import pandas as pd from constants import * from utils import * throt_data = pd.DataFrame(columns=["model","noc architecture","throttled percentage"]) sim_time_data = pd.DataFrame(columns=["model","noc architecture","execution time"]) el_tim_data = pd.DataFrame(columns=["model","noc architecture","elapsed time"]) conf_time_data = pd.DataFrame(columns=["model","noc architecture","configuration time"]) # process data count = 0 for net, models in net_models.items(): for model in models: conf_folder = result_folder + model el_tim_data.loc[count] = [model, net, get_elapsed_time(conf_folder)] throt_data.loc[count] = [model, net, get_throt_perc(conf_folder)] sim_time_data.loc[count] = [model, net, get_sim_time(conf_folder)] conf_time = 0 if net not in final_conf_tasks \ else get_conf_time(conf_folder, final_conf_tasks[net][model]) conf_time_data.loc[count] = [model, net, conf_time] count += 1 # print graphs plt.clf() with open('results.txt', 'w') as f: print("", file=f) for i in range(len(list(net_models.values())[0])): models = [model[i] for model in list(net_models.values())] conf_models = [model[i] for model in list(net_models.values()) if "conf" in model[i]] throt_table = throt_data[throt_data["model"].isin(models)] generate_throttle_graph(throt_table, models[0]) sim_time_table = sim_time_data[sim_time_data["model"].isin(models)] norm_sim_time_table = normalize_sim_time(sim_time_table) generate_sim_time_graph(norm_sim_time_table, models[0]) el_tim_table = el_tim_data[el_tim_data["model"].isin(models)] generate_el_time_graph(el_tim_table, models[0]) conf_table = conf_time_data[conf_time_data["model"].isin(conf_models)] norm_conf_table = normalize_conf_time(conf_table) generate_conf_time_graph(conf_table, models[0])