f9a2618e55
Signed-off-by: David Rotermund <54365609+davrot@users.noreply.github.com> |
||
---|---|---|
.. | ||
image0.png | ||
image1.png | ||
image2.png | ||
image3.png | ||
image4.png | ||
image5.png | ||
image6.png | ||
image7.png | ||
image8.png | ||
image9.png | ||
image10.png | ||
image11.png | ||
image12.png | ||
image13.png | ||
image14.png | ||
README.md |
Errors are an option...
Mandatory Tasks
2
Basic:
Scaled by divison max() for every individual frequency band:
3
without preparing the data via /= std:
with equalizing the power via /= std (obviously not the best idea in this case):
4
Phase Coherence
Spectral Coherence
5
Phase Coherence
Spectral Coherence
6
{: .topic-optional} Don't normalize the time series!
i.e. don't do something like this:
data -= data.mean(axis=1, keepdims=True)
data /= data.std(axis=1, keepdims=True)
Otherwise you will not classify anything.
Scaled by divison max() for every individual frequency band (Bad times happen):
7
{: .topic-optional} Don't normalize the time series!
i.e. don't do something like this:
data -= data.mean(axis=1, keepdims=True)
data /= data.std(axis=1, keepdims=True)
Otherwise you will not classify anything.