pytutorial/pytorch/MNIST
David Rotermund 27e1d3d962
Update README.md
Signed-off-by: David Rotermund <54365609+davrot@users.noreply.github.com>
2023-12-20 17:56:36 +01:00
..
README.md Update README.md 2023-12-20 17:56:36 +01:00

Class

{:.no_toc}

* TOC {:toc}

The goal

Class has a very important job as a core container type in Python. It is really hard to find a good overview how to use them in a good practice manner.

Questions to David Rotermund

I will use Linux. You will need a replacement for gzip under Windows.

Download the files

We need to download the MNIST database files

t10k-images-idx3-ubyte.gz t10k-labels-idx1-ubyte.gz train-images-idx3-ubyte.gz train-labels-idx1-ubyte.gz A source for that is for example https://deepai.org/dataset/mnist

Unpack the gz files

In a terminal:

gzip -d *.gz

Convert the data into numpy files

Label file structure

[offset] [type] [value] [description] 0000 32 bit integer 0x00000801(2049) magic number (MSB first) 0004 32 bit integer 60000 number of items 0008 unsigned byte ?? label 0009 unsigned byte ?? label ........ xxxx unsigned byte ?? label

The labels values are 0 to 9.

Pattern file structure

[offset] [type] [value] [description] 0000 32 bit integer 0x00000803(2051) magic number 0004 32 bit integer 60000 number of images 0008 32 bit integer 28 number of rows 0012 32 bit integer 28 number of columns 0016 unsigned byte ?? pixel 0017 unsigned byte ?? pixel ........ xxxx unsigned byte ?? pixel

Pixels are organized row-wise.

Pixel values are 0 to 255. 0 means background (white),

255 means foreground (black).

Converting the dataset to numpy

My source code for that task: convert.py

import numpy as np

# [offset] [type]          [value]          [description]
# 0000     32 bit integer  0x00000801(2049) magic number (MSB first)
# 0004     32 bit integer  60000            number of items
# 0008     unsigned byte   ??               label
# 0009     unsigned byte   ??               label
# ........
# xxxx     unsigned byte   ??               label
# The labels values are 0 to 9.


class ReadLabel:
    """Class for reading the labels from an MNIST label file"""

    def __init__(self, filename: str) -> None:
        self.filename: str = filename
        self.data = self.read_from_file(filename)

    def read_from_file(self, filename: str) -> np.ndarray:

        int_32bit_data = np.dtype(np.uint32)
        int_32bit_data = int_32bit_data.newbyteorder(">")

        with open(filename, "rb") as file:

            magic_flag: np.uint32 = np.frombuffer(file.read(4), int_32bit_data)[0]

            if magic_flag != 2049:
                data: np.ndarray = np.zeros(0)
                number_of_elements: int = 0
            else:
                number_of_elements = np.frombuffer(file.read(4), int_32bit_data)[0]

            if number_of_elements < 1:
                data = np.zeros(0)
            else:
                data = np.frombuffer(file.read(number_of_elements), dtype=np.uint8)

        return data


# [offset] [type]          [value]          [description]
# 0000     32 bit integer  0x00000803(2051) magic number
# 0004     32 bit integer  60000            number of images
# 0008     32 bit integer  28               number of rows
# 0012     32 bit integer  28               number of columns
# 0016     unsigned byte   ??               pixel
# 0017     unsigned byte   ??               pixel
# ........
# xxxx     unsigned byte   ??               pixel
# Pixels are organized row-wise.
# Pixel values are 0 to 255. 0 means background (white),
# 255 means foreground (black).


class ReadPicture:
    """Class for reading the images from an MNIST image file"""

    def __init__(self, filename: str) -> None:
        self.filename: str = filename
        self.Data = self.read_from_file(filename)

    def read_from_file(self, filename: str) -> np.ndarray:

        int_32bit_data = np.dtype(np.uint32)
        int_32bit_data = int_32bit_data.newbyteorder(">")

        with open(filename, "rb") as file:

            magic_flag = np.frombuffer(file.read(4), int_32bit_data)[0]

            if magic_flag != 2051:
                data = np.zeros(0)
                number_of_elements: int = 0
            else:
                number_of_elements = np.frombuffer(file.read(4), int_32bit_data)[0]

            if number_of_elements < 1:
                data = np.zeros(0)
                number_of_rows: int = 0
            else:
                number_of_rows = np.frombuffer(file.read(4), int_32bit_data)[0]

            if number_of_rows != 28:
                data = np.zeros(0)
                number_of_columns: int = 0
            else:
                number_of_columns = np.frombuffer(file.read(4), int_32bit_data)[0]

            if number_of_columns != 28:
                data = np.zeros(0)
            else:
                data = np.frombuffer(
                    file.read(number_of_elements * number_of_rows * number_of_columns),
                    dtype=np.uint8,
                )
                data = data.reshape(
                    number_of_elements, number_of_columns, number_of_rows
                )

        return data


def proprocess_dataset(testdata_mode: bool) -> None:

    if testdata_mode is True:
        filename_out_pattern: str = "test_pattern_storage.npy"
        filename_out_label: str = "test_label_storage.npy"
        filename_in_image: str = "t10k-images-idx3-ubyte"
        filename_in_label: str = "t10k-labels-idx1-ubyte"
    else:
        filename_out_pattern = "train_pattern_storage.npy"
        filename_out_label = "train_label_storage.npy"
        filename_in_image = "train-images-idx3-ubyte"
        filename_in_label = "train-labels-idx1-ubyte"

    pictures = ReadPicture(filename_in_image)
    labels = ReadLabel(filename_in_label)

    # Down to 0 ... 1.0
    max_value = np.max(pictures.Data.astype(np.float32))
    pattern_storage = np.float32(pictures.Data.astype(np.float32) / max_value).astype(
        np.float32
    )

    label_storage = np.uint64(labels.data)

    np.save(filename_out_pattern, pattern_storage)
    np.save(filename_out_label, label_storage)


proprocess_dataset(testdata_mode=True)
proprocess_dataset(testdata_mode=False)

Now we have the files:

  • test_label_storage.npy
  • test_pattern_storage.npy
  • train_label_storage.npy
  • train_pattern_storage.npy