pytutorial/PyBind11/basics/MyModuleCPU.cpp
David Rotermund 0f74e9bb19
Add files via upload
Signed-off-by: David Rotermund <54365609+davrot@users.noreply.github.com>
2024-01-03 14:47:16 +01:00

380 lines
No EOL
9.5 KiB
C++

#include "MyModuleCPU.h"
#include <iostream>
#include <unistd.h>
#include <cctype>
MyModule::MyModule() {};
MyModule::~MyModule() {};
int MyModule::PutStuffIn(py::array& Arg_Input)
{
if (GetShape(Arg_Input, Data_Shape) == false)
{
return false;
}
if (MyModule::Converter(Arg_Input, Data_Data) == false)
{
return false;
}
return true;
}
int MyModule::DoStuff(double Factor)
{
size_t Counter;
#pragma omp simd
for (Counter = 0; Counter < Data_Data.size(); Counter++)
{
Data_Data[Counter] *= Factor;
}
return true;
}
py::array MyModule::GetStuffOut(void)
{
return Converter(Data_Data, Data_Shape);
}
// ------------------------------------------------
py::list MyModule::MakeList(std::vector<std::vector<double>>& Arg_Data,
std::vector<std::vector<size_t>>& Arg_Shape)
{
py::list ReturnValue;
if (Arg_Data.size() != Arg_Shape.size())
{
std::cout << "MyModule::MakeList => The sizes of the two vectors are different.\n";
return ReturnValue;
}
size_t List_Pos = 0;
for (List_Pos = 0; List_Pos < Arg_Shape.size(); List_Pos++)
{
std::vector<ptrdiff_t> ShapeVector;
ShapeVector.resize(Arg_Shape[List_Pos].size());
size_t Counter = 0;
for (Counter = 0; Counter < Arg_Shape[List_Pos].size(); Counter++)
{
ShapeVector[Counter] = Arg_Shape[List_Pos].at(Counter);
}
auto Temp = py::array_t<double>(ShapeVector, Arg_Data[List_Pos].data());
ReturnValue.append(Temp);
}
return ReturnValue;
}
py::array MyModule::Converter(std::vector<double>& Arg_Data,
std::vector<size_t>& Arg_Shape)
{
py::array ReturnValue;
std::vector<ptrdiff_t> ShapeVector;
ShapeVector.resize(Arg_Shape.size());
size_t Counter = 0;
for (Counter = 0; Counter < Arg_Shape.size(); Counter++)
{
ShapeVector[Counter] = Arg_Shape.at(Counter);
}
auto Temp = py::array_t<double>(ShapeVector, Arg_Data.data());
return Temp;
}
bool MyModule::Converter(py::array& Arg_In, std::vector<double>& Arg_Data)
{
if ((Arg_In.flags() & pybind11::detail::npy_api::NPY_ARRAY_C_CONTIGUOUS_) != pybind11::detail::npy_api::NPY_ARRAY_C_CONTIGUOUS_)
{
std::cout << "MyModule::Converter => Array is not c_style.\n";
return false;
}
size_t Size = Arg_In.nbytes();
if (Size == 0)
{
std::cout << "MyModule::Converter => Array is empty.\n";
return false;
}
auto Temp_Array = Arg_In.request();
if (py::isinstance<py::array_t<double>>(Arg_In) == false)
{
std::cout << "MyModule::Converter => Wrong type.\n";
return false;
}
double* MyPtr = (double*)Temp_Array.ptr;
if (MyPtr == nullptr)
{
std::cout << "MyModule::Converter => Pointer is null.\n";
return false;
}
Arg_Data.resize(Size / sizeof(double));
memcpy(Arg_Data.data(), MyPtr, Size);
return true;
}
bool MyModule::ConvertList(py::list& Arg_List, std::vector<std::vector<double>>& Arg_Data,
std::vector<std::vector<size_t>>& Arg_Shape)
{
Arg_Data.resize(0);
Arg_Shape.resize(0);
// Get the shapes of all the matrices
if (GetShape(Arg_List, Arg_Shape) != 0)
{
return false;
}
// Get the data from the list
if (CopyData(Arg_List, Arg_Data, Arg_Shape) != 0)
{
return false;
}
return true;
}
int MyModule::GetShape(py::list& Arg_List, std::vector<std::vector<size_t>>& Arg_Shape)
{
Arg_Shape.resize(0);
size_t List_Length = Arg_List.size();
Arg_Shape.resize(List_Length);
size_t Counter_List;
size_t Counter_Dims;
py::array Temp_Array;
for (Counter_List = 0; Counter_List < List_Length; Counter_List++)
{
Arg_Shape[Counter_List].resize(0);
Temp_Array = Arg_List[Counter_List];
Arg_Shape[Counter_List].resize(Temp_Array.ndim());
for (Counter_Dims = 0; Counter_Dims < Temp_Array.ndim(); Counter_Dims++)
{
Arg_Shape[Counter_List][Counter_Dims] = Temp_Array.shape(Counter_Dims);
}
}
return 0;
}
bool MyModule::GetShape(py::array& Arg_Input, std::vector<size_t>& Arg_Shape)
{
Arg_Shape.resize(Arg_Input.ndim());
size_t Counter_Dims;
for (Counter_Dims = 0; Counter_Dims < Arg_Input.ndim(); Counter_Dims++)
{
Arg_Shape[Counter_Dims] = Arg_Input.shape(Counter_Dims);
}
return true;
}
int MyModule::CopyData(py::list& Arg_List, std::vector<std::vector<double>>& Arg_Data,
std::vector<std::vector<size_t>>& Arg_Shape)
{
Arg_Data.resize(0);
size_t List_Length = Arg_List.size();
size_t List_Pos = List_Length;
double* MyPtr = nullptr;
py::array Temp_Array;
Arg_Data.resize(List_Length);
for (List_Pos = 0; List_Pos < List_Length; List_Pos++)
{
MyPtr = nullptr;
Temp_Array = Arg_List[List_Pos];
size_t Counter = 0;
size_t ElementsOfArray = 0;
for (Counter = 0; Counter < Arg_Shape[List_Pos].size(); Counter++)
{
if (Counter == 0)
{
ElementsOfArray = Arg_Shape[List_Pos][Counter];
}
else
{
ElementsOfArray *= Arg_Shape[List_Pos][Counter];
}
}
size_t SizeOfArray_Bytes = ElementsOfArray * sizeof(double);
if (SizeOfArray_Bytes != Temp_Array.nbytes())
{
std::cout << "MyModule::CopyData => "
<< "Liste element: "
<< Counter << " is not the right amount of data.\n";
return -1;
}
auto Temp_Array_f = Temp_Array.request();
MyPtr = (double*)Temp_Array_f.ptr;
if (MyPtr == nullptr)
{
std::cout << "MyModule::CopyData => "
<< "Pointer is null.\n";
return -1;
}
Arg_Data[List_Pos].resize(ElementsOfArray);
memcpy((void*)Arg_Data[List_Pos].data(), (void*)MyPtr, SizeOfArray_Bytes);
}
return 0;
}
py::array MyModule::Converter(double& Arg_Data)
{
std::vector<ptrdiff_t> ShapeVector;
ShapeVector.resize(1);
ShapeVector[0] = 1;
return py::array_t<double>(ShapeVector, &Arg_Data);
}
bool MyModule::CheckList(py::list& Arg_List, int Check_NumberOfDimensions,
size_t dType)
{
// Is it a list?
py::handle type = Arg_List.get_type();
py::object type_name = type.attr("__name__");
std::string Correct_List = std::string("list");
if (Correct_List.compare(py::cast<std::string>(type_name)) != 0)
{
std::cout << "MyModule => Not a list.\n";
return false;
}
// Is there something in the list?
size_t List_Length = Arg_List.size();
if (List_Length <= 0)
{
std::cout << "MyModule => List is empty.\n";
return false;
}
// Are the list elements numpy arrays?
size_t Counter = 0;
std::string Correct_NDArray = std::string("ndarray");
for (Counter = 0; Counter < List_Length; Counter++)
{
type = Arg_List[Counter].get_type();
type_name = type.attr("__name__");
if (Correct_NDArray.compare(py::cast<std::string>(type_name)) != 0)
{
std::cout << "MyModule => Liste element: " << Counter << " not a numpy array .\n";
return false;
}
}
// Has every array the right dimension?
py::array Temp_Array;
for (Counter = 0; Counter < List_Length; Counter++)
{
Temp_Array = Arg_List[Counter];
if (Temp_Array.ndim() != Check_NumberOfDimensions)
{
std::cout << " MyModule => Liste element: " << Counter
<< " has not the necessary "
<< Check_NumberOfDimensions << " dimensions (found: " << Temp_Array.ndim() << ").\n";
return false;
}
}
// Are all the numpy arrays c_style?
for (Counter = 0; Counter < List_Length; Counter++)
{
Temp_Array = Arg_List[Counter];
if ((Temp_Array.flags() & pybind11::detail::npy_api::NPY_ARRAY_C_CONTIGUOUS_) != pybind11::detail::npy_api::NPY_ARRAY_C_CONTIGUOUS_)
{
std::cout << "MyModule => Liste element: " << Counter << " is not c_style.\n";
return false;
}
}
// 0: single
// 1: double
// 2: uint32_t
// 3: uint64_t
for (Counter = 0; Counter < List_Length; Counter++)
{
Temp_Array = Arg_List[Counter];
// Float
if (dType == 0)
{
if (py::isinstance<py::array_t<float>>(Temp_Array) == false)
{
std::cout << "MyModule => Liste element: " << Counter << " is not a float.\n";
return -1;
}
}
// Double
if (dType == 1)
{
if (py::isinstance<py::array_t<double>>(Temp_Array) == false)
{
std::cout << "MyModule => Liste element: " << Counter << " is not a double.\n";
return false;
}
}
// uint32_t
if (dType == 2)
{
if (py::isinstance<py::array_t<uint32_t>>(Temp_Array) == false)
{
std::cout << "MyModule => Liste element: " << Counter << " is not a uint32.\n";
return false;
}
}
// uint64_t
if (dType == 3)
{
if (py::isinstance<py::array_t<uint64_t>>(Temp_Array) == false)
{
std::cout << "MyModule => Liste element: " << Counter << " is not a uint64.\n";
return false;
}
}
}
return true;
}