pytutorial/numpy/numba
David Rotermund 038a3a44a0
Update README.md
Signed-off-by: David Rotermund <54365609+davrot@users.noreply.github.com>
2023-12-28 18:13:23 +01:00
..
README.md Update README.md 2023-12-28 18:13:23 +01:00

Numba

{:.no_toc}

* TOC {:toc}

The goal

"Numba is an open source JIT compiler that translates a subset of Python and NumPy code into fast machine code."

Questions to David Rotermund

pip install numba

A ~5 minute guide to Numba

Numba basic types

For the example that will show you the options of optimization we need to understand the numba naming schema.

Numbers

For the function signatures we need to be able to translate the usual np.dtype into numpy.types.

For doing so we just replace np. by numba.types. .

Type name(s) Shorthand Comments
numba.types.boolean b1 represented as a byte
numba.types.uint8, byte u1 8-bit unsigned byte
numba.types.uint16 u2 16-bit unsigned integer
numba.types.uint32 u4 32-bit unsigned integer
numba.types.uint64 u8 64-bit unsigned integer
numba.types.int8, char i1 8-bit signed byte
numba.types.int16 i2 16-bit signed integer
numba.types.int32 i4 32-bit signed integer
numba.types.int64 i8 64-bit signed integer
numba.types.intc C int-sized integer
numba.types.uintc C int-sized unsigned integer
numba.types.intp pointer-sized integer
numba.types.uintp pointer-sized unsigned integer
numba.types.float32 f4 single-precision floating-point number
numba.types.float64, double f8 double-precision floating-point number
numba.types.complex64 c8 single-precision complex number
numba.types.complex128 c16 double-precision complex number

Arrays

If we have arrays in the function signature, which is a very likely senario, we might want to give as much information to numpy as possible about the numpy.ndarray. In some cases it is very benificial to make a np.ndarray an array with C memory layout and tell numba about it.

We can use the numpy function numpy.ascontiguousarray for converting a numpy array into a C memory layout.

We can also check a numpy array, let's call it X, if it is already in the C memory layout. This is done by looking at X.flags['C_CONTIGUOUS'].

Some example for array signatures are:

numba.types.float32[:] 1d array of float32 with no particular memory layout
numba.types.float32[:,:] 2d array of float32 with no particular memory layout
numba.types.float32[:,:,:] 3d array of float32 with no particular memory layout
numba.types.float32[::1] 1d array of float32 with C memory layout
numba.types.float32[:,::1] 2d array of float32 with C memory layout
numba.types.float32[:,:,::1] 3d array of float32 with C memory layout
numba.types.float32[::1,:] 2d array of float32 with Fortran memory layout
numba.types.float32[::1,:,:] 3d array of float32 with Fortran memory layout

An example (up to 437x faster)

For measuring the time used by the program I ran everything twice and took the second time. I did this is because the just-in-time compilation takes a moment for the first call of a function.

Basis code (7.76 sec)

This is the basic code without any optimizations.

import time
import numpy as np


def get_spike(
    h: np.ndarray, number_of_neurons: np.uint64, random_number: np.float64
) -> np.uint64:

    summation: np.float64 = np.float64(0.0)

    output: np.uint64 = np.uint64(number_of_neurons - 1)

    for i in range(0, np.uint64(number_of_neurons - 1)):
        summation += h[i]

        if random_number <= summation:
            output = np.uint64(i)
            return output

    return output


def main(
    number_of_iterations: np.uint64,
    number_of_neurons: np.uint64,
    random_number_spikes: np.ndarray,
    random_number_h: np.ndarray,
) -> np.ndarray:

    results = np.zeros((number_of_iterations), dtype=np.uint64)

    for i in range(0, number_of_iterations):
        h = random_number_h[i, :]
        h /= h.sum()
        results[i] = get_spike(h, number_of_neurons, random_number_spikes[i])

    return results


if __name__ == "__main__":
    number_of_iterations: np.uint64 = np.uint64(10000)
    number_of_neurons: np.uint64 = np.uint64(10000)
    myrng = np.random.default_rng()

    random_number_spikes = myrng.random((number_of_iterations), dtype=np.float64)
    random_number_h = myrng.random(
        (number_of_iterations, number_of_neurons), dtype=np.float64
    )

    start_time = time.perf_counter()
    results = main(
        number_of_iterations=number_of_iterations,
        number_of_neurons=number_of_neurons,
        random_number_spikes=random_number_spikes,
        random_number_h=random_number_h,
    )
    end_time = time.perf_counter()

    check_for_errors = np.sum([results >= number_of_neurons])
    if check_for_errors > 0:
        print("Something went really wrong! Panic!")
    print(f"{end_time-start_time:.5f} sec")
    print(results[0:10])

Optimization 1 (0.482sec)

We add just-in-time compilation to the function get_spike with @njit(cache=True). "To avoid compilation times each time you invoke a Python program, you can instruct Numba to write the result of function compilation into a file-based cache."

import time
import numpy as np
from numba import njit


@njit(cache=True)
def get_spike(
    h: np.ndarray, number_of_neurons: np.uint64, random_number: np.float64
) -> np.uint64:

    summation: np.float64 = np.float64(0.0)

    output: np.uint64 = np.uint64(number_of_neurons - 1)

    for i in range(0, np.uint64(number_of_neurons - 1)):
        summation += h[i]

        if random_number <= summation:
            output = np.uint64(i)
            return output

    return output


def main(
    number_of_iterations: np.uint64,
    number_of_neurons: np.uint64,
    random_number_spikes: np.ndarray,
    random_number_h: np.ndarray,
) -> np.ndarray:

    results = np.zeros((number_of_iterations), dtype=np.uint64)

    for i in range(0, number_of_iterations):
        h = random_number_h[i, :]
        h /= h.sum()
        results[i] = get_spike(h, number_of_neurons, random_number_spikes[i])

    return results


if __name__ == "__main__":
    number_of_iterations: np.uint64 = np.uint64(10000)
    number_of_neurons: np.uint64 = np.uint64(10000)
    myrng = np.random.default_rng()

    random_number_spikes = myrng.random((number_of_iterations), dtype=np.float64)
    random_number_h = myrng.random(
        (number_of_iterations, number_of_neurons), dtype=np.float64
    )

    start_time = time.perf_counter()
    results = main(
        number_of_iterations=number_of_iterations,
        number_of_neurons=number_of_neurons,
        random_number_spikes=random_number_spikes,
        random_number_h=random_number_h,
    )
    end_time = time.perf_counter()

    check_for_errors = np.sum([results >= number_of_neurons])
    if check_for_errors > 0:
        print("Something went really wrong! Panic!")
    print(f"{end_time-start_time:.5f} sec")
    print(results[0:10])

Optimization 2 (0.627sec)

We also add just-in-time compilation to the function main with @njit(cache=True).

import time
import numpy as np
from numba import njit


@njit(cache=True)
def get_spike(
    h: np.ndarray, number_of_neurons: np.uint64, random_number: np.float64
) -> np.uint64:

    summation: np.float64 = np.float64(0.0)

    output: np.uint64 = np.uint64(number_of_neurons - 1)

    for i in range(0, np.uint64(number_of_neurons - 1)):
        summation += h[i]

        if random_number <= summation:
            output = np.uint64(i)
            return output

    return output


@njit(cache=True)
def main(
    number_of_iterations: np.uint64,
    number_of_neurons: np.uint64,
    random_number_spikes: np.ndarray,
    random_number_h: np.ndarray,
) -> np.ndarray:

    results = np.zeros((number_of_iterations), dtype=np.uint64)

    for i in range(0, number_of_iterations):
        h = random_number_h[i, :]
        h /= h.sum()
        results[i] = get_spike(h, number_of_neurons, random_number_spikes[i])

    return results


if __name__ == "__main__":
    number_of_iterations: np.uint64 = np.uint64(10000)
    number_of_neurons: np.uint64 = np.uint64(10000)
    myrng = np.random.default_rng()

    random_number_spikes = myrng.random((number_of_iterations), dtype=np.float64)
    random_number_h = myrng.random(
        (number_of_iterations, number_of_neurons), dtype=np.float64
    )

    start_time = time.perf_counter()
    results = main(
        number_of_iterations=number_of_iterations,
        number_of_neurons=number_of_neurons,
        random_number_spikes=random_number_spikes,
        random_number_h=random_number_h,
    )
    end_time = time.perf_counter()

    check_for_errors = np.sum([results >= number_of_neurons])
    if check_for_errors > 0:
        print("Something went really wrong! Panic!")
    print(f"{end_time-start_time:.5f} sec")
    print(results[0:10])

Optimization 3 (0.619sec)

We add function signatures to the code with:

@njit(
    numba.types.uint64(numba.types.float64[:], numba.types.uint64, numba.types.float64),
    cache=True,
)
def get_spike(
    h: np.ndarray, number_of_neurons: np.uint64, random_number: np.float64
) -> np.uint64:


[...]

@njit(
    numba.types.uint64[:](
        numba.types.uint64,
        numba.types.uint64,
        numba.types.float64[:],
        numba.types.float64[:, :],
    ),
    cache=True,
)
def main(
    number_of_iterations: np.uint64,
    number_of_neurons: np.uint64,
    random_number_spikes: np.ndarray,
    random_number_h: np.ndarray,
) -> np.ndarray:
import time
import numpy as np
from numba import njit
import numba


@njit(
    numba.types.uint64(numba.types.float64[:], numba.types.uint64, numba.types.float64),
    cache=True,
)
def get_spike(
    h: np.ndarray, number_of_neurons: np.uint64, random_number: np.float64
) -> np.uint64:

    summation: np.float64 = np.float64(0.0)

    output: np.uint64 = np.uint64(number_of_neurons - 1)

    for i in range(0, np.uint64(number_of_neurons - 1)):
        summation += h[i]

        if random_number <= summation:
            output = np.uint64(i)
            return output

    return output


@njit(
    numba.types.uint64[:](
        numba.types.uint64,
        numba.types.uint64,
        numba.types.float64[:],
        numba.types.float64[:, :],
    ),
    cache=True,
)
def main(
    number_of_iterations: np.uint64,
    number_of_neurons: np.uint64,
    random_number_spikes: np.ndarray,
    random_number_h: np.ndarray,
) -> np.ndarray:

    results = np.zeros((number_of_iterations), dtype=np.uint64)

    for i in range(0, number_of_iterations):
        h = random_number_h[i, :]
        h /= h.sum()
        results[i] = get_spike(h, number_of_neurons, random_number_spikes[i])

    return results


if __name__ == "__main__":
    number_of_iterations: np.uint64 = np.uint64(10000)
    number_of_neurons: np.uint64 = np.uint64(10000)
    myrng = np.random.default_rng()

    random_number_spikes = myrng.random((number_of_iterations), dtype=np.float64)
    random_number_h = myrng.random(
        (number_of_iterations, number_of_neurons), dtype=np.float64
    )

    start_time = time.perf_counter()
    results = main(
        number_of_iterations=number_of_iterations,
        number_of_neurons=number_of_neurons,
        random_number_spikes=random_number_spikes,
        random_number_h=random_number_h,
    )
    end_time = time.perf_counter()

    check_for_errors = np.sum([results >= number_of_neurons])
    if check_for_errors > 0:
        print("Something went really wrong! Panic!")
    print(f"{end_time-start_time:.5f} sec")
    print(results[0:10])

Optimization 4 (0.419sec)

We tell numba about the C memory layout of the arrays with refining the function signature:

@njit(
    numba.types.uint64[::1](
        numba.types.uint64,
        numba.types.uint64,
        numba.types.float64[::1],
        numba.types.float64[:, ::1],
    ),
    cache=True,
)
import time
import numpy as np
from numba import njit
import numba


@njit(
    numba.types.uint64(numba.types.float64[:], numba.types.uint64, numba.types.float64),
    cache=True,
)
def get_spike(
    h: np.ndarray, number_of_neurons: np.uint64, random_number: np.float64
) -> np.uint64:

    summation: np.float64 = np.float64(0.0)

    output: np.uint64 = np.uint64(number_of_neurons - 1)

    for i in range(0, np.uint64(number_of_neurons - 1)):
        summation += h[i]

        if random_number <= summation:
            output = np.uint64(i)
            return output

    return output


@njit(
    numba.types.uint64[::1](
        numba.types.uint64,
        numba.types.uint64,
        numba.types.float64[::1],
        numba.types.float64[:, ::1],
    ),
    cache=True,
)
def main(
    number_of_iterations: np.uint64,
    number_of_neurons: np.uint64,
    random_number_spikes: np.ndarray,
    random_number_h: np.ndarray,
) -> np.ndarray:

    results = np.zeros((number_of_iterations), dtype=np.uint64)

    for i in range(0, number_of_iterations):
        h = random_number_h[i, :]
        h /= h.sum()
        results[i] = get_spike(h, number_of_neurons, random_number_spikes[i])

    return results


if __name__ == "__main__":
    number_of_iterations: np.uint64 = np.uint64(10000)
    number_of_neurons: np.uint64 = np.uint64(10000)
    myrng = np.random.default_rng()

    random_number_spikes = myrng.random((number_of_iterations), dtype=np.float64)
    random_number_h = myrng.random(
        (number_of_iterations, number_of_neurons), dtype=np.float64
    )

    start_time = time.perf_counter()
    results = main(
        number_of_iterations=number_of_iterations,
        number_of_neurons=number_of_neurons,
        random_number_spikes=random_number_spikes,
        random_number_h=random_number_h,
    )
    end_time = time.perf_counter()

    check_for_errors = np.sum([results >= number_of_neurons])
    if check_for_errors > 0:
        print("Something went really wrong! Panic!")
    print(f"{end_time-start_time:.5f} sec")
    print(results[0:10])