|
||
---|---|---|
.. | ||
README.md |
Supprt Vector Machine
{:.no_toc}
* TOC {:toc}Top
Questions to David Rotermund
sklearn.svm.SVC
sklearn.svm.SVC(*, C=1.0, kernel='rbf', degree=3, gamma='scale', coef0=0.0, shrinking=True, probability=False, tol=0.001, cache_size=200, class_weight=None, verbose=False, max_iter=-1, decision_function_shape='ovr', break_ties=False, random_state=None)
kernel : {‘linear’, ‘poly’, ‘rbf’, ‘sigmoid’, ‘precomputed’} or callable, default=’rbf’
Specifies the kernel type to be used in the algorithm. If none is given, ‘rbf’ will be used. If a callable is given it is used to pre-compute the kernel matrix from data matrices; that matrix should be an array of shape (n_samples, n_samples).
fit
fit(X, y, sample_weight=None)
Fit the SVM model according to the given training data.
X : {array-like, sparse matrix} of shape (n_samples, n_features) or (n_samples, n_samples)
Training vectors, where n_samples is the number of samples and n_features is the number of features. For kernel=”precomputed”, the expected shape of X is (n_samples, n_samples).
y : array-like of shape (n_samples,)
Target values (class labels in classification, real numbers in regression).
predict
predict(X)
For an one-class model, +1 or -1 is returned.
Parameters:
X : {array-like, sparse matrix} of shape (n_samples, n_features) or (n_samples_test, n_samples_train)
Returns:
y_pred : ndarray of shape (n_samples,)
Class labels for samples in X.
Test and train data
import numpy as np
rng = np.random.default_rng(1)
a_x: np.ndarray = rng.normal(1.5, 1.0, size=(1000))[:, np.newaxis]
a_y: np.ndarray = rng.normal(3.0, 1.0, size=(1000))[:, np.newaxis]
data_train_0: np.ndarray = np.concatenate((a_x, a_y), axis=-1)
class_train_0: np.ndarray = np.full((data_train_0.shape[0],), -1)
a_x: np.ndarray = rng.normal(1.5, 1.0, size=(1000))[:, np.newaxis]
a_y: np.ndarray = rng.normal(3.0, 1.0, size=(1000))[:, np.newaxis]
data_test_0: np.ndarray = np.concatenate((a_x, a_y), axis=-1)
class_test_0: np.ndarray = np.full((data_test_0.shape[0],), -1)
del a_x
del a_y
a_x: np.ndarray = rng.normal(0.0, 1.0, size=(1000))[:, np.newaxis]
a_y: np.ndarray = rng.normal(0.0, 1.0, size=(1000))[:, np.newaxis]
data_train_1: np.ndarray = np.concatenate((a_x, a_y), axis=-1)
class_train_1: np.ndarray = np.full((data_train_0.shape[0],), +1)
a_x: np.ndarray = rng.normal(0.0, 1.0, size=(1000))[:, np.newaxis]
a_y: np.ndarray = rng.normal(0.0, 1.0, size=(1000))[:, np.newaxis]
data_test_1: np.ndarray = np.concatenate((a_x, a_y), axis=-1)
class_test_1: np.ndarray = np.full((data_test_0.shape[0],), +1)
del a_x
del a_y
data_train: np.ndarray = np.concatenate((data_train_0, data_train_1), axis=0)
data_test: np.ndarray = np.concatenate((data_test_0, data_test_1), axis=0)
label_train: np.ndarray = np.concatenate((class_train_0, class_train_1), axis=0)
label_test: np.ndarray = np.concatenate((class_test_0, class_test_1), axis=0)
np.save("data_train.npy", data_train)
np.save("data_test.npy", data_test)
np.save("label_train.npy", label_train)
np.save("label_test.npy", label_test)