pytutorial/PyBind11/basics
David Rotermund f788dbb676
Update README.md
Signed-off-by: David Rotermund <54365609+davrot@users.noreply.github.com>
2024-01-03 15:12:34 +01:00
..
Makefile Add files via upload 2024-01-03 14:47:16 +01:00
MyModuleCPU.cpp Add files via upload 2024-01-03 14:47:16 +01:00
MyModuleCPU.h Add files via upload 2024-01-03 14:47:16 +01:00
PyMyModuleCPU.cpp Add files via upload 2024-01-03 14:47:16 +01:00
README.md Update README.md 2024-01-03 15:12:34 +01:00
test.py Add files via upload 2024-01-03 14:47:16 +01:00

Expanding Python with C++ modules

{:.no_toc}

* TOC {:toc}

Top

A minimal introduction in how to use PyBind11. PyBind11 allows you to extend Python with C++ modules which are written in C++11 or newer.

Questions to David Rotermund

A very simple example

What do we need in the most minimal scenario?

Makefile

If you are programming in C++ and don't know how to use a Makefile then you really should look it up.

I am working under Linux and my Makefile looks like this... MyModuleCPU.cpp and PyMyModuleCPU.cpp are compiled in .o files and then linked into PyMyModuleCPU. However, Python needs a special filename ending which depends on the Python version. Thus there is this additional copy command dealing with this issue.

The wrapper file (PyMyModuleCPU.cpp)

The wrapper file is the connection point between Python and C++. It tells Python what to call. In this example we have three functions we export into the Python space:

  • PutStuffIn , which is connected to MyModule::PutStuffIn
  • DoStuff , which is connected to MyModule::DoStuff
  • GetStuffOut , which is connected to MyModule::GetStuffOut

These methods of the class MyModule are defined in MyModuleCPU.h and do what their names suggest they will do...

The class definition of MyModule (MyModuleCPU.h)

The exported methods are public. The rest are a collection of methods to handle the data exchange between C++ and Python in a safe way.

The exported methods do the following:

  • PutStuffIn : An Numpy array arrives. GetShape extracts the shape of the numpy.ndarray and stored it into std::vector<size_t> Data_Shape;. Then it puts the numpy.ndarray into Converter and makes std::vector Data_Data; out of it.
  • DoStuff: Python gives double Factor to the method. The method multiplies this number with the data Data_Data from the numpy.ndarray. This is done in SIMD (single instruction multiple data) fashion using openmp.
  • GetStuffOut : It takes Data_Data and Data_Shape and makes a Python numpy.ndarray out of it and gives it to Python.
int MyModule::PutStuffIn(py::array & Arg_Input){

        if (GetShape(Arg_Input, Data_Shape) == false){
                return false;
        }

        if (MyModule::Converter(Arg_Input, Data_Data) == false){
                return false;
        }

        return true;
}

int MyModule::DoStuff(double Factor){

        size_t Counter; 

        #pragma omp simd
        for (Counter = 0; Counter < Data_Data.size(); Counter++){
            Data_Data[Counter] *= Factor;
        }

        return true;
}

py::array MyModule::GetStuffOut(void){

        return Converter(Data_Data, Data_Shape);

}

The save (and slow) way to communicate (MyModuleCPU.cpp)

Please see this just a set of examples. I focused on double (float64) in this example.

C++ in and Python out

  • Put vector of vector<> in and get a py::list out : py::list MakeList(std::vector<std::vector> &Arg_Data, std::vector<std::vector<size_t>> &Arg_Shape);
  • Put vector<> in and get py::array out : py::array Converter(std::vector &Arg_Data, std::vector<size_t> &Arg_Shape);
  • Put a value in and get a py:array out : py::array Converter(double &Arg_Data);

Python in and C++ out

  • Put py::array in and get vector<> out : bool Converter(py::array &Arg_In, std::vector &Arg_Data);
  • Put py::list in and get vector<vector<>> out : bool ConvertList(py::list &Arg_List, std::vector<std::vector> &Arg_Data, std::vector<std::vector<size_t>> &Arg_Shape);
  • Put a py::array in and get a vector<> with the dimensions out : bool GetShape(py::array &Arg_Input, std::vector<size_t> &Arg_Shape);
  • Put a py::list in and get a vector<vector<>> with the dimensions out : int GetShape(py::list &Arg_List, std::vector<std::vector<size_t>> &Arg_Shape);

Helper functions

  • Put a py::list in and get a vector<vector<>> of the data out : int CopyData(py::list &Arg_List, std::vector<std::vector> Arg_Data, std::vector<std::vector<size_t>> &Arg_Shape);
  • Check the properties of a list : bool CheckList(py::list &Arg_List, int Check_NumberOfDimensions, size_t dType);

The test program (test.py)

I think that the mathematical operation that the test code does, need no additional explanation. (A random matrix is multiplied by 5.0)

X
[[0.43861361 0.34633103 0.30473636 0.25559892 0.61136669 0.61763177]
 [0.58565176 0.04562993 0.89141907 0.17663681 0.94354389 0.08857159]
 [0.40814404 0.58116521 0.76818518 0.11430939 0.90513926 0.38985626]
 [0.07986693 0.41520487 0.11921055 0.12390022 0.64135749 0.04744072]
 [0.44492385 0.94347543 0.01514797 0.74471067 0.34624101 0.91923338]]
X-Y:
[[0. 0. 0. 0. 0. 0.]
 [0. 0. 0. 0. 0. 0.]
 [0. 0. 0. 0. 0. 0.]
 [0. 0. 0. 0. 0. 0.]
 [0. 0. 0. 0. 0. 0.]]
X*5-Z:
[[0. 0. 0. 0. 0. 0.]
 [0. 0. 0. 0. 0. 0.]
 [0. 0. 0. 0. 0. 0.]
 [0. 0. 0. 0. 0. 0.]
 [0. 0. 0. 0. 0. 0.]]

Source code

.env file

Change the directories and parameters according you system.

PYBIN=~/P3.11/bin/
CC=/usr/lib64/ccache/clang++
NVCC=/usr/local/cuda-12/bin/nvcc -allow-unsupported-compiler 

PARAMETERS_O_CPU = -O3 -std=c++14 -fPIC -Wall -fopenmp=libomp
PARAMETERS_Linker_CPU = -shared -lm -lomp -lstdc++ -Wall

PARAMETERS_O_GPU= -O3 -std=c++14 -ccbin=$(CC) \
    -Xcompiler "-fPIC -Wall -fopenmp=libomp"   
PARAMETERS_Linker_GPU=-Xcompiler "-shared -lm -lomp -lstdc++ -Wall"

O_DIRS = o/

Makefile

Makefile

include .env
export

name = MyModule
type = CPU

PYPOSTFIX := $(shell $(PYBIN)python3-config --extension-suffix)
PYBIND11INCLUDE := $(shell $(PYBIN)python3 -m pybind11 --includes)
PARAMETERS_O = $(PARAMETERS_O_CPU) $(PYBIND11INCLUDE) 
PARAMETERS_Linker = $(PARAMETERS_Linker_CPU)

so_file = Py$(name)$(type)$(PYPOSTFIX)
pyi_file = Py$(name)$(type).pyi
all: $(so_file)

$(O_DIRS)$(name)$(type).o: $(name)$(type).h $(name)$(type).cpp
	mkdir -p $(O_DIRS) 
	$(CC) $(PARAMETERS_O) -c $(name)$(type).cpp -o $(O_DIRS)$(name)$(type).o

$(O_DIRS)Py$(name)$(type).o: $(name)$(type).h Py$(name)$(type).cpp 
	mkdir -p $(O_DIRS)
	$(CC) $(PARAMETERS_O) -c Py$(name)$(type).cpp -o $(O_DIRS)Py$(name)$(type).o

$(so_file): $(O_DIRS)$(name)$(type).o $(O_DIRS)Py$(name)$(type).o
	$(CC) $(PARAMETERS_Linker) -o $(so_file) $(O_DIRS)$(name)$(type).o $(O_DIRS)Py$(name)$(type).o


#######################
clean:
	rm -rf $(O_DIRS)
	rm -f $(so_file)
	rm -f $(pyi_file)

PyMyModuleCPU.cpp

PyMyModuleCPU.cpp

#include <pybind11/pybind11.h>
#include "MyModuleCPU.h"

namespace py = pybind11;

PYBIND11_MODULE(PyMyModuleCPU, m)
{
    m.doc() = "Example Module";
    py::class_<MyModule>(m, "MyModule")
        .def(py::init<>())
        .def("PutStuffIn", &MyModule::PutStuffIn)
        .def("DoStuff", &MyModule::DoStuff)
        .def("GetStuffOut", &MyModule::GetStuffOut);
}

MyModuleCPU.h

MyModuleCPU.h

#ifndef MYMODULECPU
#define MYMODULECPU

#include <pybind11/pybind11.h>
#include <pybind11/numpy.h>
#include <vector>

namespace py = pybind11;

class MyModule
{

    public:
    MyModule();
    ~MyModule();

    // The functionality of the module
    int PutStuffIn(py::array& Arg_Input);
    int DoStuff(double Factor);
    py::array GetStuffOut(void);

    private:
    // Example data:
    std::vector<double> Data_Data;
    std::vector<size_t> Data_Shape;

    // Private functions:
    // ==================

    // Put vector of vector<> in and get a py::list out
    py::list MakeList(std::vector<std::vector<double>>& Arg_Data,
        std::vector<std::vector<size_t>>& Arg_Shape);

    // Put vector<> in and get py::array out
    py::array Converter(std::vector<double>& Arg_Data,
        std::vector<size_t>& Arg_Shape);

    // Put a value in and get a py:array out
    py::array Converter(double& Arg_Data);

    // Put py::array in and get vector<> out
    bool Converter(py::array& Arg_In, std::vector<double>& Arg_Data);

    // Put py::list in and get vector<vector<>> out
    bool ConvertList(py::list& Arg_List,
        std::vector<std::vector<double>>& Arg_Data,
        std::vector<std::vector<size_t>>& Arg_Shape);

    // Put a py::array in and get a vector<> with the dimensions out
    bool GetShape(py::array& Arg_Input, std::vector<size_t>& Arg_Shape);

    // Put a py::list in and get a vector<vector<>> with the dimensions out
    int GetShape(py::list& Arg_List, std::vector<std::vector<size_t>>& Arg_Shape);

    // Put a py::list in and get a vector<vector<>> of the data out out
    int CopyData(py::list& Arg_List, std::vector<std::vector<double>>& Arg_Data,
        std::vector<std::vector<size_t>>& Arg_Shape);

    // Check the properties of a list
    // 0: single
    // 1: double
    // 2: uint32_t
    // 3: uint64_t
    bool CheckList(py::list& Arg_List, int Check_NumberOfDimensions,
        size_t dType);
};

#endif /* MYMODULECPU */

MyModuleCPU.cpp

MyModuleCPU.cpp

#include "MyModuleCPU.h"

#include <iostream>
#include <unistd.h>
#include <cctype>

MyModule::MyModule() {};

MyModule::~MyModule() {};

int MyModule::PutStuffIn(py::array& Arg_Input)
{

    if (GetShape(Arg_Input, Data_Shape) == false)
    {
        return false;
    }

    if (MyModule::Converter(Arg_Input, Data_Data) == false)
    {
        return false;
    }

    return true;
}

int MyModule::DoStuff(double Factor)
{

    size_t Counter;

#pragma omp simd
    for (Counter = 0; Counter < Data_Data.size(); Counter++)
    {
        Data_Data[Counter] *= Factor;
    }

    return true;
}

py::array MyModule::GetStuffOut(void)
{

    return Converter(Data_Data, Data_Shape);
}

// ------------------------------------------------

py::list MyModule::MakeList(std::vector<std::vector<double>>& Arg_Data,
    std::vector<std::vector<size_t>>& Arg_Shape)
{

    py::list ReturnValue;

    if (Arg_Data.size() != Arg_Shape.size())
    {
        std::cout << "MyModule::MakeList => The sizes of the two vectors are different.\n";
        return ReturnValue;
    }

    size_t List_Pos = 0;
    for (List_Pos = 0; List_Pos < Arg_Shape.size(); List_Pos++)
    {
        std::vector<ptrdiff_t> ShapeVector;
        ShapeVector.resize(Arg_Shape[List_Pos].size());

        size_t Counter = 0;
        for (Counter = 0; Counter < Arg_Shape[List_Pos].size(); Counter++)
        {
            ShapeVector[Counter] = Arg_Shape[List_Pos].at(Counter);
        }

        auto Temp = py::array_t<double>(ShapeVector, Arg_Data[List_Pos].data());
        ReturnValue.append(Temp);
    }

    return ReturnValue;
}

py::array MyModule::Converter(std::vector<double>& Arg_Data,
    std::vector<size_t>& Arg_Shape)
{

    py::array ReturnValue;

    std::vector<ptrdiff_t> ShapeVector;
    ShapeVector.resize(Arg_Shape.size());

    size_t Counter = 0;

    for (Counter = 0; Counter < Arg_Shape.size(); Counter++)
    {
        ShapeVector[Counter] = Arg_Shape.at(Counter);
    }

    auto Temp = py::array_t<double>(ShapeVector, Arg_Data.data());

    return Temp;
}

bool MyModule::Converter(py::array& Arg_In, std::vector<double>& Arg_Data)
{

    if ((Arg_In.flags() & pybind11::detail::npy_api::NPY_ARRAY_C_CONTIGUOUS_) != pybind11::detail::npy_api::NPY_ARRAY_C_CONTIGUOUS_)
    {
        std::cout << "MyModule::Converter => Array is not c_style.\n";
        return false;
    }

    size_t Size = Arg_In.nbytes();

    if (Size == 0)
    {
        std::cout << "MyModule::Converter => Array is empty.\n";
        return false;
    }

    auto Temp_Array = Arg_In.request();
    if (py::isinstance<py::array_t<double>>(Arg_In) == false)
    {
        std::cout << "MyModule::Converter => Wrong type.\n";
        return false;
    }

    double* MyPtr = (double*)Temp_Array.ptr;
    if (MyPtr == nullptr)
    {
        std::cout << "MyModule::Converter => Pointer is null.\n";
        return false;
    }

    Arg_Data.resize(Size / sizeof(double));
    memcpy(Arg_Data.data(), MyPtr, Size);

    return true;
}

bool MyModule::ConvertList(py::list& Arg_List, std::vector<std::vector<double>>& Arg_Data,
    std::vector<std::vector<size_t>>& Arg_Shape)
{

    Arg_Data.resize(0);
    Arg_Shape.resize(0);

    // Get the shapes of all the matrices
    if (GetShape(Arg_List, Arg_Shape) != 0)
    {
        return false;
    }

    // Get the data from the list
    if (CopyData(Arg_List, Arg_Data, Arg_Shape) != 0)
    {
        return false;
    }

    return true;
}

int MyModule::GetShape(py::list& Arg_List, std::vector<std::vector<size_t>>& Arg_Shape)
{

    Arg_Shape.resize(0);

    size_t List_Length = Arg_List.size();
    Arg_Shape.resize(List_Length);

    size_t Counter_List;
    size_t Counter_Dims;

    py::array Temp_Array;
    for (Counter_List = 0; Counter_List < List_Length; Counter_List++)
    {
        Arg_Shape[Counter_List].resize(0);
        Temp_Array = Arg_List[Counter_List];

        Arg_Shape[Counter_List].resize(Temp_Array.ndim());
        for (Counter_Dims = 0; Counter_Dims < Temp_Array.ndim(); Counter_Dims++)
        {
            Arg_Shape[Counter_List][Counter_Dims] = Temp_Array.shape(Counter_Dims);
        }
    }

    return 0;
}

bool MyModule::GetShape(py::array& Arg_Input, std::vector<size_t>& Arg_Shape)
{

    Arg_Shape.resize(Arg_Input.ndim());

    size_t Counter_Dims;
    for (Counter_Dims = 0; Counter_Dims < Arg_Input.ndim(); Counter_Dims++)
    {
        Arg_Shape[Counter_Dims] = Arg_Input.shape(Counter_Dims);
    }

    return true;
}

int MyModule::CopyData(py::list& Arg_List, std::vector<std::vector<double>>& Arg_Data,
    std::vector<std::vector<size_t>>& Arg_Shape)
{

    Arg_Data.resize(0);
    size_t List_Length = Arg_List.size();
    size_t List_Pos = List_Length;

    double* MyPtr = nullptr;
    py::array Temp_Array;

    Arg_Data.resize(List_Length);

    for (List_Pos = 0; List_Pos < List_Length; List_Pos++)
    {
        MyPtr = nullptr;
        Temp_Array = Arg_List[List_Pos];

        size_t Counter = 0;
        size_t ElementsOfArray = 0;
        for (Counter = 0; Counter < Arg_Shape[List_Pos].size(); Counter++)
        {
            if (Counter == 0)
            {
                ElementsOfArray = Arg_Shape[List_Pos][Counter];
            }
            else
            {
                ElementsOfArray *= Arg_Shape[List_Pos][Counter];
            }
        }
        size_t SizeOfArray_Bytes = ElementsOfArray * sizeof(double);
        if (SizeOfArray_Bytes != Temp_Array.nbytes())
        {
            std::cout << "MyModule::CopyData => "
                << "Liste element: "
                << Counter << " is not the right amount of data.\n";
            return -1;
        }

        auto Temp_Array_f = Temp_Array.request();

        MyPtr = (double*)Temp_Array_f.ptr;

        if (MyPtr == nullptr)
        {
            std::cout << "MyModule::CopyData => "
                << "Pointer is null.\n";
            return -1;
        }

        Arg_Data[List_Pos].resize(ElementsOfArray);

        memcpy((void*)Arg_Data[List_Pos].data(), (void*)MyPtr, SizeOfArray_Bytes);
    }

    return 0;
}

py::array MyModule::Converter(double& Arg_Data)
{

    std::vector<ptrdiff_t> ShapeVector;
    ShapeVector.resize(1);
    ShapeVector[0] = 1;

    return py::array_t<double>(ShapeVector, &Arg_Data);
}

bool MyModule::CheckList(py::list& Arg_List, int Check_NumberOfDimensions,
    size_t dType)
{

    // Is it a list?
    py::handle type = Arg_List.get_type();
    py::object type_name = type.attr("__name__");
    std::string Correct_List = std::string("list");
    if (Correct_List.compare(py::cast<std::string>(type_name)) != 0)
    {
        std::cout << "MyModule => Not a list.\n";
        return false;
    }

    // Is there something in the list?
    size_t List_Length = Arg_List.size();
    if (List_Length <= 0)
    {
        std::cout << "MyModule => List is empty.\n";
        return false;
    }

    // Are the list elements numpy arrays?
    size_t Counter = 0;
    std::string Correct_NDArray = std::string("ndarray");
    for (Counter = 0; Counter < List_Length; Counter++)
    {
        type = Arg_List[Counter].get_type();
        type_name = type.attr("__name__");
        if (Correct_NDArray.compare(py::cast<std::string>(type_name)) != 0)
        {
            std::cout << "MyModule => Liste element: " << Counter << " not a numpy array .\n";
            return false;
        }
    }

    // Has every array the right dimension?
    py::array Temp_Array;
    for (Counter = 0; Counter < List_Length; Counter++)
    {
        Temp_Array = Arg_List[Counter];
        if (Temp_Array.ndim() != Check_NumberOfDimensions)
        {
            std::cout << " MyModule => Liste element: " << Counter
                << " has not the necessary "
                << Check_NumberOfDimensions << " dimensions (found: " << Temp_Array.ndim() << ").\n";
            return false;
        }
    }

    // Are all the numpy arrays c_style?
    for (Counter = 0; Counter < List_Length; Counter++)
    {
        Temp_Array = Arg_List[Counter];
        if ((Temp_Array.flags() & pybind11::detail::npy_api::NPY_ARRAY_C_CONTIGUOUS_) != pybind11::detail::npy_api::NPY_ARRAY_C_CONTIGUOUS_)
        {
            std::cout << "MyModule => Liste element: " << Counter << " is not c_style.\n";
            return false;
        }
    }

    // 0: single
    // 1: double
    // 2: uint32_t
    // 3: uint64_t
    for (Counter = 0; Counter < List_Length; Counter++)
    {
        Temp_Array = Arg_List[Counter];

        // Float
        if (dType == 0)
        {
            if (py::isinstance<py::array_t<float>>(Temp_Array) == false)
            {
                std::cout << "MyModule => Liste element: " << Counter << " is not a float.\n";
                return -1;
            }
        }

        // Double
        if (dType == 1)
        {
            if (py::isinstance<py::array_t<double>>(Temp_Array) == false)
            {
                std::cout << "MyModule => Liste element: " << Counter << " is not a double.\n";
                return false;
            }
        }

        // uint32_t
        if (dType == 2)
        {
            if (py::isinstance<py::array_t<uint32_t>>(Temp_Array) == false)
            {
                std::cout << "MyModule => Liste element: " << Counter << " is not a uint32.\n";
                return false;
            }
        }

        // uint64_t
        if (dType == 3)
        {
            if (py::isinstance<py::array_t<uint64_t>>(Temp_Array) == false)
            {
                std::cout << "MyModule => Liste element: " << Counter << " is not a uint64.\n";
                return false;
            }
        }
    }
    return true;
}

test.py

test.py

from PyMyModuleCPU import MyModule
import numpy as np

MyCExtension = MyModule()

X = np.random.random((5, 6))

print("X")
print(X)

if MyCExtension.PutStuffIn(X) is False:
    print("Error (1)\n")
    exit()

Y = MyCExtension.GetStuffOut()

print("X-Y:")
print(X - Y)

if MyCExtension.DoStuff(5.0) is False:
    print("Error (2)\n")
    exit()

Z = MyCExtension.GetStuffOut()

print("X*5-Z:")
print(X * 5.0 - Z)

OpenMP

SIMD (Single Instruction Multiple Data)

Make absolutely sure that you don't overlap read and write memory areas. Also make absolutely sure that you don't write at same positions. (I mean stuff like s[i] = v[i+j]; )

#pragma omp simd

for(...){}
#pragma omp simd reduction(+ : SOME_VARIABLE_NAME)
for(...){
   SOME_VARIABLE_NAME += ...
}

Parallel loop (on multiple cores)

omp_set_num_threads(number_of_cpu_processes);
#pragma omp parallel for
for(...){}

For the parallel loop you need to add the parameters -fopenmp=libomp -lomp into the Makefile.

Reference