bc4b525e15
Signed-off-by: David Rotermund <54365609+davrot@users.noreply.github.com> |
||
---|---|---|
.. | ||
README.md |
Overview
{:.no_toc}
* TOC {:toc}The goal
scikit-learn is a machine learning tool kit for data analysis.
Questions to David Rotermund
pip install scikit-learn
- Simple and efficient tools for predictive data analysis
- Accessible to everybody, and reusable in various contexts
- Built on NumPy, SciPy, and matplotlib
I will keep it short and I will mark the most relevant tools in bold
sklearn.base: Base classes and utility functions
see here
sklearn.calibration: Probability Calibration
calibration.CalibratedClassifierCV([...]) | Probability calibration with isotonic regression or logistic regression. |
calibration.calibration_curve(y_true, y_prob, *) | Compute true and predicted probabilities for a calibration curve. |
sklearn.cluster: Clustering
Classes
cluster.AffinityPropagation(*[, damping, ...]) | Perform Affinity Propagation Clustering of data. |
cluster.AgglomerativeClustering([...]) | Agglomerative Clustering. |
cluster.Birch(*[, threshold, ...]) | Implements the BIRCH clustering algorithm. |
cluster.DBSCAN([eps, min_samples, metric, ...]) | Perform DBSCAN clustering from vector array or distance matrix. |
cluster.HDBSCAN([min_cluster_size, ...]) | Cluster data using hierarchical density-based clustering. |
cluster.FeatureAgglomeration([n_clusters, ...]) | Agglomerate features. |
cluster.KMeans([n_clusters, init, n_init, ...]) | K-Means clustering. |
cluster.BisectingKMeans([n_clusters, init, ...]) | Bisecting K-Means clustering. |
cluster.MiniBatchKMeans([n_clusters, init, ...]) | Mini-Batch K-Means clustering. |
cluster.MeanShift(*[, bandwidth, seeds, ...]) | Mean shift clustering using a flat kernel. |
cluster.OPTICS(*[, min_samples, max_eps, ...]) | Estimate clustering structure from vector array. |
cluster.SpectralClustering([n_clusters, ...]) | Apply clustering to a projection of the normalized Laplacian. |
cluster.SpectralBiclustering([n_clusters, ...]) | Spectral biclustering (Kluger, 2003). |
cluster.SpectralCoclustering([n_clusters, ...]) | Spectral Co-Clustering algorithm (Dhillon, 2001). |
Functions
cluster.affinity_propagation(S, *[, ...]) | Perform Affinity Propagation Clustering of data. |
cluster.cluster_optics_dbscan(*, ...) | Perform DBSCAN extraction for an arbitrary epsilon. |
cluster.cluster_optics_xi(*, reachability, ...) | Automatically extract clusters according to the Xi-steep method. |
cluster.compute_optics_graph(X, *, ...) | Compute the OPTICS reachability graph. |
cluster.dbscan(X[, eps, min_samples, ...]) | Perform DBSCAN clustering from vector array or distance matrix. |
cluster.estimate_bandwidth(X, *[, quantile, ...]) | Estimate the bandwidth to use with the mean-shift algorithm. |
cluster.k_means(X, n_clusters, *[, ...]) | Perform K-means clustering algorithm. |
cluster.kmeans_plusplus(X, n_clusters, *[, ...]) | Init n_clusters seeds according to k-means++. |
cluster.mean_shift(X, *[, bandwidth, seeds, ...]) | Perform mean shift clustering of data using a flat kernel. |
cluster.spectral_clustering(affinity, *[, ...]) | Apply clustering to a projection of the normalized Laplacian. |
cluster.ward_tree(X, *[, connectivity, ...]) | Ward clustering based on a Feature matrix. |
sklearn.compose: Composite Estimators
compose.ColumnTransformer(transformers, *[, ...]) | Applies transformers to columns of an array or pandas DataFrame. |
compose.TransformedTargetRegressor([...]) | Meta-estimator to regress on a transformed target. |
compose.make_column_transformer(*transformers) | Construct a ColumnTransformer from the given transformers. |
compose.make_column_selector([pattern, ...]) | Create a callable to select columns to be used with ColumnTransformer. |
sklearn.covariance: Covariance Estimators
covariance.EmpiricalCovariance(*[, ...]) | Maximum likelihood covariance estimator. |
covariance.EllipticEnvelope(*[, ...]) | An object for detecting outliers in a Gaussian distributed dataset. |
covariance.GraphicalLasso([alpha, mode, ...]) | Sparse inverse covariance estimation with an l1-penalized estimator. |
covariance.GraphicalLassoCV(*[, alphas, ...]) | Sparse inverse covariance w/ cross-validated choice of the l1 penalty. |
covariance.LedoitWolf(*[, store_precision, ...]) | LedoitWolf Estimator. |
covariance.MinCovDet(*[, store_precision, ...]) | Minimum Covariance Determinant (MCD): robust estimator of covariance. |
covariance.OAS(*[, store_precision, ...]) | Oracle Approximating Shrinkage Estimator as proposed in [R69773891e6a6-1]. |
covariance.ShrunkCovariance(*[, ...]) | Covariance estimator with shrinkage. |
covariance.empirical_covariance(X, *[, ...]) | Compute the Maximum likelihood covariance estimator. |
covariance.graphical_lasso(emp_cov, alpha, *) | L1-penalized covariance estimator. |
covariance.ledoit_wolf(X, *[, ...]) | Estimate the shrunk Ledoit-Wolf covariance matrix. |
covariance.ledoit_wolf_shrinkage(X[, ...]) | Estimate the shrunk Ledoit-Wolf covariance matrix. |
covariance.oas(X, *[, assume_centered]) | Estimate covariance with the Oracle Approximating Shrinkage as proposed in [Rca3a42e5ec35-1]. |
covariance.shrunk_covariance(emp_cov[, ...]) | Calculate a covariance matrix shrunk on the diagonal. |
sklearn.cross_decomposition: Cross decomposition
cross_decomposition.CCA([n_components, ...]) | Canonical Correlation Analysis, also known as "Mode B" PLS. |
cross_decomposition.PLSCanonical([...]) | Partial Least Squares transformer and regressor. |
cross_decomposition.PLSRegression([...]) | PLS regression. |
cross_decomposition.PLSSVD([n_components, ...]) | Partial Least Square SVD. |
sklearn.datasets: Datasets
see here
sklearn.decomposition: Matrix Decomposition
decomposition.DictionaryLearning([...]) | Dictionary learning. |
decomposition.FactorAnalysis([n_components, ...]) | Factor Analysis (FA). |
decomposition.FastICA([n_components, ...]) | FastICA: a fast algorithm for Independent Component Analysis. |
decomposition.IncrementalPCA([n_components, ...]) | Incremental principal components analysis (IPCA). |
decomposition.KernelPCA([n_components, ...]) | Kernel Principal component analysis (KPCA) [R396fc7d924b8-1]. |
decomposition.LatentDirichletAllocation([...]) | Latent Dirichlet Allocation with online variational Bayes algorithm. |
decomposition.MiniBatchDictionaryLearning([...]) | Mini-batch dictionary learning. |
decomposition.MiniBatchSparsePCA([...]) | Mini-batch Sparse Principal Components Analysis. |
decomposition.NMF([n_components, init, ...]) | Non-Negative Matrix Factorization (NMF). |
decomposition.MiniBatchNMF([n_components, ...]) | Mini-Batch Non-Negative Matrix Factorization (NMF). |
decomposition.PCA([n_components, copy, ...]) | Principal component analysis (PCA). |
decomposition.SparsePCA([n_components, ...]) | Sparse Principal Components Analysis (SparsePCA). |
decomposition.SparseCoder(dictionary, *[, ...]) | Sparse coding. |
decomposition.TruncatedSVD([n_components, ...]) | Dimensionality reduction using truncated SVD (aka LSA). |
decomposition.dict_learning(X, n_components, ...) | Solve a dictionary learning matrix factorization problem. |
decomposition.dict_learning_online(X[, ...]) | Solve a dictionary learning matrix factorization problem online. |
decomposition.fastica(X[, n_components, ...]) | Perform Fast Independent Component Analysis. |
decomposition.non_negative_factorization(X) | Compute Non-negative Matrix Factorization (NMF). |
decomposition.sparse_encode(X, dictionary, *) | Sparse coding. |
sklearn.discriminant_analysis: Discriminant Analysis
discriminant_analysis.LinearDiscriminantAnalysis([...]) | |
Linear Discriminant Analysis. |
discriminant_analysis.QuadraticDiscriminantAnalysis(*) Quadratic Discriminant Analysis.
sklearn.dummy: Dummy estimators
dummy.DummyClassifier(*[, strategy, ...]) | |
DummyClassifier makes predictions that ignore the input features. |
dummy.DummyRegressor(*[, strategy, ...]) Regressor that makes predictions using simple rules.
sklearn.ensemble: Ensemble Methods
ensemble.AdaBoostClassifier([estimator, ...]) | |
An AdaBoost classifier. |
ensemble.AdaBoostRegressor([estimator, ...]) An AdaBoost regressor.
ensemble.BaggingClassifier([estimator, ...]) A Bagging classifier.
ensemble.BaggingRegressor([estimator, ...]) A Bagging regressor.
ensemble.ExtraTreesClassifier([...]) An extra-trees classifier.
ensemble.ExtraTreesRegressor([n_estimators, ...]) An extra-trees regressor.
ensemble.GradientBoostingClassifier(*[, ...]) Gradient Boosting for classification.
ensemble.GradientBoostingRegressor(*[, ...]) Gradient Boosting for regression.
ensemble.IsolationForest(*[, n_estimators, ...]) Isolation Forest Algorithm.
ensemble.RandomForestClassifier([...]) A random forest classifier.
ensemble.RandomForestRegressor([...]) A random forest regressor.
ensemble.RandomTreesEmbedding([...]) An ensemble of totally random trees.
ensemble.StackingClassifier(estimators[, ...]) Stack of estimators with a final classifier.
ensemble.StackingRegressor(estimators[, ...]) Stack of estimators with a final regressor.
ensemble.VotingClassifier(estimators, *[, ...]) Soft Voting/Majority Rule classifier for unfitted estimators.
ensemble.VotingRegressor(estimators, *[, ...]) Prediction voting regressor for unfitted estimators.
ensemble.HistGradientBoostingRegressor([...]) Histogram-based Gradient Boosting Regression Tree.
ensemble.HistGradientBoostingClassifier([...]) Histogram-based Gradient Boosting Classification Tree.
sklearn.exceptions: Exceptions and warnings
see here
sklearn.experimental: Experimental
see here
sklearn.feature_extraction: Feature Extraction
feature_extraction.DictVectorizer(*[, ...]) | |
Transforms lists of feature-value mappings to vectors. |
feature_extraction.FeatureHasher([...]) Implements feature hashing, aka the hashing trick.
From images
feature_extraction.image.extract_patches_2d(...) | |
Reshape a 2D image into a collection of patches. |
feature_extraction.image.grid_to_graph(n_x, n_y) Graph of the pixel-to-pixel connections.
feature_extraction.image.img_to_graph(img, *) Graph of the pixel-to-pixel gradient connections.
feature_extraction.image.reconstruct_from_patches_2d(...) Reconstruct the image from all of its patches.
feature_extraction.image.PatchExtractor(*[, ...]) Extracts patches from a collection of images.
From text
feature_extraction.text.CountVectorizer(*[, ...]) | |
Convert a collection of text documents to a matrix of token counts. |
feature_extraction.text.HashingVectorizer(*) Convert a collection of text documents to a matrix of token occurrences.
feature_extraction.text.TfidfTransformer(*) Transform a count matrix to a normalized tf or tf-idf representation.
feature_extraction.text.TfidfVectorizer(*[, ...]) Convert a collection of raw documents to a matrix of TF-IDF features.
sklearn.feature_selection: Feature Selection
feature_selection.GenericUnivariateSelect([...]) | |
Univariate feature selector with configurable strategy. |
feature_selection.SelectPercentile([...]) Select features according to a percentile of the highest scores.
feature_selection.SelectKBest([score_func, k]) Select features according to the k highest scores.
feature_selection.SelectFpr([score_func, alpha]) Filter: Select the pvalues below alpha based on a FPR test.
feature_selection.SelectFdr([score_func, alpha]) Filter: Select the p-values for an estimated false discovery rate.
feature_selection.SelectFromModel(estimator, *) Meta-transformer for selecting features based on importance weights.
feature_selection.SelectFwe([score_func, alpha]) Filter: Select the p-values corresponding to Family-wise error rate.
feature_selection.SequentialFeatureSelector(...) Transformer that performs Sequential Feature Selection.
feature_selection.RFE(estimator, *[, ...]) Feature ranking with recursive feature elimination.
feature_selection.RFECV(estimator, *[, ...]) Recursive feature elimination with cross-validation to select features.
feature_selection.VarianceThreshold([threshold]) Feature selector that removes all low-variance features.
feature_selection.chi2(X, y) Compute chi-squared stats between each non-negative feature and class.
feature_selection.f_classif(X, y) Compute the ANOVA F-value for the provided sample.
feature_selection.f_regression(X, y, *[, ...]) Univariate linear regression tests returning F-statistic and p-values.
feature_selection.r_regression(X, y, *[, ...]) Compute Pearson's r for each features and the target.
feature_selection.mutual_info_classif(X, y, *) Estimate mutual information for a discrete target variable.
feature_selection.mutual_info_regression(X, y, *) Estimate mutual information for a continuous target variable.
sklearn.gaussian_process: Gaussian Processes
gaussian_process.GaussianProcessClassifier([...]) | |
Gaussian process classification (GPC) based on Laplace approximation. |
gaussian_process.GaussianProcessRegressor([...]) Gaussian process regression (GPR).
Kernels
gaussian_process.kernels.CompoundKernel(kernels) | |
Kernel which is composed of a set of other kernels. |
gaussian_process.kernels.ConstantKernel([...]) Constant kernel.
gaussian_process.kernels.DotProduct([...]) Dot-Product kernel.
gaussian_process.kernels.ExpSineSquared([...]) Exp-Sine-Squared kernel (aka periodic kernel).
gaussian_process.kernels.Exponentiation(...) The Exponentiation kernel takes one base kernel and a scalar parameter and combines them via
gaussian_process.kernels.Hyperparameter(...) A kernel hyperparameter's specification in form of a namedtuple.
gaussian_process.kernels.Kernel() Base class for all kernels.
gaussian_process.kernels.Matern([...]) Matern kernel.
gaussian_process.kernels.PairwiseKernel([...]) Wrapper for kernels in sklearn.metrics.pairwise.
gaussian_process.kernels.Product(k1, k2) The Product kernel takes two kernels k1 and k2 and combines them via
gaussian_process.kernels.RBF([length_scale, ...]) Radial basis function kernel (aka squared-exponential kernel).
gaussian_process.kernels.RationalQuadratic([...]) Rational Quadratic kernel.
gaussian_process.kernels.Sum(k1, k2) The Sum kernel takes two kernels k1 and k2 and combines them via
gaussian_process.kernels.WhiteKernel([...]) White kernel.
sklearn.impute: Impute
impute.SimpleImputer(*[, missing_values, ...]) | |
Univariate imputer for completing missing values with simple strategies. |
impute.IterativeImputer([estimator, ...]) Multivariate imputer that estimates each feature from all the others.
impute.MissingIndicator(*[, missing_values, ...]) Binary indicators for missing values.
impute.KNNImputer(*[, missing_values, ...]) Imputation for completing missing values using k-Nearest Neighbors.
sklearn.inspection: Inspection
inspection.partial_dependence(estimator, X, ...) | |
Partial dependence of features. |
inspection.permutation_importance(estimator, ...) Permutation importance for feature evaluation [Rd9e56ef97513-BRE].
Plotting
inspection.DecisionBoundaryDisplay(*, xx0, ...) | |
Decisions boundary visualization. |
inspection.PartialDependenceDisplay(...[, ...]) Partial Dependence Plot (PDP).
sklearn.isotonic: Isotonic regression
isotonic.IsotonicRegression(*[, y_min, ...]) | |
Isotonic regression model. |
isotonic.check_increasing(x, y) Determine whether y is monotonically correlated with x.
isotonic.isotonic_regression(y, *[, ...]) Solve the isotonic regression model.
sklearn.kernel_approximation: Kernel Approximation
kernel_approximation.AdditiveChi2Sampler(*) | |
Approximate feature map for additive chi2 kernel. |
kernel_approximation.Nystroem([kernel, ...]) Approximate a kernel map using a subset of the training data.
kernel_approximation.PolynomialCountSketch(*) Polynomial kernel approximation via Tensor Sketch.
kernel_approximation.RBFSampler(*[, gamma, ...]) Approximate a RBF kernel feature map using random Fourier features.
kernel_approximation.SkewedChi2Sampler(*[, ...]) Approximate feature map for "skewed chi-squared" kernel.
sklearn.kernel_ridge: Kernel Ridge Regression
kernel_ridge.KernelRidge([alpha, kernel, ...]) | |
Kernel ridge regression. |
sklearn.linear_model: Linear Models
Linear classifiers
linear_model.LogisticRegression([penalty, ...]) | |
Logistic Regression (aka logit, MaxEnt) classifier. |
linear_model.LogisticRegressionCV(*[, Cs, ...]) Logistic Regression CV (aka logit, MaxEnt) classifier.
linear_model.PassiveAggressiveClassifier(*) Passive Aggressive Classifier.
linear_model.Perceptron(*[, penalty, alpha, ...]) Linear perceptron classifier.
linear_model.RidgeClassifier([alpha, ...]) Classifier using Ridge regression.
linear_model.RidgeClassifierCV([alphas, ...]) Ridge classifier with built-in cross-validation.
linear_model.SGDClassifier([loss, penalty, ...]) Linear classifiers (SVM, logistic regression, etc.) with SGD training.
linear_model.SGDOneClassSVM([nu, ...]) Solves linear One-Class SVM using Stochastic Gradient Descent.
Classical linear regressors
linear_model.LinearRegression(*[, ...]) | |
Ordinary least squares Linear Regression. |
linear_model.Ridge([alpha, fit_intercept, ...]) Linear least squares with l2 regularization.
linear_model.RidgeCV([alphas, ...]) Ridge regression with built-in cross-validation.
linear_model.SGDRegressor([loss, penalty, ...]) Linear model fitted by minimizing a regularized empirical loss with SGD.
Regressors with variable selection
linear_model.ElasticNet([alpha, l1_ratio, ...]) | |
Linear regression with combined L1 and L2 priors as regularizer. |
linear_model.ElasticNetCV(*[, l1_ratio, ...]) Elastic Net model with iterative fitting along a regularization path.
linear_model.Lars(*[, fit_intercept, ...]) Least Angle Regression model a.k.a.
linear_model.LarsCV(*[, fit_intercept, ...]) Cross-validated Least Angle Regression model.
linear_model.Lasso([alpha, fit_intercept, ...]) Linear Model trained with L1 prior as regularizer (aka the Lasso).
linear_model.LassoCV(*[, eps, n_alphas, ...]) Lasso linear model with iterative fitting along a regularization path.
linear_model.LassoLars([alpha, ...]) Lasso model fit with Least Angle Regression a.k.a.
linear_model.LassoLarsCV(*[, fit_intercept, ...]) Cross-validated Lasso, using the LARS algorithm.
linear_model.LassoLarsIC([criterion, ...]) Lasso model fit with Lars using BIC or AIC for model selection.
linear_model.OrthogonalMatchingPursuit(*[, ...]) Orthogonal Matching Pursuit model (OMP).
linear_model.OrthogonalMatchingPursuitCV(*) Cross-validated Orthogonal Matching Pursuit model (OMP).
Bayesian regressors
linear_model.ARDRegression(*[, max_iter, ...]) | |
Bayesian ARD regression. |
linear_model.BayesianRidge(*[, max_iter, ...]) Bayesian ridge regression.
Multi-task linear regressors with variable selection
linear_model.MultiTaskElasticNet([alpha, ...]) | |
Multi-task ElasticNet model trained with L1/L2 mixed-norm as regularizer. |
linear_model.MultiTaskElasticNetCV(*[, ...]) Multi-task L1/L2 ElasticNet with built-in cross-validation.
linear_model.MultiTaskLasso([alpha, ...]) Multi-task Lasso model trained with L1/L2 mixed-norm as regularizer.
linear_model.MultiTaskLassoCV(*[, eps, ...]) Multi-task Lasso model trained with L1/L2 mixed-norm as regularizer.
Outlier-robust regressors
linear_model.HuberRegressor(*[, epsilon, ...]) | |
L2-regularized linear regression model that is robust to outliers. |
linear_model.QuantileRegressor(*[, ...]) Linear regression model that predicts conditional quantiles.
linear_model.RANSACRegressor([estimator, ...]) RANSAC (RANdom SAmple Consensus) algorithm.
linear_model.TheilSenRegressor(*[, ...]) Theil-Sen Estimator: robust multivariate regression model.
Generalized linear models (GLM) for regression
linear_model.PoissonRegressor(*[, alpha, ...]) | |
Generalized Linear Model with a Poisson distribution. |
linear_model.TweedieRegressor(*[, power, ...]) Generalized Linear Model with a Tweedie distribution.
linear_model.GammaRegressor(*[, alpha, ...]) Generalized Linear Model with a Gamma distribution.
Miscellaneous
linear_model.PassiveAggressiveRegressor(*[, ...]) | |
Passive Aggressive Regressor. |
linear_model.enet_path(X, y, *[, l1_ratio, ...]) Compute elastic net path with coordinate descent.
linear_model.lars_path(X, y[, Xy, Gram, ...]) Compute Least Angle Regression or Lasso path using the LARS algorithm [1].
linear_model.lars_path_gram(Xy, Gram, *, ...) The lars_path in the sufficient stats mode [1].
linear_model.lasso_path(X, y, *[, eps, ...]) Compute Lasso path with coordinate descent.
linear_model.orthogonal_mp(X, y, *[, ...]) Orthogonal Matching Pursuit (OMP).
linear_model.orthogonal_mp_gram(Gram, Xy, *) Gram Orthogonal Matching Pursuit (OMP).
linear_model.ridge_regression(X, y, alpha, *) Solve the ridge equation by the method of normal equations.
sklearn.manifold: Manifold Learning
manifold.Isomap(*[, n_neighbors, radius, ...]) | |
Isomap Embedding. |
manifold.LocallyLinearEmbedding(*[, ...]) Locally Linear Embedding.
manifold.MDS([n_components, metric, n_init, ...]) Multidimensional scaling.
manifold.SpectralEmbedding([n_components, ...]) Spectral embedding for non-linear dimensionality reduction.
manifold.TSNE([n_components, perplexity, ...]) T-distributed Stochastic Neighbor Embedding.
manifold.locally_linear_embedding(X, *, ...) Perform a Locally Linear Embedding analysis on the data.
manifold.smacof(dissimilarities, *[, ...]) Compute multidimensional scaling using the SMACOF algorithm.
manifold.spectral_embedding(adjacency, *[, ...]) Project the sample on the first eigenvectors of the graph Laplacian.
manifold.trustworthiness(X, X_embedded, *[, ...]) Indicate to what extent the local structure is retained.
sklearn.metrics: Metrics
Model Selection Interface
metrics.check_scoring(estimator[, scoring, ...]) | |
Determine scorer from user options. |
metrics.get_scorer(scoring) Get a scorer from string.
metrics.get_scorer_names() Get the names of all available scorers.
metrics.make_scorer(score_func, *[, ...]) Make a scorer from a performance metric or loss function.
Classification metrics
metrics.accuracy_score(y_true, y_pred, *[, ...]) | |
Accuracy classification score. |
metrics.auc(x, y) Compute Area Under the Curve (AUC) using the trapezoidal rule.
metrics.average_precision_score(y_true, ...) Compute average precision (AP) from prediction scores.
metrics.balanced_accuracy_score(y_true, ...) Compute the balanced accuracy.
metrics.brier_score_loss(y_true, y_prob, *) Compute the Brier score loss.
metrics.class_likelihood_ratios(y_true, ...) Compute binary classification positive and negative likelihood ratios.
metrics.classification_report(y_true, y_pred, *) Build a text report showing the main classification metrics.
metrics.cohen_kappa_score(y1, y2, *[, ...]) Compute Cohen's kappa: a statistic that measures inter-annotator agreement.
metrics.confusion_matrix(y_true, y_pred, *) Compute confusion matrix to evaluate the accuracy of a classification.
metrics.dcg_score(y_true, y_score, *[, k, ...]) Compute Discounted Cumulative Gain.
metrics.det_curve(y_true, y_score[, ...]) Compute error rates for different probability thresholds.
metrics.f1_score(y_true, y_pred, *[, ...]) Compute the F1 score, also known as balanced F-score or F-measure.
metrics.fbeta_score(y_true, y_pred, *, beta) Compute the F-beta score.
metrics.hamming_loss(y_true, y_pred, *[, ...]) Compute the average Hamming loss.
metrics.hinge_loss(y_true, pred_decision, *) Average hinge loss (non-regularized).
metrics.jaccard_score(y_true, y_pred, *[, ...]) Jaccard similarity coefficient score.
metrics.log_loss(y_true, y_pred, *[, eps, ...]) Log loss, aka logistic loss or cross-entropy loss.
metrics.matthews_corrcoef(y_true, y_pred, *) Compute the Matthews correlation coefficient (MCC).
metrics.multilabel_confusion_matrix(y_true, ...) Compute a confusion matrix for each class or sample.
metrics.ndcg_score(y_true, y_score, *[, k, ...]) Compute Normalized Discounted Cumulative Gain.
metrics.precision_recall_curve(y_true, ...) Compute precision-recall pairs for different probability thresholds.
metrics.precision_recall_fscore_support(...) Compute precision, recall, F-measure and support for each class.
metrics.precision_score(y_true, y_pred, *[, ...]) Compute the precision.
metrics.recall_score(y_true, y_pred, *[, ...]) Compute the recall.
metrics.roc_auc_score(y_true, y_score, *[, ...]) Compute Area Under the Receiver Operating Characteristic Curve (ROC AUC) from prediction scores.
metrics.roc_curve(y_true, y_score, *[, ...]) Compute Receiver operating characteristic (ROC).
metrics.top_k_accuracy_score(y_true, y_score, *) Top-k Accuracy classification score.
metrics.zero_one_loss(y_true, y_pred, *[, ...]) Zero-one classification loss.
Regression metrics
metrics.explained_variance_score(y_true, ...) | |
Explained variance regression score function. |
metrics.max_error(y_true, y_pred) The max_error metric calculates the maximum residual error.
metrics.mean_absolute_error(y_true, y_pred, *) Mean absolute error regression loss.
metrics.mean_squared_error(y_true, y_pred, *) Mean squared error regression loss.
metrics.mean_squared_log_error(y_true, y_pred, *) Mean squared logarithmic error regression loss.
metrics.median_absolute_error(y_true, y_pred, *) Median absolute error regression loss.
metrics.mean_absolute_percentage_error(...) Mean absolute percentage error (MAPE) regression loss.
metrics.r2_score(y_true, y_pred, *[, ...]) R^2 (coefficient of determination) regression score function.
metrics.mean_poisson_deviance(y_true, y_pred, *) Mean Poisson deviance regression loss.
metrics.mean_gamma_deviance(y_true, y_pred, *) Mean Gamma deviance regression loss.
metrics.mean_tweedie_deviance(y_true, y_pred, *) Mean Tweedie deviance regression loss.
metrics.d2_tweedie_score(y_true, y_pred, *) D^2 regression score function, fraction of Tweedie deviance explained.
metrics.mean_pinball_loss(y_true, y_pred, *) Pinball loss for quantile regression.
metrics.d2_pinball_score(y_true, y_pred, *) D^2 regression score function, fraction of pinball loss explained.
metrics.d2_absolute_error_score(y_true, ...) D^2 regression score function, fraction of absolute error explained.
Multilabel ranking metrics
metrics.coverage_error(y_true, y_score, *[, ...]) | |
Coverage error measure. |
metrics.label_ranking_average_precision_score(...) Compute ranking-based average precision.
metrics.label_ranking_loss(y_true, y_score, *) Compute Ranking loss measure.
Clustering metrics
metrics.adjusted_mutual_info_score(...[, ...]) | |
Adjusted Mutual Information between two clusterings. |
metrics.adjusted_rand_score(labels_true, ...) Rand index adjusted for chance.
metrics.calinski_harabasz_score(X, labels) Compute the Calinski and Harabasz score.
metrics.davies_bouldin_score(X, labels) Compute the Davies-Bouldin score.
metrics.completeness_score(labels_true, ...) Compute completeness metric of a cluster labeling given a ground truth.
metrics.cluster.contingency_matrix(...[, ...]) Build a contingency matrix describing the relationship between labels.
metrics.cluster.pair_confusion_matrix(...) Pair confusion matrix arising from two clusterings [R9ca8fd06d29a-1].
metrics.fowlkes_mallows_score(labels_true, ...) Measure the similarity of two clusterings of a set of points.
metrics.homogeneity_completeness_v_measure(...) Compute the homogeneity and completeness and V-Measure scores at once.
metrics.homogeneity_score(labels_true, ...) Homogeneity metric of a cluster labeling given a ground truth.
metrics.mutual_info_score(labels_true, ...) Mutual Information between two clusterings.
metrics.normalized_mutual_info_score(...[, ...]) Normalized Mutual Information between two clusterings.
metrics.rand_score(labels_true, labels_pred) Rand index.
metrics.silhouette_score(X, labels, *[, ...]) Compute the mean Silhouette Coefficient of all samples.
metrics.silhouette_samples(X, labels, *[, ...]) Compute the Silhouette Coefficient for each sample.
metrics.v_measure_score(labels_true, ...[, beta]) V-measure cluster labeling given a ground truth.
Biclustering metrics
metrics.consensus_score(a, b, *[, similarity]) | |
The similarity of two sets of biclusters. |
Distance metrics
metrics.DistanceMetric | |
Uniform interface for fast distance metric functions. |
Pairwise metrics
metrics.pairwise.additive_chi2_kernel(X[, Y]) | |
Compute the additive chi-squared kernel between observations in X and Y. |
metrics.pairwise.chi2_kernel(X[, Y, gamma]) Compute the exponential chi-squared kernel between X and Y.
metrics.pairwise.cosine_similarity(X[, Y, ...]) Compute cosine similarity between samples in X and Y.
metrics.pairwise.cosine_distances(X[, Y]) Compute cosine distance between samples in X and Y.
metrics.pairwise.distance_metrics() Valid metrics for pairwise_distances.
metrics.pairwise.euclidean_distances(X[, Y, ...]) Compute the distance matrix between each pair from a vector array X and Y.
metrics.pairwise.haversine_distances(X[, Y]) Compute the Haversine distance between samples in X and Y.
metrics.pairwise.kernel_metrics() Valid metrics for pairwise_kernels.
metrics.pairwise.laplacian_kernel(X[, Y, gamma]) Compute the laplacian kernel between X and Y.
metrics.pairwise.linear_kernel(X[, Y, ...]) Compute the linear kernel between X and Y.
metrics.pairwise.manhattan_distances(X[, Y, ...]) Compute the L1 distances between the vectors in X and Y.
metrics.pairwise.nan_euclidean_distances(X) Calculate the euclidean distances in the presence of missing values.
metrics.pairwise.pairwise_kernels(X[, Y, ...]) Compute the kernel between arrays X and optional array Y.
metrics.pairwise.polynomial_kernel(X[, Y, ...]) Compute the polynomial kernel between X and Y.
metrics.pairwise.rbf_kernel(X[, Y, gamma]) Compute the rbf (gaussian) kernel between X and Y.
metrics.pairwise.sigmoid_kernel(X[, Y, ...]) Compute the sigmoid kernel between X and Y.
metrics.pairwise.paired_euclidean_distances(X, Y) Compute the paired euclidean distances between X and Y.
metrics.pairwise.paired_manhattan_distances(X, Y) Compute the paired L1 distances between X and Y.
metrics.pairwise.paired_cosine_distances(X, Y) Compute the paired cosine distances between X and Y.
metrics.pairwise.paired_distances(X, Y, *[, ...]) Compute the paired distances between X and Y.
metrics.pairwise_distances(X[, Y, metric, ...]) Compute the distance matrix from a vector array X and optional Y.
metrics.pairwise_distances_argmin(X, Y, *[, ...]) Compute minimum distances between one point and a set of points.
metrics.pairwise_distances_argmin_min(X, Y, *) Compute minimum distances between one point and a set of points.
metrics.pairwise_distances_chunked(X[, Y, ...]) Generate a distance matrix chunk by chunk with optional reduction.
Plotting
metrics.ConfusionMatrixDisplay(...[, ...]) | |
Confusion Matrix visualization. |
metrics.DetCurveDisplay(*, fpr, fnr[, ...]) DET curve visualization.
metrics.PrecisionRecallDisplay(precision, ...) Precision Recall visualization.
metrics.PredictionErrorDisplay(*, y_true, y_pred) Visualization of the prediction error of a regression model.
metrics.RocCurveDisplay(*, fpr, tpr[, ...]) ROC Curve visualization.
calibration.CalibrationDisplay(prob_true, ...) Calibration curve (also known as reliability diagram) visualization.
sklearn.mixture: Gaussian Mixture Models
mixture.BayesianGaussianMixture(*[, ...]) | |
Variational Bayesian estimation of a Gaussian mixture. |
mixture.GaussianMixture([n_components, ...]) Gaussian Mixture.
sklearn.model_selection: Model Selection
Splitter Classes
model_selection.GroupKFold([n_splits]) | |
K-fold iterator variant with non-overlapping groups. |
model_selection.GroupShuffleSplit([...]) Shuffle-Group(s)-Out cross-validation iterator
model_selection.KFold([n_splits, shuffle, ...]) K-Folds cross-validator
model_selection.LeaveOneGroupOut() Leave One Group Out cross-validator
model_selection.LeavePGroupsOut(n_groups) Leave P Group(s) Out cross-validator
model_selection.LeaveOneOut() Leave-One-Out cross-validator
model_selection.LeavePOut(p) Leave-P-Out cross-validator
model_selection.PredefinedSplit(test_fold) Predefined split cross-validator
model_selection.RepeatedKFold(*[, n_splits, ...]) Repeated K-Fold cross validator.
model_selection.RepeatedStratifiedKFold(*[, ...]) Repeated Stratified K-Fold cross validator.
model_selection.ShuffleSplit([n_splits, ...]) Random permutation cross-validator
model_selection.StratifiedKFold([n_splits, ...]) Stratified K-Folds cross-validator.
model_selection.StratifiedShuffleSplit([...]) Stratified ShuffleSplit cross-validator
model_selection.StratifiedGroupKFold([...]) Stratified K-Folds iterator variant with non-overlapping groups.
model_selection.TimeSeriesSplit([n_splits, ...]) Time Series cross-validator
Splitter Functions
model_selection.check_cv([cv, y, classifier]) | |
Input checker utility for building a cross-validator. |
model_selection.train_test_split(*arrays[, ...]) Split arrays or matrices into random train and test subsets.
Hyper-parameter optimizers
model_selection.GridSearchCV(estimator, ...) | |
Exhaustive search over specified parameter values for an estimator. |
model_selection.HalvingGridSearchCV(...[, ...]) Search over specified parameter values with successive halving.
model_selection.ParameterGrid(param_grid) Grid of parameters with a discrete number of values for each.
model_selection.ParameterSampler(...[, ...]) Generator on parameters sampled from given distributions.
model_selection.RandomizedSearchCV(...[, ...]) Randomized search on hyper parameters.
model_selection.HalvingRandomSearchCV(...[, ...]) Randomized search on hyper parameters.
Model validation
model_selection.cross_validate(estimator, X) | |
Evaluate metric(s) by cross-validation and also record fit/score times. |
model_selection.cross_val_predict(estimator, X) Generate cross-validated estimates for each input data point.
model_selection.cross_val_score(estimator, X) Evaluate a score by cross-validation.
model_selection.learning_curve(estimator, X, ...) Learning curve.
model_selection.permutation_test_score(...) Evaluate the significance of a cross-validated score with permutations.
model_selection.validation_curve(estimator, ...) Validation curve.
Visualization
model_selection.LearningCurveDisplay(*, ...) | |
Learning Curve visualization. |
model_selection.ValidationCurveDisplay(*, ...) Validation Curve visualization.
sklearn.multiclass: Multiclass classification
multiclass.OneVsRestClassifier(estimator, *) | |
One-vs-the-rest (OvR) multiclass strategy. |
multiclass.OneVsOneClassifier(estimator, *) One-vs-one multiclass strategy.
multiclass.OutputCodeClassifier(estimator, *) (Error-Correcting) Output-Code multiclass strategy.
sklearn.multioutput: Multioutput regression and classification
multioutput.ClassifierChain(base_estimator, *) | |
A multi-label model that arranges binary classifiers into a chain. |
multioutput.MultiOutputRegressor(estimator, *) Multi target regression.
multioutput.MultiOutputClassifier(estimator, *) Multi target classification.
multioutput.RegressorChain(base_estimator, *) A multi-label model that arranges regressions into a chain.
sklearn.naive_bayes: Naive Bayes
naive_bayes.BernoulliNB(*[, alpha, ...]) | |
Naive Bayes classifier for multivariate Bernoulli models. |
naive_bayes.CategoricalNB(*[, alpha, ...]) Naive Bayes classifier for categorical features.
naive_bayes.ComplementNB(*[, alpha, ...]) The Complement Naive Bayes classifier described in Rennie et al. (2003).
naive_bayes.GaussianNB(*[, priors, ...]) Gaussian Naive Bayes (GaussianNB).
naive_bayes.MultinomialNB(*[, alpha, ...]) Naive Bayes classifier for multinomial models.
sklearn.neighbors: Nearest Neighbors
neighbors.BallTree(X[, leaf_size, metric]) | |
BallTree for fast generalized N-point problems |
neighbors.KDTree(X[, leaf_size, metric]) KDTree for fast generalized N-point problems
neighbors.KernelDensity(*[, bandwidth, ...]) Kernel Density Estimation.
neighbors.KNeighborsClassifier([...]) Classifier implementing the k-nearest neighbors vote.
neighbors.KNeighborsRegressor([n_neighbors, ...]) Regression based on k-nearest neighbors.
neighbors.KNeighborsTransformer(*[, mode, ...]) Transform X into a (weighted) graph of k nearest neighbors.
neighbors.LocalOutlierFactor([n_neighbors, ...]) Unsupervised Outlier Detection using the Local Outlier Factor (LOF).
neighbors.RadiusNeighborsClassifier([...]) Classifier implementing a vote among neighbors within a given radius.
neighbors.RadiusNeighborsRegressor([radius, ...]) Regression based on neighbors within a fixed radius.
neighbors.RadiusNeighborsTransformer(*[, ...]) Transform X into a (weighted) graph of neighbors nearer than a radius.
neighbors.NearestCentroid([metric, ...]) Nearest centroid classifier.
neighbors.NearestNeighbors(*[, n_neighbors, ...]) Unsupervised learner for implementing neighbor searches.
neighbors.NeighborhoodComponentsAnalysis([...]) Neighborhood Components Analysis.
neighbors.kneighbors_graph(X, n_neighbors, *) Compute the (weighted) graph of k-Neighbors for points in X.
neighbors.radius_neighbors_graph(X, radius, *) Compute the (weighted) graph of Neighbors for points in X.
neighbors.sort_graph_by_row_values(graph[, ...]) Sort a sparse graph such that each row is stored with increasing values.
sklearn.neural_network: Neural network models
pipeline.FeatureUnion(transformer_list, *[, ...]) | |
Concatenates results of multiple transformer objects. |
pipeline.Pipeline(steps, *[, memory, verbose]) Pipeline of transforms with a final estimator.
pipeline.make_pipeline(*steps[, memory, verbose]) Construct a Pipeline from the given estimators.
pipeline.make_union(*transformers[, n_jobs, ...]) Construct a FeatureUnion from the given transformers.
sklearn.pipeline: Pipeline
see here
sklearn.preprocessing: Preprocessing and Normalization
preprocessing.Binarizer(*[, threshold, copy]) | |
Binarize data (set feature values to 0 or 1) according to a threshold. |
preprocessing.FunctionTransformer([func, ...]) Constructs a transformer from an arbitrary callable.
preprocessing.KBinsDiscretizer([n_bins, ...]) Bin continuous data into intervals.
preprocessing.KernelCenterer() Center an arbitrary kernel matrix
preprocessing.LabelBinarizer(*[, neg_label, ...]) Binarize labels in a one-vs-all fashion.
preprocessing.LabelEncoder() Encode target labels with value between 0 and n_classes-1.
preprocessing.MultiLabelBinarizer(*[, ...]) Transform between iterable of iterables and a multilabel format.
preprocessing.MaxAbsScaler(*[, copy]) Scale each feature by its maximum absolute value.
preprocessing.MinMaxScaler([feature_range, ...]) Transform features by scaling each feature to a given range.
preprocessing.Normalizer([norm, copy]) Normalize samples individually to unit norm.
preprocessing.OneHotEncoder(*[, categories, ...]) Encode categorical features as a one-hot numeric array.
preprocessing.OrdinalEncoder(*[, ...]) Encode categorical features as an integer array.
preprocessing.PolynomialFeatures([degree, ...]) Generate polynomial and interaction features.
preprocessing.PowerTransformer([method, ...]) Apply a power transform featurewise to make data more Gaussian-like.
preprocessing.QuantileTransformer(*[, ...]) Transform features using quantiles information.
preprocessing.RobustScaler(*[, ...]) Scale features using statistics that are robust to outliers.
preprocessing.SplineTransformer([n_knots, ...]) Generate univariate B-spline bases for features.
preprocessing.StandardScaler(*[, copy, ...]) Standardize features by removing the mean and scaling to unit variance.
preprocessing.TargetEncoder([categories, ...]) Target Encoder for regression and classification targets.
preprocessing.add_dummy_feature(X[, value]) Augment dataset with an additional dummy feature.
preprocessing.binarize(X, *[, threshold, copy]) Boolean thresholding of array-like or scipy.sparse matrix.
preprocessing.label_binarize(y, *, classes) Binarize labels in a one-vs-all fashion.
preprocessing.maxabs_scale(X, *[, axis, copy]) Scale each feature to the [-1, 1] range without breaking the sparsity.
preprocessing.minmax_scale(X[, ...]) Transform features by scaling each feature to a given range.
preprocessing.normalize(X[, norm, axis, ...]) Scale input vectors individually to unit norm (vector length).
preprocessing.quantile_transform(X, *[, ...]) Transform features using quantiles information.
preprocessing.robust_scale(X, *[, axis, ...]) Standardize a dataset along any axis.
preprocessing.scale(X, *[, axis, with_mean, ...]) Standardize a dataset along any axis.
preprocessing.power_transform(X[, method, ...]) Parametric, monotonic transformation to make data more Gaussian-like.
sklearn.random_projection: Random projection
random_projection.GaussianRandomProjection([...]) | |
Reduce dimensionality through Gaussian random projection. |
random_projection.SparseRandomProjection([...]) Reduce dimensionality through sparse random projection.
random_projection.johnson_lindenstrauss_min_dim(...) Find a 'safe' number of components to randomly project to.
sklearn.semi_supervised: Semi-Supervised Learning
semi_supervised.LabelPropagation([kernel, ...]) | |
Label Propagation classifier. |
semi_supervised.LabelSpreading([kernel, ...]) LabelSpreading model for semi-supervised learning.
semi_supervised.SelfTrainingClassifier(...) Self-training classifier.
sklearn.svm: Support Vector Machines
svm.LinearSVC([penalty, loss, dual, tol, C, ...]) | |
Linear Support Vector Classification. |
svm.LinearSVR(*[, epsilon, tol, C, loss, ...]) Linear Support Vector Regression.
svm.NuSVC(*[, nu, kernel, degree, gamma, ...]) Nu-Support Vector Classification.
svm.NuSVR(*[, nu, C, kernel, degree, gamma, ...]) Nu Support Vector Regression.
svm.OneClassSVM(*[, kernel, degree, gamma, ...]) Unsupervised Outlier Detection.
svm.SVC(*[, C, kernel, degree, gamma, ...]) C-Support Vector Classification.
svm.SVR(*[, kernel, degree, gamma, coef0, ...]) Epsilon-Support Vector Regression.
svm.l1_min_c(X, y, *[, loss, fit_intercept, ...]) Return the lowest bound for C.
sklearn.tree: Decision Trees
tree.DecisionTreeClassifier(*[, criterion, ...]) | |
A decision tree classifier. |
tree.DecisionTreeRegressor(*[, criterion, ...]) A decision tree regressor.
tree.ExtraTreeClassifier(*[, criterion, ...]) An extremely randomized tree classifier.
tree.ExtraTreeRegressor(*[, criterion, ...]) An extremely randomized tree regressor.
tree.export_graphviz(decision_tree[, ...]) Export a decision tree in DOT format.
tree.export_text(decision_tree, *[, ...]) Build a text report showing the rules of a decision tree.
tree.plot_tree(decision_tree, *[, ...]) Plot a decision tree.
sklearn.utils: Utilities
see here