06d7daf0cc
Signed-off-by: David Rotermund <54365609+davrot@users.noreply.github.com> |
||
---|---|---|
.. | ||
network_0.png | ||
README.md |
Creating networks
{:.no_toc}
* TOC {:toc}The goal
In these days, building networks is very important.
Questions to David Rotermund
A fast way to build a network with Sequential
CLASS torch.nn.Sequential(*args: Module)
A sequential container. Modules will be added to it in the order they are passed in the constructor.
Example:
We can just chain the layers together:
import torch
input_number_of_channel: int = 1
input_dim_x: int = 24
input_dim_y: int = 24
number_of_output_channels_conv1: int = 32
number_of_output_channels_conv2: int = 64
number_of_output_channels_flatten1: int
number_of_output_channels_full1: int = 1024
number_of_output_channels_out: int = 10
kernel_size_conv1: tuple[int, int] = (5, 5)
kernel_size_pool1: tuple[int, int] = (2, 2)
kernel_size_conv2: tuple[int, int] = (5, 5)
kernel_size_pool2: tuple[int, int] = (2, 2)
stride_conv1: tuple[int, int] = (1, 1)
stride_pool1: tuple[int, int] = (2, 2)
stride_conv2: tuple[int, int] = (1, 1)
stride_pool2: tuple[int, int] = (2, 2)
padding_conv1: int = 0
padding_pool1: int = 0
padding_conv2: int = 0
padding_pool2: int = 0
number_of_output_channels_flatten1 = 576
network = torch.nn.Sequential(
torch.nn.Conv2d(
in_channels=input_number_of_channel,
out_channels=number_of_output_channels_conv1,
kernel_size=kernel_size_conv1,
stride=stride_conv1,
padding=padding_conv1,
),
torch.nn.ReLU(),
torch.nn.MaxPool2d(
kernel_size=kernel_size_pool1, stride=stride_pool1, padding=padding_pool1
),
torch.nn.Conv2d(
in_channels=number_of_output_channels_conv1,
out_channels=number_of_output_channels_conv2,
kernel_size=kernel_size_conv2,
stride=stride_conv2,
padding=padding_conv2,
),
torch.nn.ReLU(),
torch.nn.MaxPool2d(
kernel_size=kernel_size_pool2, stride=stride_pool2, padding=padding_pool2
),
torch.nn.Flatten(
start_dim=1,
),
torch.nn.Linear(
in_features=number_of_output_channels_flatten1,
out_features=number_of_output_channels_full1,
bias=True,
),
torch.nn.ReLU(),
torch.nn.Linear(
in_features=number_of_output_channels_full1,
out_features=number_of_output_channels_out,
bias=True,
),
)
print(network)
Sequential(
(0): Conv2d(1, 32, kernel_size=(5, 5), stride=(1, 1))
(1): ReLU()
(2): MaxPool2d(kernel_size=(2, 2), stride=(2, 2), padding=0, dilation=1, ceil_mode=False)
(3): Conv2d(32, 64, kernel_size=(5, 5), stride=(1, 1))
(4): ReLU()
(5): MaxPool2d(kernel_size=(2, 2), stride=(2, 2), padding=0, dilation=1, ceil_mode=False)
(6): Flatten(start_dim=1, end_dim=-1)
(7): Linear(in_features=576, out_features=1024, bias=True)
(8): ReLU()
(9): Linear(in_features=1024, out_features=10, bias=True)
)
Congratulations you now have the network you wanted.
Inspecting the network object
print(network.__dict__)
The output is:
{'training': True,
'_parameters': OrderedDict(),
'_buffers': OrderedDict(),
'_non_persistent_buffers_set': set(),
'_backward_pre_hooks': OrderedDict()
'_backward_hooks': OrderedDict(),
'_is_full_backward_hook': None,
'_forward_hooks': OrderedDict(),
'_forward_hooks_with_kwargs': OrderedDict(),
'_forward_pre_hooks': OrderedDict(),
'_forward_pre_hooks_with_kwargs': OrderedDict(),
'_state_dict_hooks': OrderedDict(),
'_state_dict_pre_hooks': OrderedDict(),
'_load_state_dict_pre_hooks': OrderedDict(),
'_load_state_dict_post_hooks': OrderedDict(),
'_modules': OrderedDict([('0', Conv2d(1, 32, kernel_size=(5, 5), stride=(1, 1))), ('1', ReLU()), ('2', MaxPool2d(kernel_size=(2, 2), stride=(2, 2), padding=0, dilation=1, ceil_mode=False)), ('3', Conv2d(32, 64, kernel_size=(5, 5), stride=(1, 1))), ('4', ReLU()), ('5', MaxPool2d(kernel_size=(2, 2), stride=(2, 2), padding=0, dilation=1, ceil_mode=False)), ('6', Flatten(start_dim=1, end_dim=-1)), ('7', Linear(in_features=576, out_features=1024, bias=True)), ('8', ReLU()), ('9', Linear(in_features=1024, out_features=10, bias=True))])}
The obvious question is: What does this tell us? We see that the network is set to training mode but more importantly we can see our network architecture:
print(network.__dict__["_modules"])
```python
```python
OrderedDict([
('0', Conv2d(1, 32, kernel_size=(5, 5), stride=(1, 1))),
('1', ReLU()),
('2', MaxPool2d(kernel_size=(2, 2), stride=(2, 2), padding=0, dilation=1, ceil_mode=False)),
('3', Conv2d(32, 64, kernel_size=(5, 5), stride=(1, 1))),
('4', ReLU()),
('5', MaxPool2d(kernel_size=(2, 2), stride=(2, 2), padding=0, dilation=1, ceil_mode=False)),
('6', Flatten(start_dim=1, end_dim=-1)),
('7', Linear(in_features=576, out_features=1024, bias=True)),
('8', ReLU()),
('9', Linear(in_features=1024, out_features=10, bias=True))])
Using the network
First we need some input data
input_number_of_channel: int = 1
input_dim_x: int = 24
input_dim_y: int = 24
number_of_pattern: int = 111
fake_input = torch.rand(
(number_of_pattern, input_number_of_channel, input_dim_x, input_dim_y),
dtype=torch.float32,
)
Output:
output = network(fake_input)
print(fake_input.shape) # -> torch.Size([111, 1, 24, 24])
print(output.shape) # -> torch.Size([111, 10])
Flatten -> Linear Problem
If you want to use a linear layer after the flatten layer, you need to know the output dimensions of the flatten layer. If you know, everything is good. If not what to do then? There are two main alternatives:
LazyLinear Layer
CLASS torch.nn.LazyLinear(out_features, bias=True, device=None, dtype=None)
A torch.nn.Linear module where in_features is inferred.
In this module, the weight and bias are of torch.nn.UninitializedParameter class. They will be initialized after the first call to forward is done and the module will become a regular torch.nn.Linear module. The in_features argument of the Linear is inferred from the input.shape[-1].
Check the torch.nn.modules.lazy.LazyModuleMixin for further documentation on lazy modules and their limitations.
If you want to manipulate the weights and such of this layer before using it then this can get ugly. If possible you should try to use alternative 2:
Building your network iteratively
Let us build the network layer by layer and assume we don't know number_of_output_channels_flatten1 = 576. But we know that the input has 1 input channel and 24x24 pixel in the spatial domain.
import torch
input_number_of_channel: int = 1
input_dim_x: int = 24
input_dim_y: int = 24
number_of_output_channels_conv1: int = 32
number_of_output_channels_conv2: int = 64
number_of_output_channels_flatten1: int
number_of_output_channels_full1: int = 1024
number_of_output_channels_out: int = 10
kernel_size_conv1: tuple[int, int] = (5, 5)
kernel_size_pool1: tuple[int, int] = (2, 2)
kernel_size_conv2: tuple[int, int] = (5, 5)
kernel_size_pool2: tuple[int, int] = (2, 2)
stride_conv1: tuple[int, int] = (1, 1)
stride_pool1: tuple[int, int] = (2, 2)
stride_conv2: tuple[int, int] = (1, 1)
stride_pool2: tuple[int, int] = (2, 2)
padding_conv1: int = 0
padding_pool1: int = 0
padding_conv2: int = 0
padding_pool2: int = 0
fake_input = torch.zeros((1, input_number_of_channel, input_dim_x, input_dim_y))
print(fake_input.shape) # -> torch.Size([1, 1, 24, 24])
network = torch.nn.Sequential()
network.append(
torch.nn.Conv2d(
in_channels=input_number_of_channel,
out_channels=number_of_output_channels_conv1,
kernel_size=kernel_size_conv1,
stride=stride_conv1,
padding=padding_conv1,
)
)
fake_input = network[-1](fake_input)
print(fake_input.shape) # -> torch.Size([1, 32, 20, 20])
network.append(torch.nn.ReLU())
fake_input = network[-1](fake_input)
print(fake_input.shape) # -> torch.Size([1, 32, 20, 20])
network.append(
torch.nn.MaxPool2d(
kernel_size=kernel_size_pool1, stride=stride_pool1, padding=padding_pool1
)
)
fake_input = network[-1](fake_input)
print(fake_input.shape) # -> torch.Size([1, 32, 10, 10])
network.append(
torch.nn.Conv2d(
in_channels=number_of_output_channels_conv1,
out_channels=number_of_output_channels_conv2,
kernel_size=kernel_size_conv2,
stride=stride_conv2,
padding=padding_conv2,
)
)
fake_input = network[-1](fake_input)
print(fake_input.shape) # -> torch.Size([1, 64, 6, 6])
network.append(torch.nn.ReLU())
fake_input = network[-1](fake_input)
print(fake_input.shape) # -> torch.Size([1, 64, 6, 6])
network.append(
torch.nn.MaxPool2d(
kernel_size=kernel_size_pool2, stride=stride_pool2, padding=padding_pool2
)
)
fake_input = network[-1](fake_input)
print(fake_input.shape) # -> torch.Size([1, 64, 3, 3])
network.append(
torch.nn.Flatten(
start_dim=1,
)
)
fake_input = network[-1](fake_input)
print(fake_input.shape) # torch.Size([1, 576])
number_of_output_channels_flatten1 = fake_input.shape[1]
network.append(
torch.nn.Linear(
in_features=number_of_output_channels_flatten1,
out_features=number_of_output_channels_full1,
bias=True,
)
)
fake_input = network[-1](fake_input)
print(fake_input.shape) # torch.Size([1, 1024])
network.append(torch.nn.ReLU())
fake_input = network[-1](fake_input)
print(fake_input.shape) # torch.Size([1, 1024])
network.append(
torch.nn.Linear(
in_features=number_of_output_channels_full1,
out_features=number_of_output_channels_out,
bias=True,
)
)
fake_input = network[-1](fake_input)
print(fake_input.shape) # torch.Size([1, 10])
print(network)
Save and load the network
TORCH.SAVE
torch.save(obj, f, pickle_module=pickle, pickle_protocol=DEFAULT_PROTOCOL, _use_new_zipfile_serialization=True)
Saves an object to a disk file.
TORCH.LOAD
torch.load(f, map_location=None, pickle_module=pickle, *, weights_only=False, mmap=None, **pickle_load_args)
Loads an object saved with torch.save() from a file.
torch.load() uses Python’s unpickling facilities but treats storages, which underlie tensors, specially. They are first deserialized on the CPU and are then moved to the device they were saved from. If this fails (e.g. because the run time system doesn’t have certain devices), an exception is raised. However, storages can be dynamically remapped to an alternative set of devices using the map_location argument.
If map_location is a callable, it will be called once for each serialized storage with two arguments: storage and location. The storage argument will be the initial deserialization of the storage, residing on the CPU. Each serialized storage has a location tag associated with it which identifies the device it was saved from, and this tag is the second argument passed to map_location. The builtin location tags are 'cpu' for CPU tensors and 'cuda:device_id' (e.g. 'cuda:2') for CUDA tensors. map_location should return either None or a storage. If map_location returns a storage, it will be used as the final deserialized object, already moved to the right device. Otherwise, torch.load() will fall back to the default behavior, as if map_location wasn’t specified.
If map_location is a torch.device object or a string containing a device tag, it indicates the location where all tensors should be loaded.
Otherwise, if map_location is a dict, it will be used to remap location tags appearing in the file (keys), to ones that specify where to put the storages (values).
User extensions can register their own location tags and tagging and deserialization methods using torch.serialization.register_package().
Save the whole network
One way to do it, is like this:
torch.save(network, "torch_network.pt")
network = torch.load("torch_network.pt")
network.eval()
Example:
Save:
import torch
input_number_of_channel: int = 1
input_dim_x: int = 24
input_dim_y: int = 24
number_of_output_channels_conv1: int = 32
number_of_output_channels_conv2: int = 64
number_of_output_channels_flatten1: int
number_of_output_channels_full1: int = 1024
number_of_output_channels_out: int = 10
kernel_size_conv1: tuple[int, int] = (5, 5)
kernel_size_pool1: tuple[int, int] = (2, 2)
kernel_size_conv2: tuple[int, int] = (5, 5)
kernel_size_pool2: tuple[int, int] = (2, 2)
stride_conv1: tuple[int, int] = (1, 1)
stride_pool1: tuple[int, int] = (2, 2)
stride_conv2: tuple[int, int] = (1, 1)
stride_pool2: tuple[int, int] = (2, 2)
padding_conv1: int = 0
padding_pool1: int = 0
padding_conv2: int = 0
padding_pool2: int = 0
number_of_output_channels_flatten1 = 576
network = torch.nn.Sequential(
torch.nn.Conv2d(
in_channels=input_number_of_channel,
out_channels=number_of_output_channels_conv1,
kernel_size=kernel_size_conv1,
stride=stride_conv1,
padding=padding_conv1,
),
torch.nn.ReLU(),
torch.nn.MaxPool2d(
kernel_size=kernel_size_pool1, stride=stride_pool1, padding=padding_pool1
),
torch.nn.Conv2d(
in_channels=number_of_output_channels_conv1,
out_channels=number_of_output_channels_conv2,
kernel_size=kernel_size_conv2,
stride=stride_conv2,
padding=padding_conv2,
),
torch.nn.ReLU(),
torch.nn.MaxPool2d(
kernel_size=kernel_size_pool2, stride=stride_pool2, padding=padding_pool2
),
torch.nn.Flatten(
start_dim=1,
),
torch.nn.Linear(
in_features=number_of_output_channels_flatten1,
out_features=number_of_output_channels_full1,
bias=True,
),
torch.nn.ReLU(),
torch.nn.Linear(
in_features=number_of_output_channels_full1,
out_features=number_of_output_channels_out,
bias=True,
),
)
torch.save(network, "torch_network.pt")
Load:
import torch
network = torch.load("torch_network.pt")
network.eval()
print(network)
Output:
Sequential(
(0): Conv2d(1, 32, kernel_size=(5, 5), stride=(1, 1))
(1): ReLU()
(2): MaxPool2d(kernel_size=(2, 2), stride=(2, 2), padding=0, dilation=1, ceil_mode=False)
(3): Conv2d(32, 64, kernel_size=(5, 5), stride=(1, 1))
(4): ReLU()
(5): MaxPool2d(kernel_size=(2, 2), stride=(2, 2), padding=0, dilation=1, ceil_mode=False)
(6): Flatten(start_dim=1, end_dim=-1)
(7): Linear(in_features=576, out_features=1024, bias=True)
(8): ReLU()
(9): Linear(in_features=1024, out_features=10, bias=True)
)
You will have a bigger file than in approach 2. However, you don't need the definition of the network for loading it.
Save the weights of the network
The recommended way by PyTorch would be in our case:
torch.save(network.state_dict(), "torch_network_dict.pt")
network.load_state_dict(torch.load("torch_network_dict.pt"))
network.eval()
Save:
import torch
input_number_of_channel: int = 1
input_dim_x: int = 24
input_dim_y: int = 24
number_of_output_channels_conv1: int = 32
number_of_output_channels_conv2: int = 64
number_of_output_channels_flatten1: int
number_of_output_channels_full1: int = 1024
number_of_output_channels_out: int = 10
kernel_size_conv1: tuple[int, int] = (5, 5)
kernel_size_pool1: tuple[int, int] = (2, 2)
kernel_size_conv2: tuple[int, int] = (5, 5)
kernel_size_pool2: tuple[int, int] = (2, 2)
stride_conv1: tuple[int, int] = (1, 1)
stride_pool1: tuple[int, int] = (2, 2)
stride_conv2: tuple[int, int] = (1, 1)
stride_pool2: tuple[int, int] = (2, 2)
padding_conv1: int = 0
padding_pool1: int = 0
padding_conv2: int = 0
padding_pool2: int = 0
number_of_output_channels_flatten1 = 576
network = torch.nn.Sequential(
torch.nn.Conv2d(
in_channels=input_number_of_channel,
out_channels=number_of_output_channels_conv1,
kernel_size=kernel_size_conv1,
stride=stride_conv1,
padding=padding_conv1,
),
torch.nn.ReLU(),
torch.nn.MaxPool2d(
kernel_size=kernel_size_pool1, stride=stride_pool1, padding=padding_pool1
),
torch.nn.Conv2d(
in_channels=number_of_output_channels_conv1,
out_channels=number_of_output_channels_conv2,
kernel_size=kernel_size_conv2,
stride=stride_conv2,
padding=padding_conv2,
),
torch.nn.ReLU(),
torch.nn.MaxPool2d(
kernel_size=kernel_size_pool2, stride=stride_pool2, padding=padding_pool2
),
torch.nn.Flatten(
start_dim=1,
),
torch.nn.Linear(
in_features=number_of_output_channels_flatten1,
out_features=number_of_output_channels_full1,
bias=True,
),
torch.nn.ReLU(),
torch.nn.Linear(
in_features=number_of_output_channels_full1,
out_features=number_of_output_channels_out,
bias=True,
),
)
torch.save(network.state_dict(), "torch_network_dict.pt")
Load:
import torch
input_number_of_channel: int = 1
input_dim_x: int = 24
input_dim_y: int = 24
number_of_output_channels_conv1: int = 32
number_of_output_channels_conv2: int = 64
number_of_output_channels_flatten1: int
number_of_output_channels_full1: int = 1024
number_of_output_channels_out: int = 10
kernel_size_conv1: tuple[int, int] = (5, 5)
kernel_size_pool1: tuple[int, int] = (2, 2)
kernel_size_conv2: tuple[int, int] = (5, 5)
kernel_size_pool2: tuple[int, int] = (2, 2)
stride_conv1: tuple[int, int] = (1, 1)
stride_pool1: tuple[int, int] = (2, 2)
stride_conv2: tuple[int, int] = (1, 1)
stride_pool2: tuple[int, int] = (2, 2)
padding_conv1: int = 0
padding_pool1: int = 0
padding_conv2: int = 0
padding_pool2: int = 0
number_of_output_channels_flatten1 = 576
network = torch.nn.Sequential(
torch.nn.Conv2d(
in_channels=input_number_of_channel,
out_channels=number_of_output_channels_conv1,
kernel_size=kernel_size_conv1,
stride=stride_conv1,
padding=padding_conv1,
),
torch.nn.ReLU(),
torch.nn.MaxPool2d(
kernel_size=kernel_size_pool1, stride=stride_pool1, padding=padding_pool1
),
torch.nn.Conv2d(
in_channels=number_of_output_channels_conv1,
out_channels=number_of_output_channels_conv2,
kernel_size=kernel_size_conv2,
stride=stride_conv2,
padding=padding_conv2,
),
torch.nn.ReLU(),
torch.nn.MaxPool2d(
kernel_size=kernel_size_pool2, stride=stride_pool2, padding=padding_pool2
),
torch.nn.Flatten(
start_dim=1,
),
torch.nn.Linear(
in_features=number_of_output_channels_flatten1,
out_features=number_of_output_channels_full1,
bias=True,
),
torch.nn.ReLU(),
torch.nn.Linear(
in_features=number_of_output_channels_full1,
out_features=number_of_output_channels_out,
bias=True,
),
)
network.load_state_dict(torch.load("torch_network_dict.pt"))
network.eval()
print(network)
Output:
Sequential(
(0): Conv2d(1, 32, kernel_size=(5, 5), stride=(1, 1))
(1): ReLU()
(2): MaxPool2d(kernel_size=(2, 2), stride=(2, 2), padding=0, dilation=1, ceil_mode=False)
(3): Conv2d(32, 64, kernel_size=(5, 5), stride=(1, 1))
(4): ReLU()
(5): MaxPool2d(kernel_size=(2, 2), stride=(2, 2), padding=0, dilation=1, ceil_mode=False)
(6): Flatten(start_dim=1, end_dim=-1)
(7): Linear(in_features=576, out_features=1024, bias=True)
(8): ReLU()
(9): Linear(in_features=1024, out_features=10, bias=True)
)
A closer look into our layers
We can address them like this:
for module_id in range(0, len(network._modules)):
print(f"Layer ID: {module_id}")
print(network._modules[str(module_id)])
import torch
input_number_of_channel: int = 1
input_dim_x: int = 24
input_dim_y: int = 24
number_of_output_channels_conv1: int = 32
number_of_output_channels_conv2: int = 64
number_of_output_channels_flatten1: int
number_of_output_channels_full1: int = 1024
number_of_output_channels_out: int = 10
kernel_size_conv1: tuple[int, int] = (5, 5)
kernel_size_pool1: tuple[int, int] = (2, 2)
kernel_size_conv2: tuple[int, int] = (5, 5)
kernel_size_pool2: tuple[int, int] = (2, 2)
stride_conv1: tuple[int, int] = (1, 1)
stride_pool1: tuple[int, int] = (2, 2)
stride_conv2: tuple[int, int] = (1, 1)
stride_pool2: tuple[int, int] = (2, 2)
padding_conv1: int = 0
padding_pool1: int = 0
padding_conv2: int = 0
padding_pool2: int = 0
number_of_output_channels_flatten1 = 576
network = torch.nn.Sequential(
torch.nn.Conv2d(
in_channels=input_number_of_channel,
out_channels=number_of_output_channels_conv1,
kernel_size=kernel_size_conv1,
stride=stride_conv1,
padding=padding_conv1,
),
torch.nn.ReLU(),
torch.nn.MaxPool2d(
kernel_size=kernel_size_pool1, stride=stride_pool1, padding=padding_pool1
),
torch.nn.Conv2d(
in_channels=number_of_output_channels_conv1,
out_channels=number_of_output_channels_conv2,
kernel_size=kernel_size_conv2,
stride=stride_conv2,
padding=padding_conv2,
),
torch.nn.ReLU(),
torch.nn.MaxPool2d(
kernel_size=kernel_size_pool2, stride=stride_pool2, padding=padding_pool2
),
torch.nn.Flatten(
start_dim=1,
),
torch.nn.Linear(
in_features=number_of_output_channels_flatten1,
out_features=number_of_output_channels_full1,
bias=True,
),
torch.nn.ReLU(),
torch.nn.Linear(
in_features=number_of_output_channels_full1,
out_features=number_of_output_channels_out,
bias=True,
),
)
for module_id in range(0, len(network._modules)):
print(f"Layer ID: {module_id}")
print(network._modules[str(module_id)])
Output:
Layer ID: 0
Conv2d(1, 32, kernel_size=(5, 5), stride=(1, 1))
Layer ID: 1
ReLU()
Layer ID: 2
MaxPool2d(kernel_size=(2, 2), stride=(2, 2), padding=0, dilation=1, ceil_mode=False)
Layer ID: 3
Conv2d(32, 64, kernel_size=(5, 5), stride=(1, 1))
Layer ID: 4
ReLU()
Layer ID: 5
MaxPool2d(kernel_size=(2, 2), stride=(2, 2), padding=0, dilation=1, ceil_mode=False)
Layer ID: 6
Flatten(start_dim=1, end_dim=-1)
Layer ID: 7
Linear(in_features=576, out_features=1024, bias=True)
Layer ID: 8
ReLU()
Layer ID: 9
Linear(in_features=1024, out_features=10, bias=True)
Extracting activations
We can use this to extract the activations in a very easy way
number_of_pattern: int = 111
fake_input = torch.rand(
(number_of_pattern, input_number_of_channel, input_dim_x, input_dim_y),
dtype=torch.float32,
)
activity: list[torch.Tensor] = []
activity.append(fake_input)
for module_id in range(0, len(network._modules)):
temp = network._modules[str(module_id)](activity[-1])
activity.append(temp)
for id, data in enumerate(activity):
print(f"ID: {id} Shape:{data.shape}")
import torch
input_number_of_channel: int = 1
input_dim_x: int = 24
input_dim_y: int = 24
number_of_output_channels_conv1: int = 32
number_of_output_channels_conv2: int = 64
number_of_output_channels_flatten1: int
number_of_output_channels_full1: int = 1024
number_of_output_channels_out: int = 10
kernel_size_conv1: tuple[int, int] = (5, 5)
kernel_size_pool1: tuple[int, int] = (2, 2)
kernel_size_conv2: tuple[int, int] = (5, 5)
kernel_size_pool2: tuple[int, int] = (2, 2)
stride_conv1: tuple[int, int] = (1, 1)
stride_pool1: tuple[int, int] = (2, 2)
stride_conv2: tuple[int, int] = (1, 1)
stride_pool2: tuple[int, int] = (2, 2)
padding_conv1: int = 0
padding_pool1: int = 0
padding_conv2: int = 0
padding_pool2: int = 0
number_of_output_channels_flatten1 = 576
network = torch.nn.Sequential(
torch.nn.Conv2d(
in_channels=input_number_of_channel,
out_channels=number_of_output_channels_conv1,
kernel_size=kernel_size_conv1,
stride=stride_conv1,
padding=padding_conv1,
),
torch.nn.ReLU(),
torch.nn.MaxPool2d(
kernel_size=kernel_size_pool1, stride=stride_pool1, padding=padding_pool1
),
torch.nn.Conv2d(
in_channels=number_of_output_channels_conv1,
out_channels=number_of_output_channels_conv2,
kernel_size=kernel_size_conv2,
stride=stride_conv2,
padding=padding_conv2,
),
torch.nn.ReLU(),
torch.nn.MaxPool2d(
kernel_size=kernel_size_pool2, stride=stride_pool2, padding=padding_pool2
),
torch.nn.Flatten(
start_dim=1,
),
torch.nn.Linear(
in_features=number_of_output_channels_flatten1,
out_features=number_of_output_channels_full1,
bias=True,
),
torch.nn.ReLU(),
torch.nn.Linear(
in_features=number_of_output_channels_full1,
out_features=number_of_output_channels_out,
bias=True,
),
)
number_of_pattern: int = 111
fake_input = torch.rand(
(number_of_pattern, input_number_of_channel, input_dim_x, input_dim_y),
dtype=torch.float32,
)
activity: list[torch.Tensor] = []
activity.append(fake_input)
for module_id in range(0, len(network._modules)):
temp = network._modules[str(module_id)](activity[-1])
activity.append(temp)
for id, data in enumerate(activity):
print(f"ID: {id} Shape:{data.shape}")
Output:
ID: 0 Shape:torch.Size([111, 1, 24, 24])
ID: 1 Shape:torch.Size([111, 32, 20, 20])
ID: 2 Shape:torch.Size([111, 32, 20, 20])
ID: 3 Shape:torch.Size([111, 32, 10, 10])
ID: 4 Shape:torch.Size([111, 64, 6, 6])
ID: 5 Shape:torch.Size([111, 64, 6, 6])
ID: 6 Shape:torch.Size([111, 64, 3, 3])
ID: 7 Shape:torch.Size([111, 576])
ID: 8 Shape:torch.Size([111, 1024])
ID: 9 Shape:torch.Size([111, 1024])
ID: 10 Shape:torch.Size([111, 10])
Accessing the parameters / weights of a layer
We can look at what is stored about a layer (here as example layer "0") with
print(network._modules["0"].__dict__)
And we get a lot of information. Too much information in fact...
Output:
{'training': True, '_parameters': OrderedDict([('weight', Parameter containing:
tensor([[[[ 0.0191, -0.0144, 0.1454, 0.0232, 0.0703],
[-0.1926, -0.0220, 0.1859, 0.0434, 0.1332],
[-0.0688, 0.0699, 0.0693, 0.0630, -0.1771],
[-0.1913, -0.1783, 0.1728, -0.0257, -0.1868],
[-0.0771, 0.1046, 0.0862, 0.1091, -0.0156]]],
[[[ 0.0717, 0.1716, 0.0488, -0.0746, 0.1527],
[ 0.1975, 0.0298, -0.0073, 0.1443, -0.1383],
[-0.1215, -0.0553, 0.1201, -0.0282, 0.1653],
[-0.0372, -0.1186, -0.1730, 0.1192, 0.0732],
[ 0.0769, 0.1973, -0.1270, -0.1427, -0.1871]]],
[...]
[[[-0.0835, 0.1259, -0.0632, -0.1857, -0.1243],
[-0.1389, -0.1182, -0.1034, 0.1469, -0.0461],
[ 0.1088, 0.0572, -0.0438, -0.1451, -0.0171],
[-0.0472, 0.1664, -0.0792, -0.0200, -0.1221],
[-0.1937, 0.1914, 0.0493, 0.1763, 0.0273]]]], requires_grad=True)), ('bias', Parameter containing:
tensor([ 0.1289, -0.0354, 0.0642, -0.0767, 0.0876, -0.0429, 0.1400, 0.1130,
-0.0845, 0.0800, 0.1310, -0.0756, 0.0790, -0.1698, 0.1385, 0.1654,
0.1249, -0.1413, -0.0439, 0.1302, -0.0877, 0.0926, 0.0420, 0.0107,
0.1039, 0.1675, 0.1516, -0.0741, 0.1934, 0.1042, 0.1118, -0.0692],
requires_grad=True))]), '_buffers': OrderedDict(), '_non_persistent_buffers_set': set(), '_backward_pre_hooks': OrderedDict(), '_backward_hooks': OrderedDict(), '_is_full_backward_hook': None, '_forward_hooks': OrderedDict(), '_forward_hooks_with_kwargs': OrderedDict(), '_forward_pre_hooks': OrderedDict(), '_forward_pre_hooks_with_kwargs': OrderedDict(), '_state_dict_hooks': OrderedDict(), '_state_dict_pre_hooks': OrderedDict(), '_load_state_dict_pre_hooks': OrderedDict(), '_load_state_dict_post_hooks': OrderedDict(), '_modules': OrderedDict(), 'in_channels': 1, 'out_channels': 32, 'kernel_size': (5, 5), 'stride': (1, 1), 'padding': (0, 0), 'dilation': (1, 1), 'transposed': False, 'output_padding': (0, 0), 'groups': 1, 'padding_mode': 'zeros', '_reversed_padding_repeated_twice': (0, 0, 0, 0)}
Let us look at the keys of the dictionary instead:
print(network._modules["0"].__dict__.keys())
dict_keys([
'training',
'_parameters',
'_buffers',
'_non_persistent_buffers_set',
'_backward_pre_hooks',
'_backward_hooks',
'_is_full_backward_hook',
'_forward_hooks',
'_forward_hooks_with_kwargs',
'_forward_pre_hooks',
'_forward_pre_hooks_with_kwargs',
'_state_dict_hooks',
'_state_dict_pre_hooks',
'_load_state_dict_pre_hooks',
'_load_state_dict_post_hooks',
'_modules',
'in_channels',
'out_channels',
'kernel_size',
'stride',
'padding',
'dilation',
'transposed',
'output_padding',
'groups',
'padding_mode',
'_reversed_padding_repeated_twice'])
Our main interest is located in _parameters :
print(network._modules["0"].__dict__["_parameters"].keys())
And here we find:
odict_keys(['weight', 'bias'])
Who has parameters?
Now we can analyse which of the layers have parameters:
for module_id in range(0, len(network._modules)):
print(
f'ID: {module_id} ==> {network._modules[str(module_id)].__dict__["_parameters"].keys()}'
)
Output:
ID: 0 ==> odict_keys(['weight', 'bias'])
ID: 1 ==> odict_keys([])
ID: 2 ==> odict_keys([])
ID: 3 ==> odict_keys(['weight', 'bias'])
ID: 4 ==> odict_keys([])
ID: 5 ==> odict_keys([])
ID: 6 ==> odict_keys([])
ID: 7 ==> odict_keys(['weight', 'bias'])
ID: 8 ==> odict_keys([])
ID: 9 ==> odict_keys(['weight', 'bias'])
Give me your weights!
conv1_bias = network._modules["0"].__dict__["_parameters"]["bias"].data
conv1_weights = network._modules["0"].__dict__["_parameters"]["weight"].data
conv2_bias = network._modules["3"].__dict__["_parameters"]["bias"].data
conv2_weights = network._modules["3"].__dict__["_parameters"]["weight"].data
full1_bias = network._modules["7"].__dict__["_parameters"]["bias"].data
full1_weights = network._modules["7"].__dict__["_parameters"]["weight"].data
output_bias = network._modules["9"].__dict__["_parameters"]["bias"].data
output_weights = network._modules["9"].__dict__["_parameters"]["weight"].data
print(conv1_bias.shape) # -> torch.Size([32])
print(conv1_weights.shape) # -> torch.Size([32, 1, 5, 5])
print(conv2_bias.shape) # -> torch.Size([64])
print(conv2_weights.shape) # -> torch.Size([64, 32, 5, 5])
print(full1_bias.shape) # -> torch.Size([1024])
print(full1_weights.shape) # -> torch.Size([1024, 576])
print(output_bias.shape) # -> torch.Size([10])
print(output_weights.shape) # -> torch.Size([10, 1024])
Note: The order of the dimensions is strange. It is [Output Channel, Input Channel, Kernel X, Kernel Y] for the 2D convolution layer and [Output Channel, Input Channel] for the full layer.
Note: If you want to interact with the weights, then you have to use .data If you write directly into e.g. __dict__["_parameters"]["bias"] you might accidently convert it from a parameter into a tensor and/or destroy the connection to the optimizer (which holds only a reference to the weights).
Replace weights
We can now easily replace the weights
network[0].__dict__["_parameters"]["bias"].data = 5 * torch.ones(
(32), dtype=torch.float32
)
network[0].__dict__["_parameters"]["weight"].data = torch.ones(
(32, 1, 5, 5), dtype=torch.float32
)
fake_input = torch.ones(
(1, 1, 24, 24),
dtype=torch.float32,
)
output = network[0](fake_input)
print(output)
print(output.shape) # -> torch.Size([1, 32, 20, 20])
Output:
tensor([[[[30., 30., 30., ..., 30., 30., 30.],
[30., 30., 30., ..., 30., 30., 30.],
[30., 30., 30., ..., 30., 30., 30.],
...,
[30., 30., 30., ..., 30., 30., 30.],
[30., 30., 30., ..., 30., 30., 30.],
[30., 30., 30., ..., 30., 30., 30.]],
[...]
[30., 30., 30., ..., 30., 30., 30.],
[30., 30., 30., ..., 30., 30., 30.],
[30., 30., 30., ..., 30., 30., 30.]]]],
grad_fn=<ConvolutionBackward0>)
More Class (torch.nn.Module)
Usually you will see this construct in tutorials:
class MyNetworkClass(torch.nn.Module):
def __init__(self) -> None:
super().__init__()
input_number_of_channel: int = 1
number_of_output_channels_conv1: int = 32
number_of_output_channels_conv2: int = 64
number_of_output_channels_flatten1: int = 576
number_of_output_channels_full1: int = 10
kernel_size_conv1: tuple[int, int] = (5, 5)
kernel_size_pool1: tuple[int, int] = (2, 2)
kernel_size_conv2: tuple[int, int] = (5, 5)
kernel_size_pool2: tuple[int, int] = (2, 2)
stride_conv1: tuple[int, int] = (1, 1)
stride_pool1: tuple[int, int] = (2, 2)
stride_conv2: tuple[int, int] = (1, 1)
stride_pool2: tuple[int, int] = (2, 2)
padding_conv1: int = 0
padding_pool1: int = 0
padding_conv2: int = 0
padding_pool2: int = 0
self.conv1 = torch.nn.Conv2d(
in_channels=input_number_of_channel,
out_channels=number_of_output_channels_conv1,
kernel_size=kernel_size_conv1,
stride=stride_conv1,
padding=padding_conv1,
)
self.relu1 = torch.nn.ReLU()
self.max_pooling_1 = torch.nn.MaxPool2d(
kernel_size=kernel_size_pool1, stride=stride_pool1, padding=padding_pool1
)
self.conv2 = torch.nn.Conv2d(
in_channels=number_of_output_channels_conv1,
out_channels=number_of_output_channels_conv2,
kernel_size=kernel_size_conv2,
stride=stride_conv2,
padding=padding_conv2,
)
self.relu2 = torch.nn.ReLU()
self.max_pooling_2 = torch.nn.MaxPool2d(
kernel_size=kernel_size_pool2, stride=stride_pool2, padding=padding_pool2
)
self.flatten1 = torch.nn.Flatten(
start_dim=1,
)
self.fully_connected_1 = torch.nn.Linear(
in_features=number_of_output_channels_flatten1,
out_features=number_of_output_channels_full1,
bias=True,
)
def forward(self, input: torch.Tensor) -> torch.Tensor:
out = self.conv1(input)
out = self.relu1(out)
out = self.max_pooling_1(out)
out = self.conv2(out)
out = self.relu2(out)
out = self.max_pooling_2(out)
out = self.flatten1(out)
out = self.fully_connected_1(out)
return out
In the constructor of the class you define the layers as elements of the class. And we write a forward function that connections the flow of information from the input to the output feed through the layers.
Now we can do the following:
network = MyNetworkClass()
number_of_pattern: int = 111
input_number_of_channel: int = 1
input_dim_x: int = 24
input_dim_y: int = 24
fake_input = torch.rand(
(number_of_pattern, input_number_of_channel, input_dim_x, input_dim_y),
dtype=torch.float32,
)
output = network(fake_input)
print(fake_input.shape) # -> torch.Size([111, 1, 24, 24])
print(output.shape) # -> torch.Size([111, 10])
For accessing the innards we now need to address them via their variable names:
print(network.conv1.__dict__["_parameters"].keys()) # -> odict_keys(['weight', 'bias'])
print(network.conv2.__dict__["_parameters"].keys()) # -> odict_keys(['weight', 'bias'])
print(network.fully_connected_1.__dict__["_parameters"].keys()) # -> odict_keys(['weight', 'bias'])
Save is still like this:
torch.save(network.state_dict(), "torch_network_dict_class.pt")
and load shortens, if it can reuse the class defintion, to:
network = MyNetworkClass()
network.load_state_dict(torch.load("torch_network_dict_class.pt"))
network.eval()