d712c63977
Signed-off-by: David Rotermund <54365609+davrot@users.noreply.github.com> |
||
---|---|---|
.. | ||
README.md |
Data structures: dataclass
{:.no_toc}
* TOC {:toc}The goal
There is a new build-in dataclass class which is highly interesting for data scientists. Obviously it is a class for storing your data. Who would have guessed...
Questions to David Rotermund
Type annotations required!!!
This is the first construct in Python that requires type annotation.
If we do this:
from dataclasses import dataclass
@dataclass
class TestClass:
a # -> NameError: name 'a' is not defined
b
We get this nice error:
With type annotations:
from dataclasses import dataclass
@dataclass
class TestClass:
a: int
b: str
No error!!!
What is a dataclass?
@dataclass is a decorator that tells Python that this class is a dataclass. A dataclass is a class with different properties compared to a normal class.
from dataclasses import dataclass
@dataclass
class TestClassA:
name: str
number_of_electrodes: int
sample_rate_in_hz: float
dt: float
data_1 = TestClassA("Dataset A", 100, 1000, 1 / 1000)
print(data_1)
Output:
TestClassA(name='Dataset A', number_of_electrodes=100, sample_rate_in_hz=1000, dt=0.001)
Default values
from dataclasses import dataclass
@dataclass
class TestClassA:
name: str
number_of_electrodes: int
dt: float
sample_rate_in_hz: float = 1000.0
data_1 = TestClassA("Dataset A", 100, 1 / 1000)
print(data_1)
Output:
TestClassA(name='Dataset A', number_of_electrodes=100, dt=0.001, sample_rate_in_hz=1000.0)
An alternative is to use field with the default argument:
from dataclasses import dataclass, field
@dataclass
class TestClassA:
name: str
number_of_electrodes: int
dt: float
sample_rate_in_hz: float = field(default=1000.0)
data_1 = TestClassA("Dataset A", 100, 1 / 1000)
print(data_1)
Default factory
We can use the field's default_factory to put suitable generic default into attributes. default and default_factory can not used together. Why should we use a default_factory? Well, please see the problem with mutable objects in the official Python documentation. Or in other words: Using = [ ] as default will cause you pain.
from dataclasses import dataclass, field
@dataclass
class TestClassA:
name: str = field(default_factory=str)
number_of_electrodes: int = field(default_factory=int)
dt: float = field(default_factory=float)
sample_rate_in_hz: float = field(default_factory=float)
data_1 = TestClassA()
print(data_1)
Keyword only attributes (Python >= 3.10)
We can mark attributes as key word only (kw_only=true). Normally we would need them to put at the end of the definition of attributes. However, with this allows us to mix it in between:
from dataclasses import dataclass, field
@dataclass
class TestClassA:
name: str
number_of_electrodes: int = field(kw_only=True, default=42)
dt: float = field(init=False)
sample_rate_in_hz: float = 1000.0
def __post_init__(self) -> None:
self.dt = 1.0 / self.sample_rate_in_hz
def __str__(self) -> str:
output: str = (
f"Name: {self.name}"
"\n"
f"Number of electrodes: {self.number_of_electrodes}"
"\n"
f"dt: {self.dt:.4f}s"
"\n"
f"Sample Rate: {self.sample_rate_in_hz:.2f}Hz"
)
return output
data_1 = TestClassA("Dataset A", 500)
print(data_1)
print("")
data_2 = TestClassA("Dataset B", 500, number_of_electrodes=33)
print(data_2)
Output:
Name: Dataset A
Number of electrodes: 42
dt: 0.0020s
Sample Rate: 500.00Hz
Name: Dataset B
Number of electrodes: 33
dt: 0.0020s
Sample Rate: 500.00Hz
def __post_init__(self):
We can do operations after the init:
from dataclasses import dataclass, field
@dataclass
class TestClassA:
name: str
number_of_electrodes: int
dt: float = field(init=False)
sample_rate_in_hz: float = 1000.0
def __post_init__(self) -> None:
self.dt = 1.0 / self.sample_rate_in_hz
data_1 = TestClassA("Dataset A", 100, 500)
print(data_1)
Output:
TestClassA(name='Dataset A', number_of_electrodes=100, dt=0.002, sample_rate_in_hz=500)
def __str__(self):
Make the print output nicer:
from dataclasses import dataclass, field
@dataclass
class TestClassA:
name: str
number_of_electrodes: int
dt: float = field(init=False)
sample_rate_in_hz: float = 1000.0
def __post_init__(self) -> None:
self.dt = 1.0 / self.sample_rate_in_hz
def __str__(self) -> str:
output: str = (
f"Name: {self.name}"
"\n"
f"Number of electrodes: {self.number_of_electrodes}"
"\n"
f"dt: {self.dt:.4f}s"
"\n"
f"Sample Rate: {self.sample_rate_in_hz:.2f}Hz"
)
return output
data_1 = TestClassA("Dataset A", 100, 500)
print(data_1)
Output
Name: Dataset A
Number of electrodes: 100
dt: 0.0020s
Sample Rate: 500.00Hz
Read Only data
We can protect the data from being modified later. Note: If we need to modify data in e.g. the __post_init__ function then we need to use object.__setattr__.
from dataclasses import dataclass, field
@dataclass(frozen=True)
class TestClassA:
name: str
number_of_electrodes: int
dt: float = field(init=False)
sample_rate_in_hz: float = 1000.0
def __post_init__(self) -> None:
object.__setattr__(self, "dt", 1.0 / self.sample_rate_in_hz)
def __str__(self) -> str:
output: str = (
f"Name: {self.name}"
"\n"
f"Number of electrodes: {self.number_of_electrodes}"
"\n"
f"dt: {self.dt:.4f}s"
"\n"
f"Sample Rate: {self.sample_rate_in_hz:.2f}Hz"
)
return output
data_1 = TestClassA("Dataset A", 100, 500)
data_1.name = "New Name" # -> FrozenInstanceError: cannot assign to field 'name'
Inheritance
from dataclasses import dataclass
@dataclass
class BasicDataset:
x: int = 1
y: int = 2
@dataclass
class NewDataSet(BasicDataset):
a: int = 3
x: int = 4
data_1 = BasicDataset()
print(data_1)
data_2 = NewDataSet()
print(data_2)
Output:
BasicDataset(x=1, y=2)
NewDataSet(x=4, y=2, a=3)
Why should want we to use a data class?
Comparing datasets
We can compare datasets now
from dataclasses import dataclass
@dataclass
class MyDataset:
x: int
y: int
data_1a = MyDataset(x=1, y=1)
data_1b = MyDataset(x=1, y=1)
print(data_1a == data_1b)
data_2 = MyDataset(x=1, y=2)
print(data_1a == data_2)
Output:
True
False
We can remove attributes from the comparison
from dataclasses import dataclass, field
@dataclass
class MyDataset:
x: int
y: int = field(compare=False)
data_1a = MyDataset(x=1, y=1)
data_1b = MyDataset(x=1, y=1)
print(data_1a == data_1b)
data_2 = MyDataset(x=1, y=2)
print(data_1a == data_2)
Output:
True
True
Sorting datasets
We can add a custom sort_index attribute. Which we can also hide with repr=False:
from dataclasses import dataclass
@dataclass(order=True)
class MyDataset:
sort_index: int = field(init=False, repr=False)
x: int
y: int
def __post_init__(self):
self.sort_index = self.x + self.y * 10
data_0 = MyDataset(x=2, y=2)
data_1 = MyDataset(x=1, y=1)
data_2 = MyDataset(x=1, y=2)
data_3 = MyDataset(x=1, y=2)
print([data_0, data_1, data_2, data_3])
print("")
print(sorted([data_0, data_1, data_2, data_3]))
Output:
[MyDataset(x=2, y=2), MyDataset(x=1, y=1), MyDataset(x=1, y=2), MyDataset(x=1, y=2)]
[MyDataset(x=1, y=1), MyDataset(x=1, y=2), MyDataset(x=1, y=2), MyDataset(x=2, y=2)]
Slots (Python >= 3.10)
{: .topic-optional} This is an optional topic!
What? Slots?
The space saved over using __dict__ can be significant. Attribute lookup speed can be significantly improved as well.
Normally:
from dataclasses import dataclass
@dataclass
class MyDataset:
x: int
y: int
data_0 = MyDataset(x=2, y=2)
print(data_0.__dict__)
data_0.a = 1
print(data_0.__dict__)
Output:
{'x': 2, 'y': 2}
{'x': 2, 'y': 2, 'a': 1}
With slots=True:
from dataclasses import dataclass
@dataclass(slots=True)
class MyDataset:
x: int
y: int
data_0 = MyDataset(x=2, y=2)
print(data_0.__dict__) # -> AttributeError: 'MyDataset' object has no attribute '__dict__'
data_0.a = 1 # -> AttributeError: 'MyDataset' object has no attribute 'a'
Convert to tuple / dictionary
We can easily convert a dataclass object and convert it into a tuple or dictionary:
from dataclasses import dataclass, astuple, asdict
@dataclass
class MyDataset:
x: int
y: int
data_0 = MyDataset(x=2, y=2)
data_tuple = astuple(data_0)
data_dict = asdict(data_0)
print(data_tuple)
print(data_dict)
Output:
(2, 2)
{'x': 2, 'y': 2}
dataclasses_json
If this third party package is missing:
pip install dataclasses-json
JSON
from dataclasses import dataclass, field
import dataclasses_json
@dataclasses_json.dataclass_json
@dataclass(frozen=True)
class TestClassA:
name: str
number_of_electrodes: int
dt: float = field(init=False)
sample_rate_in_hz: float = 1000.0
def __post_init__(self) -> None:
object.__setattr__(self, "dt", 1.0 / self.sample_rate_in_hz)
data_1 = TestClassA("Dataset A", 100, 500)
print(data_1)
print("")
print("as JSON:")
string_json = data_1.to_json()
print(string_json)
print("")
data_2 = TestClassA.from_json(string_json)
print(data_2)
Output:
TestClassA(name='Dataset A', number_of_electrodes=100, dt=0.002, sample_rate_in_hz=500)
as JSON:
{"name": "Dataset A", "number_of_electrodes": 100, "dt": 0.002, "sample_rate_in_hz": 500}
TestClassA(name='Dataset A', number_of_electrodes=100, dt=0.002, sample_rate_in_hz=500)
Dict
from dataclasses import dataclass, field
import dataclasses_json
@dataclasses_json.dataclass_json
@dataclass(frozen=True)
class TestClassA:
name: str
number_of_electrodes: int
dt: float = field(init=False)
sample_rate_in_hz: float = 1000.0
def __post_init__(self) -> None:
object.__setattr__(self, "dt", 1.0 / self.sample_rate_in_hz)
data_1 = TestClassA("Dataset A", 100, 500)
print(data_1)
print("")
print("as dict:")
string_dict = data_1.to_dict()
print(string_dict)
print("")
data_2 = TestClassA.from_dict(string_dict)
print(data_2)
Output:
TestClassA(name='Dataset A', number_of_electrodes=100, dt=0.002, sample_rate_in_hz=500)
as dict:
{'name': 'Dataset A', 'number_of_electrodes': 100, 'dt': 0.002, 'sample_rate_in_hz': 500}
TestClassA(name='Dataset A', number_of_electrodes=100, dt=0.002, sample_rate_in_hz=500)
Pickle (deals with numpy ndarray)
While JSON doesn't like numpy ndarrays, pickle has no problem with it. But we loose the human readability. An example:
from dataclasses import dataclass
import numpy as np
import pickle
@dataclass
class TestClassA:
name: str
measured_data: np.ndarray
rng = np.random.default_rng()
data_1 = TestClassA(name="Recording X", measured_data=rng.random((3, 6)))
print(data_1)
print("")
print("as pickle string:")
string_pickle = pickle.dumps(data_1)
print(string_pickle)
print("")
data_2 = pickle.loads(string_pickle)
print(data_2)
Output
TestClassA(name='Recording X', measured_data=array([[0.03041124, 0.90241323, 0.06146134, 0.0207697 , 0.03924572,
0.62343829],
[0.03930966, 0.34830424, 0.53869473, 0.76964259, 0.64897337,
0.76441662],
[0.40438748, 0.95079476, 0.44350839, 0.17806159, 0.31114876,
0.59675174]]))
as pickle string:
b'\x80\x04\x95a\x01\x00\x00\x00\x00\x00\x00\x8c\x08__main__\x94\x8c\nTestClassA\x94\x93\x94)\x81\x94}\x94(\x8c\x04name\x94\x8c\x0bRecording X\x94\x8c\rmeasured_data\x94\x8c\x15numpy.core.multiarray\x94\x8c\x0c_reconstruct\x94\x93\x94\x8c\x05numpy\x94\x8c\x07ndarray\x94\x93\x94K\x00\x85\x94C\x01b\x94\x87\x94R\x94(K\x01K\x03K\x06\x86\x94h\x0b\x8c\x05dtype\x94\x93\x94\x8c\x02f8\x94\x89\x88\x87\x94R\x94(K\x03\x8c\x01<\x94NNNJ\xff\xff\xff\xffJ\xff\xff\xff\xffK\x00t\x94b\x89C\x90\xe0\xd1r\xb1\x1f$\x9f?\xbe\xa8\xb8\xb5\x91\xe0\xec?\xc0i\xf35\xdcw\xaf?\x00NT)\xa7D\x95?\xe0\xca\x9e\xdc\x03\x18\xa4?\xc0\x12&\xdb4\xf3\xe3?\xe0.\xd2Xe \xa4?\x16\xb4\xbc\xde\x9dJ\xd6?\x95\x00\x03\xbc\xfc<\xe1?5\xb3U\x80\xe9\xa0\xe8?-\r\x8d\xccc\xc4\xe4?4\x1e8\xd7\x19v\xe8?\\c\xb3\t|\xe1\xd9?\xcf\xaf\xbb#\xe9l\xee?R/5\x07qb\xdc?\xecr\xdd\xe3\xb8\xca\xc6?\x10\x12R~\xdc\xe9\xd3?\xcfz;\x1d\x97\x18\xe3?\x94t\x94bub.'
TestClassA(name='Recording X', measured_data=array([[0.03041124, 0.90241323, 0.06146134, 0.0207697 , 0.03924572,
0.62343829],
[0.03930966, 0.34830424, 0.53869473, 0.76964259, 0.64897337,
0.76441662],
[0.40438748, 0.95079476, 0.44350839, 0.17806159, 0.31114876,
0.59675174]]))