# Data augmentation {:.no_toc} ## The goal What is available as data augmentation methods in torchvision? Questions to [David Rotermund](mailto:davrot@uni-bremen.de) Initial Image: ![Initial Image](data_augmentation_test_image.jpg) Photo by Udo Ernst ## Loading an example image (with opencv2) Load it via [cv2.imread( filename[, flags]) -> retval](https://docs.opencv.org/4.5.3/d4/da8/group__imgcodecs.html#ga288b8b3da0892bd651fce07b3bbd3a56) ```python import cv2 import matplotlib.pyplot as plt filename: str = "data_augmentation_test_image.jpg" original_image = cv2.imread(filename) plt.imshow(original_image) plt.show() ``` ![image0](image0.png) As you can see (not very well I might add) is that the color channels are wrong. But may be we want no color anyway ( options can be found [here](https://docs.opencv.org/4.5.3/d8/d6a/group__imgcodecs__flags.html#ga61d9b0126a3e57d9277ac48327799c80) ): ```python original_image = cv2.imread(filename, cv2.IMREAD_GRAYSCALE) plt.imshow(original_image, cmap="gray") plt.show() ``` ![image1](image1.png) ```python import numpy as np original_image = cv2.imread(filename, cv2.IMREAD_COLOR) # "Convert" from BlueGreenRed (BGR) to RGB (RedGreenBlue) # This is a flip in the third dimension. original_image = np.flip(original_image, axis=2) plt.imshow(original_image) plt.show() ``` ## Torchvision: A selection of transformations ### Into PyTorch First we need to convert the np.ndarray into a suitable torch tensor ![image2](image2.png) ```python import torch torch_image = torch.tensor( np.moveaxis(original_image.astype(dtype=np.float32) / 255.0, 2, 0) ) print(torch_image.shape) # -> torch.Size([3, 1200, 1600]) ``` Note: For the following random opertions, we can control the random seed of torch via [torch.manual_seed(seed)](https://pytorch.org/docs/stable/generated/torch.manual_seed.html). Some example transformations from [torchvision](https://pytorch.org/vision/stable/transforms.html): ### [torchvision.transforms.Pad(padding, fill=0, padding_mode='constant') ](https://pytorch.org/vision/stable/transforms.html#torchvision.transforms.Pad) ```python import torchvision as tv pad_transform = tv.transforms.Pad(padding=(50, 100), fill=0.5) new_image = pad_transform(torch_image) plt.imshow(np.moveaxis(new_image.detach().numpy(), 0, 2)) plt.show() ``` ![image3](image3.png) ### [torchvision.transforms.RandomHorizontalFlip(p=0.5)](https://pytorch.org/vision/stable/transforms.html#torchvision.transforms.RandomHorizontalFlip) Horizontally flip the given image randomly with a given probability. ### [torchvision.transforms.RandomVerticalFlip(p=0.5)](https://pytorch.org/vision/stable/transforms.html#torchvision.transforms.RandomVerticalFlip) Vertically flip the given image randomly with a given probability. ### [torchvision.transforms.Resize(size, interpolation=, max_size=None, antialias=None)](https://pytorch.org/vision/stable/transforms.html#torchvision.transforms.Pad) The Resize transform resizes an image. ```python resize_transform = tv.transforms.Resize(size=(50, 100)) new_image = resize_transform(torch_image) plt.imshow(np.moveaxis(new_image.detach().numpy(), 0, 2)) plt.show() ``` ![image4](image4.png) ### [torchvision.transforms.CenterCrop(size)](https://pytorch.org/vision/stable/transforms.html#torchvision.transforms.CenterCrop) The CenterCrop transform crops the given image at the center. ```python center_crop_transform = tv.transforms.CenterCrop(size=(250, 200)) new_image = center_crop_transform(torch_image) plt.imshow(np.moveaxis(new_image.detach().numpy(), 0, 2)) plt.show() ``` ![image5](image5.png) ### [torchvision.transforms.FiveCrop(size)](https://pytorch.org/vision/stable/transforms.html#torchvision.transforms.FiveCrop) The FiveCrop transform crops the given image into four corners and the central crop. ```python position = (1, 3, 7, 9, 5) five_crop_transform = tv.transforms.FiveCrop(size=(250, 200)) new_image = five_crop_transform(torch_image) for i, p in enumerate(position): plt.subplot(3, 3, p) plt.imshow(np.moveaxis(new_image[i].detach().numpy(), 0, 2)) plt.show() ``` ![image6](image6.png) ### [torchvision.transforms.TenCrop(size, vertical_flip=False)](https://pytorch.org/vision/stable/transforms.html#torchvision.transforms.Scale) Crop the given image into four corners and the central crop plus the flipped version of these (horizontal flipping is used by default). ### [torchvision.transforms.Grayscale(num_output_channels=1)](https://pytorch.org/vision/stable/transforms.html#torchvision.transforms.Grayscale) The Grayscale transform converts an image to grayscale. ```python gray_transform = tv.transforms.Grayscale() new_image = gray_transform(torch_image) plt.imshow(new_image.squeeze().detach().numpy(), cmap="gray") plt.show() ``` ![image7](image7.png) ### [torchvision.transforms.RandomGrayscale(p=0.1)](https://pytorch.org/vision/stable/transforms.html#torchvision.transforms.RandomGrayscale) Randomly convert image to grayscale with a probability of p (default 0.1). ### [torchvision.transforms.RandomInvert(p=0.5)](https://pytorch.org/vision/stable/transforms.html#torchvision.transforms.RandomInvert) Inverts the colors of the given image randomly with a given probability. ```python random_invert_transform = tv.transforms.RandomInvert(p=0.5) for i in range(1, 3): new_image = random_invert_transform(torch_image) plt.subplot(2, 1, i) plt.imshow(np.moveaxis(new_image.detach().numpy(), 0, 2)) plt.show() ``` ![image14](image14.png) ### [torchvision.transforms.Normalize(mean, std, inplace=False)](https://pytorch.org/vision/stable/transforms.html#torchvision.transforms.Normalize) Normalize a tensor image with mean and standard deviation. ### [torchvision.transforms.RandomEqualize(p=0.5)](https://pytorch.org/vision/stable/transforms.html#torchvision.transforms.RandomEqualize) Equalize the histogram of the given image randomly with a given probability. ### [torchvision.transforms.ColorJitter(brightness=0, contrast=0, saturation=0, hue=0)](https://pytorch.org/vision/stable/transforms.html#torchvision.transforms.ColorJitter) The ColorJitter transform randomly changes the brightness, saturation, and other properties of an image. ```python color_jitter_transform = tv.transforms.ColorJitter(brightness=0.75, hue=0.5) for i in range(1, 10): new_image = color_jitter_transform(torch_image) plt.subplot(3, 3, i) plt.imshow(np.moveaxis(new_image.detach().numpy(), 0, 2)) plt.show() ``` ![image8](image8.png) ### [torchvision.transforms.GaussianBlur(kernel_size, sigma=(0.1, 2.0))](https://pytorch.org/vision/stable/transforms.html#torchvision.transforms.GaussianBlur) The GaussianBlur transform performs gaussian blur transform on an image. Note: Big kernel sizes are slow. (51,51) is rather big. Kernel size needs to be odd and positive. ```python gauss_transform = tv.transforms.GaussianBlur(kernel_size=(101, 101), sigma=(0.1, 10)) new_image = gauss_transform(torch_image) plt.imshow(np.moveaxis(new_image.detach().numpy(), 0, 2)) plt.show() ``` ![image9](image9.png) ### [torchvision.transforms.RandomPerspective(distortion_scale=0.5, p=0.5, interpolation=, fill=0)](https://pytorch.org/vision/stable/transforms.html#torchvision.transforms.RandomPerspective) The RandomPerspective transform performs random perspective transform on an image. ```python random_perspective_transform = tv.transforms.RandomPerspective( distortion_scale=0.6, p=1.0 ) for i in range(1, 10): new_image = random_perspective_transform(torch_image) plt.subplot(3, 3, i) plt.imshow(np.moveaxis(new_image.detach().numpy(), 0, 2)) plt.show() ``` ![image10](image10.png) ### [torchvision.transforms.RandomRotation(degrees, interpolation=, expand=False, center=None, fill=0, resample=None)](https://pytorch.org/vision/stable/transforms.html#torchvision.transforms.RandomRotation) The RandomRotation transform rotates an image with random angle. ```python random_rotation_transform = tv.transforms.RandomRotation(degrees=(0, 180)) for i in range(1, 10): new_image = random_rotation_transform(torch_image) plt.subplot(3, 3, i) plt.imshow(np.moveaxis(new_image.detach().numpy(), 0, 2)) plt.show() ``` ![image11](image11.png) ### [torchvision.transforms.RandomAffine(degrees, translate=None, scale=None, shear=None, interpolation=, fill=0, fillcolor=None, resample=None)](https://pytorch.org/vision/stable/transforms.html#torchvision.transforms.RandomAffine) The RandomAffine transform performs random affine transform on an image. ```python random_affine_transform = tv.transforms.RandomAffine(degrees=(0, 180)) for i in range(1, 10): new_image = random_affine_transform(torch_image) plt.subplot(3, 3, i) plt.imshow(np.moveaxis(new_image.detach().numpy(), 0, 2)) plt.show() ``` ![image12](image12.png) ### [torchvision.transforms.RandomCrop(size, padding=None, pad_if_needed=False, fill=0, padding_mode='constant')](https://pytorch.org/vision/stable/transforms.html#torchvision.transforms.RandomCrop) The RandomCrop transform crops an image at a random location. ```python random_crop_transform = tv.transforms.RandomCrop(size=(250, 200)) for i in range(1, 10): new_image = random_crop_transform(torch_image) plt.subplot(3, 3, i) plt.imshow(np.moveaxis(new_image.detach().numpy(), 0, 2)) plt.show() ``` ![image13](image13.png) ### [torchvision.transforms.RandomResizedCrop(size, scale=(0.08, 1.0), ratio=(0.75, 1.3333333333333333), interpolation=)](https://pytorch.org/vision/stable/transforms.html#torchvision.transforms.RandomResizedCrop) The RandomResizedCrop transform crops an image at a random location, and then resizes the crop to a given size. ### [torchvision.transforms.RandomPosterize(bits, p=0.5)](https://pytorch.org/vision/stable/transforms.html#torchvision.transforms.RandomPosterize) Posterize the image randomly with a given probability by reducing the number of bits for each color channel. ```python for i in range(1, 5): random_posterize_transform = tv.transforms.RandomPosterize(bits=i, p=1.0) new_image = random_posterize_transform((torch_image * 255).type(dtype=torch.uint8)) plt.subplot(2, 2, i) plt.imshow(np.moveaxis(new_image.detach().numpy(), 0, 2)) plt.show() ``` ![image15](image15.png) ### [torchvision.transforms.RandomSolarize(threshold, p=0.5)](https://pytorch.org/vision/stable/transforms.html#torchvision.transforms.RandomSolarize) Solarize the image randomly with a given probability by inverting all pixel values above a threshold. ```python random_solarize_transform = tv.transforms.RandomSolarize(threshold=0.5) new_image = random_solarize_transform(torch_image) plt.imshow(np.moveaxis(new_image.detach().numpy(), 0, 2)) plt.show() ``` ![image16](image16.png) ### [torchvision.transforms.RandomAdjustSharpness(sharpness_factor, p=0.5)](https://pytorch.org/vision/stable/transforms.html#torchvision.transforms.RandomAdjustSharpness) Adjust the sharpness of the image randomly with a given probability. ```python random_sharpness_transform = tv.transforms.RandomAdjustSharpness( sharpness_factor=50, p=1.0 ) new_image = random_sharpness_transform(torch_image) plt.subplot(1, 2, 1) plt.imshow(np.moveaxis(torch_image.detach().numpy(), 0, 2)) plt.subplot(1, 2, 2) plt.imshow(np.moveaxis(new_image.detach().numpy(), 0, 2)) plt.show() ``` ![image17](image17.png) ### [torchvision.transforms.RandomAutocontrast(p=0.5)](https://pytorch.org/vision/stable/transforms.html#torchvision.transforms.RandomAutocontrast) Autocontrast the pixels of the given image randomly with a given probability. I don't see any effect. ```python random_autocontrast_transform = tv.transforms.RandomAutocontrast(p=1.0) new_image = random_autocontrast_transform(torch_image) plt.subplot(1, 2, 1) plt.imshow(np.moveaxis(torch_image.detach().numpy(), 0, 2)) plt.subplot(1, 2, 2) plt.imshow(np.moveaxis(new_image.detach().numpy(), 0, 2)) plt.show() ``` ![image18](image18.png) ### [torchvision.transforms.RandomErasing(p=0.5, scale=(0.02, 0.33), ratio=(0.3, 3.3), value=0, inplace=False)](https://pytorch.org/vision/stable/transforms.html#torchvision.transforms.RandomErasing) Randomly selects a rectangle region in an torch Tensor image and erases its pixels. ```python random_erasing_transform = tv.transforms.RandomErasing(p=1.0) new_image = random_erasing_transform(torch_image) plt.imshow(np.moveaxis(new_image.detach().numpy(), 0, 2)) plt.show() ``` ![image19](image19.png) ## Predefined processing chains [torchvision.transforms.AutoAugment(policy: torchvision.transforms.autoaugment.AutoAugmentPolicy = , interpolation: torchvision.transforms.functional.InterpolationMode = , fill: Optional[List[float]] = None)](https://pytorch.org/vision/stable/transforms.html#torchvision.transforms.AutoAugment) AutoAugment data augmentation method based on [“AutoAugment: Learning Augmentation Strategies from Data”](https://arxiv.org/pdf/1805.09501.pdf). [torchvision.transforms.AutoAugmentPolicy(value)](https://pytorch.org/vision/stable/transforms.html#torchvision.transforms.AutoAugmentPolicy) AutoAugment policies learned on different datasets. Available policies are IMAGENET, CIFAR10 and SVHN. #### CIFAR10 ```python random_auto1_transform = tv.transforms.AutoAugment( tv.transforms.AutoAugmentPolicy.CIFAR10 ) for i in range(1, 10): new_image = random_auto1_transform((torch_image * 255).type(dtype=torch.uint8)) plt.subplot(3, 3, i) plt.imshow(np.moveaxis(new_image.detach().numpy(), 0, 2)) plt.show() ``` ![image20](image20.png) #### IMAGENET ```python random_auto2_transform = tv.transforms.AutoAugment( tv.transforms.AutoAugmentPolicy.IMAGENET ) for i in range(1, 10): new_image = random_auto2_transform((torch_image * 255).type(dtype=torch.uint8)) plt.subplot(3, 3, i) plt.imshow(np.moveaxis(new_image.detach().numpy(), 0, 2)) plt.show() ``` ![image21](image21.png) #### SVHN ```python random_auto3_transform = tv.transforms.AutoAugment(tv.transforms.AutoAugmentPolicy.SVHN) for i in range(1, 10): new_image = random_auto3_transform((torch_image * 255).type(dtype=torch.uint8)) plt.subplot(3, 3, i) plt.imshow(np.moveaxis(new_image.detach().numpy(), 0, 2)) plt.show() ``` ![image22](image22.png) ## Building custom processing chains ### [torch.nn.Sequential(*args)](https://pytorch.org/docs/stable/generated/torch.nn.Sequential.html#torch.nn.Sequential) A sequential container. Modules will be added to it in the order they are passed in the constructor. ```python sequential_transform = torch.nn.Sequential( tv.transforms.RandomSolarize(threshold=0.5, p=1.0), tv.transforms.RandomErasing(p=1.0), ) new_image = sequential_transform((torch_image * 255).type(dtype=torch.uint8)) plt.imshow(np.moveaxis(new_image.detach().numpy(), 0, 2)) plt.show() ``` Depending on the transformation used, I can be possible to just-in-time (jit) compile it. ```python sequential_transform_jit = torch.jit.script(sequential_transform) ``` ![image23](image23.png) ### [torchvision.transforms.Compose(transforms)](https://pytorch.org/vision/stable/transforms.html#torchvision.transforms.Compose) Composes several transforms together. **This transform does not support torchscript.** ```python compose_transform = tv.transforms.Compose( [ tv.transforms.RandomSolarize(threshold=0.5, p=1.0), tv.transforms.RandomErasing(p=1.0), ] ) new_image = compose_transform((torch_image * 255).type(dtype=torch.uint8)) plt.imshow(np.moveaxis(new_image.detach().numpy(), 0, 2)) plt.show() ``` ![image24](image24.png) ### [torchvision.transforms.RandomApply(transforms, p=0.5)](https://pytorch.org/vision/stable/transforms.html#torchvision.transforms.RandomApply) Apply randomly a list of transformations with a given probability. **Note: It randomly applies the whole list of transformation or none.** ```python randomapply_transform = tv.transforms.RandomApply( [ tv.transforms.RandomSolarize(threshold=0.5, p=1.0), tv.transforms.RandomErasing(p=1.0), ], p=0.5, ) for i in range(1, 3): plt.subplot(2, 1, i) new_image = randomapply_transform((torch_image * 255).type(dtype=torch.uint8)) plt.imshow(np.moveaxis(new_image.detach().numpy(), 0, 2)) plt.show() ``` ![image25](image25.png) ## Building your own filter In the case you need a special filter then you just can write it very easily on your own. Here is an example. ```python import torch class OnOffFilter(torch.nn.Module): def __init__(self, p: float = 0.5) -> None: super(OnOffFilter, self).__init__() self.p: float = p def forward(self, tensor: torch.Tensor) -> torch.Tensor: assert tensor.shape[1] == 1 tensor -= self.p temp_0: torch.Tensor = torch.where( tensor < 0.0, -tensor, tensor.new_zeros(tensor.shape, dtype=tensor.dtype) ) temp_1: torch.Tensor = torch.where( tensor >= 0.0, tensor, tensor.new_zeros(tensor.shape, dtype=tensor.dtype) ) new_tensor: torch.Tensor = torch.cat((temp_0, temp_1), dim=1) return new_tensor def __repr__(self): return self.__class__.__name__ + "(p={0})".format(self.p) if __name__ == "__main__": pass ```