| |[logical_xor(x1, x2, /[, out, where, ...])](https://numpy.org/doc/stable/reference/generated/numpy.logical_xor.html#numpy.logical_xor)|Compute the truth value of x1 XOR x2, element-wise.| ### [Comparison](https://numpy.org/doc/stable/reference/routines.logic.html#comparison) ||| |---|---| |[allclose(a, b[, rtol, atol, equal_nan])](https://numpy.org/doc/stable/reference/generated/numpy.allclose.html#numpy.allclose)|Returns True if two arrays are element-wise equal within a tolerance.| |[isclose(a, b[, rtol, atol, equal_nan])](https://numpy.org/doc/stable/reference/generated/numpy.isclose.html#numpy.isclose)|Returns a boolean array where two arrays are element-wise equal within a tolerance.| |[array_equal(a1, a2[, equal_nan])](https://numpy.org/doc/stable/reference/generated/numpy.array_equal.html#numpy.array_equal)|True if two arrays have the same shape and elements, False otherwise.| |[array_equiv(a1, a2)](https://numpy.org/doc/stable/reference/generated/numpy.array_equiv.html#numpy.array_equiv)|Returns True if input arrays are shape consistent and all elements equal.| |[greater(x1, x2, /[, out, where, casting, ...])](https://numpy.org/doc/stable/reference/generated/numpy.greater.html#numpy.greater)|Return the truth value of (x1 > x2) element-wise.| |[greater_equal(x1, x2, /[, out, where, ...])](https://numpy.org/doc/stable/reference/generated/numpy.greater_equal.html#numpy.greater_equal)|Return the truth value of (x1 >= x2) element-wise.| |[less(x1, x2, /[, out, where, casting, ...])](https://numpy.org/doc/stable/reference/generated/numpy.less.html#numpy.less)|Return the truth value of (x1 < x2) element-wise.| |[less_equal(x1, x2, /[, out, where, casting, ...])](https://numpy.org/doc/stable/reference/generated/numpy.less_equal.html#numpy.less_equal)|Return the truth value of (x1 <= x2) element-wise.| |[equal(x1, x2, /[, out, where, casting, ...])](https://numpy.org/doc/stable/reference/generated/numpy.equal.html#numpy.equal)|Return (x1 == x2) element-wise.| |[not_equal(x1, x2, /[, out, where, casting, ...])](https://numpy.org/doc/stable/reference/generated/numpy.not_equal.html#numpy.not_equal)|Return (x1 != x2) element-wise.|