# Iterating over an array {:.no_toc} ## The goal Questions to [David Rotermund](mailto:davrot@uni-bremen.de) {: .topic-optional} This is an optional topic! ## [numpy.apply_along_axis](https://numpy.org/doc/stable/reference/generated/numpy.apply_along_axis.html) ```python numpy.apply_along_axis(func1d, axis, arr, *args, **kwargs) ``` > Apply a function to 1-D slices along the given axis. > > Execute func1d(a, *args, **kwargs) where func1d operates on 1-D arrays and a is a 1-D slice of arr along axis. > > This is equivalent to (but faster than) the following use of ndindex and s_, which sets each of ii, jj, and kk to a tuple of indices: ```python Ni, Nk = a.shape[:axis], a.shape[axis+1:] for ii in ndindex(Ni): for kk in ndindex(Nk): f = func1d(arr[ii + s_[:,] + kk]) Nj = f.shape for jj in ndindex(Nj): out[ii + jj + kk] = f[jj] ``` > Equivalently, eliminating the inner loop, this can be expressed as: ```python Ni, Nk = a.shape[:axis], a.shape[axis+1:] for ii in ndindex(Ni): for kk in ndindex(Nk): out[ii + s_[...,] + kk] = func1d(arr[ii + s_[:,] + kk]) ``` ### Example ```python import numpy as np def function_1d(input): print(f"input shape: {input.shape}, input: {input}") return input + input.shape[0] a = np.arange(1, 13).reshape(3, 4) print(a) print(a.shape) # -> (3, 4) print() print("******") b = np.apply_along_axis(function_1d, axis=0, arr=a) print("******") print() print(b) print(b.shape) # -> (3, 4) print() print("++++++") b = np.apply_along_axis(function_1d, axis=1, arr=a) print("++++++") print() print(b) print(b.shape) # -> (3, 4) ``` Output: ```python [[ 1 2 3 4] [ 5 6 7 8] [ 9 10 11 12]] ****** input shape: (3,), input: [1 5 9] input shape: (3,), input: [ 2 6 10] input shape: (3,), input: [ 3 7 11] input shape: (3,), input: [ 4 8 12] ****** [[ 4 5 6 7] [ 8 9 10 11] [12 13 14 15]] ++++++ input shape: (4,), input: [1 2 3 4] input shape: (4,), input: [5 6 7 8] input shape: (4,), input: [ 9 10 11 12] ++++++ [[ 5 6 7 8] [ 9 10 11 12] [13 14 15 16]] ``` The output dimension is allowed to change​: ```python import numpy as np def function_1d(input): print(f"input shape: {input.shape}, input: {input}") return [input.sum() + input.mean()] a = np.arange(1, 13).reshape(3, 4) print(a) print(a.shape) # -> (3, 4) print() print("******") b = np.apply_along_axis(function_1d, axis=0, arr=a) print("******") print() print(b) print(b.shape) # -> (1, 4) print() print("++++++") b = np.apply_along_axis(function_1d, axis=1, arr=a) print("++++++") print() print(b) print(b.shape) # -> (3, 1) ``` Output: ```python [[ 1 2 3 4] [ 5 6 7 8] [ 9 10 11 12]] ****** input shape: (3,), input: [1 5 9] input shape: (3,), input: [ 2 6 10] input shape: (3,), input: [ 3 7 11] input shape: (3,), input: [ 4 8 12] ****** [[20. 24. 28. 32.]] ++++++ input shape: (4,), input: [1 2 3 4] input shape: (4,), input: [5 6 7 8] input shape: (4,), input: [ 9 10 11 12] ++++++ [[12.5] [32.5] [52.5]] ``` We can do the same for more then 2d ndarrays: ```python import numpy as np def function_1d(input): print(f"input shape: {input.shape}, input: {input}") return [input.sum() + input.mean()] a = np.arange(1, 25).reshape(3, 4, 2) print(a) print(a.shape) # -> (3, 4, 2) print() print("******") b = np.apply_along_axis(function_1d, axis=0, arr=a) print("******") print() print(b) print(b.shape) # -> (1, 4, 2) ``` Output: ```python [[[ 1 2] [ 3 4] [ 5 6] [ 7 8]] [[ 9 10] [11 12] [13 14] [15 16]] [[17 18] [19 20] [21 22] [23 24]]] ****** input shape: (3,), input: [ 1 9 17] input shape: (3,), input: [ 2 10 18] input shape: (3,), input: [ 3 11 19] input shape: (3,), input: [ 4 12 20] input shape: (3,), input: [ 5 13 21] input shape: (3,), input: [ 6 14 22] input shape: (3,), input: [ 7 15 23] input shape: (3,), input: [ 8 16 24] ****** [[[36. 40.] [44. 48.] [52. 56.] [60. 64.]]] ```