pytutorial/scikit-learn/svm
David Rotermund 7f55201d8b
Create README.md
Signed-off-by: David Rotermund <54365609+davrot@users.noreply.github.com>
2024-02-07 15:05:58 +01:00
..
README.md Create README.md 2024-02-07 15:05:58 +01:00

Supprt Vector Machine

{:.no_toc}

* TOC {:toc}

Top

Questions to David Rotermund

sklearn.svm.SVC

sklearn.svm.SVC(*, C=1.0, kernel='rbf', degree=3, gamma='scale', coef0=0.0, shrinking=True, probability=False, tol=0.001, cache_size=200, class_weight=None, verbose=False, max_iter=-1, decision_function_shape='ovr', break_ties=False, random_state=None)

kernel : {linear, poly, rbf, sigmoid, precomputed} or callable, default=rbf

Specifies the kernel type to be used in the algorithm. If none is given, rbf will be used. If a callable is given it is used to pre-compute the kernel matrix from data matrices; that matrix should be an array of shape (n_samples, n_samples).

fit

fit(X, y, sample_weight=None)

Fit the SVM model according to the given training data.

X : {array-like, sparse matrix} of shape (n_samples, n_features) or (n_samples, n_samples)

Training vectors, where n_samples is the number of samples and n_features is the number of features. For kernel=”precomputed”, the expected shape of X is (n_samples, n_samples).

y : array-like of shape (n_samples,)

Target values (class labels in classification, real numbers in regression).

predict

predict(X)

For an one-class model, +1 or -1 is returned.

Parameters:

X : {array-like, sparse matrix} of shape (n_samples, n_features) or (n_samples_test, n_samples_train)

Returns:

y_pred : ndarray of shape (n_samples,)

Class labels for samples in X.