# ROC {:.no_toc} ## Top Questions to [David Rotermund](mailto:davrot@uni-bremen.de) ## Test data ```python import numpy as np import matplotlib.pyplot as plt rng = np.random.default_rng(1) a_x = rng.normal(1.5, 1.0, size=(5000)) b_x = rng.normal(0.0, 1.0, size=(5000)) ab_x = np.concatenate([a_x, b_x]) edges = np.histogram_bin_edges(ab_x, bins=100, range=None, weights=None) h_a, _ = np.histogram(a_x, bins=edges) h_b, _ = np.histogram(b_x, bins=edges) h_a = h_a.astype(np.float32) h_b = h_b.astype(np.float32) h_a /= h_a.sum() h_b /= h_b.sum() edges = (edges[1:] + edges[:-1]) / 2.0 plt.plot(edges, h_a, "c.", label="Class -1") plt.plot(edges, h_b, "m.", label="Class +1") plt.ylabel("Probability of a value") plt.ylabel("Edge center") plt.legend() plt.show() ``` ![Image1](image1.png) ## Fund the cumsum maximum ```python import numpy as np import matplotlib.pyplot as plt rng = np.random.default_rng(1) a_x = rng.normal(1.5, 1.0, size=(5000)) b_x = rng.normal(0.0, 1.0, size=(5000)) data_data = np.concatenate([a_x, b_x]) data_class = np.concatenate([np.full_like(a_x, -1), np.full_like(b_x, +1)]) idx = np.argsort(data_data) data_data = data_data[idx] data_class = data_class[idx] data_cumsum = np.cumsum(data_class) plt.plot(data_cumsum) plt.plot( [np.argmax(data_cumsum), np.argmax(data_cumsum)], [0, np.max(data_cumsum)], "k--" ) plt.ylabel("Cumsum of the classes") plt.xlabel("Sorted sample id") plt.show() ``` ![Image2](image2.png) ```python ```