a1fa0e73e5
Signed-off-by: David Rotermund <54365609+davrot@users.noreply.github.com> |
||
---|---|---|
.. | ||
README.md |
Train the network
{:.no_toc}
* TOC {:toc}Top
Training the weights and biases of the network.
Questions to David Rotermund
An example setup
Network
import torch
# Some parameters
input_number_of_channel: int = 1
input_dim_x: int = 24
input_dim_y: int = 24
number_of_output_channels_conv1: int = 32
number_of_output_channels_conv2: int = 64
number_of_output_channels_flatten1: int = 576
number_of_output_channels_full1: int = 10
kernel_size_conv1: tuple[int, int] = (5, 5)
kernel_size_pool1: tuple[int, int] = (2, 2)
kernel_size_conv2: tuple[int, int] = (5, 5)
kernel_size_pool2: tuple[int, int] = (2, 2)
stride_conv1: tuple[int, int] = (1, 1)
stride_pool1: tuple[int, int] = (2, 2)
stride_conv2: tuple[int, int] = (1, 1)
stride_pool2: tuple[int, int] = (2, 2)
padding_conv1: int = 0
padding_pool1: int = 0
padding_conv2: int = 0
padding_pool2: int = 0
network = torch.nn.Sequential(
torch.nn.Conv2d(
in_channels=input_number_of_channel,
out_channels=number_of_output_channels_conv1,
kernel_size=kernel_size_conv1,
stride=stride_conv1,
padding=padding_conv1,
),
torch.nn.ReLU(),
torch.nn.MaxPool2d(
kernel_size=kernel_size_pool1, stride=stride_pool1, padding=padding_pool1
),
torch.nn.Conv2d(
in_channels=number_of_output_channels_conv1,
out_channels=number_of_output_channels_conv2,
kernel_size=kernel_size_conv2,
stride=stride_conv2,
padding=padding_conv2,
),
torch.nn.ReLU(),
torch.nn.MaxPool2d(
kernel_size=kernel_size_pool2, stride=stride_pool2, padding=padding_pool2
),
torch.nn.Flatten(
start_dim=1,
),
torch.nn.Linear(
in_features=number_of_output_channels_flatten1,
out_features=number_of_output_channels_full1,
bias=True,
),
torch.nn.Softmax(dim=1),
)
Data augmentation
import torchvision
test_processing_chain = torchvision.transforms.Compose(
transforms=[torchvision.transforms.CenterCrop((24, 24))],
)
train_processing_chain = torchvision.transforms.Compose(
transforms=[torchvision.transforms.RandomCrop((24, 24))],
)
What makes it learn?
Optimizer Algorithms
This is just a small selection of optimizers (i.e. the algorithm that learns the weights based on a loss). Nevertheless, typically Adam or SGD will be the first algorithm you will try.
Adagrad | Implements Adagrad algorithm. |
Adam | Implements Adam algorithm. |
ASGD | Implements Averaged Stochastic Gradient Descent. |
RMSprop | Implements RMSprop algorithm. |
Rprop | Implements the resilient backpropagation algorithm. |
SGD | Implements stochastic gradient descent (optionally with momentum). |
Learning rate scheduler
"torch.optim.lr_scheduler provides several methods to adjust the learning rate based on the number of epochs."
Why do you want to reduce the learning rate: Well, typically you want to start with a large learning rate for jumping over local minima but later you want to anneal the learning rate because otherwise the optimizer will jump over / oscillate around the minima.
A non-representative selection is
lr_scheduler.StepLR | Decays the learning rate of each parameter group by gamma every step_size epochs. |
lr_scheduler.MultiStepLR | Decays the learning rate of each parameter group by gamma once the number of epoch reaches one of the milestones. |
lr_scheduler.ConstantLR | Decays the learning rate of each parameter group by a small constant factor until the number of epoch reaches a pre-defined milestone: total_iters. |
lr_scheduler.LinearLR | Decays the learning rate of each parameter group by linearly changing small multiplicative factor until the number of epoch reaches a pre-defined milestone: total_iters. |
lr_scheduler.ExponentialLR | Decays the learning rate of each parameter group by gamma every epoch. |
lr_scheduler.ReduceLROnPlateau | Reduce learning rate when a metric has stopped improving. |
However, typically I only use lr_scheduler.ReduceLROnPlateau.
Tensorboard
We want to monitor our progress and will use Tensorboard for this.
In the beginning we need to open a Tensorboard session
import os
os.environ["TF_CPP_MIN_LOG_LEVEL"] = "3"
from torch.utils.tensorboard import SummaryWriter
tb = SummaryWriter()
Afterwards we need to close the Tensorboard session again
tb.close()
During learning we can flush the information. This allows us to observer the development in parallel in the viewer (a viewer that is build into VS code I might add...).
tb.flush()
We can add histograms for e.g. weights
tb.add_histogram("LABEL OF THE VARIABLE", VARIABLE, LEARNING_STEP_NUMBER)
or add scalars (e.g. performances or loss values)
tb.add_scalar("LABEL OF THE VARIABLE", VARIABLE, LEARNING_STEP_NUMBER)
We can also add images, matplotlib figures, videos, audio, text, graph data, and other stuff. Just because we can doesn't mean that we want to...
We can use the event_accumulator to retrieve the stored information.
- acc = event_accumulator.EventAccumulator(PATH)
- acc.Tags() : Return all tags found as a dictionary (e.g. acc.Tags()['scalars'] and acc.Tags()['histograms']).
- acc.Scalars(tag) : Given a summary tag, return all associated
ScalarEvent
s. - acc.Graph() : Return the graph definition, if there is one.
- acc.MetaGraph() : Return the metagraph definition, if there is one.
- acc.Histograms(tag) : Given a summary tag, return all associated histograms.
- acc.CompressedHistograms(tag) : Given a summary tag, return all associated compressed histograms.
- acc.Images(tag) : Given a summary tag, return all associated images.
- acc.Audio(tag) : Given a summary tag, return all associated audio.
- acc.Tensors(tag) : Given a summary tag, return all associated tensors.
Here as an example:
import os
os.environ["TF_CPP_MIN_LOG_LEVEL"] = "3"
import matplotlib.pyplot as plt
from tensorboard.backend.event_processing import event_accumulator
import numpy as np
path: str = "./runs/Jan26_18-03-23_doppio/" # this way tensorboard directory
acc = event_accumulator.EventAccumulator(path)
acc.Reload()
available_scalar = acc.Tags()["scalars"]
available_histograms = acc.Tags()["histograms"]
print("Available Scalars")
print(available_scalar)
print("Available Histograms")
print(available_histograms)
which_scalar = "Train Performance"
te = acc.Scalars(which_scalar)
# %%
temp = []
for te_item in te:
temp.append((te_item[1], te_item[2]))
temp = np.array(temp)
plt.plot(temp[:, 0], temp[:, 1])
plt.xlabel("Steps")
plt.ylabel("Train Performance")
plt.title(which_scalar)
plt.show()