107 lines
3.1 KiB
Python
107 lines
3.1 KiB
Python
|
from bib.customizations import customizations_tae
|
||
|
from bib.load_bib_file import load_bib_file
|
||
|
from bib.make_dataframe import make_dataframe
|
||
|
|
||
|
import pandas as pd
|
||
|
import json
|
||
|
import html
|
||
|
|
||
|
|
||
|
def filter_string(input):
|
||
|
return str(html.escape(input).encode("ascii", "xmlcharrefreplace").decode())
|
||
|
|
||
|
|
||
|
def format_entry(entry) -> str:
|
||
|
output: str = (
|
||
|
str("<tr><td>")
|
||
|
+ entry["author"]
|
||
|
+ str(" (")
|
||
|
+ str(int(entry["year"]))
|
||
|
+ str(") ")
|
||
|
)
|
||
|
if len(entry["doi"]) == 0:
|
||
|
output += str("<b>") + filter_string(entry["title"]) + str("</b> ")
|
||
|
else:
|
||
|
output += (
|
||
|
str('<b><a href="')
|
||
|
+ entry["doi"]
|
||
|
+ str('">')
|
||
|
+ filter_string(entry["title"])
|
||
|
+ str("</a></b> ")
|
||
|
)
|
||
|
output += filter_string(entry["journal"]) + "</td></tr>"
|
||
|
output = output.replace("{", "<i>")
|
||
|
output = output.replace("}", "</i>")
|
||
|
|
||
|
return output
|
||
|
|
||
|
|
||
|
def create_bib_html(user_string: str, type_string: str, filename_bib: str) -> str:
|
||
|
bib_database = load_bib_file(filename_bib, customizations_tae)
|
||
|
|
||
|
with open("types_db.json", "r") as file:
|
||
|
type_dict = json.load(file)
|
||
|
|
||
|
with open("authors_db.json", "r") as file:
|
||
|
author_dict = json.load(file)
|
||
|
|
||
|
# Make a list of all the bib types we need
|
||
|
full_type_list: list = []
|
||
|
full_type_list.append(type_string)
|
||
|
|
||
|
for t_id in type_dict.keys():
|
||
|
assert len(type_dict[t_id]) == 3
|
||
|
if type_string == t_id:
|
||
|
for i in type_dict[t_id][0]:
|
||
|
full_type_list.append(i)
|
||
|
|
||
|
# Make pandas data base for only the selected bib type
|
||
|
pf_data_frames = None
|
||
|
for i in range(0, len(bib_database.entries)):
|
||
|
df = make_dataframe(bib_database.entries[i], author_dict, full_type_list, i)
|
||
|
|
||
|
if (pf_data_frames is None) and (df is not None):
|
||
|
pf_data_frames = df
|
||
|
elif df is not None:
|
||
|
pf_data_frames = pd.concat((pf_data_frames, df))
|
||
|
|
||
|
if pf_data_frames is None:
|
||
|
return ""
|
||
|
|
||
|
# Debuging:
|
||
|
# pf_data_frames.to_excel("excel_1.xlsx")
|
||
|
|
||
|
# Filter and sort the pandas data base
|
||
|
if len(user_string) > 0:
|
||
|
pf_data_frames = pf_data_frames.where(
|
||
|
pf_data_frames["author"].str.contains(user_string)
|
||
|
).dropna()
|
||
|
|
||
|
pf_data_frames = pf_data_frames.sort_values(
|
||
|
["year", "author"], ascending=[False, True]
|
||
|
)
|
||
|
|
||
|
if len(pf_data_frames) == 0:
|
||
|
return ""
|
||
|
|
||
|
# Debuging:
|
||
|
# pf_data_frames.to_excel("excel_2.xlsx")
|
||
|
|
||
|
# Build html
|
||
|
output: str = ""
|
||
|
actual_year: int = int(pf_data_frames.iloc[0]["year"])
|
||
|
output += str("<h3>") + f"{actual_year}" + str("</h3>\n")
|
||
|
output += str("<table>")
|
||
|
|
||
|
for entry_id in range(0, len(pf_data_frames)):
|
||
|
if actual_year != int(pf_data_frames.iloc[entry_id]["year"]):
|
||
|
actual_year = int(pf_data_frames.iloc[entry_id]["year"])
|
||
|
output += str("</table>")
|
||
|
output += str("\n<h3>") + f"{actual_year}" + str("</h3>\n")
|
||
|
output += str("<table>")
|
||
|
|
||
|
output += format_entry(pf_data_frames.iloc[entry_id])
|
||
|
output += str("</table>")
|
||
|
|
||
|
return output
|