13a13bbe48
Signed-off-by: David Rotermund <54365609+davrot@users.noreply.github.com> |
||
---|---|---|
.. | ||
README.md |
Symbolic Computation
{:.no_toc}
* TOC {:toc}Top
Questions to David Rotermund
pip install sympy
Overview tutorials
Basic Operations |
Printing |
Simplification |
Calculus |
Solvers |
Matrices |
API Reference
Basics | Contains a description of operations for the basic modules. Subcategories include: absolute basics, manipulation, assumptions, functions, simplification, calculus, solvers, and some other subcategories. |
Code Generation | Contains a description of methods for the generation of compilable and executable code. |
Logic | Contains method details for the logic and sets modules. |
Matrices | Discusses methods for the matrices, tensor and vector modules. |
Number Theory | Documents methods for the Number theory module. |
Physics | Contains documentation for Physics methods. |
Utilities | Contains docstrings for methods of several utility modules. Subcategories include: Interactive, Parsing, Printing, Testing, Utilities. |
Topics | Contains method docstrings for several modules. Subcategories include : Plotting, Polynomials, Geometry, Category Theory, Cryptography, Differential, Holonomic, Lie Algebra, and Stats. |
Basics
Assumptions |
Calculus |
Combinatorics |
Functions |
Integrals |
Series |
Simplify |
Solvers |
abc |
Algebras |
Concrete |
Core |
Discrete |
Numerical Evaluation |
Numeric Computation |
Term Rewriting |
Some examples
Substitution
import sympy
x, y = sympy.symbols("x y")
expr = sympy.cos(x) + 1
z = expr.subs(x, y**2)
print(z) # -> cos(y**2) + 1
Derivatives
import sympy
x, y = sympy.symbols("x y")
y = sympy.diff(sympy.sin(x) * sympy.exp(x), x)
print(y) # -> exp(x)*sin(x) + exp(x)*cos(x)
Integrals
import sympy
x, y = sympy.symbols("x y")
y = sympy.integrate(sympy.cos(x), x)
print(y) # -> sin(x)
(Taylor) Series Expansion
import sympy
x, y, z = sympy.symbols("x y z")
y = sympy.cos(x)
z = y.series(x, 0, 8) # around x = 0 , up order 7
print(z) # -> 1 - x**2/2 + x**4/24 - x**6/720 + O(x**8)
simplify
import sympy
x, y, z = sympy.symbols("x y z")
y = sympy.simplify(sympy.sin(x) ** 2 + sympy.cos(x) ** 2)
print(y) # -> 1
Solving Equations Algebraically
solveset(equation, variable=None, domain=S.Complexes)
Recall from the gotchas section of this tutorial that symbolic equations in SymPy are not represented by = or ==, but by Eq.
import sympy
x, y, z = sympy.symbols("x y z")
z = sympy.Eq(x, y)
Output:
x=y
import sympy
x, y, z = sympy.symbols("x y z")
y = sympy.Eq(x**2 - x, 0)
z = sympy.solveset(y, x)
print(z) # -> {0, 1}
Solving Differential Equations
import sympy
# Undefined functions
f = sympy.symbols("f", cls=sympy.Function)
x = sympy.symbols("x")
diffeq = sympy.Eq(f(x).diff(x, x) - 2 * f(x).diff(x) + f(x), sympy.sin(x))
print(diffeq) # -> Eq(f(x) - 2*Derivative(f(x), x) + Derivative(f(x), (x, 2)), sin(x))
result = sympy.dsolve(diffeq, f(x))
print(result) # -> Eq(f(x), (C1 + C2*x)*exp(x) + cos(x)/2)
Numerical Evaluation
import sympy
x, y = sympy.symbols("x y")
expr = sympy.cos(x) + 1
print(expr) # -> cos(x) + 1
expr = expr.subs(x, 0.333 * sympy.pi)
print(expr) # -> cos(0.333*pi) + 1
print(sympy.N(expr)) # -> 1.50090662536071