606e5dbfe3
Signed-off-by: David Rotermund <54365609+davrot@users.noreply.github.com> |
||
---|---|---|
.. | ||
README.md |
K Nearest Neighbour
{:.no_toc}
* TOC {:toc}Top
Questions to David Rotermund
Test and train data
import numpy as np
rng = np.random.default_rng(1)
a_x: np.ndarray = rng.normal(1.5, 1.0, size=(1000))[:, np.newaxis]
a_y: np.ndarray = rng.normal(3.0, 1.0, size=(1000))[:, np.newaxis]
data_train_0: np.ndarray = np.concatenate((a_x, a_y), axis=-1)
class_train_0: np.ndarray = np.full((data_train_0.shape[0],), -1)
a_x = rng.normal(1.5, 1.0, size=(1000))[:, np.newaxis]
a_y = rng.normal(3.0, 1.0, size=(1000))[:, np.newaxis]
data_test_0: np.ndarray = np.concatenate((a_x, a_y), axis=-1)
class_test_0: np.ndarray = np.full((data_test_0.shape[0],), -1)
del a_x
del a_y
a_x = rng.normal(0.0, 1.0, size=(1000))[:, np.newaxis]
a_y = rng.normal(0.0, 1.0, size=(1000))[:, np.newaxis]
data_train_1: np.ndarray = np.concatenate((a_x, a_y), axis=-1)
class_train_1: np.ndarray = np.full((data_train_0.shape[0],), +1)
a_x = rng.normal(0.0, 1.0, size=(1000))[:, np.newaxis]
a_y = rng.normal(0.0, 1.0, size=(1000))[:, np.newaxis]
data_test_1: np.ndarray = np.concatenate((a_x, a_y), axis=-1)
class_test_1: np.ndarray = np.full((data_test_0.shape[0],), +1)
del a_x
del a_y
data_train: np.ndarray = np.concatenate((data_train_0, data_train_1), axis=0)
data_test: np.ndarray = np.concatenate((data_test_0, data_test_1), axis=0)
label_train: np.ndarray = np.concatenate((class_train_0, class_train_1), axis=0)
label_test: np.ndarray = np.concatenate((class_test_0, class_test_1), axis=0)
np.save("data_train.npy", data_train)
np.save("data_test.npy", data_test)
np.save("label_train.npy", label_train)
np.save("label_test.npy", label_test)
Train and test
import numpy as np
n: int = 1
k: int = 2 * n + 1
data_train = np.load("data_train.npy")
data_test = np.load("data_test.npy")
label_train = np.load("label_train.npy")
label_test = np.load("label_test.npy")
prediction = np.zeros((data_test.shape[0]), dtype=np.int8)
for id in range(0, label_test.shape[0]):
distance = ((data_train - data_test[id, :][np.newaxis, :]) ** 2).sum(axis=-1)
recall = label_train[np.argsort(distance)[:k]]
if (recall == -1).sum() > (recall == 1).sum():
prediction[id] = -1
else:
prediction[id] = +1
performance = 100.0 * (prediction == label_test).sum() / prediction.shape[0]
print(f"Performance correct: {performance}%") # -> Performance correct: 95.1%