wk_LinProg/LinProg_Scripts/Task_LinProg.ipynb

2091 lines
941 KiB
Text

{
"cells": [
{
"cell_type": "code",
"execution_count": 73,
"metadata": {},
"outputs": [],
"source": [
"import random\n",
"import os\n",
"import xml.etree.ElementTree as ET\n",
"from collections import Counter\n",
"import math\n",
"from lib_vhdl_gen import *\n",
"from lib_CSTasks import *\n",
"import warnings\n",
"\n",
"import json\n",
"import argparse\n",
"import networkx as nx\n",
"\n",
"import matplotlib.pyplot as plt\n",
"\n",
"from pulp import LpMaximize, LpProblem, LpStatus, lpSum, LpVariable , LpMinimize ,PULP_CBC_CMD ,SCIP_CMD,SCIP_PY\n",
"\n",
"def LinProResult(task_to_node):\n",
" from pulp import LpMaximize, LpProblem, LpStatus, lpSum, LpVariable , LpMinimize\n",
" # Create the model\n",
" model = LpProblem(name='small-problem', sense=LpMinimize)\n",
"\n",
" t_comp=LpVariable(name='t_comp', lowBound=0)\n",
"\n",
" #######################################################################################################\n",
" # Create random mapping and according cs paths for all connections\n",
" #######################################################################################################\n",
"\n",
" cs_path_list=[]\n",
" num_tasks = 20 # Total tasks\n",
" num_nodes = 15 # Total nodes\n",
"\n",
" # DO NOT SET RANDOM NODES\n",
" # task_to_node = assign_nodes_to_tasks_unique(num_tasks, num_nodes)\n",
"\n",
" memory_router=25\n",
" flits_per_packet=31 # (31 data + 1 header)\n",
"\n",
" map_additional_path=\"/home/sfischer/Documents/projects/wk_hybridNoC_VHDL/Python/gen_vhdl_from_task/map_addition.xml\"\n",
"\n",
" for i in task_to_node:\n",
" if i%2==1 and task_to_node.get(i+1)!=None:\n",
" cs_path_list.append((task_to_node.get(i),task_to_node.get(i+1)))\n",
"\n",
"\n",
" xml_file = \"/home/sfischer/Documents/projects/wk_hybridNoC_VHDL/Python/gen_vhdl_from_task/map.xml\" # Input XML file\n",
" output_file = \"/home/sfischer/Documents/projects/wk_hybridNoC_VHDL/Python/gen_vhdl_from_task/map.xml\" # Output XML file\n",
"\n",
"\n",
" update_xml_map(xml_file, task_to_node, output_file)\n",
"\n",
"\n",
" # cs_path_list=[(0,1),(1,2),(2,3),(3,4),(4,5),(5,6),(6,7),(7,8),(8,9),(9,10)]\n",
" cs_data_xml,cs_task_xml,cs_map_xml,dest_address_list_int=cs_tasks(source_destination = cs_path_list, start_task=30, start_PE=16)\n",
" cs_task_xml=\"\"\n",
" ps_link_width=32\n",
" cs_link_width=80\n",
"\n",
" #######################################################################################################\n",
" # Add the new tasks and mapping of the cs configure tasks to the xml files/xml strings and read files\n",
" #######################################################################################################\n",
"\n",
"\n",
" with open('/home/sfischer/Documents/projects/wk_hybridNoC_VHDL/Python/gen_vhdl_from_task/data.xml', 'r') as file:\n",
" data_xml = file.read()\n",
"\n",
" closing_tag_position = data_xml.rfind('</tasks>') # Find the position of the closing </tasks>\n",
" if closing_tag_position != -1:\n",
" # Insert the new_line before </tasks>\n",
" data_xml = data_xml[:closing_tag_position] + '\\n' + cs_task_xml + '\\n' + data_xml[closing_tag_position:]\n",
"\n",
" tree = ET.ElementTree(ET.fromstring(data_xml))\n",
" root = tree.getroot()\n",
"\n",
"\n",
" with open('/home/sfischer/Documents/projects/wk_hybridNoC_VHDL/Python/gen_vhdl_from_task/map.xml', 'r') as file:\n",
" map_xml = file.read()\n",
"\n",
" closing_tag_position2 = map_xml.rfind('</map>')\n",
" if closing_tag_position2 != -1:\n",
" map_xml = map_xml[:closing_tag_position2] + '\\n' + cs_map_xml + '\\n' + map_xml[closing_tag_position2:]\n",
"\n",
" tree_map = ET.ElementTree(ET.fromstring(map_xml))\n",
" root_map = tree_map.getroot()\n",
"\n",
"\n",
" tasks=root.findall('tasks')[0]\n",
"\n",
"\n",
"\n",
" #######################################################################################################\n",
" # Go through map file and extract the mappings and create a list of number of mapped tasks to PEs\n",
" #######################################################################################################\n",
" PE_task_pairs = [] # pair of all tasks and their PE\n",
" for bind in root_map.findall('bind'):\n",
" task_value = bind.find('task').get('value')\n",
" PE_value = bind.find('node').get('value')\n",
" \n",
" PE_task_pairs.append((int(PE_value), int(task_value)))\n",
"\n",
" Task_init_num=len(PE_task_pairs) #number of tasks in the data.xml file\n",
"\n",
"\n",
" PE_values = [PE for PE, task2 in PE_task_pairs] #list of just PEs\n",
" PE_count = Counter(PE_values) #count how often PEs appear in data.xml file\n",
"\n",
" PE_count_start = {key: 0 for key in range(len(PE_count)+50)} # dict of each PE init with 0 to count how many destinations are created with that PE later one\n",
"\n",
" for PE, count in PE_count.items():\n",
" if count>50:\n",
" raise ValueError(\"Not implemented more than 50 task per note yet\")\n",
"\n",
" #######################################################################################################\n",
" # Create a list of all tasks from the data.xml file\n",
" #######################################################################################################\n",
" delay_comp_send_total=0\n",
" connection_num=0\n",
"\n",
" Task_list=[] # list of all tasks objects\n",
" start_task_list=[]\n",
"\n",
" for task2 in tasks.findall('task'): # iterate through all tasks in data.xml\n",
" dst_element_send_list={}\n",
" destinations=task2.find('generates').find('possibility').find('destinations').findall('destination')\n",
" if len(destinations)==0:\n",
" consume_task=True\n",
" else:\n",
" consume_task=False\n",
" delay=destinations[0].find('delay').get('max')\n",
"\n",
" requires = task2.find('requires')\n",
"\n",
"\n",
" Task_num=task2.get('id')\n",
" if requires is not None:\n",
" sources = requires.findall('requirement')\n",
" else:\n",
" start_task_list.append(int(Task_num))\n",
"\n",
" repetition=task2.find('repeat').get('min')\n",
" dest_num=len(destinations)\n",
" src_num=len(sources)\n",
"\n",
" for dest in destinations:\n",
" dst_element_send_list[int(dest.find('task').get('value'))]=int(dest.find('count').get('max'))\n",
"\n",
"\n",
" PE_for_task = next((PE for PE, task2 in PE_task_pairs if task2 == int(Task_num)), None) #PE for the task 'Task_num'\n",
" \n",
" if src_num>5:\n",
" raise ValueError(\"more then 50 source of a task are not implemented yet\")\n",
" if src_num==0:\n",
" raise ValueError(\"generator task with no source not implemented yet\")\n",
" \n",
" dst_element_list=[]\n",
" dst_task_list=[]\n",
" snd_out_list=[]\n",
" for j in destinations:\n",
" dst_task_list.append(int(j.find('task').get('value')))\n",
" for pair in PE_task_pairs:\n",
" if int(j.find('task').get('value'))==pair[1]:\n",
"\n",
" #Only the configuration (delay==-1) task youse the destination task in the data.xml file as the router number and not the destination number\n",
" if delay==\"-1\":\n",
" dst_element_list.append(pair[1])\n",
" else:\n",
" dst_element_list.append(pair[0])\n",
" snd_out_list.append(j.find('count').get('max'))\n",
"\n",
" if len(dst_element_list)==1:\n",
" dst_element_list.append(None)\n",
" snd_out_list.append(None) \n",
"\n",
" req_flits_list=[]\n",
" src_task_list=[]\n",
" src_type_list=[]\n",
" for n in sources:\n",
" req_flits_list.append(n.find('count').get('max'))\n",
" src_task_list.append(n.find('source').get('value'))\n",
" src_type_list.append(n.find('type').get('value'))\n",
"\n",
" req_flits_list.append(None)\n",
" src_task_list.append(None) \n",
"\n",
" ###########################################################################################################################\n",
" # create linear programming constrains\n",
" ###########################################################################################################################\n",
"\n",
" time_per_flit=0.649\n",
" flit_number=0\n",
" repetitions=10\n",
" max_task_num=20\n",
"\n",
" # 24 as a factor for delay of mem data per flit is tested to be the most accurate\n",
" mem_delay=(len(xyz_routing(int(Task_num),memory_router))-1)*24+math.ceil(task2memory_bits(Task_num,map_additional_path)/flits_per_packet)+2\n",
" if len(snd_out_list) > 0:\n",
" flit_number=snd_out_list[0]\n",
"\n",
" if int(Task_num) % 2!=0 and connection_num<len(dest_address_list_int):\n",
" flit_delay=math.ceil(int(flit_number)*time_per_flit*(ps_link_width/cs_link_width)*(len(dest_address_list_int[connection_num])-1))\n",
" connection_num+=1\n",
" else:\n",
" flit_delay=0\n",
"\n",
"\n",
"\n",
" delay_comp_send=int(delay)+flit_delay+mem_delay\n",
" delay_comp=int(delay)+mem_delay\n",
" delay_send=flit_delay\n",
" delay_comp_send_total+=delay_comp_send\n",
"\n",
" # create variables\n",
" exec(f\"t{Task_num}_0 = LpVariable(name='t{Task_num}_0', lowBound=0)\",locals())\n",
" \n",
" temp_str=f\"t_comp_{Task_num} = LpVariable(name='t_comp_{Task_num}', lowBound=0)\"\n",
" send_str=f\"t_send_{Task_num} = LpVariable(name='t_send_{Task_num}', lowBound=0)\"\n",
" \n",
" exec(temp_str,locals())\n",
" exec(send_str,locals())\n",
"\n",
" # set static constraints for comp and send time\n",
" exec(f\"model += (t_comp_{Task_num} == {delay_comp}, 'constraint_t_comp_{Task_num}')\",locals())\n",
" exec(f\"model += (t_send_{Task_num} == {delay_send}, 'constraint_t_send_{Task_num}')\",locals())\n",
"\n",
"\n",
" src_task_list_filtered = [x for x in src_task_list if x is not None]\n",
"\n",
" # task constraints for first repetition\n",
" for i in src_task_list_filtered:\n",
" if int(i)<int(Task_num):\n",
" exec(f\"model += (t{i}_0 + t_comp_{Task_num} + t_send_{Task_num} <= t{Task_num}_0, 'constraint_T{Task_num}_{i}_0')\",locals())\n",
"\n",
" # task constraints for rest of repetitions\n",
" for m in range(repetitions-1):\n",
" exec(f\"t{Task_num}_{m+1} = LpVariable(name='t{Task_num}_{m+1}', lowBound=0)\",locals())\n",
" for i in src_task_list_filtered:\n",
" if int(i)<int(Task_num):\n",
" exec(f\"model += (t{i}_{m+1} + t_comp_{Task_num} + t_send_{Task_num}<= t{Task_num}_{m+1}, 'constraint_T{Task_num}_{i}_{m+1}')\",locals())\n",
"\n",
" # constraints for multi use of links\n",
" multi_pair_list=count_consecutive_pairs_no_file(dest_address_list_int)\n",
" for multi_pair in multi_pair_list:\n",
" index_list=find_pair_indices(multi_pair,dest_address_list_int)\n",
" for index in range(len(index_list)):\n",
" prev_idx=index_list[index-1]*2+1\n",
" if index+1>len(index_list)-1:\n",
" next_idx=index_list[0]*2+1\n",
" else:\n",
" next_idx=index_list[index+1]*2+1\n",
" curr_idx=index_list[index]*2+1\n",
" last_idx=index_list[-1]*2+1\n",
"\n",
" # print(f\"index_list: {index_list} curr_idx: {curr_idx} prev_idx: {prev_idx} next_idx: {next_idx} \")\n",
"\n",
" for m in range(repetitions-1):\n",
" constraint_name = f\"constraint_MultiLink{curr_idx}_{prev_idx}_{m+1}\"\n",
" if constraint_name not in model.constraints:\n",
" if last_idx!=prev_idx:\n",
" prev_rep=m+1\n",
" else:\n",
" prev_rep=m\n",
" exec(f\"model += (t{prev_idx}_{prev_rep} + t_send_{curr_idx} <= t{curr_idx}_{m+1}, '{constraint_name}')\",locals())\n",
"\n",
"\n",
"\n",
"\n",
" # constraint: first task in accel can only start when last task is done + last task in accel can only start when first task of next accel is done. Here hardcoded as always two tasks in accel\n",
" for Task_num in range(max_task_num-2):\n",
" for m in range(repetitions-1):\n",
" exec(f\"model += (t{int(Task_num)+1}_{m} + t_comp_{Task_num} + t_send_{Task_num} <= t{Task_num}_{m+1}, 'constraint_Task{Task_num}_{int(Task_num)+1}_{m+1}')\",locals())\n",
"\n",
"\n",
" # constraints of first task\n",
" exec(\"model += (t_comp_0 <= t0_0, 'constraint_0_0_0')\",locals())\n",
"\n",
" # objective\n",
" exec(\"model += t18_9\",locals())\n",
"\n",
" # print(\"CONSTRAINT LENGTH\")\n",
" print(model)\n",
"\n",
" status = model.solve()\n",
"\n",
"\n",
" # for var in model.variables():\n",
" # print(f\"{var.name} = {var.varValue}\")\n",
"\n",
" print(f\"objective: {model.objective.value()}\")\n",
" return(model.objective.value())\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": 74,
"metadata": {},
"outputs": [],
"source": [
"\n",
"def CreateNetworkXGraph(task_to_node={0: 12, 1: 12, 2: 2, 3: 2, 4: 14, 5: 14, 6: 7, 7: 7, 8: 13, 9: 13, 10: 1, 11: 1, 12: 3, 13: 3, 14: 10, 15: 10, 16: 4, 17: 4, 18: 8, 19: 8},detailed=False,Figure=False,flit_delay_consistent=False):\n",
" #######################################################################################################\n",
" # Create random mapping and according cs paths for all connections\n",
" #######################################################################################################\n",
"\n",
" cs_path_list=[]\n",
" num_tasks = 20 # Total tasks\n",
" num_nodes = 15 # Total nodes\n",
"\n",
" # DO NOT SET RANDOM NODES\n",
" # task_to_node = assign_nodes_to_tasks_unique(num_tasks, num_nodes)\n",
"\n",
" memory_router=25\n",
" flits_per_packet=31 # (31 data + 1 header)\n",
"\n",
" map_additional_path=\"/home/sfischer/Documents/projects/wk_AI2Task/ReWrite/map_addition.xml\"\n",
"\n",
" for i in task_to_node:\n",
" if i%2==1 and task_to_node.get(i+1)!=None:\n",
" cs_path_list.append((task_to_node.get(i),task_to_node.get(i+1)))\n",
"\n",
" cs_data_xml,cs_task_xml,cs_map_xml,dest_address_list_int=cs_tasks(source_destination = cs_path_list,\n",
" start_task=30,\n",
" start_PE=16\n",
" )\n",
" cs_task_xml=\"\"\n",
" ps_link_width=32\n",
" cs_link_width=80\n",
"\n",
" #######################################################################################################\n",
" # Add the new tasks and mapping of the cs configure tasks to the xml files/xml strings and read files\n",
" #######################################################################################################\n",
"\n",
"\n",
" with open('/home/sfischer/Documents/projects/wk_hybridNoC_VHDL/Python/gen_vhdl_from_task/data.xml', 'r') as file:\n",
" data_xml = file.read()\n",
"\n",
" closing_tag_position = data_xml.rfind('</tasks>') # Find the position of the closing </tasks>\n",
" if closing_tag_position != -1:\n",
" # Insert the new_line before </tasks>\n",
" data_xml = data_xml[:closing_tag_position] + '\\n' + cs_task_xml + '\\n' + data_xml[closing_tag_position:]\n",
"\n",
" tree = ET.ElementTree(ET.fromstring(data_xml))\n",
" root = tree.getroot()\n",
"\n",
" tasks=root.findall('tasks')[0]\n",
"\n",
" #######################################################################################################\n",
" # Create a list of all tasks from the data.xml file\n",
" #######################################################################################################\n",
" connection_num=0\n",
" start_task_list=[]\n",
" G = nx.DiGraph()\n",
" first=True\n",
" last =tasks.findall('task')[-1]\n",
" last_true=False\n",
" for task2 in tasks.findall('task'): # iterate through all tasks in data.xml\n",
"\n",
" if last==task2:\n",
" last_true=True\n",
" dst_element_send_list={}\n",
" destinations=task2.find('generates').find('possibility').find('destinations').findall('destination')\n",
" if len(destinations)==0:\n",
" consume_task=True\n",
" else:\n",
" consume_task=False\n",
" delay=destinations[0].find('delay').get('max')\n",
"\n",
" requires = task2.find('requires')\n",
"\n",
"\n",
" Task_num=task2.get('id')\n",
" if requires is not None:\n",
" sources = requires.findall('requirement')\n",
" else:\n",
" start_task_list.append(int(Task_num))\n",
"\n",
" src_num=len(sources)\n",
"\n",
" for dest in destinations:\n",
" dst_element_send_list[int(dest.find('task').get('value'))]=int(dest.find('count').get('max'))\n",
"\n",
" dst_element_list=[]\n",
" dst_task_list=[]\n",
" snd_out_list=[]\n",
" for j in destinations:\n",
" dst_task_list.append(int(j.find('task').get('value')))\n",
" snd_out_list.append(j.find('count').get('max'))\n",
"\n",
" if len(dst_element_list)==1:\n",
" dst_element_list.append(None)\n",
" snd_out_list.append(None) \n",
"\n",
" req_flits_list=[]\n",
" src_task_list=[]\n",
" src_type_list=[]\n",
" for n in sources:\n",
" req_flits_list.append(n.find('count').get('max'))\n",
" src_task_list.append(n.find('source').get('value'))\n",
" src_type_list.append(n.find('type').get('value'))\n",
"\n",
" req_flits_list.append(None)\n",
" src_task_list.append(None) \n",
"\n",
" ###########################################################################################################################\n",
" # create NetworkX Graph\n",
" ###########################################################################################################################\n",
"\n",
" time_per_flit=0.649 # for 1 hop\n",
" flit_number=0\n",
" repetitions=10\n",
" max_task_num=20\n",
"\n",
" if detailed==True:\n",
" # 24 as a factor for delay of mem data per flit is tested to be the most accurate\n",
" mem_delay=(len(xyz_routing(int(Task_num),memory_router))-1)*24+math.ceil(task2memory_bits(Task_num,map_additional_path)/flits_per_packet)+2\n",
" if len(snd_out_list) > 0:\n",
" flit_number=snd_out_list[0]\n",
"\n",
" if int(Task_num) % 2!=0 and connection_num<len(dest_address_list_int):\n",
" flit_delay=math.ceil(int(flit_number)*time_per_flit*(ps_link_width/cs_link_width)*(len(dest_address_list_int[connection_num])-1))\n",
" connection_num+=1\n",
" else:\n",
" flit_delay=0\n",
" # if flit_delay_consistent==False:\n",
" # flit_delay=0\n",
" # else:\n",
" # flit_delay=math.ceil(int(flit_number)*time_per_flit*(ps_link_width/cs_link_width)*(len(dest_address_list_int[connection_num])-1))\n",
"\n",
"\n",
" delay_comp=int(delay)\n",
" delay_mem=mem_delay\n",
" delay_send=flit_delay\n",
" else:\n",
" \n",
" # simplified memory delay without taking distance to memory into account \n",
" mem_delay=math.ceil(task2memory_bits(Task_num,map_additional_path))\n",
"\n",
" # simplified flit delay, without taking distance and time for distance into account\n",
" if len(snd_out_list) > 0:\n",
" flit_number=snd_out_list[0]\n",
" flit_delay=math.ceil(int(flit_number)*(ps_link_width/cs_link_width))\n",
"\n",
" delay_comp=int(delay)\n",
" delay_send=flit_delay\n",
" delay_mem=mem_delay\n",
"\n",
"\n",
" \n",
" G.add_node(int(Task_num),delay_comp=delay_comp,delay_mem=delay_mem,delay_send=delay_send,src=first,dst=last_true)\n",
" first=False\n",
" src_task_list_filtered = [x for x in src_task_list if x is not None]\n",
"\n",
" # task constraints for first repetition\n",
" for idx,i in enumerate(src_task_list_filtered):\n",
" if int(i)<int(Task_num):\n",
" G.add_edge(int(i),int(Task_num),flits=math.ceil(int(req_flits_list[idx])*(ps_link_width/cs_link_width)))\n",
"\n",
" # for node in G.nodes:\n",
" # print(f\"Node {node} -> Edges: {list(G.predecessors(node))}, node delay_comp ={G.nodes[node][\"delay_comp\"]}\")\n",
"\n",
" # print(G.nodes[1][\"delay_comp\"])\n",
"\n",
" if Figure==True:\n",
" plt.figure(figsize=(5, 5))\n",
" pos = nx.spring_layout(G) # Layout for positioning\n",
" nx.draw(G, pos, with_labels=True, node_color=\"lightblue\", edge_color=\"black\", arrows=True, node_size=800, font_size=12)\n",
"\n",
" # Draw edge labels (flits)\n",
" edge_labels = {(u, v): f\"{d['flits']} flits\" for u, v, d in G.edges(data=True)}\n",
" nx.draw_networkx_edge_labels(G, pos, edge_labels=edge_labels, font_size=10)\n",
"\n",
" plt.show()\n",
"\n",
" \n",
" return(G)\n",
"\n",
"# print(CreateNetworkXGraph())\n",
"# draw_networkx_graph(CreateNetworkXGraph())"
]
},
{
"cell_type": "code",
"execution_count": 75,
"metadata": {},
"outputs": [],
"source": [
"\n",
"# get path for the connections based on mapping\n",
"def getPaths(task_to_node):\n",
" cs_path_list=[]\n",
" for i in task_to_node:\n",
" if i%2==1 and task_to_node.get(i+1)!=None:\n",
" cs_path_list.append((task_to_node.get(i),task_to_node.get(i+1)))\n",
"\n",
" cs_data_xml,cs_task_xml,cs_map_xml,dest_address_list_int=cs_tasks(source_destination = cs_path_list, start_task=30, start_PE=16)\n",
" return(dest_address_list_int)\n"
]
},
{
"cell_type": "code",
"execution_count": 76,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Node Attributes:\n",
"Node 0: {'delay_comp': 4, 'delay_mem': 1078, 'delay_send': 285, 'src': True, 'dst': False}\n",
"Node 1: {'delay_comp': 34, 'delay_mem': 38, 'delay_send': 277, 'src': False, 'dst': False}\n",
"Node 2: {'delay_comp': 67, 'delay_mem': 75, 'delay_send': 554, 'src': False, 'dst': False}\n",
"Node 3: {'delay_comp': 1, 'delay_mem': 0, 'delay_send': 137, 'src': False, 'dst': False}\n",
"Node 4: {'delay_comp': 50, 'delay_mem': 223, 'delay_send': 205, 'src': False, 'dst': False}\n",
"Node 5: {'delay_comp': 0, 'delay_mem': 0, 'delay_send': 342, 'src': False, 'dst': False}\n",
"Node 6: {'delay_comp': 10, 'delay_mem': 42, 'delay_send': 137, 'src': False, 'dst': False}\n",
"Node 7: {'delay_comp': 47, 'delay_mem': 223, 'delay_send': 194, 'src': False, 'dst': False}\n",
"Node 8: {'delay_comp': 10, 'delay_mem': 42, 'delay_send': 137, 'src': False, 'dst': False}\n",
"Node 9: {'delay_comp': 26, 'delay_mem': 116, 'delay_send': 137, 'src': False, 'dst': False}\n",
"Node 10: {'delay_comp': 26, 'delay_mem': 116, 'delay_send': 137, 'src': False, 'dst': False}\n",
"Node 11: {'delay_comp': 47, 'delay_mem': 223, 'delay_send': 194, 'src': False, 'dst': False}\n",
"Node 12: {'delay_comp': 0, 'delay_mem': 0, 'delay_send': 388, 'src': False, 'dst': False}\n",
"Node 13: {'delay_comp': 69, 'delay_mem': 1329, 'delay_send': 95, 'src': False, 'dst': False}\n",
"Node 14: {'delay_comp': 1, 'delay_mem': 0, 'delay_send': 95, 'src': False, 'dst': False}\n",
"Node 15: {'delay_comp': 0, 'delay_mem': 0, 'delay_send': 189, 'src': False, 'dst': False}\n",
"Node 16: {'delay_comp': 8, 'delay_mem': 149, 'delay_send': 48, 'src': False, 'dst': False}\n",
"Node 17: {'delay_comp': 6, 'delay_mem': 100, 'delay_send': 32, 'src': False, 'dst': False}\n",
"Node 18: {'delay_comp': 12, 'delay_mem': 223, 'delay_send': 48, 'src': False, 'dst': False}\n",
"Node 19: {'delay_comp': 6, 'delay_mem': 100, 'delay_send': 32, 'src': False, 'dst': False}\n",
"Node 20: {'delay_comp': 12, 'delay_mem': 223, 'delay_send': 48, 'src': False, 'dst': False}\n",
"Node 21: {'delay_comp': 18, 'delay_mem': 333, 'delay_send': 48, 'src': False, 'dst': False}\n",
"Node 22: {'delay_comp': 1, 'delay_mem': 0, 'delay_send': 189, 'src': False, 'dst': False}\n",
"Node 23: {'delay_comp': 8, 'delay_mem': 149, 'delay_send': 48, 'src': False, 'dst': False}\n",
"Node 24: {'delay_comp': 0, 'delay_mem': 0, 'delay_send': 189, 'src': False, 'dst': False}\n",
"Node 25: {'delay_comp': 8, 'delay_mem': 149, 'delay_send': 48, 'src': False, 'dst': False}\n",
"Node 26: {'delay_comp': 6, 'delay_mem': 100, 'delay_send': 32, 'src': False, 'dst': False}\n",
"Node 27: {'delay_comp': 12, 'delay_mem': 223, 'delay_send': 48, 'src': False, 'dst': False}\n",
"Node 28: {'delay_comp': 6, 'delay_mem': 100, 'delay_send': 32, 'src': False, 'dst': False}\n",
"Node 29: {'delay_comp': 12, 'delay_mem': 223, 'delay_send': 48, 'src': False, 'dst': False}\n",
"Node 30: {'delay_comp': 18, 'delay_mem': 333, 'delay_send': 48, 'src': False, 'dst': False}\n",
"Node 31: {'delay_comp': 1, 'delay_mem': 0, 'delay_send': 189, 'src': False, 'dst': False}\n",
"Node 32: {'delay_comp': 8, 'delay_mem': 149, 'delay_send': 48, 'src': False, 'dst': False}\n",
"Node 33: {'delay_comp': 0, 'delay_mem': 0, 'delay_send': 189, 'src': False, 'dst': False}\n",
"Node 34: {'delay_comp': 8, 'delay_mem': 149, 'delay_send': 48, 'src': False, 'dst': False}\n",
"Node 35: {'delay_comp': 6, 'delay_mem': 100, 'delay_send': 32, 'src': False, 'dst': False}\n",
"Node 36: {'delay_comp': 12, 'delay_mem': 223, 'delay_send': 48, 'src': False, 'dst': False}\n",
"Node 37: {'delay_comp': 6, 'delay_mem': 100, 'delay_send': 32, 'src': False, 'dst': False}\n",
"Node 38: {'delay_comp': 12, 'delay_mem': 223, 'delay_send': 48, 'src': False, 'dst': False}\n",
"Node 39: {'delay_comp': 18, 'delay_mem': 333, 'delay_send': 48, 'src': False, 'dst': False}\n",
"Node 40: {'delay_comp': 1, 'delay_mem': 0, 'delay_send': 189, 'src': False, 'dst': False}\n",
"Node 41: {'delay_comp': 8, 'delay_mem': 149, 'delay_send': 48, 'src': False, 'dst': False}\n",
"Node 42: {'delay_comp': 0, 'delay_mem': 0, 'delay_send': 189, 'src': False, 'dst': False}\n",
"Node 43: {'delay_comp': 8, 'delay_mem': 149, 'delay_send': 48, 'src': False, 'dst': False}\n",
"Node 44: {'delay_comp': 6, 'delay_mem': 100, 'delay_send': 32, 'src': False, 'dst': False}\n",
"Node 45: {'delay_comp': 12, 'delay_mem': 223, 'delay_send': 48, 'src': False, 'dst': False}\n",
"Node 46: {'delay_comp': 6, 'delay_mem': 100, 'delay_send': 32, 'src': False, 'dst': False}\n",
"Node 47: {'delay_comp': 12, 'delay_mem': 223, 'delay_send': 48, 'src': False, 'dst': False}\n",
"Node 48: {'delay_comp': 18, 'delay_mem': 333, 'delay_send': 48, 'src': False, 'dst': False}\n",
"Node 49: {'delay_comp': 1, 'delay_mem': 0, 'delay_send': 189, 'src': False, 'dst': False}\n",
"Node 50: {'delay_comp': 8, 'delay_mem': 149, 'delay_send': 48, 'src': False, 'dst': False}\n",
"Node 51: {'delay_comp': 0, 'delay_mem': 0, 'delay_send': 189, 'src': False, 'dst': False}\n",
"Node 52: {'delay_comp': 65, 'delay_mem': 5311, 'delay_send': 45, 'src': False, 'dst': False}\n",
"Node 53: {'delay_comp': 16, 'delay_mem': 296, 'delay_send': 95, 'src': False, 'dst': False}\n",
"Node 54: {'delay_comp': 80, 'delay_mem': 1550, 'delay_send': 110, 'src': False, 'dst': False}\n",
"Node 55: {'delay_comp': 25, 'delay_mem': 2067, 'delay_send': 30, 'src': False, 'dst': False}\n",
"Node 56: {'delay_comp': 1, 'delay_mem': 0, 'delay_send': 45, 'src': False, 'dst': False}\n",
"Node 57: {'delay_comp': 0, 'delay_mem': 0, 'delay_send': 119, 'src': False, 'dst': False}\n",
"Node 58: {'delay_comp': 20, 'delay_mem': 1575, 'delay_send': 45, 'src': False, 'dst': False}\n",
"Node 59: {'delay_comp': 10, 'delay_mem': 788, 'delay_send': 23, 'src': False, 'dst': False}\n",
"Node 60: {'delay_comp': 15, 'delay_mem': 1206, 'delay_send': 26, 'src': False, 'dst': False}\n",
"Node 61: {'delay_comp': 20, 'delay_mem': 1608, 'delay_send': 30, 'src': False, 'dst': False}\n",
"Node 62: {'delay_comp': 10, 'delay_mem': 788, 'delay_send': 23, 'src': False, 'dst': False}\n",
"Node 63: {'delay_comp': 13, 'delay_mem': 1034, 'delay_send': 23, 'src': False, 'dst': False}\n",
"Node 64: {'delay_comp': 15, 'delay_mem': 1206, 'delay_send': 26, 'src': False, 'dst': False}\n",
"Node 65: {'delay_comp': 18, 'delay_mem': 1406, 'delay_send': 26, 'src': False, 'dst': False}\n",
"Node 66: {'delay_comp': 20, 'delay_mem': 1608, 'delay_send': 30, 'src': False, 'dst': False}\n",
"Node 67: {'delay_comp': 1, 'delay_mem': 0, 'delay_send': 119, 'src': False, 'dst': False}\n",
"Node 68: {'delay_comp': 7, 'delay_mem': 526, 'delay_send': 15, 'src': False, 'dst': False}\n",
"Node 69: {'delay_comp': 7, 'delay_mem': 0, 'delay_send': 15, 'src': False, 'dst': True}\n",
"1078\n"
]
}
],
"source": [
"G=CreateNetworkXGraph(detailed=False ,Figure=False) \n",
"\n",
"print(\"Node Attributes:\")\n",
"for node, attrs in G.nodes(data=True):\n",
" print(f\"Node {node}: {attrs}\")\n",
"\n",
"\n",
"print(task2memory_bits(0,\"/home/sfischer/Documents/projects/wk_AI2Task/ReWrite/map_addition.xml\"))"
]
},
{
"cell_type": "code",
"execution_count": 77,
"metadata": {},
"outputs": [],
"source": [
"\n",
"# create the linear programming model based on a networkX graph and mapping for the overlapping connections\n",
"def Graph2LinProgStaticMap():\n",
" from pulp import LpMaximize, LpProblem, LpStatus, lpSum, LpVariable , LpMinimize\n",
" repetitions=10\n",
"\n",
" model = LpProblem(name='small-problem', sense=LpMinimize)\n",
"\n",
" G=CreateNetworkXGraph({0: 12, 1: 12, 2: 2, 3: 2, 4: 14, 5: 14, 6: 7, 7: 7, 8: 13, 9: 13, 10: 1, 11: 1, 12: 3, 13: 3, 14: 10, 15: 10, 16: 4, 17: 4, 18: 8, 19: 8},True ,Figure=False)\n",
" dest_address_list_int=getPaths({0: 12, 1: 12, 2: 2, 3: 2, 4: 14, 5: 14, 6: 7, 7: 7, 8: 13, 9: 13, 10: 1, 11: 1, 12: 3, 13: 3, 14: 10, 15: 10, 16: 4, 17: 4, 18: 8, 19: 8})\n",
"\n",
" for task, atr in G.nodes(data=True):\n",
"\n",
" # Define Variables\n",
" exec(f\"t{task}_0 = LpVariable(name='t{task}_0', lowBound=0)\",locals())\n",
" exec(f\"t_comp_{task} = LpVariable(name='t_comp_{task}', lowBound=0)\",locals())\n",
" exec(f\"t_send_{task} = LpVariable(name='t_send_{task}', lowBound=0)\",locals())\n",
" exec(f\"t_mem_{task} = LpVariable(name='t_mem_{task}', lowBound=0)\",locals())\n",
"\n",
" # Add static time constraints\n",
" exec(f\"model += (t_comp_{task} == {atr['delay_comp']}, 'constraint_t_comp_{task}')\",locals())\n",
" exec(f\"model += (t_send_{task} == {atr['delay_send']}, 'constraint_t_send_{task}')\",locals())\n",
" exec(f\"model += (t_mem_{task} == {atr['delay_mem']}, 'constraint_t_mem_{task}')\",locals())\n",
"\n",
" predecessors = list(G.predecessors(task))\n",
" print(predecessors)\n",
"\n",
" # set predecessor constraints\n",
" for pre in predecessors:\n",
" exec(f\"model += (t{pre}_0 + t_comp_{task} + t_send_{task} + t_mem_{task} <= t{task}_0, 'constraint_T{task}_{pre}_0')\",locals())\n",
"\n",
" # set predecessor constraints for repetition tasks\n",
" for m in range(repetitions-1):\n",
" exec(f\"t{task}_{m+1} = LpVariable(name='t{task}_{m+1}', lowBound=0)\",locals())\n",
" for pre in predecessors:\n",
" if int(pre)<int(task):\n",
" exec(f\"model += (t{pre}_{m+1} + t_comp_{task} + t_send_{task} + t_mem_{task} <= t{task}_{m+1}, 'constraint_T{task}_{pre}_{m+1}')\",locals())\n",
"\n",
" # constraint: first task in accel can only start when last task is done + last task in accel can only start when first task of next accel is done. Here hardcoded as always two tasks in accel\n",
" for Task_num in range(G.number_of_nodes()-2):\n",
" for m in range(repetitions-1):\n",
" exec(f\"model += (t{int(Task_num)+1}_{m} + t_comp_{Task_num} + t_send_{Task_num} + t_mem_{Task_num} <= t{Task_num}_{m+1}, 'constraint_Task{Task_num}_{int(Task_num)+1}_{m+1}')\",locals())\n",
"\n",
"\n",
" # constraints for multi use of links\n",
" multi_pair_list=count_consecutive_pairs_no_file(dest_address_list_int)\n",
" for multi_pair in multi_pair_list:\n",
" index_list=find_pair_indices(multi_pair,dest_address_list_int)\n",
" for index in range(len(index_list)):\n",
" prev_idx=index_list[index-1]*2+1\n",
" if index+1>len(index_list)-1:\n",
" next_idx=index_list[0]*2+1\n",
" else:\n",
" next_idx=index_list[index+1]*2+1\n",
" curr_idx=index_list[index]*2+1\n",
" last_idx=index_list[-1]*2+1\n",
"\n",
" # print(f\"index_list: {index_list} curr_idx: {curr_idx} prev_idx: {prev_idx} next_idx: {next_idx} \")\n",
"\n",
" for m in range(repetitions-1):\n",
" constraint_name = f\"constraint_MultiLink{curr_idx}_{prev_idx}_{m+1}\"\n",
" if constraint_name not in model.constraints:\n",
" if last_idx!=prev_idx:\n",
" prev_rep=m+1\n",
" else:\n",
" prev_rep=m\n",
" exec(f\"model += (t{prev_idx}_{prev_rep} + t_send_{curr_idx} <= t{curr_idx}_{m+1}, '{constraint_name}')\",locals())\n",
"\n",
"\n",
"\n",
"\n",
" # separat constrain for first task\n",
" exec(\"model += (t_comp_0 +t_mem_0<= t0_0, 'constraint_0_0_0')\",locals())\n",
"\n",
" # objective function\n",
" exec(\"model += t18_9\",locals())\n",
"\n",
" status = model.solve()\n",
" print(f\"objective: {model.objective.value()}\")\n",
"\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": 78,
"metadata": {},
"outputs": [],
"source": [
"\n",
"def Graph2LinProgStaticMapDict():\n",
" repetitions = 10\n",
"\n",
" model = LpProblem(name='small-problem', sense=LpMinimize)\n",
"\n",
" G = CreateNetworkXGraph({0: 12, 1: 12, 2: 2, 3: 2, 4: 14, 5: 14, 6: 7, 7: 7, 8: 13, 9: 13, 10: 1, 11: 1, 12: 3, 13: 3, 14: 10, 15: 10, 16: 4, 17: 4, 18: 8, 19: 8}, detailed=False, Figure=False)\n",
" dest_address_list_int = getPaths({0: 12, 1: 12, 2: 2, 3: 2, 4: 14, 5: 14, 6: 7, 7: 7, 8: 13, 9: 13, 10: 1, 11: 1, 12: 3, 13: 3, 14: 10, 15: 10, 16: 4, 17: 4, 18: 8, 19: 8})\n",
"\n",
" task_vars = {} # Dictionary to hold variables for each task\n",
" task_constraints = [] # List to collect constraints for later addition to the model\n",
"\n",
" # Define Variables and Constraints for each task\n",
" for task, atr in G.nodes(data=True):\n",
" tR0 = LpVariable(name=f't{task}_0', lowBound=0)\n",
" t_comp = LpVariable(name=f't_comp_{task}', lowBound=0)\n",
" t_send = LpVariable(name=f't_send_{task}', lowBound=0)\n",
" t_mem = LpVariable(name=f't_mem_{task}', lowBound=0)\n",
"\n",
" task_vars[task] = {'tR0': tR0, 't_comp': t_comp, 't_send': t_send, 't_mem': t_mem}\n",
"\n",
" # Static time constraints\n",
" task_constraints.append(t_comp == atr['delay_comp'])\n",
" task_constraints.append(t_send == atr['delay_send'])\n",
" task_constraints.append(t_mem == atr['delay_mem'])\n",
"\n",
" predecessors = list(G.predecessors(task))\n",
"\n",
" # Predecessor constraints\n",
" for pre in predecessors:\n",
" task_constraints.append(task_vars[pre]['tR0'] + t_comp + t_send + t_mem <= tR0)\n",
"\n",
" # Predecessor constraints for repetition tasks\n",
" for m in range(repetitions - 1):\n",
" t_m = LpVariable(name=f't{task}_{m + 1}', lowBound=0)\n",
" task_vars[task][f'tR{m + 1}'] = t_m\n",
"\n",
" for pre in predecessors:\n",
" if int(pre) < int(task):\n",
" task_constraints.append(task_vars[pre][f'tR{m + 1}'] + t_comp + t_send + t_mem <= t_m)\n",
"\n",
" # Constraint for the last task in one acceleration block and the first task in the next block\n",
" for Task_num in range(G.number_of_nodes() - 2):\n",
" for m in range(repetitions - 1):\n",
" task_constraints.append(task_vars[Task_num + 1][f'tR{m}'] + task_vars[Task_num]['t_comp'] + task_vars[Task_num]['t_send'] + task_vars[Task_num]['t_mem'] <= task_vars[Task_num][f'tR{m + 1}'])\n",
"\n",
" # Multi-use of links constraints\n",
" multi_pair_list = count_consecutive_pairs_no_file(dest_address_list_int)\n",
" for multi_pair in multi_pair_list:\n",
" index_list = find_pair_indices(multi_pair, dest_address_list_int)\n",
" for index in range(len(index_list)):\n",
" prev_idx = index_list[index - 1] * 2 + 1\n",
" if index + 1 > len(index_list) - 1:\n",
" next_idx = index_list[0] * 2 + 1\n",
" else:\n",
" next_idx = index_list[index + 1] * 2 + 1\n",
" curr_idx = index_list[index] * 2 + 1\n",
" last_idx = index_list[-1] * 2 + 1\n",
"\n",
" for m in range(repetitions - 1):\n",
" constraint_name = f\"constraint_MultiLink{curr_idx}_{prev_idx}_{m + 1}\"\n",
" if constraint_name not in model.constraints:\n",
" prev_rep = m + 1 if last_idx != prev_idx else m\n",
" task_constraints.append(task_vars[prev_idx][f'tR{prev_rep}'] + task_vars[curr_idx]['t_send'] <= task_vars[curr_idx][f'tR{m + 1}'])\n",
"\n",
" # Add the constraints to the model\n",
" for constraint in task_constraints:\n",
" model += constraint\n",
"\n",
" # Constraint for first task\n",
" model += task_vars[0]['t_comp'] + task_vars[0]['t_mem'] <= task_vars[0]['tR0']\n",
"\n",
" # Objective function\n",
" model += task_vars[18]['tR9']\n",
"\n",
" # Solve the problem\n",
" status = model.solve()\n",
" print(f\"objective: {model.objective.value()}\")\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": 79,
"metadata": {},
"outputs": [],
"source": [
"\n",
"def CreateNetworkXGraphManuelLinear(Figure=False):\n",
"\n",
" G = nx.DiGraph()\n",
"\n",
" # number of parallel paths\n",
" # length of parallel paths\n",
"\n",
" ###########################################################################################################################\n",
" # create NetworkX Graph\n",
" ###########################################################################################################################\n",
"\n",
" time_per_flit=0.649 # for 1 hop\n",
" flit_number=0\n",
" repetitions=10\n",
" max_task_num=16\n",
"\n",
"\n",
" # simplified memory delay without taking distance to memory into account \n",
" mem_delay=100\n",
" flit_delay=10\n",
" delay_comp=100\n",
"\n",
" delay_send=flit_delay\n",
" delay_mem=mem_delay\n",
"\n",
"\n",
" for i in range(max_task_num):\n",
" G.add_node(i,delay_comp=delay_comp,delay_mem=delay_mem,delay_send=delay_send)\n",
" if i >0:\n",
" G.add_edge(i-1,i)\n",
" G.add_edge(i-1,i,flits=flit_delay)\n",
"\n",
"\n",
" # for node in G.nodes:\n",
" # print(f\"Node {node} -> Edges: {list(G.predecessors(node))}, node delay_comp ={G.nodes[node][\"delay_comp\"]}\")\n",
"\n",
" # print(G.nodes[1][\"delay_comp\"])\n",
"\n",
" if Figure==True:\n",
" plt.figure(figsize=(5, 5))\n",
" pos = nx.spring_layout(G) # Layout for positioning\n",
" nx.draw(G, pos, with_labels=True, node_color=\"lightblue\", edge_color=\"black\", arrows=True, node_size=800, font_size=12)\n",
"\n",
" # Draw edge labels (flits)\n",
" edge_labels = {(u, v): f\"{d['flits']} flits\" for u, v, d in G.edges(data=True)}\n",
" nx.draw_networkx_edge_labels(G, pos, edge_labels=edge_labels, font_size=10)\n",
"\n",
" plt.show()\n",
"\n",
" return(G)\n"
]
},
{
"cell_type": "code",
"execution_count": 80,
"metadata": {},
"outputs": [],
"source": [
"\n",
"\n",
"from LinProg_lib import *\n",
"# Initialize graph\n",
"G = CreateNetworkXGraphManuelParallel()\n",
"# elements = graph_to_cytoscape(G)\n",
"\n",
"# # Dash App\n",
"# app = dash.Dash(__name__)\n",
"\n",
"# app.layout = html.Div([\n",
"# html.H3(\"Drag and Move Nodes in Real Time\"),\n",
"# cyto.Cytoscape(\n",
"# id=\"cytoscape-graph\",\n",
"# elements=elements,\n",
"# layout={\"name\": \"preset\"}, # Use preset positions\n",
"# style={\"width\": \"100%\", \"height\": \"600px\"},\n",
"# stylesheet=[\n",
"# {\"selector\": \"node\", \"style\": {\n",
"# \"content\": \"data(label)\",\n",
"# \"background-color\": \"lightblue\",\n",
"# \"width\": \"75px\", # Increase node size\n",
"# \"height\": \"75px\", # Increase node size\n",
"# \"font-size\": \"16px\", # Make labels larger\n",
"# \"text-valign\": \"center\",\n",
"# }},\n",
"# {\"selector\": \"edge\", \"style\": {\n",
"# \"curve-style\": \"bezier\",\n",
"# \"target-arrow-shape\": \"triangle\",\n",
"# \"label\": \"data(label)\",\n",
"# \"font-size\": \"12px\",\n",
"# \"color\": \"white\", # Make edge labels white\n",
"# }}\n",
"# ],\n",
"# ),\n",
"# ])\n",
"\n",
"# if __name__ == \"__main__\":\n",
"# app.run(debug=True)"
]
},
{
"cell_type": "code",
"execution_count": 81,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAgcAAAIHCAYAAAALof87AAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAPfZJREFUeJzt3Xl41fWd9//X95ycLCcJWQnKvggK1LbSggq1irIoO5JIDmoxuWfmnra20/vujNOZu8s4v6ndfr2dTjvT/qat4kbAhEVBUBFQEbDgUhRB2YJAABOykf1s398fkZQDiUCSk89Zno/r4rrqSfI9L64rJa+8P5/v52vZtm0LAADgUw7TAQAAQGShHAAAgBCUAwAAEIJyAAAAQlAOAABACMoBAAAIQTkAAAAhKAcAACAE5QAAAISgHAAAgBCUAwAAEIJyAAAAQlAOAABACMoBAAAIQTkAAAAhKAcAACAE5QAAAISgHAAAgBCUAwAAEIJyAAAAQlAOAABACMoBAAAIQTkAAAAhKAcAACAE5QAAAISgHAAAgBCUAwAAEIJyAAAAQlAOAABACMoBAAAIQTkAAAAhEkwHQOwJ2rYa2vyqbfOprtWnujaf/AFbQduWw7KU4LSUmeRSZrJLWUkupSclyGFZpmMDAD5l2bZtmw6B2NDo9au8rlnl9c3yB9u/rSxJnX2Dnf96gsPSiAy3RmS6lZZIXwUA0ygH6LGaFq/2nWlQZbO3yzJwKee+Ls+dqHG56cpOSezdkACAy0Y5QLcFgrb2VzfoQE1Tt0vBhc5dZ0x2qsbmpMvpYLkBAPoa5QDdUtvq066TtWryBcL2HqkupyYNzFJWsits7wEAuBjlAFessqlNOypqZNu9My3oiiXJsqTJg7KVl5oUxncCAJyPcoArUtnUpu0nasJaCi5kSZoymIIAAH2Fcw5w2Wpbfe0Tgz5+X1vSjooa1bb6+vidASA+UQ5wWQJBW7tO1srUnCloS7tP1ioQZNAFAOFGOcBl2V/doCZfoM+nBudr9AW0v7rBYAIAiA+UA1xSTYtXB2qaTMeQJB2oaVJNi9d0DACIaZQDXNK+Mw2KlNMGLLXnAQCED+UAn6nR61dls9focsL5bEmVzV41ev2mowBAzKIc4DOV1zX32tSg7He/0qLrBuo7c6f26DqW2nMBAMKDcoAuBW1b5fXNvTI1qD59Uqv/v/9Qstvd42vZksrrmxXkiA4ACAsegYcuNbT5O56u2FNP/PxfNeYLX1IwENDZupoeX88ftNXg9SsjiaOVAaC3MTlAl2rbeufQoQ92v6mdL72gon96uFeud04dhyIBQFhQDtClulZfj/cbBAIB/fHfvq9p+Us07NqxvZJLat93wImJABAeLCugS3Vtvh7vN3h5xZOqOnlCP3p8Za9kOseWVN9Lkw0AQCgmB+iSP9CzatBQW6MV//H/quDr31FGdk4vpfoLXw/zAQA6RzlAl3p6N8DyX/1caZmZuuu+4l5KFIq7FQAgPFhWQJccVvd3HJw8ekSvPPu0iv7pYdVWftLxutfbpoDPp8oTx5WSlqb0zCwj+QAAXbNsm1+/0LlXj51RTUv31vX3/mmHfrQ0/zM/Z/bX/krF//yv3bq+JOWkuHTr0Nxufz0AoHNMDtClzCSXalu6tylx6Jhr9dBv/njR6yW/+rlamhpV/M//qquGDO92NkvijAMACBPKAbqUmezq9t0K/bJydOO0uy56/YUn/iBJnX7sStiSspIpBwAQDmxIRJeyIvw380zKAQCEBXsO0KWgbWv9oU967Qjl3pTgsDTnmgFsSgSAMGBygC45LEsjMty99lTG3mJJGpHhphgAQJhQDvCZRmS6e+WpjL3JVnsuAEB4UA7wmdISE5TnToyY6YElKc+dqLRE9tICQLhQDnBJ43LTI2Z6YKs9DwAgfCgHuKTslESNyU41HUOSNCY7VdkpiaZjAEBMoxzgsozNSVeqy2lsecGSlOZyamwOUwMACDfKAS6L02Fp0sAsmbpBwLKkiQOz5HREyu4HAIhdlANctqxklyYPyu7z6YElafKgbE5EBIA+wiFIuGKVTW3aUVEj21bYNyo6rPZikJeaFOZ3AgCcQzlAt9S2+rTrZK2afIGwvUeay6mJA7OYGABAH6McoNsCQVv7qxt0oKZJlnpninDuOmOyUzU2J509BgBgAOUAPVbT4tW+Mw2qbPZ2uySc+7o8d6LG5aZzuyIAGEQ5QK9p9PpVXtes8vrmjoc1dVUWQl4PBHRNTrpGZqVy8iEARADKAXpd0LbV4PWrrtWn2laf6tt88gVsBW1bDsuSy2kpI8mlrGSXyvft1R23TNa0O+7Qhg0b5HQ6TccHgLjHr2nodQ6r/Yd/RpJLwzI++3N3VxxTMBDQyy+/rKVLl2rZsmVKSODbEgBM4pwDGHX06FFZn56stHz5ci1ZskQ+n89wKgCIb5QDGFVeXt6xlGDbtsrKylRQUCCv12s4GQDEL8oBjDp06JD8fn/Hf9u2reeee07/9m//ZjAVAMQ3Fndh1MGDByVJDodDwWBQKSkpWrRoke69917DyQAgfjE5gFFNTU1yuVyaPn26JOnRRx/VU089pWuvvdZwMgCIX9zKCKM+/vhjZWZmKiMjQ1OnTlVCQoI2bdpkOhYAxDUmBzBq2LBhyshov9/R4/Foy5YtOn36tOFUABDfKAeIGIsWLZLT6VRpaanpKAAQ11hWQESZO3euqqurtWPHDtNRACBuMTlARPF4PNq5c6fKy8tNRwGAuEU5QESZN2+eUlJStGLFCtNRACBusayAiFNYWKh9+/bpvffeMx0FAOISkwNEnCVLluj999/XBx98YDoKAMQlygEizsyZM5WZmamSkhLTUQAgLlEOEHGSkpK0aNEilZSUiFUvAOh7lANEJI/HoyNHjmjXrl2mowBA3KEcICLddtttuuqqq1haAAADKAeISE6nU4sXL9bKlSsVCARMxwGAuEI5QMTyeDw6ffq0XnvtNdNRACCuUA4QsSZNmqSRI0dq+fLlpqMAQFyhHCBiWZalwsJCrVq1Sm1tbabjAEDcoBwgoi1ZskR1dXV66aWXTEcBgLhBOUBEGz9+vK6//nruWgCAPkQ5QMTzeDx67rnn1NjYaDoKAMQFygEiXmFhoVpaWvT888+bjgIAcYGnMiIq3HzzzcrNzdW6detMRwGAmMfkAFFhyZIleumll1RTU2M6CgDEPMoBosI999yjQCCgVatWmY4CADGPZQVEjenTp8vv92vr1q2mowBATGNygKjh8Xj02muvqaKiwnQUAIhplANEjbvvvlsul0vPPvus6SgAENNYVkBUWbhwoSoqKrRr1y7TUQAgZjE5QFTxeDzavXu3Dh06ZDoKAMQsygGiypw5c5SWlsZxygAQRpQDRBW326358+erpKRErIgBQHhQDhB1lixZov379+u9994zHQUAYhLlAFFn+vTpysnJYWkBAMKEcoCo43K5lJ+fr5KSEgWDQdNxACDmUA4QlTwej44dO6adO3eajgIAMYdygKh0yy23aNCgQSwtAEAYUA4QlRwOhwoLC1VaWiq/3286DgDEFMoBopbH41FlZaW2bNliOgoAxBTKAaLWhAkTNHr0aC1fvtx0FACIKZQDRC3LsuTxeLRmzRq1traajgMAMYNygKjm8Xh09uxZbdiwwXQUAIgZPJURUW/ChAkaNWqUSktLTUcBgJjA5ABRz+PxaP369Tp79qzpKAAQEygHiHqLFy9Wa2ur1q5dazoKAMQElhUQE2655RalpaVp48aNpqMAQNRjcoCYsGTJEm3atElVVVWmowBA1KMcICbk5+dLksrKygwnAYDox7ICYsZdd92lxsZGbdu2zXQUAIhqTA4QMzwej9544w0dO3bMdBQAiGqUA8SMBQsWKDk5WStXrjQdBQCiGssKiCkFBQU6fPiw3nnnHdNRACBqMTlATPF4PHr33Xf14Ycfmo4CAFGLcoCYMmvWLPXr108lJSWmowBA1KIcIKYkJydr6dKlcjqdYsUMALqHPQeIObZty7ZtWZYly7JMxwGAqEM5AAAAIVhWAAAAISgHAAAgBOUAAACESDAdAOgrtm3rzTff1LJlyzRgwAAtXrxY48ePNx0LACIOGxIR0xoaGvTmm29qyJAhSktL08yZMzVu3Dh98MEHyszMVFlZmQYOHGg6JgBEFMoBYtbPfvYz/exnP9O4ceN06tQpTZgwQYmJifrd734np9OphQsXasKECfrJT35iOioARBT2HCAmHTp0SH/84x/1jW98Qxs2bNDTTz+t2tpaNTY2Kj09XW63W4WFhdq4caPpqAAQcSgHiEkHDx6U2+3WN7/5TfXr108333yzvvOd72jjxo3yer0KBALas2ePhgwZosbGRtNxASCisCERMemmm27SoUOH1NLS0vFav379NGTIEM2YMUOWZenIkSP64Q9/qLS0tI4TFQEA7DlADLvtttv0+c9/XkuWLFH//v31t3/7txo1apQKCwv14osvKisrS3/zN3+jrKws01EBIKJQDhCztm/fru9///s6cOCA8vLy5Pf79eSTT+qGG25QMBiUw8GqGgB0hnKAmFZbW6s1a9aoqalJc+fO1fDhw01HAoCIRzlAzGIfAQB0D3NVxCyKAQB0D+UAcSMQCJiOAABRgXKAuPHRRx/pi1/8osrLy01HAYCIRjlA3Bg6dKgOHDigFStWmI4CABGNDYmIKx6PRx988IHee+8901EAIGIxOUBc8Xg8ev/997V3717TUQAgYlEOEFdmzpypzMxMlZSUmI4CABGLcoC4kpSUpEWLFmnFihViRQ0AOkc5QNzxeDw6cuSIdu3aZToKAEQkygHizm233aarrrqKpQUA6ALlAHHH6XRq8eLFWrlyJQcjAUAnKAeISx6PR6dPn9arr75qOgoARBzKAeLSpEmTNHLkSJYWAKATlAPEJcuyVFhYqFWrVqmtrc10HACIKJQDxK0lS5aorq5OL730kukoABBRKAeIW+PHj9f111/P0gIAXIBygLjm8Xj03HPPqbGx0XQUAIgYlAPEtcLCQrW0tOj55583HQUAIgZPZUTcmzx5snJycrRu3TrTUQAgIjA5QNzzeDx68cUXVV1dbToKAEQEygHi3j333KNgMKhVq1aZjgIAEYFlBUDS9OnT5ff7tXXrVtNRAMA4JgeA2pcWXnvtNVVUVJiOAgDGUQ4ASXfffbdcLpeeffZZ01EAwDiWFYBPLVy4UBUVFdq1a5fpKABgFJMD4FMej0e7d+/WwYMHTUcBAKMoB8Cn5syZo7S0NK1YscJ0FAAwinIAfMrtdmv+/PkqKSkRq20A4hnlADjPkiVLtH//fr333numowCAMZQD4DzTp09XTk4OT2oEENcoB8B5XC6X8vPzVVJSomAwaDoOABhBOQAu4PF4dOzYMe3cudN0FAAwgnIAXOCWW27RoEGDWFoAELcoB8AFHA6HCgsL9eyzz8rv95uOAwB9jnIAdMLj8aiqqkqbN282HQUA+hzlAOjEhAkTNHr0aJYWAMQlygHQCcuy5PF4tGbNGrW2tpqOAwB9inIAdMHj8ejs2bPasGGD6SgA0Kd4KiPwGSZMmKBRo0aptLTUdBQA6DNMDoDP4PF4tG7dOp09e9Z0FADoM5QD4DMsXrxYbW1tWrt2rekoANBnWFYALuGWW25RWlqaNm7caDoKAPQJJgfAJSxZskSbNm1SVVWV6SgA0CcoB8Al5OfnS5LKysoMJwGAvsGyAnAZ7rrrLjU2Nmrbtm2mowBA2DE5AC6Dx+PRG2+8oWPHjpmOAgBhRzkALsOCBQuUnJyslStXmo4CAGHHsgJwmQoKCnT48GG98847pqMAQFgxOQAuk8fj0bvvvqsPP/zQdBQACCvKAXCZZs2apX79+vGkRgAxj3IAXKbk5GQtXLhQJSUlYjUOQCyjHABXYMmSJTp48CD7DgDENMoBcAVuv/125eXlsbQAIKZRDoArkJCQoIKCAq1YsULBYNB0HAAIC8oBcIU8Ho8qKio4LRFAzKIcAFfo5ptv1tChQ1laABCzKAfAFXI4HPJ4PCorK5PP5zMdBwB6HeUA6AaPx6Pq6mpt2rTJdBQA6HWUA6AbPv/5z2vs2LFavny56SgA0OsoB0A3WJYlj8ejtWvXqrm52XQcAOhVlAOgmzwej5qamrR+/XrTUQCgV/FURqAHJk2apEGDBmnNmjWmowBAr0kwHQCIZh6PR9/73vdUf/aslJii2jaf6lp9qmvzyR+wFbRtOSxLCU5LmUkuZSa7lJXkUnpSghyWZTo+AHSKyQHQAyeqqrVq8zaNmHCT/J/+X8mS1Nn/qc5/PcFhaUSGWyMy3UpLpKMDiCyUA6Abalq82nemQZXN3i7LwKWc+7o8d6LG5aYrOyWxd0MCQDdRDoArEAja2l/doAM1Td0uBRc6d50x2akam5Mup4PlBgBmUQ6Ay1Tb6tOuk7Vq8gXC9h6pLqcmDcxSVrIrbO8BAJdCOQAuQ2VTm3ZU1Mi2e2da0BVLkmVJkwdlKy81KYzvBABdoxwAl1DZ1KbtJ2rCWgouZEmaMpiCAMAMDkECPkNtq699YtDH72tL2lFRo9pWHuwEoO9RDoAuBIK2dp2slanZWtCWdp+sVSDIcA9A36IcAF3YX92gJl+gz6cG52v0BbS/usFgAgDxiHIAdKKmxasDNU2mY0iSDtQ0qabFazoGgDhCOQA6se9MgyLltAFL7XkAoK9QDoALNHr9qmz2Gl1OOJ8tqbLZq0av33QUAHGCQ92BC5TXNXf79MND7/9ZW9c8q727dqiq4rjSM7M0+gtf0pK/e0gDR4zqdibr01zX5/Xr9jUA4HJxzgFwnqBta/2hT+Tv5h0Cv/j2X+vDd3dr8sw5GnbtWNWdqdLGZx5Xa3OTfrJivYaOua7b2RIcluZcM4CnOQIIO8oBcJ76Vp82f3ym21//4Tu7NepzX5Ar8S8PUTp59Ij+97w7dPPM2fq7X/ymR/nuGJ6rjCSOVgYQXuw5AM5T29azQ4eumzAxpBhI0sDhIzXkmjE6cfhgj64tSXUcigSgD1AOgPPUtfp6/S4F27ZVV31G6VnZPbqOJXFiIoA+QTkAzlPX5uv1uxReX7daNZ+c0pRZ83p0HVtSfQ8nGwBwOSgHiCt1dXU6dOhQlx/3B3q3Gpw4clB/+Nd/1rVf/JJuW3BPj6/n6+V8ANAZygHiyr/8y79o9OjRGjt2rH784x9fVBSCvbg/t7aqUo/8z6/JnZ6uv//V7+V0Ont8zd7MBwBdoRwgrmRmZsqyLH344Yf64Q9/qNGjR2v8+PH61re+pWPHjvXabYJNDWf147+5V01nz+r7v1+u7AFX9cp1uY0RQF+I6kOQgrathja/att8qmv1qa7NJ3/AVtC25bAsJTgtZSa5lJnsUlaSS+lJCfzjGof8fr+OHz+uw4cP6+OPP9a5u3eDwaAkad++fdq3b5/279+v7z+2osfv521r1U++vlQnjx7Rjx5bqSHXjOnxNc9xOfn+BRB+UVkOGr1+ldc1q7y+ueOwmq5OtKtt+csGswSHpREZbo3IdCstMSr/6uhCc3Ozjhw5osOHD1/05+jRo/L7248edjhCh2WWZcm2bS1ZskS//e1vdaTFDvmeuVKBQED/93/9rQ78+W39438+rmtv+HIP/2bnZZU44wBAn4iqQ5BqWrzad6ZBlc3ebh9ve+7r8tyJGpebruyUxEt9CSKAbds6c+ZMpz/8jxw5olOnTnV8rtvt1qhRozRq1CiNHDmy43+PGjVKycnJGjJkiKT2onD11Vfrqaee0tSpUyVJR+ub9c7p+m7nfOyRH+qFJ/+gL0+drsl3XXx3wq3zFnX72pL0pasyNCzD3aNrAMClREU5CARt7a9u0IGapm6Xggudu86Y7FSNzUmX08G49nxNTU369a9/rXfeeUf/9E//pBtuuEG2bcsK47LM+eP/zqYADQ1/eTJh//79Q37on/9nwIABXea0bVupqalqaWlRcXGxHn30UfXr95fnFfT0hMQf3r9IH+ze2eXHV314stvXljghEUDfiPhyUNvq066TtWryBcL2HqkupyYNzFJWMv/onisAmzdv1pw5czRs2DA9/PDDWrx4ca+UgysZ/w8bNqzTCcDIkSNDfqBfqWXLlmnAgAG66667LvpYT5+tEE48WwFAX4noclDZ1KYdFTWy7d6ZFnTFkmRZ0uRB2cpLTQrjO0WHs2fP6qGHHpJt29q/f78KCwv1jW9847LKQVfj/3OF4MLx/4Vj/3N/hg0bJpfLTFl7v/KsDtU2Rcwjm6X279FrslJ5KiOAPhGxu/Iqm9q0/URNn/wDbUuybWn7iRpNGUxB2LFjh/bs2aONGzdq5syZqqqqkqSQYnCuBKxZs+ayx/+33357yG//V111VViXKbprRKZbB2ubTMcIYas9FwD0hYgsB7WtvvaJQR+/ry1pR0WNbh2aG7dLDF6vVw8//LD+/u//XpmZmUpLS1NlZaX8fr8SEv7y7WJZlqqrq/X1r3+9Y/w/adIkeTyeXhv/m5KWmKA8d6Kqmr0RMT2wJPV3J3KHDYA+E3H/2gSCtnadrJWpxY6gLe0+Was7hveP6U2KXS0RrF69WoMHD9aiRe276ocOHaqWlpaOMwHON2bMGLW2thob/4fTuNx0vXqs2nQMSe2ldVxuuukYAOJIxO052Ft1VgdqzI90x2Sn6nP9o++33vMFAoGO3f/n/5k/f74WL16sxMSLb+McM2aMFixYoJEjR2rfvn1avXq1zp49q8bGRq1bt06zZ8828Dcxg+9FAPEqoiYHNS3eiPjHWJIO1DRpYFpyxJ+D0Nnu/3P/ffToUfl87U/xczgcGjp0qEaNGiWn09npb/vV1dW65ppr9MQTT2jQoEEaP368xo4dqxMnTujBBx/UnXfe2dd/PaPG5qSroqFVzb6AkeUFS+130ozNYWoAoG9FVDnYd6ah184x6ClL7Xm+MiTHaA7btlVdXd3prX8X7v5PSUnpWO+fO3duyNr/sGHDOp0UnC87O1vPPPOMEhIS5Ha75XQ6tW7dOj3yyCMaOXKknE5n2M86iCROh6VJA7P02rEzRpa5LEuaODArppe3AESmiCkHjV6/Kpu9pmN0sCVVNnvV6PWHfSNYV+P/cxOAs2fPdnzuud3/I0eO1NSpU0Nu/+vp7n/LspSVlSVJHc8fyM3N1cmTJ3X8+PGe/SWjVFayS5MHZffZnTPnWGq/tTZeN8YCMCti9hz09N5yn7dNK/7jF3rtuVVqOluvYdeOlefvHtIXptza7Uy9eW/5ufF/ZwcAdTX+v/CPid3/ra2tOnr0qIYPH67k5OQ+fe9I0ldnbkiSgzM3ABgWEeWgN06l+7//++t68+UXNPtrf6Wrh43Uq2tW6tDePXr4iVKN/dKN3b7u5Z5K193x/4UnAF7O+B9m9MVpnWkupyZyWicAwyKiHPT0PPuD772r790zW1/7hx9o/v/4uqT2x+b+r7m3KyM7R4+sWNejfOfOs79w/H/hFOD88X9ubm6XZ/9H6uE/uDSe8wEgHkTEnoPaNl+Pvn7nS+vlcDo1ffF9Ha8lJiXrjkUePfPoT3TmVIVyrx7UrWvbtq0fPPIzvVjyZJfj/4kTJ6qwsDDqD//BpTkdlj7Xv58GpiX3+AmhgYBfTmeC+vOEUAARJiLKQV2rr0e/hZXv36uBw0fKnRZ6y9c1n//ipx//oNvlQHZQA4aN1Jw5cy46+5/xf/zKTknUV4bkqNHrV3lds8rrmzuWxbr6Xj7/dcsOav2y36tg2lf1lRnT+ig1AFyeyCgHbb4ejWdrqyqV1X/ARa+fe6228pNuX9tyOPWVaTN0a/GSbl8DsSstMUHX5/XT+P7pavD6VdfqU22rT/VtPvkCtoK2LYdlyeW0lJHkUlayS5nJLqW5nPqXl55T05F9mkM5ABBhIqIc+AM9W7n1trYqoZPf4l1J7bu9vW2tPbq+r4f5EPscVvsP/4wkl4ZlXN7XFBcX6x/+4R905swZ5ebmhjcgAFwBh+kAUvvdCj2RmJwsv/fiMxJ8bW3tH0/q2S14Pc0HdObee++VJD3zzDOGkwBAqIgoB5e6TfBSsvrnqbbq4qWDc69l5V285HAlepoP6Exubq7mzZunP/7xj4qAm4YAoENElIMEZ89++A6/brxOHj2i5saGkNcP7nlXkjRi7PgeXd/Vw3xAV4qLi/X+++/rnXfeMR0FADpERDnITHKpJz9+b545R8FAQJtWPt3xms/bpi1rVmr0FyZ0/04Fte8wz0jiQBqEx4wZMzRw4EA99thjpqMAQIeI2JCYmezq0d0KY74wQTffOVfPPPoT1dec0VVDR+jVtc+qquK4vvFvv+xRNlvitDqETUJCgpYuXarf/va3+uUvfxnXR1QDiBwxcUKi1H5HQsmvfq7X161WU337sxUKv/2Qbrjlth7nO3dCIhAOBw4c0LXXXquSkhIVFhaajgMAkVEOeuPZCuFyuc9WAHrilltuUUpKil5++WXTUQAgMvYcOCxLIzLcPdp3EA6WpBEZbooBwq64uFivvPKKjh07ZjoKAERGOZCkEZnusD8K90rZas8FhFtBQYHcbreeeOIJ01EAIHLKQVpigvLciREzPbAk5bkTlZYYEXs2EePS0tJ0zz336PHHH1cwGDQdB0Cci5hyIEnjctMjZnpgqz0P0FeKi4tVXl6u119/3XQUAHEuospBdkqixmSnmo4hSRqTncojdNGnpkyZotGjR3PmAQDjIqocSNLYnHSlupzGlhcsSWkup8bmMDVA37IsS0VFRSorK1N9fb3pOADiWMSVA6fD0qSBWTJ1g4BlSRMHZsnpiJTdD4gnX/va19TW1qaVK1eajgIgjkXEOQedqWxq0/YTNX26B8GSNGVwtvJSk/rwXYFQs2bNUm1trXbu3Gk6CoA4FXGTg3PyUpM0ZXC2HJb6ZInBYVEMEBmKi4v15ptvat++faajAIhTEVsOpPaCcOvQXLldzrC+T5rLqVuH5lIMEBHmzp2rnJwcPf7446ajAIhTEbuscL5A0Nb+6gYdqGmSJfXKUsO564zJTtXYnHT2GCCifOc739GKFSt0/PhxuVw81wNA34roycE5Toelz/Xvp9uG5qi/u/32wu7+KD/3df3dibptaI4+178fxQARp6ioSJ988ok2btxoOgqAOBQVk4MLNXr9Kq9rVnl9c8fDmrqaKJz/eoKj/RkOIzLdnHyIiPelL31JQ4YM0dq1a01HARBnorIcnBO0bTV4/apr9am21af6Np98AVtB25bDsuRyWspIcikr2aXMZJfSExN4iBKixn/+53/qO9/5jk6cOKEBAwaYjgMgjkR1OQBiWU1Nja6++mo98sgj+u53v2s6DoA4QjkAIlhhYaHef/997d27VxZTLwB9JCo2JALxqri4WPv27dOuXbtMRwEQRygHQAS74447NHjwYM48ANCnKAdABHM6nXrggQdUUlKi5uZm03EAxAnKARDhHnjgAZ09e1arV682HQVAnGBDIhAFpk6dKofDoc2bN5uOAiAOMDkAokBRUZG2bNmi8vJy01EAxAHKARAFFi1apPT0dC1btsx0FABxgHIARIHU1FQVFhZq2bJlCgaDpuMAiHGUAyBKFBUV6dixY9qyZYvpKABiHBsSgShh27bGjRunG264QcuXLzcdB0AMY3IARAnLslRcXKzVq1ertrbWdBwAMYxyAESR+++/X36/XytWrDAdBUAMY1kBiDLz5s3TqVOntHv3btNRAMQoJgdAlCkuLtZbb72l999/33QUADGKcgBEmdmzZ6t///48jAlA2FAOgCjjcrl0//3366mnnpLX6zUdB0AMohwAUaioqEhnzpzR+vXrTUcBEIPYkAhEqRtvvFF5eXlat26d6SgAYgyTAyBKFRUVacOGDTp58qTpKABiDOUAiFKFhYVKTEzUU089ZToKgBjDsgIQxe677z699dZb2r9/vyzLMh0HQIxgcgBEsaKiIn300UfauXOn6SgAYgjlAIhiU6dO1bBhw/TYY4+ZjgIghlAOgCjmcDhUVFSklStXqqmpyXQcADGCcgBEuaVLl6qxsVFlZWWmowCIEWxIBGLAtGnT5PP59Nprr5mOAiAGMDkAYkBxcbFef/11HTp0yHQUADGAcgDEgIULFyojI0PLli0zHQVADKAcADEgJSVFHo9Hy5YtUyAQMB0HQJSjHAAxori4WBUVFdq0aZPpKACiHBsSgRhh27Y+//nPa9y4cVq5cqXpOACiGJMDIEZYlqWioiKtXbtW1dXVpuMAiGKUAyCG3HfffQoGg1q+fLnpKACiGMsKQIy5++67deLECe3atct0FABRinIAxJjDhw8rMzNTOTk5pqMAiFKUAyDG2LbN45sB9Ah7DoAYQzEA0FOUAwAAEIJyAMSZtrY2eb1e0zEARDDKARAnAoGAfvnLX2ratGmaP3++nn32WdORAEQoNiQCMezYsWNau3atrrvuOuXm5mr+/Pm69957dfr0ae3cuVMlJSWaMGGC6ZgAIgzlAIhRDz30kJ588kl99atf1Z49e5Sbm6sJEybo17/+tSSpqKhIra2tKikpMZwUQKRhWQGIQQcOHNDatWv1zW9+U8uXL9fmzZs1evRovfXWWx2fs3DhQu3bt89gSgCRKsF0AAC979SpU0pMTNRf//VfKyEhQYMHD9a3vvUtTZw4UTt37lRWVpb+67/+S6NHj1ZjY6PS0tJMRwYQQSgHQAy69dZbdfz4cR0+fFhXXXWVJKm6ulo33HCDHn74YR06dEgZGRl68MEHKQYALsKeAyBGFRcXq7q6Wh6PR9dcc40efvhh5eXl6ec//7m2b9+uhIQETZ8+XS6Xy3RUABGGcgDEqI8//ljf//73tWnTJvXr109Op1NPPvmkJk6caDoagAhHOQBi3GuvvaaGhgbNnDmTKQGAy0I5AGIUD2AC0F3cygjEKIoBgO6iHABxxOfzmY4AIApQDoA4smPHDv30pz81HQNAhKMcAHFkz549+sEPfqCqqirTUQBEMMoBEEfuvfdeORwOPf3006ajAIhg3K0AxJmCggJ99NFH2rNnD5sWAXSKyQEQZ4qLi/X+++/r7bffNh0FQISiHABxZsaMGRo0aJAee+wx01EARCjKARBnnE6nli5dqpKSErW0tJiOAyACUQ6AOPTAAw+orq5Oa9euNR0FQARiQyIQp7761a8qKSlJmzZtMh0FQIRhcgDEqeLiYm3evFkff/yx6SgAIgzlAIhT+fn5crvdeuKJJ0xHARBhKAdAnEpLS9PixYv1+OOPKxgMmo4DIIJQDoA4VlxcrKNHj+rVV181HQVABGFDIhDHbNvWddddp0mTJumpp54yHQdAhGByAMQxy7JUVFSksrIy1dfXm44DIEJQDoA497WvfU1er1crVqwwHQVAhGBZAYDmzJmjqqoq/elPfzIdBUAEYHIAQEVFRdq1a5c++OAD01EARADKAQDNnTtXubm5evzxx01HARABKAcAlJiYqPvuu09PPfWUfD6f6TgADKMcAJDUvrRQWVmpDRs2mI4CwDA2JALo8OUvf1mDBg3Sc889ZzoKAIOYHADoUFxcrBdeeEGnT582HQWAQZQDAB08Ho8SEhL09NNPm44CwCCWFQCE8Hg82rNnjz744ANZlmU6DgADmBwACFFcXKz9+/dzIBIQxygHAELcfvvtGjp0qB577DHTUQAYQjkAEMLpdGrp0qVasWKFmpubTccBYADlAMBFHnjgATU0NGjVqlWmowAwgA2JADp1++23y7Ztbd261XQUAH2MyQGAThUVFenVV1/VkSNHTEcB0McoBwA6tWjRIqWnp2vZsmWmowDoY5QDAJ1yu93yeDxatmyZAoGA6TgA+hDlAECXioqKdPz4cW3evNl0FAB9iA2JALpk27bGjx+vL3zhCyopKTEdB0AfYXIAoEuWZam4uFhr1qxRTU2N6TgA+gjlAMBnuv/+++X3+5kcAHGEZQUAlzR//nxVVFTorbfeMh0FQB9gcgDgkoqLi/X2229rz549pqMA6AOUAwCXNGvWLOXl5enxxx83HQVAH6AcALgkl8ul+++/X08//bS8Xq/pOADCjHIA4LIUFRWpurpa69atMx0FQJixIRHAZbvpppuUk5OjF154wXQUAGHE5ADAZSsqKtKLL76oiooK01EAhBHlAMBlKywsVGJiop566inTUQCEEcsKAK7I/fffrz/96U/66KOPZFmW6TgAwoDJAYArUlxcrIMHD2r79u2mowAIE8oBgCty6623avjw4XrsscdMRwEQJpQDAFfE4XCoqKhIzz77rBobG03HARAGlAMAV2zp0qVqbm5WaWmp6SgAwoANiQC6Zfr06WptbdW2bdtMRwHQy5gcAOiW4uJivfHGGzpw4IDpKAB6GeUAQLcsWLBAmZmZWrZsmekoAHoZ5QBAt6SkpMjj8eiJJ55Qa2urNmzYoN/85jemYwHoBew5ANBtq1ev1qJFi5SRkaH6+npJUmtrq5KSkgwnA9ATTA4AXLH9+/dr8uTJWrRokSR1FIO0tDSKARADKAcArtixY8e0c+fOi14fMGCAgTQAehvlAMAVmzlzppYvXy6n0xnyfIUhQ4YYTAWgt1AOAHSLx+PR+vXrQ5YRBg8ebDARgN5COQDQbXfeeae2bNkit9stSXI6nYYTAegNCaYDAIhuN998s3bs2KGbbrpJQ4cOVdC21dDmV22bT3WtPtW1+eQP2ArathyWpQSnpcwklzKTXcpKcik9KUEOHv0MRBRuZQTQKxq9fpXXNau8vln+YPs/K5akzv6BOf/1BIelERlujch0Ky2R31eASEA5ANAjNS1e7TvToMpmb5dl4FLOfV2eO1HjctOVnZLYuyEBXBHKAYBuCQRt7a9u0IGapm6Xggudu86Y7FSNzUmX08FyA2AC5QDAFatt9WnXyVo1+QJhe49Ul1OTBmYpK9kVtvcA0DnKAYArUtnUph0VNbLt3pkWdMWSZFnS5EHZykvl1EWgL1EOAFy2yqY2bT9RE9ZScCFL0pTBFASgL3HOAYDLUtvqa58Y9PH72pJ2VNSottXXx+8MxC/KAYBLCgRt7TpZK1NzxqAt7T5Zq0CQQSfQFygHAC5pf3WDmnyBPp8anK/RF9D+6gaDCYD4QTkA8JlqWrw6UNNkOoYk6UBNk2pavKZjADGPcgDgM+0706BIOW3AUnseAOFFOQDQpUavX5XNXqPLCeezJVU2e9Xo9ZuOAsQ0ygGALpXXNfdoatDS1KQV//EL/T9/tURLbxynRdcN1JbVK3uUyfo0F4DwoRwA6FTQtlVe39yjqUFDbY1K/+tRnThyUMOuHdcruWxJ5fXNCnJECxA2PAINQKca2vwdT1fsrqy8PP1h25+V1T9Ph97fo38suKtXsvmDthq8fmUkcbQyEA5MDgB0qrat54cOuRKTlNU/rxfSXKyOQ5GAsKEcAOhUXasvYu5SuJAlcWIiEEaUAwCdqmvzRcxdCheyJdX3wmQDQOcoBwA65Q9EajVo54vwfEA0oxwA6FSk3w0Q6fmAaEY5ANAphxWpOw7aRXo+IJpRDgB0KsEZ2T98XRGeD4hmlAMAncpMckX03QqccQCED4cgAehUZrKrV+5W2PD0Y2puOKuayk8kSW9t3aSaT05Jku66r1ip6f2u+Jq2pKxkygEQLpZts6sHwMXqW33a/PGZHl/nb2+fpKqTJzr92G9f+ZPyBg/p1nVvGdhP/dNTexINQBeYHADoVHpSghIcVo+PUP7dll29lOgvmhrO6trhn9Oc2bOVn5+vGTNmKDk5udffB4hX7DkA0CmHZWlEhjvi9h1Ykga7Xfr2t76lt99+W/Pnz1deXp7uvfderV27Vi0tLaYjAlGPZQUAXWr0+vVyeZXpGBeZMaK/0hLbB5/79u1TWVmZSktLtXfvXqWlpWnOnDnKz8/XXXfdJbfbbTgtEH0oBwA+0xvHq1XV7I2Io5QtSf3difrKkJxOP/7hhx9q1apVKi0t1Z49e+R2uzV79mwVFBRo1qxZSk1ljwJwOSgHAD5TTYtXrx6rNh2jw21Dc5SdknjJzzt48GDHROHdd99VSkqKZs2apfz8fM2ZM0dpaWl9kBaITpQDAJe0t+qsDtQ0mY6hMdmp+lz/K7/18fDhwx0ThbfeekvJycm68847VVBQoDlz5qhfvyu/JhDLKAcALikQtPXK0So1+wJGlhcsSakup+4Y3l9OR8+2SB49erRjorBr1y4lJSVp5syZys/P17x585SRkdE7oYEoRjkAcFlqW3167dgZ9fDOxm5xWNKtQ3N7/eCjjz/+WKtWrVJZWZl27typxMRETZ8+XQUFBZo3b56ysrJ69f2AaEE5AHDZKpvatP1ETZ9ODyxJUwZnKy81Kazvc/z4ca1evVqlpaXavn27XC6Xpk2bpvz8fC1YsEDZ2dlhfX8gklAOAFyRyqY27aiokW0r7CXBYUmTB4W/GFyooqJCq1evVllZmbZt2yan06k77rijoyjk5ub2aR6gr1EOAFyx2lafdp2sVZMvELb3SHM5NXFglvFnKJw6dUpr1qxRaWmpXn/9dVmWpalTpyo/P18LFy5UXl6e0XxAOFAOAHRLIGhrf3WDDtQ0yVLvTBHOXWdMdqrG5qT3ePNhb/vkk0+0Zs0alZWVaevWrZKk2267raMoXHXVVYYTAr2DcgCgR2pavNp3pkGVzd5ul4RzX5fnTtS43PTLOsfAtKqqKq1du1alpaXasmWLgsGgvvrVryo/P1+LFi3S1VdfbToi0G2UAwC9otHrV3lds8rrmzse1tRVWTj/9QRH+zMcRmS6O45EjjbV1dVau3atysrK9MorrygQCGjKlCkqKCjQokWLNGjQINMRgStCOQDQq4K2rQavX3WtPtW2+lTf5pMvYCto23JYllxOSxlJLmUlu5SZ7FJ6YoIcVmQtH/RETU2Nnn/+eZWWlmrTpk3y+XyaPHmy8vPzlZ+fryFDuveIaqAvUQ4AIEzq6ur0/PPPq6ysTC+99JK8Xq9uvPHGjonC8OHDTUcEOkU5AIA+UF9fr/Xr16u0tFQvvvii2traNHHixI6JwsiRI7t9bb/fL5/Pp5SUlF5MjHhGOQCAPtbQ0KD169errKxMGzZsUGtrqyZMmKCCggLl5+frmmuuuaLrvfXWW/rVr36lM2fOaOrUqfr617+u9PT0MKVHPKAcAIBBjY2N2rBhg0pLS/XCCy+opaVFX/ziFzuKwpgxYy55jTfeeEPbtm3TqVOn9Jvf/EbPPPOMPB5Px8dt25YVQ/s6EH6UAwCIEE1NTdq4caPKysq0fv16NTU16frrr9fWrVuVnZ19yR/wv/vd7/TII4/olVdeuahU7NmzR9nZ2WyIxGWhHABABGpubtZLL72kHTt26Be/+MVnfq7P55PL5dKUKVM0bNgw/f73v1dqaqok6cCBA3r00Uf1+uuv6/jx4xo6dKj+/d//XdOmTeuLvwaiFOUAACLc5SwLtLS0KC0tTU8//XTIksK0adNUX1+vBx98ULNnz9Z3v/td1dbW6umnn1a/fv3CHR1RKjpPHAGAOPJZxcDv9yshIUHLly9Xdna2vvSlL3V8bMuWLdq6datef/11TZkyRZL0gx/8QNdee6327t2ryZMnhz07opPDdAAAQPedKw6PP/647rjjjo5jm71er/74xz9qypQpmjJligKB9odkpaenKzMzU7W1tcYyI/JRDgAgSgWDQTmdTrW1tWnnzp2aO3duxy2MjY2NeuWVV3T//fdLal+akKTt27frmmuukc/nC3kdOB/LCgAQhbxerx555BGlpqbK5/Opf//+uvHGGzs+XlVVpTNnzujWW2+VJDmdTknS7t27lZSU1HE3A7c4ojOUAwCIQk6nUzk5OfrpT3+qU6dOSZL+8Ic/qLi4WGPGjNGBAwc0dOjQjh/+lmXp9OnTevvttzV69GiNGzfOZHxEOJYVACAKOZ1Ofetb31JFRYVOnz6tn/3sZ1q1apW+/e1v68yZMxo3bpz8fr82b97c8TVPPvmkKioqNG/ePEkXLykEg8E+/TsgcnErIwDEkMbGRqWlpUmSvve972njxo3yeDw6cuSIHnvsMf3iF7/QN77xDSUlJYV8XWtrq8aPH69Zs2YpPz9fX/nKVzqWIhB/KAcAEGPOnYvQ3Nys//7v/9aKFSs0dOhQLV68WIsWLer086urq/XjH/9YZWVlOnHihAYMGKC7775bBQUFuuWWW5SQwCp0PKEcAEAcOHcewqUOVAoGg9q1a5dKS0tVVlamY8eOqX///rr77ruVn5+v2267jaIQBygHAIBO2bat3bt3dxSFo0ePKicnRwsXLlRBQYGmTp0ql8tlOibCgHIAALgk27b19ttvq6ysTKWlpTpy5Iiys7O1YMEC5efn64477lBiYqLpmOgllAMAwBWxbVt//vOfVVpaqtLSUh06dEiZmZmaP3++CgoKNG3atIs2PCK6UA4AAN1m27bee++9jonCRx99pIyMDM2bN0/5+fmaMWOGkpOTTcfEFaIcAAB6hW3b+uCDDzr2KOzbt0/p6emaO3euCgoKNHPmTKWkpJiO2SNB21ZDm1+1bT7VtfpU1+aTP2AraNtyWJYSnJYyk1zKTHYpK8ml9KQEOaLwFErKAQAgLPbt29cxUdi7d6/S0tI0Z84c5efn66677pLb7TYd8bI1ev0qr2tWeX2z/MH2H5uWpM5+gJ7/eoLD0ogMt0ZkupWWGD13eVAOAABh9+GHH2rVqlUqLS3Vnj175Ha7NXv2bBUUFGjWrFlKTU01HbFTNS1e7TvToMpmb5dl4FLOfV2eO1HjctOVnRL5GzcpBwCAPnXw4MGOicK7776rlJSUjpMZ58yZ03HCo0mBoK391Q06UNPU7VJwoXPXGZOdqrE56XI6Ine5gXIAADDm8OHDHROFt956S8nJybrzzjtVUFCgOXPmqF+/fn2eqbbVp10na9XkC4TtPVJdTk0amKWs5Mg8J4JyAACICEePHu2YKOzatUtJSUmaOXOm8vPzNW/ePGVkZIQ9Q2VTm3ZU1Mi2e2da0BVLkmVJkwdlKy818m77pBwAACLOxx9/rFWrVqmsrEw7d+6Uy+XSjBkzVFBQoHnz5ikrK6vX37OyqU3bT9SEtRRcyJI0ZXDkFQTKAQAgoh0/flyrV69WaWmptm/fLpfLpWnTpik/P18LFixQdnZ2l18bCARkWZYcDsdnvkdtq0+vHTujoIGfiA5LunVobkQtMVAOAABRo6KiQqtXr1ZZWZm2bdsmp9Op22+/XQUFBVqwYIFyc3NDPv/BBx/Uhg0b9Oqrr2ro0KGdXjMQtPXK0So1+wJ9OjU4X5rLqTuG94+YTYqUAwBAVDp16pTWrFmj0tJSvf7667IsS1OnTlV+fr4WLlyozMxM5eTkqLGxUUOGDNEbb7zRaUHYW3VWB2qaDPwNQo3JTtXn+vf9BszOUA4AAFHvk08+0Zo1a1RWVqatW7dKkj73uc/pvffekyQlJCTo6quv1rZt2zRs2LCOr6tp8erVY9VGMnfmtqE5EXEOAuUAABBTqqqqtHbtWv3oRz/SqVOnOl53OBwaMGCAduzYoeHDh0uS3jherapmr7HlhPNZkvq7E/WVITmmo1AOAACxx+fzKTc3V2fPnr3oY0lJSTp9+rQS3Gl6ubzKQLrPNmNEf+NHLUfPQc8AAFymnTt3XlQMkpKSlJOTo6ysLDmdTpXXNXf79MNjBz/Ss7/5pQ5/8J7qzlQqKTlFg68Zo/nFX9fE22d0O7clqbyuWdfnmd17QDkAAMSccePG6eGHH9bVV1+t0aNHa/To0Ro4cKCsT5+QGLRtlZ/+pNvLCVUnT6ilqVFTFxQoK+8qtbW26M2XX9BPv/GA/ufDP9eMxfd167q2pPL6Zo3vn270aY4sKwAA4k59q0+bPz7Tq9cMBAJ6aNFMedva9OuN23p0rTuG5yojydy5B599KgQAADGots3X69d0Op3KuWqgmhsu3udwpepaez/flWBZAQAQd+pafb3ytMXW5mZ521rU3NCg3Vte1rvbtmrKXfN6dE1L7Sc2Dgv/oyS6RDkAAMSdujZfr9y++MTPHtbLK5+S1H6r5I3TZ+mvfvDjHl3TllQfhsnGlaAcAADijj/QO9vtZi/9K900c7ZqKz/Rjo3rFAwG5Pf1/Ae7r5fydRcbEgEAceflI5Vq9AV6/br/Wlyopoaz+umzL3TcGdEdaS6nZozM68VkV4YNiQCAuBOu2wRvmjlHh97/s06WH+7RdUzexihRDgAAcSjBGZ4fvt62VklSc2NDj67jClO+y0U5AADEncwkl3ry47e++uIzEvw+n15bW6rE5GQNHjWm29e2JKNnHEhsSAQAxKHMZFeP7lb43Y8eUktjo8Z9+UZlD7hKdWeq9Pq61ao4ckhL//FHSklN7fa1bUlZyZQDAAD6VFYPfzOfctc8bV5VopdWPKmGulqlpKZp5Pjrdf/f/x9NvH1mj/NlGi4H3K0AAIg7QdvW+kOfyB+MvB+BCQ5Lc64ZYHRTInsOAABxx2FZGpHh7tG+g3CwJI3IcHO3AgAAJozIdPfKKYm9yVZ7LtMoBwCAuJSWmKA8d2LETA8sSXnuRKUlmt8OSDkAAMStcbnpETM9sNWeJxJQDgAAcSs7JVFjsrt/22FvGpOdquyURNMxJFEOAABxbmxOulJdTmPLC5ban6UwNicypgYS5QAAEOecDkuTBmbJ1A0CliVNHJglpyNSdj9QDgAAUFayS5MHZff59MCSNHlQtvETES/EIUgAAHyqsqlNOypqZNsK+0ZFh9VeDPJSk8L8TleOcgAAwHlqW33adbJWTb5A2N4jzeXUxIFZETcxOIdyAADABQJBW/urG3SgpkmWemeKcO46Y7JTNTYnPaL2GFyIcgAAQBdqWrzad6ZBlc3ebpeEc1+X507UuNz0iLld8bNQDgAAuIRGr1/ldc0qr2/ueFhTV2Xh/NcTHO3PcBiR6Y6Ikw8vF+UAAIDLFLRtNXj9qmv1qbbVp/o2n3wBW0HblsOy5HJaykhyKSvZpcxkl9ITE4w/RKk7KAcAACAE5xwAAIAQlAMAABCCcgAAAEJQDgAAQAjKAQAACEE5AAAAISgHAAAgBOUAAACEoBwAAIAQlAMAABCCcgAAAEJQDgAAQAjKAQAACEE5AAAAISgHAAAgBOUAAACEoBwAAIAQlAMAABCCcgAAAEJQDgAAQAjKAQAACEE5AAAAISgHAAAgBOUAAACEoBwAAIAQlAMAABCCcgAAAEJQDgAAQAjKAQAACEE5AAAAISgHAAAgxP8Pl5WPI6SARlsAAAAASUVORK5CYII=",
"text/plain": [
"<Figure size 500x500 with 1 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/plain": [
"<networkx.classes.digraph.DiGraph at 0x74f785263160>"
]
},
"execution_count": 81,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"\n",
"import random\n",
"def CreateNetworkXGraphRandom(Figure=False, nodes=5):\n",
" G = nx.DiGraph() # Directed graph\n",
" G.add_nodes_from(range(nodes)) # Add nodes 0 to n-1\n",
"\n",
" # Add random delays as node attributes\n",
" for node in range(nodes):\n",
" delay_comp = random.randint(1, 100) # Random integer for delay_comp\n",
" delay_mem = random.randint(1, 10) # Random integer for delay_mem\n",
" delay_send = random.randint(1, 10) # Random integer for delay_send\n",
" \n",
" # Add node with attributes\n",
" G.nodes[node]['delay_comp'] = delay_comp\n",
" G.nodes[node]['delay_mem'] = delay_mem\n",
" G.nodes[node]['delay_send'] = delay_send\n",
"\n",
" # Ensure source node (node 0) has no incoming edges\n",
" # and destination node (node nodes-1) has no outgoing edges\n",
" # Source connects to at least one other node\n",
" first_hop = random.randint(1, nodes-2)\n",
" G.add_edge(0, first_hop, flits=G.nodes[0]['delay_send'])\n",
"\n",
" # Intermediate random edges, avoiding self-loops, bidirectional edges, and cycles\n",
" for node in range(1, nodes-1): # Exclude source and destination\n",
" target = random.randint(1, nodes-1)\n",
" while target == node or G.has_edge(target, node) or G.has_edge(node, target): # Avoid self-loops and bidirectional edges\n",
" target = random.randint(1, nodes-1)\n",
" \n",
" # Temporarily add the edge to check for cycles\n",
" G.add_edge(node, target, flits=G.nodes[node]['delay_send'])\n",
" \n",
" # Check if adding this edge creates a cycle\n",
" if nx.is_directed_acyclic_graph(G) == False: # Checks if the graph has a cycle\n",
" G.remove_edge(node, target) # Remove the edge if it creates a cycle\n",
" else:\n",
" # Keep the edge if no cycle is detected\n",
" pass\n",
"\n",
" # Ensure at least one path to the destination\n",
" prev_node = random.randint(1, nodes-2)\n",
" G.add_edge(prev_node, nodes-1, flits=G.nodes[prev_node]['delay_send'])\n",
"\n",
" # Ensure destination node (nodes-1) has no outgoing edges\n",
" G.remove_edges_from(list(G.out_edges(nodes-1)))\n",
"\n",
"\n",
" if Figure==True:\n",
" plt.figure(figsize=(5, 5))\n",
" pos = nx.spring_layout(G) # Layout for positioning\n",
" nx.draw(G, pos, with_labels=True, node_color=\"lightblue\", edge_color=\"black\", arrows=True, node_size=800, font_size=12)\n",
"\n",
" # Draw edge labels (flits)\n",
" edge_labels = {(u, v): f\"{d['flits']}\" for u, v, d in G.edges(data=True)}\n",
" nx.draw_networkx_edge_labels(G, pos, edge_labels=edge_labels, font_size=10)\n",
"\n",
" plt.show()\n",
"\n",
" return(G)\n",
"\n",
"CreateNetworkXGraphRandom(True)"
]
},
{
"cell_type": "code",
"execution_count": 82,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Node Attributes:\n",
"Node 0: {'delay_comp': 4, 'delay_mem': 1078, 'delay_send': 285, 'src': True, 'dst': False}\n",
"Node 1: {'delay_comp': 34, 'delay_mem': 38, 'delay_send': 277, 'src': False, 'dst': False}\n",
"Node 2: {'delay_comp': 67, 'delay_mem': 75, 'delay_send': 554, 'src': False, 'dst': False}\n",
"Node 3: {'delay_comp': 1, 'delay_mem': 0, 'delay_send': 137, 'src': False, 'dst': False}\n",
"Node 4: {'delay_comp': 50, 'delay_mem': 223, 'delay_send': 205, 'src': False, 'dst': False}\n",
"Node 5: {'delay_comp': 0, 'delay_mem': 0, 'delay_send': 342, 'src': False, 'dst': False}\n",
"Node 6: {'delay_comp': 10, 'delay_mem': 42, 'delay_send': 137, 'src': False, 'dst': False}\n",
"Node 7: {'delay_comp': 47, 'delay_mem': 223, 'delay_send': 194, 'src': False, 'dst': False}\n",
"Node 8: {'delay_comp': 10, 'delay_mem': 42, 'delay_send': 137, 'src': False, 'dst': False}\n",
"Node 9: {'delay_comp': 26, 'delay_mem': 116, 'delay_send': 137, 'src': False, 'dst': False}\n",
"Node 10: {'delay_comp': 26, 'delay_mem': 116, 'delay_send': 137, 'src': False, 'dst': False}\n",
"Node 11: {'delay_comp': 47, 'delay_mem': 223, 'delay_send': 194, 'src': False, 'dst': False}\n",
"Node 12: {'delay_comp': 0, 'delay_mem': 0, 'delay_send': 388, 'src': False, 'dst': False}\n",
"Node 13: {'delay_comp': 69, 'delay_mem': 1329, 'delay_send': 95, 'src': False, 'dst': False}\n",
"Node 14: {'delay_comp': 1, 'delay_mem': 0, 'delay_send': 95, 'src': False, 'dst': False}\n",
"Node 15: {'delay_comp': 0, 'delay_mem': 0, 'delay_send': 189, 'src': False, 'dst': False}\n",
"Node 16: {'delay_comp': 8, 'delay_mem': 149, 'delay_send': 48, 'src': False, 'dst': False}\n",
"Node 17: {'delay_comp': 6, 'delay_mem': 100, 'delay_send': 32, 'src': False, 'dst': False}\n",
"Node 18: {'delay_comp': 12, 'delay_mem': 223, 'delay_send': 48, 'src': False, 'dst': False}\n",
"Node 19: {'delay_comp': 6, 'delay_mem': 100, 'delay_send': 32, 'src': False, 'dst': False}\n",
"Node 20: {'delay_comp': 12, 'delay_mem': 223, 'delay_send': 48, 'src': False, 'dst': False}\n",
"Node 21: {'delay_comp': 18, 'delay_mem': 333, 'delay_send': 48, 'src': False, 'dst': False}\n",
"Node 22: {'delay_comp': 1, 'delay_mem': 0, 'delay_send': 189, 'src': False, 'dst': False}\n",
"Node 23: {'delay_comp': 8, 'delay_mem': 149, 'delay_send': 48, 'src': False, 'dst': False}\n",
"Node 24: {'delay_comp': 0, 'delay_mem': 0, 'delay_send': 189, 'src': False, 'dst': False}\n",
"Node 25: {'delay_comp': 8, 'delay_mem': 149, 'delay_send': 48, 'src': False, 'dst': False}\n",
"Node 26: {'delay_comp': 6, 'delay_mem': 100, 'delay_send': 32, 'src': False, 'dst': False}\n",
"Node 27: {'delay_comp': 12, 'delay_mem': 223, 'delay_send': 48, 'src': False, 'dst': False}\n",
"Node 28: {'delay_comp': 6, 'delay_mem': 100, 'delay_send': 32, 'src': False, 'dst': False}\n",
"Node 29: {'delay_comp': 12, 'delay_mem': 223, 'delay_send': 48, 'src': False, 'dst': False}\n",
"Node 30: {'delay_comp': 18, 'delay_mem': 333, 'delay_send': 48, 'src': False, 'dst': False}\n",
"Node 31: {'delay_comp': 1, 'delay_mem': 0, 'delay_send': 189, 'src': False, 'dst': False}\n",
"Node 32: {'delay_comp': 8, 'delay_mem': 149, 'delay_send': 48, 'src': False, 'dst': False}\n",
"Node 33: {'delay_comp': 0, 'delay_mem': 0, 'delay_send': 189, 'src': False, 'dst': False}\n",
"Node 34: {'delay_comp': 8, 'delay_mem': 149, 'delay_send': 48, 'src': False, 'dst': False}\n",
"Node 35: {'delay_comp': 6, 'delay_mem': 100, 'delay_send': 32, 'src': False, 'dst': False}\n",
"Node 36: {'delay_comp': 12, 'delay_mem': 223, 'delay_send': 48, 'src': False, 'dst': False}\n",
"Node 37: {'delay_comp': 6, 'delay_mem': 100, 'delay_send': 32, 'src': False, 'dst': False}\n",
"Node 38: {'delay_comp': 12, 'delay_mem': 223, 'delay_send': 48, 'src': False, 'dst': False}\n",
"Node 39: {'delay_comp': 18, 'delay_mem': 333, 'delay_send': 48, 'src': False, 'dst': False}\n",
"Node 40: {'delay_comp': 1, 'delay_mem': 0, 'delay_send': 189, 'src': False, 'dst': False}\n",
"Node 41: {'delay_comp': 8, 'delay_mem': 149, 'delay_send': 48, 'src': False, 'dst': False}\n",
"Node 42: {'delay_comp': 0, 'delay_mem': 0, 'delay_send': 189, 'src': False, 'dst': False}\n",
"Node 43: {'delay_comp': 8, 'delay_mem': 149, 'delay_send': 48, 'src': False, 'dst': False}\n",
"Node 44: {'delay_comp': 6, 'delay_mem': 100, 'delay_send': 32, 'src': False, 'dst': False}\n",
"Node 45: {'delay_comp': 12, 'delay_mem': 223, 'delay_send': 48, 'src': False, 'dst': False}\n",
"Node 46: {'delay_comp': 6, 'delay_mem': 100, 'delay_send': 32, 'src': False, 'dst': False}\n",
"Node 47: {'delay_comp': 12, 'delay_mem': 223, 'delay_send': 48, 'src': False, 'dst': False}\n",
"Node 48: {'delay_comp': 18, 'delay_mem': 333, 'delay_send': 48, 'src': False, 'dst': False}\n",
"Node 49: {'delay_comp': 1, 'delay_mem': 0, 'delay_send': 189, 'src': False, 'dst': False}\n",
"Node 50: {'delay_comp': 8, 'delay_mem': 149, 'delay_send': 48, 'src': False, 'dst': False}\n",
"Node 51: {'delay_comp': 0, 'delay_mem': 0, 'delay_send': 189, 'src': False, 'dst': False}\n",
"Node 52: {'delay_comp': 65, 'delay_mem': 5311, 'delay_send': 45, 'src': False, 'dst': False}\n",
"Node 53: {'delay_comp': 16, 'delay_mem': 296, 'delay_send': 95, 'src': False, 'dst': False}\n",
"Node 54: {'delay_comp': 80, 'delay_mem': 1550, 'delay_send': 110, 'src': False, 'dst': False}\n",
"Node 55: {'delay_comp': 25, 'delay_mem': 2067, 'delay_send': 30, 'src': False, 'dst': False}\n",
"Node 56: {'delay_comp': 1, 'delay_mem': 0, 'delay_send': 45, 'src': False, 'dst': False}\n",
"Node 57: {'delay_comp': 0, 'delay_mem': 0, 'delay_send': 119, 'src': False, 'dst': False}\n",
"Node 58: {'delay_comp': 20, 'delay_mem': 1575, 'delay_send': 45, 'src': False, 'dst': False}\n",
"Node 59: {'delay_comp': 10, 'delay_mem': 788, 'delay_send': 23, 'src': False, 'dst': False}\n",
"Node 60: {'delay_comp': 15, 'delay_mem': 1206, 'delay_send': 26, 'src': False, 'dst': False}\n",
"Node 61: {'delay_comp': 20, 'delay_mem': 1608, 'delay_send': 30, 'src': False, 'dst': False}\n",
"Node 62: {'delay_comp': 10, 'delay_mem': 788, 'delay_send': 23, 'src': False, 'dst': False}\n",
"Node 63: {'delay_comp': 13, 'delay_mem': 1034, 'delay_send': 23, 'src': False, 'dst': False}\n",
"Node 64: {'delay_comp': 15, 'delay_mem': 1206, 'delay_send': 26, 'src': False, 'dst': False}\n",
"Node 65: {'delay_comp': 18, 'delay_mem': 1406, 'delay_send': 26, 'src': False, 'dst': False}\n",
"Node 66: {'delay_comp': 20, 'delay_mem': 1608, 'delay_send': 30, 'src': False, 'dst': False}\n",
"Node 67: {'delay_comp': 1, 'delay_mem': 0, 'delay_send': 119, 'src': False, 'dst': False}\n",
"Node 68: {'delay_comp': 7, 'delay_mem': 526, 'delay_send': 15, 'src': False, 'dst': False}\n",
"Node 69: {'delay_comp': 7, 'delay_mem': 0, 'delay_send': 15, 'src': False, 'dst': True}\n",
"\n",
"Edge Attributes:\n",
"Edge from 0 to 1: {'flits': 285}\n",
"Edge from 1 to 2: {'flits': 277}\n",
"Edge from 2 to 3: {'flits': 554}\n",
"Edge from 2 to 4: {'flits': 554}\n",
"Edge from 3 to 5: {'flits': 137}\n",
"Edge from 4 to 5: {'flits': 205}\n",
"Edge from 5 to 6: {'flits': 342}\n",
"Edge from 5 to 8: {'flits': 342}\n",
"Edge from 6 to 7: {'flits': 137}\n",
"Edge from 7 to 12: {'flits': 194}\n",
"Edge from 8 to 9: {'flits': 137}\n",
"Edge from 9 to 10: {'flits': 137}\n",
"Edge from 10 to 11: {'flits': 137}\n",
"Edge from 11 to 12: {'flits': 194}\n",
"Edge from 12 to 13: {'flits': 388}\n",
"Edge from 12 to 14: {'flits': 388}\n",
"Edge from 13 to 15: {'flits': 95}\n",
"Edge from 14 to 15: {'flits': 95}\n",
"Edge from 15 to 16: {'flits': 189}\n",
"Edge from 15 to 17: {'flits': 189}\n",
"Edge from 15 to 19: {'flits': 189}\n",
"Edge from 15 to 22: {'flits': 189}\n",
"Edge from 16 to 24: {'flits': 48}\n",
"Edge from 17 to 18: {'flits': 32}\n",
"Edge from 18 to 24: {'flits': 48}\n",
"Edge from 19 to 20: {'flits': 32}\n",
"Edge from 20 to 21: {'flits': 48}\n",
"Edge from 21 to 24: {'flits': 48}\n",
"Edge from 22 to 23: {'flits': 189}\n",
"Edge from 23 to 24: {'flits': 48}\n",
"Edge from 24 to 25: {'flits': 189}\n",
"Edge from 24 to 26: {'flits': 189}\n",
"Edge from 24 to 28: {'flits': 189}\n",
"Edge from 24 to 31: {'flits': 189}\n",
"Edge from 25 to 33: {'flits': 48}\n",
"Edge from 26 to 27: {'flits': 32}\n",
"Edge from 27 to 33: {'flits': 48}\n",
"Edge from 28 to 29: {'flits': 32}\n",
"Edge from 29 to 30: {'flits': 48}\n",
"Edge from 30 to 33: {'flits': 48}\n",
"Edge from 31 to 32: {'flits': 189}\n",
"Edge from 32 to 33: {'flits': 48}\n",
"Edge from 33 to 34: {'flits': 189}\n",
"Edge from 33 to 35: {'flits': 189}\n",
"Edge from 33 to 37: {'flits': 189}\n",
"Edge from 33 to 40: {'flits': 189}\n",
"Edge from 34 to 42: {'flits': 48}\n",
"Edge from 35 to 36: {'flits': 32}\n",
"Edge from 36 to 42: {'flits': 48}\n",
"Edge from 37 to 38: {'flits': 32}\n",
"Edge from 38 to 39: {'flits': 48}\n",
"Edge from 39 to 42: {'flits': 48}\n",
"Edge from 40 to 41: {'flits': 189}\n",
"Edge from 41 to 42: {'flits': 48}\n",
"Edge from 42 to 43: {'flits': 189}\n",
"Edge from 42 to 44: {'flits': 189}\n",
"Edge from 42 to 46: {'flits': 189}\n",
"Edge from 42 to 49: {'flits': 189}\n",
"Edge from 43 to 51: {'flits': 48}\n",
"Edge from 44 to 45: {'flits': 32}\n",
"Edge from 45 to 51: {'flits': 48}\n",
"Edge from 46 to 47: {'flits': 32}\n",
"Edge from 47 to 48: {'flits': 48}\n",
"Edge from 48 to 51: {'flits': 48}\n",
"Edge from 49 to 50: {'flits': 189}\n",
"Edge from 50 to 51: {'flits': 48}\n",
"Edge from 51 to 52: {'flits': 189}\n",
"Edge from 51 to 53: {'flits': 189}\n",
"Edge from 51 to 56: {'flits': 189}\n",
"Edge from 52 to 57: {'flits': 45}\n",
"Edge from 53 to 54: {'flits': 95}\n",
"Edge from 54 to 55: {'flits': 110}\n",
"Edge from 55 to 57: {'flits': 30}\n",
"Edge from 56 to 57: {'flits': 45}\n",
"Edge from 57 to 58: {'flits': 119}\n",
"Edge from 57 to 59: {'flits': 119}\n",
"Edge from 57 to 62: {'flits': 119}\n",
"Edge from 57 to 67: {'flits': 119}\n",
"Edge from 58 to 69: {'flits': 45}\n",
"Edge from 59 to 60: {'flits': 23}\n",
"Edge from 60 to 61: {'flits': 26}\n",
"Edge from 61 to 69: {'flits': 30}\n",
"Edge from 62 to 63: {'flits': 23}\n",
"Edge from 63 to 64: {'flits': 23}\n",
"Edge from 64 to 65: {'flits': 26}\n",
"Edge from 65 to 66: {'flits': 26}\n",
"Edge from 66 to 69: {'flits': 30}\n",
"Edge from 67 to 68: {'flits': 119}\n",
"Edge from 68 to 69: {'flits': 15}\n",
"Node Attributes:\n",
"Node 0: {'delay_comp': 100, 'delay_mem': 10, 'delay_send': 10, 'src': True, 'dst': False}\n",
"Node 1: {'delay_comp': 100, 'delay_mem': 10, 'delay_send': 10, 'src': False, 'dst': False}\n",
"Node 2: {'delay_comp': 100, 'delay_mem': 10, 'delay_send': 10, 'src': False, 'dst': False}\n",
"Node 3: {'delay_comp': 100, 'delay_mem': 10, 'delay_send': 10, 'src': False, 'dst': False}\n",
"Node 4: {'delay_comp': 100, 'delay_mem': 10, 'delay_send': 10, 'src': False, 'dst': False}\n",
"Node 5: {'delay_comp': 100, 'delay_mem': 10, 'delay_send': 10, 'src': False, 'dst': False}\n",
"Node 6: {'delay_comp': 100, 'delay_mem': 10, 'delay_send': 10, 'src': False, 'dst': False}\n",
"Node 7: {'delay_comp': 100, 'delay_mem': 10, 'delay_send': 10, 'src': False, 'dst': False}\n",
"Node 8: {'delay_comp': 100, 'delay_mem': 10, 'delay_send': 10, 'src': False, 'dst': False}\n",
"Node 9: {'delay_comp': 100, 'delay_mem': 10, 'delay_send': 10, 'src': False, 'dst': False}\n",
"Node 10: {'delay_comp': 100, 'delay_mem': 10, 'delay_send': 10, 'src': False, 'dst': False}\n",
"Node 11: {'delay_comp': 100, 'delay_mem': 10, 'delay_send': 10, 'src': False, 'dst': False}\n",
"Node 12: {'delay_comp': 100, 'delay_mem': 10, 'delay_send': 10, 'src': False, 'dst': False}\n",
"Node 13: {'delay_comp': 100, 'delay_mem': 10, 'delay_send': 10, 'src': False, 'dst': False}\n",
"Node 14: {'delay_comp': 100, 'delay_mem': 10, 'delay_send': 10, 'src': False, 'dst': False}\n",
"Node 15: {'delay_comp': 100, 'delay_mem': 10, 'delay_send': 10, 'src': False, 'dst': True}\n",
"\n",
"Edge Attributes:\n",
"Edge from 0 to 1: {'flits': 10}\n",
"Edge from 1 to 2: {'flits': 10}\n",
"Edge from 1 to 5: {'flits': 10}\n",
"Edge from 1 to 8: {'flits': 10}\n",
"Edge from 1 to 11: {'flits': 10}\n",
"Edge from 2 to 3: {'flits': 10}\n",
"Edge from 3 to 4: {'flits': 10}\n",
"Edge from 4 to 14: {'flits': 10}\n",
"Edge from 5 to 6: {'flits': 10}\n",
"Edge from 6 to 7: {'flits': 10}\n",
"Edge from 7 to 14: {'flits': 10}\n",
"Edge from 8 to 9: {'flits': 10}\n",
"Edge from 9 to 10: {'flits': 10}\n",
"Edge from 10 to 14: {'flits': 10}\n",
"Edge from 11 to 12: {'flits': 10}\n",
"Edge from 12 to 13: {'flits': 10}\n",
"Edge from 13 to 14: {'flits': 10}\n",
"Edge from 14 to 15: {'flits': 10}\n"
]
}
],
"source": [
"G=CreateNetworkXGraph()\n",
"# Print all attributes of the nodes\n",
"print(\"Node Attributes:\")\n",
"for node, attrs in G.nodes(data=True):\n",
" print(f\"Node {node}: {attrs}\")\n",
"\n",
"# Print all attributes of the edges\n",
"print(\"\\nEdge Attributes:\")\n",
"for u, v, attrs in G.edges(data=True):\n",
" print(f\"Edge from {u} to {v}: {attrs}\")\n",
"\n",
"\n",
"G=CreateNetworkXGraphManuelParallel()\n",
"# Print all attributes of the nodes\n",
"print(\"Node Attributes:\")\n",
"for node, attrs in G.nodes(data=True):\n",
" print(f\"Node {node}: {attrs}\")\n",
"\n",
"# Print all attributes of the edges\n",
"print(\"\\nEdge Attributes:\")\n",
"for u, v, attrs in G.edges(data=True):\n",
" print(f\"Edge from {u} to {v}: {attrs}\")"
]
},
{
"cell_type": "code",
"execution_count": 83,
"metadata": {
"tags": [
"parameters"
]
},
"outputs": [],
"source": [
"param1 = 1\n",
"param2 = 0.1"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Edge from 0 to 1: {'flits': 285}\n",
"Edge from 1 to 2: {'flits': 277}\n",
"Edge from 2 to 3: {'flits': 554}\n",
"Edge from 2 to 4: {'flits': 554}\n",
"Edge from 3 to 5: {'flits': 137}\n",
"Edge from 4 to 5: {'flits': 205}\n",
"Edge from 5 to 6: {'flits': 342}\n",
"Edge from 5 to 8: {'flits': 342}\n",
"Edge from 6 to 7: {'flits': 137}\n",
"Edge from 7 to 12: {'flits': 194}\n",
"Edge from 8 to 9: {'flits': 137}\n",
"Edge from 9 to 10: {'flits': 137}\n",
"Edge from 10 to 11: {'flits': 137}\n",
"Edge from 11 to 12: {'flits': 194}\n",
"Edge from 12 to 13: {'flits': 388}\n",
"Edge from 12 to 14: {'flits': 388}\n",
"Edge from 13 to 15: {'flits': 95}\n",
"Edge from 14 to 15: {'flits': 95}\n",
"Edge from 15 to 16: {'flits': 189}\n",
"Edge from 15 to 17: {'flits': 189}\n",
"Edge from 15 to 19: {'flits': 189}\n",
"Edge from 15 to 22: {'flits': 189}\n",
"Edge from 16 to 24: {'flits': 48}\n",
"Edge from 17 to 18: {'flits': 32}\n",
"Edge from 18 to 24: {'flits': 48}\n",
"Edge from 19 to 20: {'flits': 32}\n",
"Edge from 20 to 21: {'flits': 48}\n",
"Edge from 21 to 24: {'flits': 48}\n",
"Edge from 22 to 23: {'flits': 189}\n",
"Edge from 23 to 24: {'flits': 48}\n",
"Edge from 24 to 25: {'flits': 189}\n",
"Edge from 24 to 26: {'flits': 189}\n",
"Edge from 24 to 28: {'flits': 189}\n",
"Edge from 24 to 31: {'flits': 189}\n",
"Edge from 25 to 33: {'flits': 48}\n",
"Edge from 26 to 27: {'flits': 32}\n",
"Edge from 27 to 33: {'flits': 48}\n",
"Edge from 28 to 29: {'flits': 32}\n",
"Edge from 29 to 30: {'flits': 48}\n",
"Edge from 30 to 33: {'flits': 48}\n",
"Edge from 31 to 32: {'flits': 189}\n",
"Edge from 32 to 33: {'flits': 48}\n",
"Edge from 33 to 34: {'flits': 189}\n",
"Edge from 33 to 35: {'flits': 189}\n",
"Edge from 33 to 37: {'flits': 189}\n",
"Edge from 33 to 40: {'flits': 189}\n",
"Edge from 34 to 42: {'flits': 48}\n",
"Edge from 35 to 36: {'flits': 32}\n",
"Edge from 36 to 42: {'flits': 48}\n",
"Edge from 37 to 38: {'flits': 32}\n",
"Edge from 38 to 39: {'flits': 48}\n",
"Edge from 39 to 42: {'flits': 48}\n",
"Edge from 40 to 41: {'flits': 189}\n",
"Edge from 41 to 42: {'flits': 48}\n",
"Edge from 42 to 43: {'flits': 189}\n",
"Edge from 42 to 44: {'flits': 189}\n",
"Edge from 42 to 46: {'flits': 189}\n",
"Edge from 42 to 49: {'flits': 189}\n",
"Edge from 43 to 51: {'flits': 48}\n",
"Edge from 44 to 45: {'flits': 32}\n",
"Edge from 45 to 51: {'flits': 48}\n",
"Edge from 46 to 47: {'flits': 32}\n",
"Edge from 47 to 48: {'flits': 48}\n",
"Edge from 48 to 51: {'flits': 48}\n",
"Edge from 49 to 50: {'flits': 189}\n",
"Edge from 50 to 51: {'flits': 48}\n",
"Edge from 51 to 52: {'flits': 189}\n",
"Edge from 51 to 53: {'flits': 189}\n",
"Edge from 51 to 56: {'flits': 189}\n",
"Edge from 52 to 57: {'flits': 45}\n",
"Edge from 53 to 54: {'flits': 95}\n",
"Edge from 54 to 55: {'flits': 110}\n",
"Edge from 55 to 57: {'flits': 30}\n",
"Edge from 56 to 57: {'flits': 45}\n",
"Edge from 57 to 58: {'flits': 119}\n",
"Edge from 57 to 59: {'flits': 119}\n",
"Edge from 57 to 62: {'flits': 119}\n",
"Edge from 57 to 67: {'flits': 119}\n",
"Edge from 58 to 69: {'flits': 45}\n",
"Edge from 59 to 60: {'flits': 23}\n",
"Edge from 60 to 61: {'flits': 26}\n",
"Edge from 61 to 69: {'flits': 30}\n",
"Edge from 62 to 63: {'flits': 23}\n",
"Edge from 63 to 64: {'flits': 23}\n",
"Edge from 64 to 65: {'flits': 26}\n",
"Edge from 65 to 66: {'flits': 26}\n",
"Edge from 66 to 69: {'flits': 30}\n",
"Edge from 67 to 68: {'flits': 119}\n",
"Edge from 68 to 69: {'flits': 15}\n",
"Edge from 0 to 1: {'flits': 285}\n",
"Edge from 1 to 2: {'flits': 277}\n",
"Edge from 2 to 3: {'flits': 554}\n",
"Edge from 2 to 4: {'flits': 554}\n",
"Edge from 3 to 5: {'flits': 137}\n",
"Edge from 4 to 5: {'flits': 205}\n",
"Edge from 5 to 6: {'flits': 342}\n",
"Edge from 5 to 8: {'flits': 342}\n",
"Edge from 6 to 7: {'flits': 137}\n",
"Edge from 7 to 12: {'flits': 194}\n",
"Edge from 8 to 9: {'flits': 137}\n",
"Edge from 9 to 10: {'flits': 137}\n",
"Edge from 10 to 11: {'flits': 137}\n",
"Edge from 11 to 12: {'flits': 194}\n",
"Edge from 12 to 13: {'flits': 388}\n",
"Edge from 12 to 14: {'flits': 388}\n",
"Edge from 13 to 15: {'flits': 95}\n",
"Edge from 14 to 15: {'flits': 95}\n",
"Edge from 15 to 16: {'flits': 189}\n",
"Edge from 15 to 17: {'flits': 189}\n",
"Edge from 15 to 19: {'flits': 189}\n",
"Edge from 15 to 22: {'flits': 189}\n",
"Edge from 16 to 24: {'flits': 48}\n",
"Edge from 17 to 18: {'flits': 32}\n",
"Edge from 18 to 24: {'flits': 48}\n",
"Edge from 19 to 20: {'flits': 32}\n",
"Edge from 20 to 21: {'flits': 48}\n",
"Edge from 21 to 24: {'flits': 48}\n",
"Edge from 22 to 23: {'flits': 189}\n",
"Edge from 23 to 24: {'flits': 48}\n",
"Edge from 24 to 25: {'flits': 189}\n",
"Edge from 24 to 26: {'flits': 189}\n",
"Edge from 24 to 28: {'flits': 189}\n",
"Edge from 24 to 31: {'flits': 189}\n",
"Edge from 25 to 33: {'flits': 48}\n",
"Edge from 26 to 27: {'flits': 32}\n",
"Edge from 27 to 33: {'flits': 48}\n",
"Edge from 28 to 29: {'flits': 32}\n",
"Edge from 29 to 30: {'flits': 48}\n",
"Edge from 30 to 33: {'flits': 48}\n",
"Edge from 31 to 32: {'flits': 189}\n",
"Edge from 32 to 33: {'flits': 48}\n",
"Edge from 33 to 34: {'flits': 189}\n",
"Edge from 33 to 35: {'flits': 189}\n",
"Edge from 33 to 37: {'flits': 189}\n",
"Edge from 33 to 40: {'flits': 189}\n",
"Edge from 34 to 42: {'flits': 48}\n",
"Edge from 35 to 36: {'flits': 32}\n",
"Edge from 36 to 42: {'flits': 48}\n",
"Edge from 37 to 38: {'flits': 32}\n",
"Edge from 38 to 39: {'flits': 48}\n",
"Edge from 39 to 42: {'flits': 48}\n",
"Edge from 40 to 41: {'flits': 189}\n",
"Edge from 41 to 42: {'flits': 48}\n",
"Edge from 42 to 43: {'flits': 189}\n",
"Edge from 42 to 44: {'flits': 189}\n",
"Edge from 42 to 46: {'flits': 189}\n",
"Edge from 42 to 49: {'flits': 189}\n",
"Edge from 43 to 51: {'flits': 48}\n",
"Edge from 44 to 45: {'flits': 32}\n",
"Edge from 45 to 51: {'flits': 48}\n",
"Edge from 46 to 47: {'flits': 32}\n",
"Edge from 47 to 48: {'flits': 48}\n",
"Edge from 48 to 51: {'flits': 48}\n",
"Edge from 49 to 50: {'flits': 189}\n",
"Edge from 50 to 51: {'flits': 48}\n",
"Edge from 51 to 52: {'flits': 189}\n",
"Edge from 51 to 53: {'flits': 189}\n",
"Edge from 51 to 56: {'flits': 189}\n",
"Edge from 52 to 57: {'flits': 45}\n",
"Edge from 53 to 54: {'flits': 95}\n",
"Edge from 54 to 55: {'flits': 110}\n",
"Edge from 55 to 57: {'flits': 30}\n",
"Edge from 56 to 57: {'flits': 45}\n",
"Edge from 57 to 58: {'flits': 119}\n",
"Edge from 57 to 59: {'flits': 119}\n",
"Edge from 57 to 62: {'flits': 119}\n",
"Edge from 57 to 67: {'flits': 119}\n",
"Edge from 58 to 69: {'flits': 45}\n",
"Edge from 59 to 60: {'flits': 23}\n",
"Edge from 60 to 61: {'flits': 26}\n",
"Edge from 61 to 69: {'flits': 30}\n",
"Edge from 62 to 63: {'flits': 23}\n",
"Edge from 63 to 64: {'flits': 23}\n",
"Edge from 64 to 65: {'flits': 26}\n",
"Edge from 65 to 66: {'flits': 26}\n",
"Edge from 66 to 69: {'flits': 30}\n",
"Edge from 67 to 68: {'flits': 119}\n",
"Edge from 68 to 69: {'flits': 15}\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAADJQAAAWiCAYAAAD/PVkEAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQABAABJREFUeJzs3Xd4VGX+/vF7ZjLpIY0ESGgBBEKRJghC6J0ZbIgNFbuiuz9l1cWKumtXVLBhRxF1VXSdBKU3AQErRQSR0EIJqaRP/f3BN7NEEkoKE5j367rmInPOeZ7nc06GJJBzz8fg8Xg8AgAAAAAAAAAAAAAAAAAAAAAAgN8w+roAAAAAAAAAAAAAAAAAAAAAAAAAnF4ESgAAAAAAAAAAAAAAAAAAAAAAAPwMgRIAAAAAAAAAAAAAAAAAAAAAAAA/Q6AEAAAAAAAAAAAAAAAAAAAAAADAzxAoAQAAAAAAAAAAAAAAAAAAAAAA8DMESgAAAAAAAAAAAAAAAAAAAAAAAPwMgRIAAAAAAAAAAAAAAAAAAAAAAAA/Q6AEAAAAAAAAAAAAAAAAAAAAAADAzxAoAQAAAAAAAAAAAAAAAAAAAAAA8DMESgAAAAAAAAAA8HMTJ05UeHi4r8uoF1q2bCmLxXJa1jIYDHr00UdPy1qnUsf7778vg8GgnTt3ntY6fLUuAAAAAAAAAAD+ikAJAAAAAAAAAAB/UX5je3BwsDIyMo7ZP3DgQHXq1Klac8+ZM0cvvfRSDSs8/TIzMxUTE6PBgwcfs8/hcKhz585q2bKlioqKTjjX4cOH9cQTT+i8885TZGSkgoKC1KJFC11++eVKS0uri/Lr3Ny5c2UwGPT2229XeczChQtlMBg0ffr001hZ/fPkk0/qq6++8nUZAAAAAAAAAAD4PQIlAAAAAAAAAABUoaysTE8//XStznmmBkri4+P1zDPPaOnSpZo1a1aFfS+88II2bdqkV155RWFhYcedZ/v27erWrZumTp2qpKQk/etf/9Lrr7+uG264QTt37pTFYtGHH35Yl6dSJ8aMGaPIyEjNmTOnymPmzJkjk8mkK664QpJUUlKihx566HSVeNKuueYalZSUqEWLFnUyf1WBkrpeFwAAAAAAAAAAVBTg6wIAAAAAAAAAAKivunbtqrfeekv333+/EhISfF1OrSsqKjphAORoN910kz744APdc889slgsio2NVXp6uh5//HFdcsklslgsxx3vdDp18cUX6+DBg1q+fLn69u1bYf/UqVO1YMECuVyuWq37dAgKCtK4ceP03nvvad++fce8XkpLS/Xll19q2LBhio+PlyQFBwf7otQTMplMMplMfrMuAAAAAAAAAAD+ig4lAAAAAAAAAABU4YEHHpDL5TrpLiWzZ89Wjx49FBISopiYGF1xxRXas2ePd//AgQOVlpamXbt2yWAwyGAwqGXLlvJ4PGrYsKEmT57sPdbtdisqKkomk0l5eXne7c8884wCAgJUWFjo3bZkyRKlpKQoLCxMUVFRuvDCC7Vly5YKtT366KMyGAz67bffdNVVVyk6Olr9+vWr8lx++eUXxcXFaeDAgd61DAaD3njjDeXn5+uee+6RJE2aNEkBAQGaPn36Ca/PZ599pk2bNunhhx8+JkxSbvjw4Ro1apT3+fvvvy+DwaDly5dr0qRJio+PV9OmTSVJu3bt0qRJk9SuXTuFhIQoNjZWl112mXbu3FlhzvI5VqxYoVtvvVWxsbFq0KCBrr32WuXm5lZax3fffadevXopODhYrVq10gcffHDC85swYYLcbrc++eSTY/alpaUpPz9fV199tXebwWDQo48+6n1eUFCgu+66Sy1btlRQUJDi4+M1bNgw/fTTT95jWrZsqYkTJx4z/8CBAzVw4EDvc7vdrkceeUQ9evRQZGSkwsLClJKSoqVLl57wPMqvV/l1LH/tVPY4upbnn39eF1xwgWJjYxUSEqIePXro888/rzC3wWBQUVGRZs2adcwcf1233GuvvaaOHTsqKChICQkJuuOOOyr8nSg//06dOum3337ToEGDFBoaqsTERD377LMnPF8AAAAAAAAAAPwVHUoAAAAAAAAAAKhCUlKSrr32Wr311luaMmXKcbuUPPHEE3r44Yc1fvx43XTTTTp06JBmzJih/v376+eff1ZUVJQefPBB5efna+/evXrxxRclSeHh4TIYDOrbt69WrFjhnW/Dhg3Kz8+X0WjUqlWrNGbMGEnSypUr1a1bN4WHh0uSFi1apFGjRqlVq1Z69NFHVVJSohkzZqhv37766aef1LJlywp1XnbZZTrnnHP05JNPyuPxVHou69ev14gRI3Teeefpv//9r0JCQrz7OnbsqHvuuUdPPfWUIiIi9O233+rll19WYmLiCa+nzWaTdCR4caomTZqkuLg4PfLIIyoqKvLWuXr1al1xxRVq2rSpdu7cqddff10DBw7Ub7/9ptDQ0Apz3HnnnYqKitKjjz6qrVu36vXXX9euXbu0bNkyGQwG73Hbt2/XuHHjdOONN+q6667Tu+++q4kTJ6pHjx7q2LFjlTX2799fTZs21Zw5cyqEgyRpzpw5Cg0N1UUXXVTl+Ntuu02ff/657rzzTnXo0EHZ2dn67rvvtGXLFnXv3v2Urtfhw4f19ttv68orr9TNN9+sgoICvfPOOxoxYoTWrVunrl27nvRcl1xyidq0aVNh248//qiXXnrJ221Fkl5++WWNHTtWV199tex2uz755BNddtllSk1N9b5+P/zwQ910003q1auXbrnlFklS69atq1z70Ucf1WOPPaahQ4fq9ttv937e1q9fr1WrVslsNnuPzc3N1ciRI3XJJZdo/Pjx+vzzz/XPf/5TnTt3rhBSAgAAAAAAAAAARxAoAQAAAAAAAADgOB588EF98MEHeuaZZ/Tyyy9XesyuXbs0depU/fvf/9YDDzzg3X7JJZeoW7dueu211/TAAw9o2LBhSkxMVG5u7jGhipSUFE2ZMkUFBQWKiIjQypUr1aJFCzVq1EgrV67UmDFj5Ha7tWrVKl1//fXecffee69iYmK0Zs0axcTESJIuuugidevWTVOnTtWsWbMqrNOlSxfNmTOnyvNdtWqVRo8erZSUFH3xxRcKCgo65piHH35Yn376qWbMmKEePXrojjvuOPGFlPT7778rKirqmPBJUVGRSkpKvM8DAwPVoEGDCsfExMRo8eLFMplM3m1jxozRuHHjKhxntVrVp08fffHFF7rmmmsq7AsMDNTixYu9IYQWLVrovvvuk81m09ixY73Hbd26VStWrFBKSookafz48WrWrJnee+89Pf/881Wen9Fo1JVXXqnnnntO27ZtU9u2bSUdCXfMmzdPF198sTcIVJm0tDTdfPPNeuGFF7zb7rvvviqPP57o6Gjt3LlTgYGB3m0333yz2rdvrxkzZuidd9456bnOPfdcnXvuud7nWVlZevDBB9W5c2dNnTrVu33btm0Vwkd33nmnunfvrmnTpnkDJRMmTNBtt92mVq1anTBYdOjQIT311FMaPny4vvnmGxmNRklS+/btdeedd2r27NkV/i7s27dPH3zwgffzfuONN6pFixZ65513CJQAAAAAAAAAAFAJo68LAAAAAAAAAACgPmvVqpWuueYavfnmm9q/f3+lx8ydO1dut1vjx49XVlaW99G4cWOdc845Wrp06QnXSUlJkcvl0urVqyUd6USSkpKilJQUrVy5UpK0adMm5eXleYMO+/fv1y+//KKJEyd6wyTSkQDAsGHDNG/evGPWue2226qsYenSpRoxYoSGDBmiuXPnVhomkY4EMyIjIyVJQ4YMqRDyOJ7Dhw9XGqh48MEHFRcX531cddVVxxxz8803H7PO0eEFh8Oh7OxstWnTRlFRUfrpp5+OmeOWW26p0NHi9ttvV0BAwDHXqUOHDt5rLElxcXFq166dduzYccJzLA9JHB3a+eKLL1RaWqqrr776uGOjoqK0du1a7du374TrnIjJZPKGSdxut3JycuR0OnXeeedVem1Olsvl0pVXXqmCggJ9+eWXCgsL8+47+vORm5ur/Px8paSkVHu9RYsWyW6366677vKGSaQjr4UGDRooLS2twvHh4eEVQiqBgYHq1avXSX3eAAAAAAAAAADwRwRKAAAAAAAAAAA4gYceekhOp1NPP/10pfv/+OMPeTwenXPOORWCEXFxcdqyZYsyMzNPuEb37t0VGhrqDY+UB0r69++vH374QaWlpd59/fr1k3SkM4oktWvX7pj5kpOTlZWVpaKiogrbk5KSKl2/tLRUY8aMUbdu3fSf//ynQmeLv3r55Zf1888/q1OnTpo+fbq2b99+wvOTpIiICBUWFh6zfdKkSVq4cKEWLlyoRo0aVTq2srpLSkr0yCOPqFmzZgoKClLDhg0VFxenvLw85efnH3P8OeecU+F5eHi4mjRpop07d1bY3rx582PGRkdHKzc393inJ+lImKdTp076+OOPvdvmzJmjhg0basSIEccd++yzz2rTpk1q1qyZevXqpUcffbRGYYhZs2bp3HPPVXBwsGJjYxUXF6e0tLRKr83Jeuihh7RkyRLNmTNHrVu3rrAvNTVVvXv3VnBwsGJiYhQXF6fXX3+92utV9foODAxUq1atvPvLNW3aVAaDocK2k/28AQAAAAAAAADgjwiUAAAAAAAAAABwAq1atdKECROq7FLidrtlMBj07bffeoMRRz9mzpx5wjXMZrPOP/98rVixQtu3b9eBAweUkpKifv36yeFwaO3atVq5cqXat2+vuLi4ap/L0V0kjhYUFKQxY8Zo7dq1+vbbb6scv2fPHk2dOlUXXXSRFixYoMDAQN1xxx0ntXb79u2Vl5enjIyMCtvbtm2roUOHaujQoQoODj7puv/2t7/piSee0Pjx4/Wf//xHCxYs0MKFCxUbGyu3231SNVWmqo4rHo/npMZPmDBB27Zt0w8//KADBw5o6dKlGj9+vAICAo47bvz48dqxY4dmzJihhIQEPffcc+rYsaO++eYb7zF/DUyUc7lcFZ7Pnj1bEydOVOvWrfXOO+94X5uDBw+u9rX56quv9Mwzz+jxxx/XyJEjK+xbuXKlxo4dq+DgYL322muaN2+eFi5cqKuuuuqkr1tN1fTzBgAAAAAAAACAvyFQAgAAAAAAAADASSjvUvLMM88cs69169byeDxKSkryBiOOfvTu3dt7bFWBAElKSUnRunXrtGjRIjVs2FDt27dXTEyMOnbsqJUrV2rlypXq37+/9/gWLVpIkrZu3XrMXL///rsaNmyosLCwkzo/g8Ggjz76SEOGDNFll12mZcuWVXrcnXfeKUmaPn26mjRpoieeeEILFizQJ598csI1LBaLJOmjjz46qZpO5PPPP9d1112nF154QePGjdOwYcPUr18/5eXlVXr8H3/8UeF5YWGh9u/fr5YtW9ZKPeWuvPJKGQwGzZkzR59++qlcLpeuvvrqkxrbpEkTTZo0SV999ZXS09MVGxurJ554wrs/Ojq60vP7a7eOzz//XK1atdLcuXN1zTXXaMSIERo6dKhKS0urdU7btm3Tddddp4suukgPPPDAMfu/+OILBQcHa/78+brhhhs0atQoDR06tNK5jvd34GhVvb7tdrvS09O9+wEAAAAAAAAAQPUQKAEAAAAAAAAA4CS0bt1aEyZM0MyZM3XgwIEK+y655BKZTCY99thjx3RD8Hg8ys7O9j4PCwtTfn5+pWukpKSorKxML730kvr16+e98T4lJUUffvih9u3bp5SUFO/xTZo0UdeuXTVr1qwKIYNNmzZpwYIFGj169CmdY2BgoObOnauePXvKarVq3bp1FfZ/+eWX+vrrr/X444+rWbNmkqRJkyapR48emjx5sg4fPnzc+cePH68OHTroX//6l77//vtKjzmVbhImk+mY42fMmHFMt45yb775phwOh/f566+/LqfTqVGjRp30miejefPmSklJ0aeffqrZs2crKSlJF1xwwXHHuFyuY14X8fHxSkhIUFlZmXdb69at9f3338tut3u3paamas+ePRXGlnfrOPr6rF27VmvWrDnl8yksLNTFF1+sxMREzZo1q9JAiMlkksFgqHDtd+7cqa+++uqYY8PCwqoM/Rxt6NChCgwM1PTp0yucxzvvvKP8/HyNGTPmlM8FAAAAAAAAAAD8z/F7qwMAAAAAAAAAAK8HH3xQH374obZu3aqOHTt6t7du3Vr//ve/df/992vnzp266KKLFBERofT0dH355Ze65ZZbdM8990iSevTooU8//VSTJ09Wz549FR4eLqvVKknq06ePAgICtHXrVt1yyy3e+fv376/XX39dkioESiTpueee06hRo9SnTx/deOONKikp0YwZMxQZGalHH330lM8xJCREqampGjx4sEaNGqXly5erU6dOKigo0N///nd169ZNf//7373HG41GvfHGGzr//PP14IMPasaMGVXObTab9eWXX2rEiBHq16+fLrnkEqWkpCgsLEwZGRn6+uuvtXv37pMOClgsFn344YeKjIxUhw4dtGbNGi1atEixsbGVHm+32zVkyBCNHz9eW7du1WuvvaZ+/fpp7Nixp3aRTsKECRN0yy23aN++fXrwwQdPeHxBQYGaNm2qcePGqUuXLgoPD9eiRYu0fv16vfDCC97jbrrpJn3++ecaOXKkxo8frz///FOzZ89W69atK8xnsVg0d+5cXXzxxRozZozS09P1xhtvqEOHDiosLDylc3nsscf022+/6aGHHtJ///vfCvtat26tPn36aMyYMZo2bZpGjhypq666SpmZmXr11VfVpk0bbdiwocKYHj16aNGiRZo2bZoSEhKUlJSk888//5h14+LidP/99+uxxx7TyJEjNXbsWO/nrWfPnpowYcIpnQcAAAAAAAAAAKiIQAkAAAAAAAAAACepTZs2mjBhgmbNmnXMvilTpqht27Z68cUX9dhjj0mSmjVrpuHDh1cILEyaNEm//PKL3nvvPb344otq0aKFN1ASFhambt26af369erXr593THmIpFmzZmrRokWFdYcOHapvv/1WU6dO1SOPPCKz2awBAwbomWeeUVJSUrXOs0GDBpo/f7769++vYcOGaeXKlXrllVe0b98+zZ0719v9otx5552nSZMm6bXXXtPEiRPVo0ePKudu27atfvnlF02fPl1ffvmlvvnmG9ntdjVq1Ejnn3++pk6dKovFclJ1vvzyyzKZTProo49UWlqqvn37atGiRRoxYkSlx7/yyiv66KOP9Mgjj8jhcOjKK6/U9OnTK+24UVPjxo3T3/72N5WVlenqq68+4fGhoaGaNGmSFixYoLlz58rtdqtNmzZ67bXXdPvtt3uPGzFihF544QVNmzZNd911l8477zylpqbqH//4R4X5Jk6cqAMHDmjmzJmaP3++OnTooNmzZ+uzzz7TsmXLTulcDh06JEn697//fcy+6667Tn369NHgwYP1zjvv6Omnn9Zdd92lpKQkPfPMM9q5c+cxgZJp06bplltu0UMPPaSSkhJdd911lQZKJOnRRx9VXFycXnnlFd19992KiYnRLbfcoieffFJms/mUzgMAAAAAAAAAAFRk8JxK73gAAAAAAAAAAIAzzPvvv6/rr79e69ev13nnnefrcgAAAAAAAAAAAOoFo68LAAAAAAAAAAAAAAAAAAAAAAAAwOlFoAQAAAAAAAAAAAAAAAAAAAAAAMDPECgBAAAAAAAAAAAAAAAAAAAAAADwMwaPx+PxdREAAAAAAAAAAAAAAAAAAAAAAAA4fehQAgAAAAAAAAAAAAAAAAAAAAAA4GcIlAAAAAAAAAAAAAAAAAAAAAAAAPgZAiUAAAAAAAAAAAAAAAAAAAAAAAB+hkAJAAAAAAAAAAAAAAAAAAAAAACAnyFQAgAAAAAAAAAAAAAAAAAAAAAA4GcIlAAAAAAAAAAAAAAAAAAAAAAAAPgZAiUAAAAAAAAAAAAAAAAAAAAAAAB+hkAJAAAAAAAAAAAAAAAAAAAAAACAnyFQAgAAAAAAAAAAAAAAAAAAAAAA4GcIlAAAAAAAAAAAAAAAAAAAAAAAAPgZAiUAAAAAAAAAAAAAAAAAAAAAAAB+hkAJAAAAAAAAAAAAAAAAAAAAAACAnyFQAgAAAAAAAAAAAAAAAAAAAAAA4GcIlAAAAAAAAAAAAAAAAAAAAAAAAPgZAiUAAAAAAAAAAAAAAAAAAAAAAAB+hkAJAAAAAAAAAAAAAAAAAAAAAACAnyFQAgAAAAAAAAAAAAAAAAAAAAAA4GcIlAAAAAAAAAAAAAAAAAAAAAAAAPgZAiUAAAAAAAAAAAAAAAAAAAAAAAB+hkAJAAAAAAAAAAAAAAAAAAAAAACAnyFQAgAAAAAAAAAAAAAAAAAAAAAA4GcIlAAAAAAAAAAAAAAAAAAAAAAAAPgZAiUAAAAAAAAAAAAAAAAAAAAAAAB+hkAJAAAAAAAAAAAAAAAAAAAAAACAnyFQAgAAAAAAAAAAAAAAAAAAAAAA4GcIlAAAAAAAAAAAAAAAAAAAAAAAAPgZAiUAAAAAAAAAAAAAAAAAAAAAAAB+hkAJAAAAAAAAAAAAAAAAAAAAAACAnyFQAgAAAAAAAAAAAAAAAAAAAAAA4GcIlAAAAAAAAAAAAAAAAAAAAAAAAPgZAiUAAAAAAAAAAAAAAAAAAAAAAAB+hkAJAAAAAAAAAAAAAAAAAAAAAACAnyFQAgAAAAAAAAAAAAAAAAAAAAAA4GcIlAAAAAAAAAAAAAAAAAAAAAAAAPgZAiUAAAAAAAAAAAAAAAAAAAAAAAB+hkAJAAAAAAAAAAAAAAAAAAAAAACAnyFQAgAAAAAAAAAAAAAAAAAAAAAA4GcIlAAAAAAAAAAAAAAAAAAAAAAAAPgZAiUAAAAAAAAAAAAAAAAAAAAAAAB+hkAJAAAAAAAAAAAAAAAAAAAAAACAnyFQAgAAAAAAAAAAAAAAAAAAAAAA4GcIlAAAAAAAAAAAAAAAAAAAAAAAAPgZAiUAAAAAAAAAAAAAAAAAAAAAAAB+hkAJAAAAAAAAAAAAAAAAAAAAAACAnyFQAgAAAAAAAAAAAAAAAAAAAAAA4GcIlAAAAAAAAAAAAAAAAAAAAAAAAPgZAiUAAAAAAAAAAAAAAAAAAAAAAAB+hkAJAAAAAAAAAAAAAAAAAAAAAACAnyFQAgAAAAAAAAAAAAAAAAAAAAAA4GcIlAAAAAAAAAAAAAAAAAAAAAAAAPgZAiUAAAAAAAAAAAAAAAAAAAAAAAB+hkAJAAAAAAAAAAAAAAAAAAAAAACAnyFQAgAAAAAAAAAAAAAAAAAAAAAA4GcIlAAAAAAAAAAAAAAAAAAAAAAAAPgZAiUAAAAAAAAAAAAAAAAAAAAAAAB+hkAJAAAAAAAAAAAAAAAAAAAAAACAnyFQAgAAAAAAAAAAAAAAAAAAAAAA4GcIlAAAAAAAAAAAAAAAAAAAAAAAAPgZAiUAAAAAAAAAAAAAAAAAAAAAAAB+hkAJAAAAAAAAAAAAAAAAAAAAAACAnyFQAgAAAAAAAAAAAAAAAAAAAAAA4GcIlAAAAAAAAAAAAAAAAAAAAAAAAPgZAiUAAAAAAAAAAAAAAAAAAAAAAAB+hkAJAAAAAAAAAAAAAAAAAAAAAACAnyFQAgAAAAAAAAAAAAAAAAAAAAAA4GcIlAAAAAAAAAAAAAAAAAAAAAAAAPgZAiUAAAAAAAAAAAAAAAAAAAAAAAB+hkAJAAAAAAAAAAAAAAAAAAAAAACAnyFQAgAAAAAAAAAAAAAAAAAAAAAA4GcIlAAAAAAAAAAAAAAAAAAAAAAAAPgZAiUAAAAAAAAAAAAAAAAAAAAAAAB+hkAJAAAAAAAAAAAAAAAAAAAAAACAnyFQAgAAAAAAAAAAAAAAAAAAAAAA4GcIlAAAAAAAAAAAAAAAAAAAAAAAAPgZAiUAAAAAAAAAAAAAAAAAAAAAAAB+hkAJAAAAAAAAAAAAAAAAAAAAAACAnyFQAgAAAAAAAAAAAAAAAAAAAAAA4GcIlAAAAAAAAAAAAAAAAAAAAAAAAPgZAiUAAAAAAAAAAAAAAAAAAAAAAAB+hkAJAAAAAAAAAAAAAAAAAAAAAACAnyFQAgAAAAAAAAAAAAAAAAAAAAAA4GcIlAAAAAAAAAAAAAAAAAAAAAAAAPgZAiUAAAAAAAAAAAAAAAAAAAAAAAB+hkAJAAAAAAAAAAAAAAAAAAAAAACAnyFQAgAAAAAAAAAAAAAAAAAAAAAA4GcIlAAAAAAAAAAAAAAAAAAAAAAAAPgZAiUAAAAAAAAAAAAAAAAAAAAAAAB+hkAJAAAAAAAAAAAAAAAAAAAAAACAnyFQAgAAAAAAAAAAAAAAAAAAAAAA4GcIlAAAAAAAAAAAAAAAAAAAAAAAAPgZAiUAAAAAAAAAAAAAAAAAAAAAAAB+hkAJAAAAAAAAAAAAAAAAAAAAAACAnyFQAgAAAAAAAAAAAAAAAAAAAAAA4GcIlAAAAAAAAAAAAAAAAAAAAAAAAPgZAiUAAAAAAAAAAAAAAAAAAAAAAAB+hkAJAAAAAAAAAAAAAAAAAAAAAACAnyFQAgAAAAAAAAAAAAAAAAAAAAAA4GcIlAAAAAAAAAAAAAAAAAAAAAAAAPgZAiUAAAAAAAAAAAAAAAAAAAAAAAB+hkAJAAAAAAAAAAAAAAAAAAAAAACAnyFQAgAAAAAAAAAAAAAAAAAAAAAA4GcIlAAAAAAAAAAAAAAAAAAAAAAAAPgZAiUAAAAAAAAAAAAAAAAAAAAAAAB+hkAJAAAAAAAAAAAAAAAAAAAAAACAnwnwdQEAAAAAAAAAAAAAAAAAzk5uj0cFZU7lljmUV+pQXplDTpdHbo9HRoNBASaDooLMigo2KzrIrIigABkNBl+XDQAAAAB+weDxeDy+LgIAAAAAAAAAAAAAAADA2aPQ7lR6XrHS84vldB+5PckgqbIblY7eHmA0KCkyVElRoQoP5L1yAQAAAKAuESgBAAAAAAAAAAAAAAAAUCtySuz6LatAmcX2KgMkJ1I+Lj40UB0aRigmJLB2iwQAAAAASCJQAgAAAAAAAAAAAAAAAKCGXG6PtmQXaFtOUbWDJH9VPk/bmDAlx0bIZDTUwqwAAAAAgHIESgAAAAAAAAAAAAAAAABUW26pQ+v25arI4aqzNcLMJvVKiFZ0sLnO1gAAAAAAf0OgBAAAAAAAAAAAAAAAAEC1ZBaVaXVGjjye2ulKUhWDJINBuiAxRvFhQXW4EgAAAAD4DwIlAAAAAAAAAAAAAAAAAE5ZZlGZVu3NqdMgyV8ZJPVtSqgEAAAAAGqD0dcFAAAAAAAAAAAAAAAAADiz5JY6jnQmOc3reiStzshRbqnjNK8MAAAAAGcfAiUAAAAAAAAAAAAAAAAATprL7dG6fbnynO40yf9xe6T1+3LlcvuoAAAAAAA4SxAoAQAAAAAAAAAAAAAAAHDStmQXqMjhOu3dSY5W6HBpS3aBDysAAAAAgDMfgRIAAAAAAAAAAAAAAAAAJyWnxK5tOUW+LkOStC2nSDkldl+XAQAAAABnLAIlAAAAAAAAAAAAAAAAAE7Kb1kFMvi6iP9j0JF6AAAAAADVQ6AEAAAAAAAAAAAAAAAAwAkV2p3KLLbL4+tC/o9HUmaxXYV2p69LAQAAAIAzUoCvCwAAAAAAAAAAAAAAAABQ/6XnFcsgVTtQsm/nDn0y/Vlt+XG9CvNz1bBJolIsF+vCG25TUEhoteY0/F9dneMbVLMqAAAAAPBfBEoAAAAAAAAAAAAAAAAAHJfb41F6fnG1wyRZ+zM0ZfwYhYZHaNTVExUeGa1tv/ygT2c8rx2bN2jKa+9Xa16PpPT8YnWMi5DRYKhmdQAAAADgnwiUAAAAAAAAAAAAAAAAADiugjKnnO7qxkmk5f/9QkWH8/Xvj75S83PaSZKGXz5BHrdHy/77mQrz8xQeGVWtuZ1ujwrsTkUGmatdHwAAAAD4I6OvCwAAAAAAAAAAAAAAAABQv+WWOWo0vrioQJIU1bBhhe1R8fEyGo0KMAfWaP680prVBwAAAAD+iEAJAAAAAAAAAAAAAAAAgOPKK3XIUIPxnXpdIEl67cF/KH3LJmXtz9Cqef/Vgo8/0OhrblRwaGi15zZIyiVQAgAAAACnzODxeKrfixIAAAAAAAAAAAAAAADAWW/Z7izllNQstPH56y/pi5nTZS8t9W679Lb/p6vu+mdNy1NsiFkDmjc88YEAAAAAAK8AXxcAAAAAAAAAAAAAAAAAoH5zumr+nrVxic3U4bze6j18jCKiovXj8kWaO3O6ohrGafSEG2o0t6MW6gMAAAAAf0OgBAAAAAAAAAAAAAAAAMBxuT01C2x8l/aV3njkXr3y7XeKbZwgSeo9fLQ8brdmv/CEUsZcpIjoGJ/VBwAAAAD+yOjrAgAAAAAAAAAAAAAAAADUb0aDoUbjv/14lpKSO3nDJOV6Dh6hspIS7diyqUbz17Q+AAAAAPBHBEoAAAAAAAAAAAAAAAAAHFeAqWaBjfysQ3K73cdsdzodkiS3y1Wj+c01rA8AAAAA/BGBEgAAAAAAAAAAAAAAAADHFRVkVk0iG01atlL6b5u0L/3PCtu/S/tKRqNRLdomV3tug6TIIHMNqgMAAAAA/xTg6wIAAAAAAAAAAAAAAAAA1G9RwWZ5ajD+whsn6eeVS/XQhIs16urrFREVrR+WLdLPK5Zo6GVXKaZR42rP7ZEUHUygBAAAAABOlcHj8dTk33oAAAAAAAAAAAAAAAAAznL5pQ4t3pVVozn+2PCzPn3lBaVv2aTCvFzFJzbTwIvG66KbJskUULP3xe3XOELxkeE1mgMAAAAA/A2BEgAAAAAAAAAAAAAAAADH5fZ4lLr9oJzu+nerUVHBYd0+6DwNHjRIFotFFotFCQkJvi4LAAAAAOo9AiUAAAAAAAAAAAAAAAAATmhj5mFtzy1SfbrZyCAp2lOq9bbPZbPZtGrVKrndbvXo0UMWi0VWq1Xdu3eXwWDwdakAAAAAUO8QKAEAAAAAAAAAAAAAAABwQoV2pxakH/J1GccYnhSn8MAASVJOTo6++eYb2Ww2ffvtt8rPz1dCQoLGjBkjq9WqIUOGKDQ01McVAwAAAED9QKAEAAAAAAAAAAAAAAAAwEn5bk+2DhXb60WXEoOkuNBA9WsWW+l+h8Oh7777TjabTTabTdu3b1dwcLCGDBkii8Uii8Wipk2bnt6iAQAAAKAeIVACAAAAAAAAAAAAAAAA4KTklNi1bHe2r8vwGtg8VjEhgSd17NatW5WamiqbzabvvvtOLpdL3bp1k8VikdVqVY8ePWQ0Guu4YgAAAACoPwiUAAAAAAAAAAAAAAAAADhpmw4d1racIl+XobYxYeoU16BaY3NycjR//nzZbDZ98803ysvLU+PGjTVmzBhZrVYNHTpUYWFhtVwxAAAAANQvBEoAAAAAAAAAAAAAAAAAnDSX26NFOw+p2OGSL248MkgKM5s0pGWcTEZDjedzOp1atWqVbDabUlNTtXXrVgUFBWnw4MGyWq2yWCxq1qxZzQsHAAAAgHqGQAkAAAAAAAAAAAAAAACAU5Jb6tDy3Vly++DOI6NBGtC8oaKDzXUy/x9//KHU1FTZbDatXLlSTqdTXbp08YZLevbsKaPRWCdrAwAAAMDpRKAEAAAAAAAAAAAAAAAAwCnLLCrTqr05p7VLiUFS36Yxig8LOi3r5eXlaf78+bLZbJo3b55yc3MVHx+vMWPGyGq1atiwYQoPDz8ttQAAAABAbSNQAgAAAAAAAAAAAAAAAKBaMovKtDojRx6P6jxYYjRIFySevjDJXzmdTq1Zs0Y2m02pqanasmWLAgMDNWjQIG/3khYtWvikNgAAAACoDgIlAAAAAAAAAAAAAAAAAKott9ShdftyVeRw1dka4WaTeiZEKzrYXGdrnKo///zTGy5Zvny5nE6nOnfu7A2X9OrVSyaTyddlAgAAAECVCJQAAAAAAAAAAAAAAAAAqBGX26Mt2QXallMkg2qnW0n5PG1jwpQcGyGT0VALs9aN/Px8LViwQDabTfPmzVN2drbi4uI0evRoWa1WDR8+XBEREb4uEwAAAAAqIFACAAAAAAAAAAAAAAAAoFbklNj1W1aBMovt1Q6WlI+LDw1Uh4YRigkJrN0i65jL5dL333/v7V6yefNmmc1mDRw4UFarVVarVS1btvR1mQAAAABAoAQAAAAAAAAAAAAAAABA7Sq0O5WeV6z0/GI53UduT6oqYHL0dqPHraDifKV0aqvwwIDTVG3d2rFjh1JTU5Wamqply5bJ4XCoY8eOslqtslgs6t27t0wmk6/LBAAAAOCHCJQAAAAAAAAAAAAAAAAAqBNuj0cFdqfySh3KLXUov8whh8sjt8cjo8Egs8mgyCCzooPNigo2q2+Pbvrtt9+Umpqq0aNH+7r8Wnf48GEtXLhQNptNaWlpysrKUsOGDTV69GhZLBaNGDFCDRo08HWZAAAAAPwEgRIAAAAAAAAAAAAAAAAA9UJycrJ+//13GY1GzZkzR5dffrmvS6ozLpdL69atk81mU2pqqjZu3Ciz2awBAwbIYrHIarWqVatWvi4TAAAAwFmMQAkAAAAAAAAAAAAAAACAeqFJkyY6cOCAJMlgMOj111/Xrbfe6uOqTo+dO3cqNTVVqampWrp0qex2u5KTk2W1WmW1WtW7d28FBAT4ukwAAAAAZxECJQAAAAAAAAAAAAAAAAB8zu12KzAwUC6Xq8L2p556SlOmTPFRVb5RUFCgRYsWyWazKS0tTZmZmYqJidHo0aNlsVg0cuRIRUZG+rpMAAAAAGc4AiUAAAAAAAAAAAAAAAAAfO7gwYNq3Lhxpfs2b96sDh06nOaK6ge3263169fLZrPJZrNpw4YNCggIUP/+/WWxWGS1WtWmTRtflwkAAADgDESgBAAAAAAAAAAAAAAAAIDP/fTTT+rRo0eFbUOGDNHNN9+s8ePHy2Aw+Kiy+mX37t1KTU1VamqqlixZorKyMrVr105Wq1VWq1UXXHCBAgICfF0mAAAAgDMAgRIAAAAAAAAAAAAAAAAAPvf999+rT58+at26tbp06aK5c+dqz549atq0qa9Lq7cKCwu1ePFi2Ww2paam6uDBg4qOjtaoUaNktVo1YsQIRUdH+7pMAAAAAPUUgRIAAAAAAAAAAAAAAAAAPufxeLR37141bdpUBQUFaty4sR555BFNmTLF16WdEdxut3788UfZbDbZbDb98ssvMplMSklJkcVikdVqVdu2bX1dJgAAAIB6hEAJAAAAAAAAAAAAAAAAgHpnwoQJ+uGHH7RlyxYZDAZfl3PG2bt3r1JTU5WamqrFixertLRUbdu29YZL+vbtK7PZ7OsyAQAAAPgQgRIAAAAAAAAAAAAAAAAA9c6iRYs0bNgwrVmzRr179/Z1OWe0oqIiLV682Bsw2b9/v6KiojRy5EhZrVaNHDlSMTExvi4TAAAAwGlGoAQAAAAAAAAAAAAAAABAveNyuTRw4EBNmTJFY8aM8XU5Zw23262ffvpJqampstls+umnn2QymdS3b19ZrVZZLBa1a9eOrjAAAACAHyBQAgAAAAAAAAAAAAAAAKDecjqdCggI8HUZZ62MjAylpaXJZrNp0aJFKi0tVZs2bWSxWGS1WpWSkiKz2ezrMgEAAADUAQIlAAAAAAAAAAAAAAAAAAAVFxdryZIlSk1NVWpqqjIyMtSgQQONHDlSVqtVo0aNUmxsrK/LBAAAAFBLCJQAAAAAAAAAAAAAAAAAACrweDz6+eeflZqaKpvNph9++EFGo1EXXHCBrFarLBaLkpOTZTAYfF0qAAAAgGoiUAIAAAAAAAAAAAAAAADgjOTxeLRnzx7Z7Xa1adPG1+Wc1fbv36+0tDTZbDYtXLhQJSUlatWqlSwWi6xWq/r376/AwEBflwkAAADgFBAoAQAAAAAAAAAAAAAAAHBGysrK0ltvvaWffvpJn332ma/L8RslJSVaunSpt3vJ3r17FRERoREjRshqtWrUqFGKi4vzdZkAAAAAToBACQAAAAAAAAAAAAAAAIAz1saNGzVkyBAtWLBAXbt29XU5fsfj8ejXX3/1hkvWrVsng8GgPn36yGq1ymKxqGPHjjIYDL4uFQAAAMBfECgBAAAAAAAAAAAAAMDH3B6PCsqcyi1zKK/Uobwyh5wuj9wej4wGgwJMBkUFmRUVbFZ0kFkRQQEycmMuAD/x888/a/HixZo8ebKMRqMk6f3331fr1q2VkpIiSbrmmmsUHByst956y5elQtKBAwc0b9482Ww2LVy4UEVFRWrZsqU3XDJgwAAFBQX5ukwAAAAAIlACAAAAAAAAAAAAAIDPFNqdSs8rVnp+sZzuI7++N0iq7Bf5R28PMBqUFBmqpKhQhQcGnKZqAcA3rr/+ekVFRenFF1/0brvtttu0ceNGrVq1SpL07LPPatGiRVqwYIGvykQlSktLtWzZMm/3kt27dys8PFwjRoyQxWLR6NGjFR8f7+syAQAAAL9FoAQAAAAAAAAAAAAAgNMsp8Su37IKlFlsrzJAciLl4+JDA9WhYYRiQgJrt0gAqCfeffddTZs2TZs2bZLT6VRAQIAWLFigkSNH6osvvlDz5s112WWX6brrrtPUqVN9XS6q4PF4tHHjRm+4ZO3atZKk888/X1arVVarVZ06dZKhljpw5efny+VyKSYmplbmAwAAAM5GBEoAAAAAAAAAAAAAADhNXG6PtmQXaFtOUbWDJH9VPk/bmDAlx0bIZKydG3EBoL5wOp1q1KiRPv30Uw0dOlSSNH36dKWlpSk4OFipqakaMGCA3nrrLbVu3drH1eJkZWZmat68ebLZbFqwYIEKCwvVokULWSwWWSwWDRw4UMHBwdWa2+Px6MMPP9Q777yjvLw8jRgxQvfff7+io6Nr+SwAAACAMxuBEgAAAAAAAAAAAAAAToPcUofW7ctVkcNVZ2uEmU3qlRCt6GBzna0BAL5w9913a+PGjerZs6diY2P1xhtv6NZbb9VNN92k7OxsmUwmJSUl+bpMVFNZWZmWL18um80mm82mXbt2KSwsTMOHD5fFYtGYMWPUqFGjk57P6XRq4cKFysvL03/+8x8tWrRI3333nbp06SJJcrvdcrlcMpv5fgkAAAD/RqAEAAAAAAAAAAAAAIA6lllUptUZOfJ4aqcrSVUMkgwG6YLEGMWHBdXhSgBweuXk5GjWrFl6/vnn1aJFC3Xp0kWPPfaY4uPjvcd4PB4ZDAbvnzgzeTwebd68WampqbLZbFqzZo08Ho969eolq9Uqq9Wqc88996Q/x2PHjpXJZNKsWbPUoEEDSdKvv/6qJ554QpmZmRo8eLCuueYaAkkAAADwSwRKAAAAAAAAAAAAAACoQ5lFZVq1N6dOgyR/ZZDUtymhEgBnn+zsbO3du1fLli3T6tWr1bBhQ40YMUJt27ZV+/btvccRKjl7HDp0SN98841sNpvmz5+vgoICPfPMM7rnnntkNBqrHFf+GggPD9fTTz+tSZMmeY//9ddf9fvvv2vXrl1atGiRfv/9dz3++OOaOHHiaTorAAAAoH4gUAIAAAAAAAAAAAAAQB3JLXVo+e4suX3wm3mjQRrQvKGig82nf3EAqGPvvvuubrrpJr3yyitKTU3V/v371aBBA40aNUoDBgxQhw4dFBkZ6esyUcvsdrtWrFihtm3bqmnTplUGStxut4xGo9asWaMBAwZo1apV6tmzZ5XzTps2TS+//LIWL16sNm3aKDMzU08//bTatGmjCRMmeDubAAAAAGebqiPaAAAAAAAAAAAAAACg2lxuj9bty5Wv3ubR7ZHW78uVyxdpFgCoYykpKTKbzbr00ks1b948rV+/Xk899ZQCAwPVt29fPfbYY74uEXUgMDBQQ4cOVfPmzY/bncTlckmSZs+erS5duqhly5aSjnQtkY4ETo524YUXas+ePSorK5MkRUREKDIyUtOmTVNMTIzOOeccPf7449q+fXsdnBUAAADgOwRKAAAAAAAAAAAAAACoA1uyC1TkcMmXcY5Ch0tbsgt8WAEA1D6Xy6VWrVpp4MCBeuqppyRJf/75pxYtWqRnn31WDRo00OHDh31cJXwpICBAkvT1119r2LBhioqKkiQZDAZJUmZmpm644QZddtllevXVV3XzzTerQ4cO3uBJSEiIpk6dqu3btysjI0N33323ZsyYobZt2+q7777zxSkBAAAAdYJACQAAAAAAAAAAAAAAtSynxK5tOUW+LkOStC2nSDkldl+XAQC1xmQyyWQyacKECXrnnXfUrVs3JScna86cObr55pv1zTff6F//+pevy4SPOJ1OGQwG7d27VxkZGRo8eLDMZrN3v8fjUVxcnK644gq53W7dd999uuSSS7RkyRKFhYV5u5h4PB65XC41atRIvXv3VuvWrXX55ZerX79+vjo1AAAAoNYF+LoAAAAAAAAAAAAAAADONr9lFcgg+bQ7STmDjtTTr1msr0sBgFqxdOlSPf/881q0aJEcDocaNmyoFStWqFmzZkpISKgQHoB/KS0t1QMPPKDg4GDl5uYqKSlJycnJFY4xGAwymUwaPny4Bg0apKefflozZ87UjTfe6N0vHQmUmEwmZWRk6IYbblBiYqIef/xxSZLb7ZbRyHs5AwAA4MzHT7UAAAAAAAAAAAAAANSiQrtTmcX2WgmTfP7Gy7q0fYLusg6q9hweSZnFdhXanbVQEQD43ocffqjMzEzNnDlT48aNU3h4uPr166cWLVp4wyR79+7VgQMHfFwpTjez2azk5GR9/fXXeu+995Senq6//e1vWrBggSRp48aNysrKknSkk4nZbNaFF16ogoICbd26tcJc5YGRBx98UDk5OXrppZd0zjnnVNgHAAAAnOnoUAIAAAAAAAAAAAAAQC1Kzyuule4k2Qf2ae7M6QoODa1xTYb/q6tzfIMazwUAvjZ9+nSVlJQoLi5O/fv314YNG7z7PB6PDAaDli5dqhUrVujKK6/U4MGDfVgtTieTyaSbb75ZN998s9xut1JTU/XOO+/ozTff1AUXXKDXX39d0dHRuvPOO9WkSRPl5+dr5syZiomJUXFxsSTJ5XLJZDJJkmbOnKmvvvpK06dP1znnnON9fQEAAABnC4PH46kPHXYBAAAAAAAAAAAAADjjuT0epW4/KKe75r+Knzb5Nh3OyZHb5dLhvBy9ZFtao/kCjAZZ2jSSkRthAZzFym/4//PPP/Xcc89py5YtWr58ua/LQj0xe/ZsTZ8+XRs3blT37t0VGhqqVatW6dVXX9XVV1+twMBAORwOmc1mffTRR3rooYd0xRVX6KmnnvJ16QAAAECdIFACAAAAAAAAAAAAAEAtyS91aPGurBrPs3n993p04mV6fu4CvfPvh2olUCJJQ1o2VGSQucbzAICvZWVl6bffflNycrLi4uLkdrtlNBorHLN//361b99eq1atUqdOnXxUKeqjAwcOaP78+SorK9OwYcOUlJRUYX9ubq46d+6sIUOGaNq0aYqNjaU7CQAAAM5KAb4uAAAAAAAAAAAAAABQf7g9HhWUOZVb5lBeqUN5ZQ45XR65PR4ZDQYFmAyKCjIrKtis6CCzIoIC6HhxlNwyR43ncLlceuffD2nouKvUol1yLVT1P3mlDgIlAM4Kbrdbl112mQIDA/X3v/9dEydOVFxcnHef0WhUkyZN1K9fP3377bcESlBB48aNdd1111XYVh4YSU9P18033yxJevHFFxUTEyNJVYZJvvjiC/Xq1UvNmjWr26IBAACAOkCgBAAAAAAAAAAAAACgQrtT6XnFSs8vltPtkSQZJHkqOTa3xOHdHmA0KCkyVElRoQoP5FfQeaWOKq/byVrwyQc6tG+vpr73aW2VJenI5zO31KEWkbU6LQD4RHx8vBITE2U0GjV//nzNnDlTI0aM0PXXX6/zzjtPkrRo0SJt2LBBN910k4+rxZmgPDASHR2tSy65RM2aNVNMTIxcLpdMJlOlY/Ly8nTllVfK4XCoS5cuslqtslgs6tmz5zEdcwAAAID6yODxeGry/1gAAAAAAAAAAAAAgDNYToldv2UVKLPYXu0gRPm4+NBAdWgYoZiQwNot8gyybHeWckqq36WkIDdHd45M0aW3/k1jb7hNkvTINZfqcF6OXrItrXF9sSFmDWjesMbzAEB9MGPGDL3//vv68ccf9fXXX2vOnDlatmyZmjVrpnbt2ik7O1tut1ufffaZGjRo4OtycZbKy8vT/PnzlZqaqnnz5iknJ0fx8fEaM2aMrFarhg0bpvDwcF+XCQAAAFSKQAkAAAAAAAAAAAAA+CGX26Mt2QXallNU444a5crnaRsTpuTYCJmMhlqY9cyyKP2QDtud1R4/89Ep2rBmpV6yLZU58EgwpzYDJQ0CAzQ0Ka7G8wBAfVBWVqawsDD99NNPOvfccyVJv/zyi7788ktlZ2fL4XDolltuUY8ePeTxeLwdKIC64nQ69f3338tms8lms2nLli0KDAzUoEGDvN1LWrRo4esyAQAAAC8CJQAAAAAAAAAAAADgZ3JLHVq3L1dFDledrRFmNqlXQrSig811toYvuN1uSZLRaKx0/4IdmSqs5nXdt3OH/t/o/rr+/sd03qDh3u3T/nG7ivLz9PDbHyskPFwRUdHVml+Sws0mDW8VX+3xAFDfDB8+XO3atdOMGTMqbHc6nQoICPBRVcARf/75p1JTU2Wz2bR8+XI5nU517tzZGy7p1auXTCaTr8sEAACAHyNQAgAAAAAAAAAAAAB+JLOoTKszcuTx1E5XkqoYJBkM0gWJMYoPC6rDlU6vPn36aPv27Ro7dqzGjh2roUOHKiwszLu/Jh1KNq1dranXjTvuMWOuvUk3PPB4teaXpLwDGdr41Udq2rSpEhMT1bRpUzVt2lQJCQkK/L+OKABwJklLS9Pjjz+utWvXereVdyMpvy2KziSoD/Lz87VgwQKlpqYqLS1N2dnZiouL0+jRo2W1WjV8+HBFRET4ukwAAAD4GQIlAAAAAAAAAAAAAOAnMovKtGpvTp0GSf7KIKlv07MnVNK/f3+tXLlSAQEBcjqdMpvN6tu3r7p3766pU6fqpzy7ckoc1Zr7cG62tvy47pjtH7/8rEqKCnXDA4+rcbOWatEuudr179++Va/cc7v27NmjoqKiCvsaNWrkDZj89ZGYmKjExESFhoZWe20AqCsul4suDzijuFwuff/9997uJZs3b5bZbNbAgQO93UuSkpJ8XSYAAAD8AIESAAAAAAAAAAAAAPADuaUOLd+dJbcPfkNsNEgDmjdUdLD59C9eiw4fPqwbb7xRX375pVwu1zH7H374YV1yxz+Unldcq6GdR665VIfzcvSSbWmN5jFISooKVddGkfJ4PDp8+LD27t2rvXv3KiMjw/vx0Y/c3NwKc8TExFQZOil/8O7qAE6n8m4kbrdbRqPR1+UA1ZKenu4NlyxbtkwOh0MdO3b0hkt69+5NaAoAAAB1gkAJAAAAAAAAAAAAAJzlXG6PFu08pGKH67R2JzlauNmkIS3jZDIafFTBybPb7fr999+1ceNGbdq0yfvnrl27jjnWYDDIYDDon//8p5544gntOlyinw7k12o9tRUokaQejSPVIvLku4wUFRVVGjY5eltmZmaFMQ0aNPB2NakqdBIdHS2Dof6/FgAAON0KCgq0YMECpaamKi0tTYcOHVJsbKxGjx4tq9WqESNGqEGDBr4uEwAAAGcJAiUAAAAAAAAAAAAAcJbbdOiwtuUU+boMtY0JU6e4+nMDpNvtVnp6eoXQyMaNG7Vt2zY5nU5JUrNmzdS5c2d16tRJnTt3ltPp1PXXXy9JMplMSkhI0BdffKGePXtKkvJLHVq8K8tn53QiQ1o2VGRQ7XaKKSsr0759+yrtcFL+OHDggNxut3dMSEhIhYBJZeGTuLg4ug0AAPyay+XSunXrvN1LNm7cKLPZrP79+3u7l7Ru3drXZQIAAOAMRqAEAAAAAAAAAAAAAM5iOSV2Ldud7esyvAY2j1VMSOBpXdPj8SgzM/OYjiObN29WUdGRoE10dLQ6d+5cITzSsWNHRUVFVZjr8OHDioyMlCSNGzdOb7/9tve5JLk9HqVuPyinu/79Kj7AaJClTSMZfdAZxOl06sCBA8cNnWRkZHiDPJJkNpsrDZocva1x48YKCAg47ecDoP4qD6+Vd5ACzia7du3yhkuWLl0qu92u5ORkb7ikT58+fF8EAADAKSFQAgAAAAAAAAAAAABnse/2ZOtQsV314RfDBklxoYHq1yy2ztYoKCjQ5s2btXHjxgoBkqysI11DgoOD1bFjR29opPzPJk2anPSNx5MnT1aHDh104403VjpmY+Zhbc8tqhfXvJxBUpvoMHWOrz8dYv7K7XYrMzNTGRkZxw2elJaWescYjUY1adLkmNDJ0Y+EhAQFBp7eEBMA3ykuLtY//vEPWa1WjR492tflAHWmsLBQCxculM1mU1pamjIzMxUTE6PRo0fLYrFo5MiRFUKvAAAAQGUIlAAAAAAAAAAAAADAWarQ7tSC9EPVGrv7j636zysv6M/NG5SXlamg4BA1bdNWF95wu3oOHl6juoYnxSk8sGbvnm2327V169Zjuo7s3LlT0pGgwTnnnFMhNNK5c2e1atVKJpOpRmufSE2ue12qjevuax6PRzk5Ocd0Njn6+Z49e1RYWFhhXHx8/HFDJ4mJiQoNDfXRWQGobT169FDz5s315Zdf+roU4LRwu91av369t3vJr7/+qoCAAKWkpMhqtcpqtapNmza+LhMAAAD1EIESAAAAAAAAAAAAADhL1aRTxo/LF2veh++oXdceio5vrLLSEn2/IE1bflirWx97VsMvn1Ctmk61U4bb7dbOnTsrhEY2btyorVu3yul0SpKaNm1aITTSqVMnJScnKzg4uFo11gZ/6wxT3xw+fLjKDiflAZScnJwKY2JiYrzhkqqCJw0a1N8OLwD+Z8aMGZo8ebL27dunuLg4X5cDnHa7d+9WWlqabDablixZorKyMrVr105Wq1UWi0V9+/ZVQMCZHTIFAABA7SBQAgAAAAAAAAAAAABnIbfHo9TtB+V0196vhF0ul+67dITsZWWa8c3Kas8TYDTI0qaRjAZDhe2ZmZnHdBzZvHmzt9tEVFRUhdBI586d1bFjR0VHR9fovOpCToldy3Zn+7oMr4HNYxUTEujrMuqV4uLiY7qb/PWRmZlZYUxERMQxnU3+GjqJiYmR4S+vbQCnV1ZWlhISEvT888/r73//u6/LAXyqqKhIixYtks1mU1pamg4cOKCoqCiNGjVKVqtVI0eOrJc/SwEAAOD0IFACAAAAAAAAAAAAAGeh/FKHFu/KqvV5n7ztWv256Ve9892vNZon/vB+/f7rT97wyMaNG3Xo0CFJUnBwsDp06OANjZT/mZCQcEbdqL/p0GFtyynydRlqGxOmTnF01qiOsrIy7d+//7ihk/3798vtdnvHBAcHV9nhpDyAEh8fL6PR6MMzA85+l1xyiXbu3KmffvrJ16UA9Ybb7daPP/6o1NRU2Ww2/fzzzzKZTOrXr5+sVqusVqvatm3r6zIBAABwGhEoAQAAAAAAAAAAAICz0M78Yv10IL/G85QWF8teVqLiggKtX7JAHzz3L/UdNVZ3Pf9qtef0eDx69YG7tfy/n6tNmzYVQiOdO3dW69atZTKZaly7r7ncHi3aeUjFDpd88Yt5g6Qws0lDWsbJZDxzgjhnGqfTqQMHDhy320lGRoYcDod3jNlsVkJCQpXBk6ZNm6px48YKCAjw4Zn9T2pqqj755BMdOHBAzZo104gRIzRu3Lh6Ux9Qma+//loXXnihfvnlF3Xp0sXX5QD10t69e5WWliabzabFixertLRU55xzjqxWqywWi/r16yez2ezrMgEAAFCHCJQAAAAAAAAAAAAAwFnol4P5Ss8rrnGQYebUf2rBpx9KkoxGo84fNlq3Pf6swiOjqj2nx+1WA1eJ+rVOVEhISA0rrN9ySx1avjtLbh/8Zt5okAY0b6joYG4E9TW3261Dhw5VGjQ5+nlJSYl3jNFoVOPGjY8bOklISFBQUFCd1z9mzBide+65ioiI0P79+7Vs2TLdcsstuvPOOyt0DZo5c6a++uorRUREaNy4cRo/fnyd1wZUxeFwKDExURMmTNC0adN8XQ5Q7xUXF2vx4sWy2WxKTU3V/v37FRUVpZEjR8pisWjUqFGKiYnxdZkAAACoZQRKAAAAAAAAAAAAAOAstGx3lnJKHCc+8AT27vhD2Qf2KzfzoFZ/Y1NAoFm3TH1aUQ3jajRvbIhZA5o3rHF9Z4LMojKt2ptzWruUGCT1bRqj+LC6Dxugdng8HhUUFCgzM1P79u3T3r17tWvXLu3YsUO7du3yhk8OHz5cYVx8fLw3YJKYmHhM6CQxMVFhYWE1qu3w4cMKDAxUcHCwJOn555/Xww8/rAMHDigyMlIej0f33nuvPv74Y11//fXKysrSsmXL9NRTT+niiy/2zhMTE6PAwEDFxsaqefPmatasmf7f//t/6tixY43qA6py9913a86cOdq7dy9dFoBT4Ha79fPPP3vDJT/++KOMRqP69u0rq9Uqq9Wqdu3aVQgVAgAA4MxEoAQAAAAAAAAAAAAAzkKL0g/psN1Z6/M+fsMVKio4rKf/k1ajmwgbBAZoaFLNQilnksyiMq3OyJHHozoPlhgN0gWJhEnOVi6XS3a7XcXFxSosLFReXp5ycnKUlZWl3bt3a/Hixfrmm28qjImOjq40aHL08wYNGpzw77TH45HBYNCff/6pdu3aadOmTWrfvr02btyoXr166a233tKECRPkdDo1efJkpaamaseOHZKkvLw8xcTE6Mknn1RsbKy2b9+ujIwM3XrrrUpJSamz6wX/9uuvv6pr1676+uuvZbVafV0OcMbKyMjQvHnzZLPZtGjRIpWUlKh169ayWq2yWCxKSUlRYGCgr8sEAABANRAoAQAAAAAAAAAAAICz0IIdmSp0uGp/3k9na+bU+zR93goltmpT7Xky9+zSi3dcp4iICEVERCg8PLxaH4eHh8toNNbiGdad3FKH1u3LVVEdfF7KhZtN6pkQrehg3onfn7ndbu3Zs0fp6enau3dvpY+DBw9WGPPhhx/qiiuuUEBAQKVzulwumUwmORwO/e1vf9PKlSu1efNmud1uPfXUU3rrrbe0c+dO7/Hr16/XkCFDtHbtWiUnJ2vDhg3q1auXduzYoYSEhLo8faCCbt26qVWrVvriiy98XQpwVigpKdGSJUu83UsyMjLUoEEDjRw5UhaLRaNHj1ZsbKyvywQAAMBJqvx/AQAAAAAAAAAAAAAAdcblcun9999XZmam7r//fu+7/p+Kyy+/XKtWrdLFF18si8WigQMHKijofx0pjDXoHnI89rJSSVJxYUGN5omICJfValVBQYEKCwtVUFCg/fv3648//lBBQUGF7Sd6n8TQ0FBv0KQm4ZTyj6u6ob6mooPNGtoyTluyC7Qtp0gG1U63kvJ52saEKTk2QiZj3XzuceYwGo1q0aKFWrRoUeUxdrtd+/bt8wZM+vTpU+Vr3+12y2QyqaysTJMnT9bSpUv13HPPSZLy8/O1YcMGtW/fXpJUVlamoKAgFRcXq0mTJvrzzz+VnJysAwcOyG63a9SoUYqLi9PYsWN13XXXKTIysvYvAHCUiRMn6t5771V2djY3uQO1ICQkRGPGjNGYMWPk8Xj0yy+/eMMl1157rYxGoy644AJZLBZZrVYlJyfXqKsdAAAA6hYdSgAAAAAAAAAAAACgjhw6dEhxcXHHbF+/fr369u0rp9Op/Px8RUREnPLcF110kf773/8qICBATqdTwcHBGjp0qHr06KFrr71WGws9cgWFVrv2/OwsRcY2rLDN6XDo/sst2rvjD727aqNCwsKqPX9siFkDmjc84XEej0fFxcXecMnRQZPqfFxQUCCX6/gdQoKDg2slmFL+cWBg4DFr5JTY9VtWgTKL7dUOlpSPiw8NVIeGEYoJOXYdoKbKA2979+7V7bffroMHD+qZZ57RoEGDJElZWVm69NJL1aFDB73++uveQMlnn32mp556Sk8++aRGjhypdevWKS0tTV27dtXPP/+stLQ0DRkyRE8++WSdhbgA6cj34oSEBE2bNk133HmnCsqcyi1zKK/Uobwyh5wuj9wej4wGgwJMBkUFmRUVbFZ0kFkRQQF1FtAEzkb79+9XWlqaUlNTtXDhQhUXFyspKUlWq1VWq1X9+/ev9OciAAAA+A7/IgcAAAAAAAAAAACAWlB+s/TSpUu1ZcsWZWdna9KkSZoxY4b3XZnLb8x++OGHde+99+qll17SH3/8oe7du5/SWi6XS4mJiTIajXI6nZKk0tJSpaamKjU1VY899phuevgJDRs/QQFmc7XO542p96mksFAdzjtfMY0aKy/rkFbY5ipjx3Zd98+pNQqTGCRFBp1cXQaDQWFhYQoLC1OjRo2qvWY5j8ejsrKyagVS8vPzlZGRccx2u91+3DXNZnOVHVQaNWuhc87vp8RO3RUQGHSkG4vHI4PReOy10P+CJwFGg5IiQ5UUFarwQH71j7pjMBj03Xff6dZbb1Xr1q314Ycfql27dnI6nQoICFBYWJgKCwu94bny9zVNT09XcHCw4uPjJUk9e/bUeeedJ6PRqIsvvlhRUVGaPn26Bg8erJEjRx7Tqclut3PTMWpFXFyc7nvoEUUnd1Xq9oNyuo+8RqsK8+WWOPhaC1RTkyZNdNNNN+mmm25SSUmJli1bJpvNprlz52r69OmKiIjQiBEjZLFYNHr06EqD1wAAADi96FACAAAAAAAAAAAAACcpLy9P69ev15o1a7R27VplZWVp4cKFatCggYYOHaq1a9fq9ttv1+DBg9WxY0c1a9bsmDkWLVqkadOm6amnntK4ceN077336pZbbjnmZupyTqdTCxYs0NKlS7V+/Xpt3bpVmZmZcrvdldbYqVMnTZkyRa179NY+Q/U7lHyX9pUWf/Gxdm/7XQV5uQoJC1erjp01esIN6jl4RLXnLdejcaRaRFa/vvrEbrfXuINKUVGxwmIbqlGL1mrWtr1atu+osIgGMgcGymG3q6jgsHb+vlk7Nm9Q+pbNOnzogEJDQmqlg0poaGilrz3UnpKSEr3xxhuaO3eu/vjjD1122WV6/PHHFR0dLUnatWuX5s2bp4yMDAUGBqply5YaMGCAWrRoIelISOPQoUNyu92KjIxUSEjIaat9wYIFuuWWWzRx4kQ98sgjMh4VdnK73TIajerXr5+6d++u6dOne/ddeOGFCgwM1Ouvv66GDf/Xjaj8a93BgwfVr18//f3vf9ff/va3Y74GJiUlqaioSE2bNq3wSExMrPA8rAbhNpz96AYF1A8ej0cbNmyQzWZTamqq1q1bJ0nq3bu3t3tJx44d+XkEAADABwiUAAAAAAAAAAAAAMBJsNlsuuyyy2Q2m3X++eerc+fOSklJ0ahRoxQSEqJ7771Xe/bs0SeffFLpeJfLJZPJpEsvvVQ9e/bUlClT1LdvX3Xo0EFvvfVWlYESl8ul0NBQbxeM0NBQNWvWTC1bttT8+fMlSUajUREREZo9e7YsFoskKb/UocW7suroatTckJYNT7pLib9xOp0qLCysMoByqqGVoqKi465nMBhqFEj568fh4eEVQgeQcnNz9eqrryo6OlrvvfeeGjRooM8//1wxMTGSpBUrVmjWrFnejje7d+9WUlKSHnvsMXXq1EkFBQW64447NHv2bJnNZjmdTgUFBam0tFSTJ0/WE088oaCgoDqpffDgwVq2bJkaNWqkli1bKjExUU2aNNG1116r7t27y2Qy6YUXXtC0adP04YcfavDgwZozZ45uueUWvfnmm7rqqqu8X/+k/4VQtm/frl69eunNN9/UuHHjjln3gw8+0O7du7V3794Kj+zs7ArHRUVFHRM6+Wv4JDIykpuU/YzL7dGW7AJtyymqdpDkr8rnaRsTpuTYCJmMvKaA6jp48KDS0tKUmpqqBQsWqKioSC1btpTFYpHVatWAAQPq7PuaL7k9HhWUOZVb5lBeqUN5ZQ45XR65PR4ZDQYFmAyKCjIrKtis6CCzIoICZOT7FwAAqGMESgAAAAAAAAAAAADgJPz888+67rrr9Nprr6lfv37e7eU3R7/xxht65plnlJSUpNLSUsXFxenyyy/X2LFjFR4eLkmaP3++/v3vf2vevHmKiIjQlClTtHr1aq1YscI7T2Vee+01JScn69xzz1VsbKykI6GD0NBQORwO9enTR59++mmFjihuj0ep2w/K6a5/vxIOMBpkadOIG+ROE7fbraKiohp1UPnrxye61SAsLKxWQyoBAQGn6WrVndLSUgUHB+uqq65SQUGBPvnkE293jdzcXJWUlKhJkyYyGAzavXu3Bg0apNGjR2vGjBneOcrKylRSUqLAwEDNnTtXd999tx544AHdfffddVZ3WVmZDh48qN9//11//PGH/vzzT23dulVXX321rrjiChmNRnk8Ht1+++365ptvFB0draKiIl100UX617/+peDgYC1cuFDp6ekaOnSokpKStGPHDt1+++1KT0/XokWLvJ1YTkZJSYkyMjK0d+9e759/fRw8eLDCazQsLKzK0En5IzY2ltDJWSK31KF1+3JV5HDV2RphZpN6JUQrOphgJFBTpaWlWrZsmVJTU2Wz2bR7926Fh4dr+PDhslgsGjNmjOLj431dZo0U2p1KzytWen6x92fzqsJuR28PMBqUFBmqpKhQhQee+T8LAQCA+olACQAAAAAAAAAAAACchIMHD+qSSy7Rueeeq6FDh2rjxo3q16+fhgwZIoPBoNWrV2vq1Knq2LGjOnXqpE2bNmn27NkaO3as3n33XRUVFWnq1KkKCAjQQw89pG+//VZvv/22Fi1apJYtW+quu+7SnXfeeUo1TZ48WREREXr44YcrveF+Y+Zhbc8tqpV3Zq8tBkltosPUOb6Br0tBNXk8HhUXF9daB5WCggK5XMe/8Ts4OPi4oZNTDaoEBgaepqv1P+VdOsaMGaOIiAi99957CgkJqfL4Pn36KDk5We+8844MBoO3i1H5PJMmTdJPP/2k999/X+3btz+NZ1K5oqIibdiwQX/88YdiY2M1ZswY775Vq1Zp8uTJ2rZtm8LDwxUfH6+oqCjde++9GjFiRK0HOex2u/bv318hZPLX8Mm+ffsqvO6CgoK8HU2qesTHx3s7raB+yiwq0+qMHHk8tdOVpCoGSQaDdEFijOLDzr4uCoCveDwebdq0STabTTabTWvXrpUknX/++d7uJZ07dz5jAoA5JXb9llWgzGJ7tbsllY+LDw1Uh4YRigk5/T/DAACAsxuBEgAAAAAAAAAAAAA4CaWlpbr22mu1cuVKJScnKyQkRJs3b1bv3r31ySefqLCwUL/99pvOPfdcBQcHy+l0Ki0tTRdffLH++OMPJSYmql27dtqzZ4/MZrMaN26s+Ph4/fjjj3rttdd08cUXq1GjRrVac6HdqQXph2p1ztowPCmOd1mGl8fjUVlZWa12ULHb7cddMzAwsFY7qAQHB5/w5lan06mAgAD169dP7du316uvvqqgoCBvUOTgwYOaM2eODh8+rIyMDKWnp+uRRx5RSkpKhWtlMBiUnp6ugQMH6vbbb9eUKVNq5fNwOhw4cEC7du1SYWGhkpOTlZCQ4LNaXC6XDh48WGmHk6MDKEe/lgICApSQkKCmTZtWGT5p0qSJzGa6VvhCZlGZVu3NOa0hSoOkvk0JlQB1JTMzU/PmzZPNZtOCBQtUWFio5s2be8MlAwcOVHBwsK/LPIbL7dGW7AJtyymqdpDkr8rnaRsTpuTYCJmMZ0aoBgAA1H8ESgAAAAAAAAAAAACckRwOh1577TXl5ubq0Ucf9d5oXVc8Ho9SU1PVuHFjde/eXQUFBVqxYoUuv/xyvfHGG7ruuusqHRccHKwPPvhA48eP15IlSxQaGqpmzZqpUaNG2rNnj7p27ap58+apb9++dVL3d3uydajYXi+6lBgkxYUGql+zWF+XgrOc3W6v1Q4qpaWlx13PZDIpIiJC8+bNU58+fSo9pjxQ0rVrVw0aNEjPPvtsheDB/v379fzzz2vt2rXasWOHbrzxRj344IMVbpR1u90yGo2aOnWqPv/8c82ePVvdunWr869/daW+1+3xeJSVlVVl6KT8UVxc7B1jMBjUuHHjCiGTv4ZPEhMT6+UN0Gey3FKHlu/OktsH3+yMBmlA84aKDiZIBNSlsrIyLV++XKmpqbLZbNq5c6fCwsI0bNgwWSwWjRkzRo0bN/Z1mcotdWjdvlwVOY7ffa0mwswm9UqI5usOAACoFQRKAAAAAAAAAAAAANRbLpdLWVlZlXbuWLlypQYNGiS3263CwkKFhobW2rrlv0Y9mRudhw8frhYtWujll1/21lB+k/SOHTvUpUsXzZ49WxdeeOExY3NyctSiRQv985//1EMPPVQnN1fnlNi1bHd2rc5ZEwObxyomJNDXZQCnxOl0egMmxwugTJgwQU2aNKl0DpfLJZPJpDZt2ujKK6/U1KlTFRBwpFPPX//ur1mzRhdeeKGeeeYZXX/99cfM1aZNG1144YV64oknjhtMyM3NlclkUnh4uIxGYw2vAirj8XiUn59/wtBJfn5+hXENGzastMPJ0QGU8PBwH53VmcXl9mjRzkMqdrh8Fp4MN5s0pGUcHQOA08Tj8Wjz5s3ecMmaNWvk8XjUq1cvb/eSLl26nPbQYmZRmVZn5MjjqZ2uJFUxSDIYpAsS6ZAEAABqjkAJAAAAAAAAAAAAgHpjzZo1stlsWrZsmbZu3aq8vDz97W9/00svvXTMsUOGDFFKSoqeffZZrVmzRl26dKnWmrm5uVq/fr0WL16sdevWadu2bbrmmmv073//23uzd2XKbw6/6KKLFBQUpDfffFOFhYUyGo1q0qSJDhw4oEmTJik9PV2fffaZ2rRpc8wcTqdTS5YsUZs2bdSqVatq1X8yNh06rG05RXU2/8lqGxOmTnENfF0G4BPl3UWaNGmiu+++W/fee2+lN7qWH3fhhRcqNDRUM2fOVIMGDbzb33//fd11111avnz5Cb/uWa1WpaamSpLCwsIUHh6uiIgIRUREVPg4IiJCgwcP1pVXXuldB7WroKBAGRkZysjIqDJ0kpWVVWFMZGRklaGT8kdkZGS97vJyOvA9DsChQ4f0zTffyGazaf78+SooKFDTpk294ZJBgwYpJCSkTmvILCrTqr05pzXYZpDUtymhEgAAUDNV/+8nAAAAAAAAAAAAANSBvLw8rV+/XqtWrdLatWuVm5urxYsXKywsTPfff79++eUX3XnnnfrXv/6lDh06VPpu/2lpaQoJCdFll12mDz74QD/++KO6dOly3A4fZWVl2rhxoxYvXqzVq1dr8+bNysjIUGlpaYXjwsPDlZubW2WYxG63KzAwUCaTScuWLdPixYs1ZcoURUZG6p133tHnn3+uwsJC7d+/X127dtXbb7+tNm3aVFpbQECAhg8fXs0refKSYyOUUVDqs3dvN0gKM5uUHBvhg9UB37Pb7dqzZ48aNWoku92ugIAAFRUVKSQkRCaTSQsXLlSvXr0UGRkpo9GoP//8U+vXr9cNN9xwTAeSV199VRaLRa1btz7hug8++KAmTJhw3M4qWVlZSk9P16pVq/Tf//5Xt956q/r16yez2eydx+l0yu12y2QyyWQy1fr18QcRERFq37692rdvX+UxpaWlFQInR3+8YcMGzZs3TwcOHNDR7x0bGhp6wtBJw4YNz9rQSU6JvV6ESSRpW06REsKD6cIF+EBcXJyuvfZaXXvttbLb7VqxYoW3e8kbb7yh0NBQDR06VBaLRRaLpcpuYtWVW+o40pmkVmc9MY+k1Rk5GtC8oaKDzSc8HgAAoDJ0KAEAAAAAAAAAAABw2nz11Ve6/PLLFRQUpF69eqlLly5KSUnRiBEjFBISosmTJ+vAgQOaM2dOpePLu4KMHTtWgwYN0t13363evXura9eueuONN44bKImIiFBhYaH3eVBQkJo0aaLk5GT17t1bQ4YMUZcuXRQeHl5l/Xv37tVzzz2nVq1aafPmzfrhhx90/vnn6/nnn1dYWJh++OEHLV26VC1btlS3bt28XUmOV9fpklvq0PLdWXL74DfERoO40Q1+7eeff1a/fv1UWlrq/XoQExOjcePG6cUXX9SVV14ph8Oh2NhYhYeHa8uWLSoqKtLHH39coXvRihUrNGjQIK1YsUJ9+/ats3o9Ho/KyspUUlIiu90up9MpSTIajQoMDFRISIiCg4MrdDJxu91yu90yGAzVDp24XC5t2bJFV155ZZXdVI7XZeXo50FBQT7/ulsXHA6H9u/fX2mHk/IASkZGhlwul3dMYGCgmjZtqsTExCpDJ40aNTojw0Lf7cnWoWK7T8KSf2WQFBcaqH7NYn1dCoD/4/F4tGXLFm+4ZPXq1XK73TrvvPO83Uu6detW5feL1atXy+VyKSUlpco1XG6PFu085LPgtiSFm00a0jJOJuPZ930PAADUPQIlAAAAAAAAAAAAgCS3x6OCMqdyyxzKK3Uor8whp8sjt8cjo8GgAJNBUUFmRQWbFR1kVkRQgIxn4Y2qde2HH37Q9ddfr7feeku9e/f2bne73TIajXr11Vf1/PPPq0WLFiopKVGjRo102WWX6aKLLlJExJHuFjabTc8//7wWLFigoKAg3XfffVq3bp2WLVsmh8NR4V31j3brrbcqNDRUgwcPVu/evRUXF3fK9RcXF2v8+PE6fPiw2rZtqxEjRmjIkCGKiYmp3gU5zTKLyrRq7+l992SDpL5NYxQfFnQaVwXqn8OHD6ugoEBlZWXKzc1Vdna2IiMj1atXLy1ZskQ//PCDdu/eLY/Ho3POOUcTJ05UdHR0hTluu+02/fbbb1qyZEmVXZTqs6NvUfnrzbtut1sul0uzZs3Shg0bquyoUv7xX7tL/ZXJZDqlQMqJPg4NDT1jAioul0uZmZmVhk6ODp+UlZV5x5hMJiUkJFQImfw1gJKQkFDl91hfKLQ7tSD9ULXGblq7WlOvG1fpvqc+salt1x7Vrmt4UpzCA8+8v5+AP8jOztY333wjm82mb7/9VocPH1ZCQoI3XDJ48GCFhoZ6j09KStLu3bs1a9YsTZgwodI5Nx06XC86JbWNCVOnuAa+LgMAAJyBCJQAAAAAAAAAAADArxXanUrPK1Z6frGc/9e6wSBVesP90dsDjAYlRYYqKSqUmwZPwf79+3XJJZeoR48eGjBggDZt2qT+/ftr8ODBMhgM+u677/T444+rc+fO6ty5s3799Vd9+OGHGjt2rN59910VFBTooYceUlhYmCZPnqx58+bp/fff14oVK5SYmKj77rtPd9xxh69Ps17LLCrT6owceTyVv85rk9EgXZBImARA7XM4HCoqKjpu6OSvHx9vX3Fx8XHXMxgMtRJMKf84PDy8QoeX083j8Sg7O/u4oZO9e/eqqOh/N0kbDAY1atSo0g4n5eGTxMREhYSE1Li+kpIS3XHHHZowYYIGDx5c6TEbMw9re25Rtb6XlQdKRl9zo9p07lphX7eUgWoQXb0uIwZJbaLD1Dmem7qB+s7hcGjlypWy2Wyy2Wz6888/FRISoiFDhshqtSo5OVn9+/f3Hv/qq69q0qRJFebIKbFr2e7s0116lQY2j1VMSKCvywAAAGcYAiUAAAAAAAAAAADwSzkldv2WVaDMYnuVAZITKR8XHxqoDg0juHnnJJSUlOiaa67R6tWrlZycrJCQEG3cuFF9+vTRJ598ooKCAm3dulWdO3dWUFCQXC6XUlNTdfHFF2v79u1q0qSJ2rVrp4yMDAUGBqpp06aKj4/XmjVr9N5778lisSg2tno3gfqT3FKH1u3LVZHDVWdrhJtN6pkQrejg+vNu9gBQFZfL5Q2onEw45UQfFxYW6kS35ISFhdVaB5Xw8PBa71rj8XiUn5+vjIyM44ZO8vLyKoyLjY2tNHRydPikvOtYVVatWqV+/fpJkm644QY9//zzFTr2uD0epW4/6A0Dn6ryQMk9L72pPiMt1ZqjKgFGgyxtGtHJDjiDeDwebd26VampqbLZbFq1apVcrmN/Tn7yySd1//33e59/tydbh4rtp7X7X1UMkuJCA9WvGf8WAgAAp4ZACQAAAAAAAAAAAPyKy+3RluwCbcspqnaQ5K/K52kbE6bk2AiZjNxAWBWPx6PU1FQ1btxY3bt3V0FBgZYvX64rr7xSM2fO1DXXXFPpmODgYM2ZM0eXXnqpli9froiICDVt2lQNGzbUrl271KVLF3377be64IILfHBWZyb+LgBA3XG73SouLq6VcEr5w+12H3fN4ODgWuugEhERocDAkwvKFhYWVgidVBZAOXToUIUxDRo0OG7o5KWXXtK7774rSTKZTIqOjtYbb7yhSy+9VJKUX+rQ4l1Z1fjMHHF0oKRrv4EKDA6WqRYDOUNaNlRkEIFK4EyVk5OjCy64QFu3bj1m3/jx4/Xpp5+q0O7UgvRDlYw+OX9u2qA5Lz2trT//II/Ho3Zde+iaex9SUnKnmpSu4UlxdNAEAACnhEAJAAAAAAAAAAAA/Mbp6MoQZjapF10ZTtmwYcOUlJSkl19+WSEhIZKOBEkMBoP++OMPdevWTR9//LGsVusxY7Ozs9WyZUtNmTJFDz74oHccTg7degCg/vN4PCotLT1h6ORUgioOh+O4awYGBlYZOjnVcIrZbFZ2dvYxYZOjn+/fv/+EXV3OPfdcpaWlyRkRo58O5Ff7epYHSoJDw1RaXCSjyaTkHufr2nsfVpvOXao9b7kejSPVIjK0xvMA8I3c3Fw1bNjQG+QzGo3yeDzer1Hbt29XcUSctucWVetn5x2bN+jBqy5SbOMEDb98gtwet+bPmaXC/Dw9/Z80JbZqU626DZLaRIepc3yDao0HAAD+iSgqAAAAAAAAAAAA/EJmUZlWZ+Sort9urdjh0vLdWbogMUbxYUF1u1g943K5tHnzZs2fP1+rV69W9+7d9cADD8hkMh13jMlkUnBwsAoKCmS325WdnS2j0aiEhARlZGTonnvuUXJysjp27FjpHJGRkbLZbGrT5siNV4RJTk1MSKD6NYtVod2p9LxipecXy+k+8helqoDJ0dsDjAYlRYYqKSqUd0MGgDpiMBgUEhKikJAQxcfH18qcZWVl1e6acuDAgWP2lZWVHXc9k8lUaeikSZMmatu2rUJDQ2UwGORyuTR37lzl5OQcM8eGDRv03nvvyXrL32vUXSvAbFbv4WPUfcBgNYiO0Z7t2/T1u2/o4QkX64mP/6tWHTpXc+Yj3yNzSx1qEVntKQD42B9//CG32y2TyaTWrVure/fu6tSpkzp37qwOHTooqVUrpW4/WO2vQR9Pf06BwcF66pOvFREdI0kaYL1Ud47sp49efFr3zXi7WvN6JKXnF6tjXISM/JsIAACcJP43DwAAAAAAAAAAAGe9zKIyrdqbU+0bfk6FR5LHI63am6O+Tc/OUInH41FGRoYWLlyo5cuX69dff9XOnTuVn59f4Z3Fi4uLqwyT2O12BQYGymQyacmSJVq6dKkeeOABRUZG6u2339Znn32mwsJCHThwQD169NCbb76pVq1aVdp9JCAgQAMHDqzLU/YL4YEB6hzfQB3jIlRgdyqv1KHcUofyyxxyuDxyezwyGgwymwyKDDIrOtisqGCzIgIDuGENAM5AQUFBCgoKUmxsbK3M53A4vAGTUw2q7Nq1q8L23NzcKtdJTExUXpmjRj/Xte/eU+279/Q+7zl4hPqMsGjyhUP00bSn9PDbc6o9t0dSftnxu78AqN969eqlPXv2KD4+XoGBx3beyy91eAPY1bHlh7XqmjLIGyaRpOj4RurYs49+XLZIJUVFCgkLq9bcTrdHBXanIoPomAkAAE4OgRIAAAAAAAAAAACc1XJLHUc6k5zmdT2SVmfkaEDzhooOPnNv5ikoKNCyZcu0ePFi/fDDD9q+fbuysrLkcrm8xwQEBCguLk6dO3fWeeedpyFDhiglJUUNGjSodM49e/boueeeU6tWrbRp0yb9+OOPuu6663TXXXdJkgYOHCiTyaSWLVuqW7duatGihSRVGiZB7TMajgRGIoPMvLs6AOCkmc1mRUdHKzo6usZzNWvWTHv37pUkGY1Gud1uNW/eXFdddZWuvfZaLdtTdeCkupq0SFLPwSO0duE33g5q1eVwne6fPAHUtqZNm1a5L7eGoTGH3a6goOBjtgeGhMjpsGvPH7+rbdce1Z4/r9RBoAQAAJw0AiUAAAAAAAAAAAA4a7ncHq3blyuPj+7pc3uk9ftyNaRlnEzG+h2EcDqd+vHHHzV//nytWbNGv//+uw4cOKDS0lLvMQaDQVFRUTr33HPVtWtXDRgwQMOGDVOTJk1OKegRGxurHTt26JdfflG7du304IMPasiQIQoNDZUk9ejRQz16HHsDFWESAAD8Q+fOnb2BkiFDhuiee+7RsGHDvD8LuOvoh7uGTRLkdNhVVlKs0PCIas9TV/UBqB/ySh0ySNV+04KE/8/efUdHVe5dHN9nSnpII6GXQEgEAVFEkCIICiIIAioWvCj2gr0XBEQQe8OC9VougpeACBZABWmKKArSQ+8JKaQnU877Bzd5wQRJPynfz1osZObMOXsMzEzg2c8vurW2/vnbCeU1V36+tq37XZKUfPhQmbMZOrapAsVwAABQUhRKAAAAAAAAAAAAUGttSs5Qlstz6gMrUabLo03JGWofWfy0jqpmmqZ27Nihb7/9VsuWLdP69eu1d+9eZWRknHBcYGCgmjdvrvbt26tHjx4aMGCA2rZtK5vNVu4MAQEBmj9/frnPAwAAaqfLL79c0dHRuvPOO9W2bdsi99sqqWR6eO8e+fj6yS8gsFznqax8AKqHtDxXuSZgXnT1aE0f/4jefPx+XXrj7TK9Xv337VeUlpQoScrPyz3FGU7OlHS0nBNUAABA3UKhBAAAAAAAAAAAALVSSk6+tqZkWR1DkrQ1JUuNg/wU7u9TpddNTU3VokWL9MMPP2jt2rXasWOHUlJS5PV6C4/x8fFRgwYN1LVrV51zzjnq37+/unXrJl9f3yrNCgAAUOD666/X9ddff9L7HfbyFTaOpiQrJDzihNt2bd6gNT8u1Jm9zi93gdZZznwAqje3p3xTiAZc+S8dOXhA8z54S0vmzpIktW5/hobecLtmv/2q/P43ubGsXOXMBwAA6hYKJQAAAAAAAAAAAKiVNh7JkCGVa+fYimLoWJ6ezSJOeWxZ5Ofna8WKFVq0aJFWr16trVu36vDhw8rPzy88xm63Kzw8XF26dNFZZ52l888/XxdeeKFCQ0MrJRMAAEBlCfV1KjWn7BMCXrr3Vvn4+SnuzLMVEl5f+7Zv1aJZn8rHz1+j7n+8XNkMSSG+znKdA0D15jXL/13mNfc+oqFjbtXehC0KCKqnFnFt9dlLUyRJjVu2tjwfAACoOyiUAAAAAAAAAAAAoNbJzHcrMTv/1AcWI2H9H/pxziz9tXqlkvbvVXBomNqc0VlX3/2QGkeXbWGPKSkxO1+Z+W4F+ZT9n+hM09TGjRv1zTffaOXKldqwYYP279+vrKz/n8RiGIaCg4MVGxurDh066LzzztOAAQPUsmVLGQa7ZQMAgJov1M9ZrtLwOf0GaNn8Ofrqw+nKycpQvbAIdb3wYl1xx31q1CK6XNlMSWF+FEqA2sxWQd9XBYWEqm3nroW/XrdqmSIaNlKTVjHlOm9F5QMAAHUDhRIAAAAAAAAAAADUOjvTsss8nWTOu9O0ee2v6j5gsFrEtVXakSR989mHenDEAE35fL6ax55WpkzG/3J1iKpXouMPHz6sb775RkuWLNG6deu0a9cupaWlyTxut1l/f381atRIbdu2Vbdu3XTRRRfpzDPPlN1uL1NGAACAmiCsnBNABv3rRg36140VlKaoUAolQK3msFd8YWPF118qYf0fGv3QONlstnKdy1kJ+QAAQO1FoQQAAAAAAAAAAAC1itc0tfNodpl3rb7kupt1zwvT5PTxKbyt+8Ahum9IP8159w3d/fwbZTqvKWnn0WydHhl8wo6xOTk5+v7777V48WL99ttvSkhI0JEjR+R2uwuPcTqdioyMVIcOHXT22WfrggsuUJ8+feTv71/GZwkAAFBzBfs65LAZcnvLM6ekcjhshoLLMZEOQPUX6utUao6rzN9zbvj1Z33x5kvq1KO3gkLDtO3P3/VD/Eyd2ev8cpfdDEkh5SzdAQCAuoXvXgAAAAAAAAAAAFCrZOS5y7W48LSzuhS5rXHLVmoWE6t927eVJ5rcXlPPv/aGln73jTZv3qyDBw8qNze38H6bzabQ0FB17NhRnTp1Uu/evTVw4EBFRkaW67oAAAC1ic0wFB0SoITUrDIv6K4MhqTokIATysMAap9QP2e5XnsiGjSUzWbXl++/pZysLEU1baar7n5Il1x3i+yO8i3pNCWFMSUJAACUAoUSAAAAAAAAAAAA1Cqpea4KP6dpmkpLPqJmMbHlPs93S5frx2++UVBQkFq0aKH27durR48eGjhwoOLi4mSwABEAAOCUokMDtC01y+oYJzB1LBeA2i2snBNAGjZvqXHvz6igNEWFUigBAAClQKEEAAAAAAAAAAAAtUparkuGVKG7Vf/0VbxSDh/UlXc9UL4TmaYeeHK8Fs76TI5y7jwLAABQlwX5OBQV4KOk7PxqMaXEkBQZ4KMgHz7jAbVdsK9DDptRrsmYlcVhMxTM6xAAACgFm9UBAAAAAAAAAAAAgIqUlueq0EWF+3Zs03sTH1Ncp87qc+kV5TqXYbMpMCKSMgkAAEAFaFc/uFqUSaRjZeZ29YOtjgGgCtgMQ9EhAapusyUNSdEhAbIx9RIAAJQChRIAAAAAAAAAAADUKm5PxS0rTE1K1ORb/qWA4GA98Oq7stvt5T6nqwLzAQAA1GXh/j6KDQ+0OoYkKTY8UOH+PlbHAFBFokMDqk2hrYCpY7kAAABKg0IJAAAAAAAAAAAAahWvWTHLerIy0vXMzdcoKz1dT7z7H4U3aFgh562ofAAAAJDaRgQr0Gm3bFKA1+ORn+1YDgB1R5CPQ1EBPtVmSokhKSrAR0E+TMMEAAClQ6EEAAAAAAAAAAAAtYrNKP+Snvy8XE25bbQO7Nqhx97+t5rFxFZAsmMqIh8AAACOsdsMndM4TJZ8xDJNud0uTbljjLZt3WJBAABWalc/uNpMKTF1LA8AAEBpUSgBAAAAAAAAAABAreKwl281ocfj0Uv33qqtf/ym+1+Zrrgzz66gZMc4y5kPAAAAJwrzc6p7k/AqnxRgGIbaBdmUsn+Pzj33XC1ZsqSKEwCwUri/j2LDA62OIUmKDQ9UuL+P1TEAAEANRKEEAAAAAAAAAAAAtUqor7Nciwn/PXWCfv1hoc7sdb4yj6Zp6bzZJ/woD0NSiK+zXOcAAABAUVGBvurRNFw2Q1VSLLEZUo+m4erYqoVWrFihzp07q3///vr444+r4OoAqou2EcEKdNqrvNBWwJAU5LSrbQTTSQAAQNk4rA4AAAAAAAAAAAAAVKRQP6fMcjx+16YNkqQ1Py7Smh8XFbm/95ARZT63qWM7aAMAAKDiRQX6qnfz+lp9IFVZLk+lXSfIaVeXxmGFn+tCQ0P1zTff6NZbb9Xo0aO1Y8cOPfXUUzIMJtMBtZ3dZuicxmFauueIzPJ8I1pGhiF1aRwmu43XGwAAUDaGaVrxMQYAAAAAAAAAAACoHEdzXfp+9xGrY5xUv5b1mVICAABQiTxeU5uSM7Q1JUuGVK6ycYGC88SGB6ptRHCxi7dN09Szzz6rxx57TKNGjdJ7770nX1/fCrg6gOouMStPK/alVMjrTUkZOjYpKSqQ1xkAAFB2FEoAAAAAAAAAAABQq3hNU/MTDsvtrX7/DOawGRoc00A2dqsGAACodCk5+dp4JEOJ2fllLpYUPC4qwEft6gcr3N/nlI/5/PPPdd1116lr166aM2eOwsPDy3BlADVNYlaeVu5PkWlWTJHtn9gMqXsTyiQAAKD8KJQAAAAAAAAAAACg1lmfmK6E1Kwq3R32VAxJMWGB6hBVz+ooAAAAdUpmvls707K182h2Yen4ZAWT42932AxFhwQoOjRAQT6OUl1zxYoVGjp0qCIiIrRgwQLFxMSU5ykAqCFSc11afSBVWS5PpV0jyGlXl8ZhCvNj8iUAACg/CiUAAAAAAAAAAACodTLz3Vq4M8nqGEX0j44s9WJEAAAAVAyvaSoj3620XJdSc106mueSy2PKa5qyGYacdkMhvk6F+TkV6udUsI+jXJPlEhISdPHFFys1NVVffvmlunfvXoHPBkB15fGa2pScoa0pWWWejlTknG63bHa74iKC1DYiWHYbUy8BAEDFoFACAAAAAAAAAACAWmn53mQlZedXiyklhqTIAB/1bBZhdRQAAABUoeTkZA0bNkyrV6/Wv//9b40cOdLqSACqSEpOvjYeyVBidn6ZiyUFj0vbt0uvPHa/Fs2bowYNGlRsUAAAUKfZrA4AAAAAAAAAAAAAVIZ29YOrRZlEOrYAqF39YKtjAAAAoIpFRERo0aJFuuyyy3TllVdqypQpYv9foG4I9z+2qUD/6EjFhAXKcdxUkZPNFzn+dofNUExYoPpHR2rYWadp37bNGj9+fGVGBgAAdRATSgAAAAAAAAAAAFBr/ZWUrq0pWVbHUGx4oNpH1rM6BgAAACximqbGjx+viRMn6oYbbtBbb70lp9NpdSwAVchrmsrIdyst16XUXJeO5rnk8pjymqZshiGn3VCIr1Nhfk6F+jkV7OOQzfj/islLL72khx56SH/99ZdOO+00C58JAACoTSiUAAAAAAAAAAAAoNbyeE0t3pWkbJfHkmklhqRAp139WkbKbjvZHrQAAACoK/7973/rpptuUu/evfXf//5XISEhVkcCUEPk5eXptNNO0xlnnKG5c+daHQcAANQSNqsDAAAAAAAAAAAAAJXFbjN0TuMwGRZ1OQxD6tI4jDIJAAAAJEmjR4/Wd999pzVr1qh79+7avXu31ZEA1BC+vr6aPHmyvvzySy1btszqOAAAoJZgQgkAAAAAAAAAAABqvcSsPK3Yl1KlU0oMST2ahisq0LcKrwoAAICaYNOmTRo0aJCys7P11VdfqUuXLlZHAlADeL1ede3aVTabTT///LMMq3ZPAAAAtQYTSgAAAAAAAAAAAFDrRQX6qkfTcNmMY0WPymYzKJMAAADg5Nq2bauff/5Z0dHR6t27t+bOnWt1JAA1gM1m0/PPP6/Vq1friy++sDoOAACoBZhQAgAAAAAAAAAAgDojNdel1QdSleXyVNo1gpx2dWkcpjA/Z6VdAwAAALVDTk6O/vWvf2n27Nl68cUXdc899zBxAMApXXLJJdq4caM2btwoX182MgAAAGXHhBIAAAAAAAAAAADUGWF+Tl3QMlKx4YGSKm5aScF5YsMD1a9lJGUSAAAAlIi/v79mzpypBx98UPfdd5/Gjh0rt9ttdSwA1dzUqVO1a9cuvf3221ZHAQAANRyFEgAAAAAAAAAAANQpdpuh9pH11Kd5hCIDfCSVvVhS8Lj9WzfqqWuH6+jW9bLb2FEaAAAAJWez2TR16lS98847evvttzV06FBlZGRYHQtANdauXTvdcMMNmjhxotLS0qyOAwAAajAKJQAAAAAAAAAAAKiTwv191LNZhPpHRyomLFCO44ogJ6uEHH+7w2YoJixQ/aMjteTfb+mvX39Wr169NG7cOLlcrkrNDgAAgNrn5ptv1oIFC7Rs2TKdd9552r9/v9WRAFRjEyZMUF5enqZMmWJ1FAAAUIMZpmmaVocAAAAAAAAAAAAArOY1TWXku5WW61JqrktH81xyeUx5TVM2w5DTbijE16kwP6dC/ZwK9nHIZhyrmDz00EN64YUXZJqmDMPQmWeeqc8//1xt2rSx+FkBAACgplm/fr0GDRokr9erBQsW6IwzzrA6EoBqavz48Xr22We1detWNW/e3Oo4AACgBqJQAgAAAAAAAAAAAJTTuHHjNGXKFLndbkmSw+GQw+HQhx9+qCuvvNLidAAAAKhpDhw4oEsuuURbt27VzJkzdfHFF1sdCUA1lJmZqZiYGPXv318ff/yx1XEAAEANZLM6AAAAAAAAAAAAAFDT+fn5nfBrt9ut3NxczZw506JEAAAAqMkaN26sn376Seeff74uueQSvfXWW1ZHAlANBQUFacKECfr000+1du1aq+MAAIAaiEIJAAAAAAAAAAAAUE6+vr7yer2Fvw4MDNR7772nL774wsJUAAAAqMkCAwM1Z84c3Xnnnbr99tt1//33y+PxWB0LQDVzww03KC4uTg8++KBM07Q6DgAAqGEolAAAAAAAAAAAAADl5O/vL6/Xq6CgIPXq1UuSNHjwYDkcDouTAQAAoCaz2+169dVX9eqrr+qVV17R5ZdfruzsbKtjAahGHA6Hpk6dqu+//17fffed1XEAAEANY5hUUgEAAAAAAAAAAIByOXTokGbMmKHRo0dLklq1aqVrr71Wr7/+usXJAAAAUFt89dVXuvLKK3X66adr3rx5atiwodWRAFQTpmmqT58+SklJ0R9//CG73W51JAAAUENQKAEAAAAAAAAAAAAq2NSpU/XEE09o8+bNat26tdVxAAAAUEv8/vvvGjx4sHx8fLRgwQKdfvrpVkcCUE2sXr1aXbt21QcffKDrr7/e6jgAAKCGoFACAAAAAAAAAAAAVLCcnBy1adNGvXr10owZM6yOAwAAgFpk7969GjRokPbs2aPZs2erX79+VkcCUE1ceeWVWrZsmbZt26aAgACr4wAAgBrAZnUAAAAAAAAAAAAAoLbx9/fXhAkT9Pnnn+u3336zOg4AAABqkWbNmmn58uXq1q2bLrroIn3wwQdWRwJQTUyePFlJSUl6+eWXrY4CAABqCCaUAAAAAAAAAAAAAJXA7XarY8eOatq0qRYuXGh1HAAAANQyLpdLd955p6ZPn67HHntMTz/9tGw29hcG6rp7771X77//vhISEhQVFWV1HAAAUM3xHQQAAAAAAAAAAABQCRwOh6ZMmaJFixZp0aJFVscBAABALeN0OvX222/rueee0+TJk3X11VcrNzfX6lgALPbEE0/IZrNp4sSJVkcBAAA1ABNKAAAAAAAAAAAAgEpimqZ69uyp3Nxc/frrr+wYDQAAgErx3//+V9dee63OOussffnll6pfv77VkQBY6Pnnn9djjz2mDRs2KDY21uo4AACgGqNQAgAAAAAAAAAAAFSi5cuXq1evXpoxY4auvPJKq+MAAACglvr55581ZMgQ1atXT19//TWLyIE6LDc3V3FxcTr77LM1e/Zsq+MAAIBqjEIJAAAAAAAAAAAAUMmGDBmiDRs2aNOmTfLx8bE6DgAAAGqpnTt36uKLL1ZiYqLmzp2rXr16WR0JgEU+/fRTXXvttVq+fLl69OhhdRwAAFBNUSgBAAAAAAAAAAAAKtlff/2lM844Q6+++qruvPNOq+MAAACgFktNTdWIESO0YsUKffDBB7rmmmusjgTAAl6vV2effbb8/Py0YsUKGYZhdSQAAFAN2awOAAAAAAAAAAAAANR27du31+jRozVx4kRlZGRYHQcAAAC1WFhYmL799ltdddVVGjVqlCZOnCj2HAbqHpvNpueff16rVq1SfHy81XEAAEA1xYQSAAAAAAAAAAAAoArs3btXbdq00SOPPKLx48dbHQcAAAC1nGmamjRpksaNG6fRo0dr+vTp8vHxsToWgCp28cUXa9u2bdqwYQOvAQAAoAgmlAAAAAAAAAAAAABVoFmzZrrrrrv0wgsv6PDhw1bHAQAAQC1nGIaefPJJffrpp5oxY4YGDBig1NRUq2MBqGLPPfecduzYoXfeecfqKAAAoBpiQgkAAAAAAAAAAABQRVJSUtS6dWuNGjVKr7/+utVxAAAAUEcsW7ZMl156qaKiorRgwQK1atXK6kgAqtANN9ygefPmKSEhQSEhIVbHAQAA1QgTSgAAAAAAAAAAAIAqEh4erkcffVRvv/22tm/fbnUcAAAA1BG9evXSqlWr5Ha71a1bN/38889WRwJQhSZOnKisrCxNnTrV6igAAKCaoVACAAAAAAAAAAAAVKGxY8eqQYMGeuKJJ6yOAgAAgDokNjZWq1atUmxsrM4//3z997//tToSgCrSpEkT3X///Xr55Ze1b98+q+MAAIBqhEIJAAAAAAAAAAAAUIX8/f01YcIEff755/rtt9+sjgMAAIA6pH79+lq8eLEuvfRSXX755XruuedkmqbVsQBUgQcffFDBwcF68sknrY4CAACqEcPkOwIAAAAAAAAAAACgSrndbnXs2FFNmjTRokWLrI4DAACAOsbr9WrcuHF65plndPPNN+uNN96Q0+m0OhaASvbmm2/q/vvv1/bt29W4cWOr4wAAgGqAQgkAAAAAAAAAAABggS+//FKXXnqpFi5cqAsvvNDqOAAAAKiDPvzwQ918883q27evvvjiC9WrV8/qSAAqkdvt1pEjR9SgQQMZhmF1HAAAUA1QKAEAAAAAAAAAAAAsYJqmevbsqZycHK1Zs0Y2m83qSAAAAKiDvv/+e40YMULNmzfXggUL1KxZM6sjAahEpmlSJgEAAIX4W2kAAAAAAAAAAADAAoZhaOrUqVq7dq1mzpxpdRwAAADUUf369dPKlSuVnp6url276rfffrM6EoBKRJkEAAAcjwklAAAAAAAAAAAAgIWGDh2qv/76S5s2bZKPj4/VcQAAAFBHHT58WJdccok2bNigzz//XJdccskpH+N2u+VwOKogHYCqtHfvXv3555/q3bu3goODrY4DAAAqERNKAAAAAAAAAAAAAAtNnjxZu3bt0vTp062OAgAAgDqsQYMGWrJkiQYMGKAPP/xQp9qneP/+/Ro3bpxWrVpVRQkBVJU///xTr7/+uiZMmGB1FAAAUMkolAAAAAAAAAAAAAAWOv3003Xddddp2bJl8ng8VscBAABAHRYQEKAvvvhCM2fOPGWhJDExUZI0ePBgvfPOO1URD0Alc7lcko79ub7jjjv00ksv6Y8//rA2FAAAqFTMGwQAAAAAAAAAAAAsNm3aNPn5+cnr9VodBQAAAHWc3W6X3W4/5XFnnnmm2rVrp3PPPVdjxoyRx+PR7bffXgUJAVQ0j8cjwzDkdDolSYsXL9bDDz8su92udevWqVOnTtYGBAAAlYYJJQAAAAAAAAAAAIDF/Pz8JEk22z//892pdokGAAAAqkJOTo4kydfXV5dcconuv/9+LVmyRHl5eRYnA1BS+/bt0969e2Wapux2u2w2m9atW6devXppwIABOuuss7R06VINHTrU6qgAAKASUSgBAAAAAAAAAAAAaoDFixfrmWeeUXp6utVRAAAAUEcVFJzfe+89DRw4sPD2zMxMrVy5Uvn5+VZFA1BK77zzji677DIZhqGkpCRdccUV6tSpk/z8/DR//ny9+eab6t69u0JCQqyOCgAAKhGFEgAAAAAAAAAAAKAG2LJli1asWKGHHnrI6igAAACoowzDkCRdcskl2rNnj9q0aaPrr79ekydP1g033KDg4OATpuoxYQ+ovu6++279/vvvuuiii9S0aVNt27ZNn376qT777DMNHDiwSJEkOzvboqQAAKAyGSaf2gEAAAAAAAAAAIBqyzRNGYYh0zT1yy+/6MILL9SqVavUvn17q6MBAACgjpg9e7ZsNpuGDRtWeNuaNWs0ZswYPfLII/Lx8VHv3r0VGRl5wuO8Xq9sNvY8BqqryZMn64knntBzzz2nkSNHqkmTJkX+zLrdbs2bN08///yznnvuOYuSAgCAysKndQAAAAAAAAAAAKAacblchf/t9XplGIa8Xq8kqVu3brr00kv11ltvWRUPAAAAdUxeXp5mzpypL774Qrm5uYW3N2nSRLt371aLFi102WWXFZZJ8vPztWjRIs2ePVtXX321vvjiC6uiAziFxx57TAEBATIMQ82aNSu2AOZwONS4cWP9/PPPeuqppyxICQAAKhOFEgAAAAAAAAAAAKAa8Hq9GjlypM4991xNmDBBS5cuVU5OjiTJZrPJMAxJ0pEjR9SgQQMrowIAAKAO8fX11TvvvKP169dr0KBB+vPPP7Vnzx5Nnz5dnTt3lmEYWrt2rSZOnKgRI0aoX79+uvPOO7Vjxw7NmjVLDz/8sPbt22f10wBwEpMnT9aXX36prKysIvdlZmZKOra5weOPP66XXnpJqampVR0RAABUIgolAAAAAAAAAAAAQDVgs9nk5+en33//Xbt379bll1+uM888UzfccIOmTZumn376SRMmTNB3332nmJgYq+MCAACgDgkLC9P69esVHh6uG2+8UZ06ddKnn36q0047TQsWLFD//v2VkZGhiy++WB9++KG2bNkip9OpiIgIPf/886pfv77VTwHASdx111168cUXZbPZtGfPHkmSaZpKSUnR+PHjlZ6eLkkaMGCAzj77bE2bNs3KuAAAoIIZpmmaVocAAAAAAAAAAAAA8P/TR37//Xe1b99eM2fO1IoVK/Tzzz9r7969Cg4O1v3336/bb7/d6qgAAACoo1avXq2jR4+qcePGatWqlbZt26Y+ffpo1KhReu211yRJb731lu644w5NmzZNo0ePVkBAgFwul9LT0xUREWHxMwDwd9nZ2brzzjvVvn173XfffYW39+zZUy1atNBnn30mSTr//PN1xRVX6LbbbrMqKgAAqGAUSgAAAAAAAAAAAIBq5JZbbtFff/2lFStWnHD73r171axZsxNuW79+vTp06FCV8QAAAIAi1qxZo8svv1xt2rTRI488ogsuuECPPvqoHn74YdWrV0+S9PXXX2vBggXKysrSs88+q4YNG1qcGsDxhg4dqujoaL3yyivyer2y2WyaPXu2rrjiCt14443avXu3Fi5cqG+//Vb9+/e3Oi4AAKggNqsDAAAAAAAAAAAAAPh/r732mlatWqUvv/xSkuT1emWaZpEyiXRswc8zzzxT1REBAACAE5x99tn666+/dOTIEfXv319XXnmlnnnmmcIyiSR1795d7du3l8vlUseOHfXrr79amBjA3z3++ON69913tX37dtlsx5aW5uXl6YILLlDXrl3ldDo1d+7cwjIJe5kDAFA7MKEEAAAAAAAAAAAAqGYmTZqko0eP6vnnny/2ftM0ZRiGZsyYoTvuuEMpKSlVnBAAAAA4xu12y+FwKD8/X61bt5bL5ZLH49Evv/yiVq1aSfr/z68Fxo0bp++++05z5sxR48aNrYoO4G9GjRql5ORkjRkzRqGhobrvvvt09tln68MPPzzhuNTUVM2bN0+jR4+2KCkAAKgoFEoAAAAAAAAAAACAamj37t1q0aLFSe/3er2y2Ww688wz1b9/f02dOrUK0wEAAAAnio6OVlhYmN577z0tX75cAwYMUFxcXOH9pmnK6/XKbrdr/fr1uuiii/TVV1/prLPOsjA1gOMlJydrypQpeueddxQcHKwuXbro5ZdfLiyHFXC5XAoNDdXLL7+sm2++2aK0AACgIlAoAQAAAAAAAAAAAKq5gvLI33d2lqTvvvtOw4YN05EjRxQQEGBRQgCoHrymqYw8t1LzXErLdSktzyW3x5TXNGUzDDnshkJ9nQr1cyrM16lgX4dsf3tdBQCUzZgxY3TttdeqT58+RT6z/v1z7KxZs/TEE0/o3//+t84999yqjgrgFDZu3ChJ8vX1VevWrU+4r+DP8/Tp0/XUU0/p4MGDVkQEAAAVhEIJAAAAAAAAAAAAUI0VlEmys7Pl8Xjk8Xi0Zs0a+fr6avny5ZKkxx9/XA888ICee+45i9MCgDUy893amZatnUez5fYeWwZhSCpuQcTxtztshqJDAhQdGqAgH0cVpQWA2svtdsvhcMjr9So7O1tBQUFKSkpSamqqDMPQzp07FR8fry1btsjf318zZsxQSEiI1bEBnEJBiaTg+1OPxyO73a62bdvqqquu0rhx46yOCAAAyohCCQAAAAAAAAAAAFBNJSYmasqUKTpw4ID27dun7OxsbdiwQc2aNdOhQ4fUqFEjNW7cWDabTQMHDtT9998vh4MF0QDqjpScfG08kqHE7PyTFkhOpeBxUQE+alc/WOH+PhUbEgDqmPz8fL366qt688031bhxY23dulWSFBERIbvdruDgYI0ePVoXXXSRoqOjCxeoA6ie/unP6Geffabbb79dSUlJ8vHhMxQAADURf5sMAAAAAAAAAAAAVFNRUVE6dOiQEhMT1atXLxmGoalTp8rj8SgmJkaNGzdWdna2IiMjJR3bNRYA6gKP19Sm5AxtTcmS8b/byvoKWPC4pOx8LdmTrNjwQLWNCJbdZvzj4wAAxfPx8dEZZ5yh3bt3KzY2VqtWrZLT6ZS/v79CQkLkdDoLF6ebpkmZBKjGMjIyFBwcrH379ik9PV3p6elauXKl3G63li9fLofDoYyMDD377LNMKQEAoIZiQgkAAAAAAAAAAABQjXk8HtntdpmmKcM4cXHz8bfl5+fro48+Ut++fRUTE2NFVACoEqm5Lq0+kKosl6fSrhHotOucxmEK83NW2jUAoLZbuXKlLrzwQt1+++16/vnnT7ivuM+2AKqXzZs3684771RycrIOHz4sp9OpvXv3qkOHDsrMzFS7du3UvHlzhYWFaeDAgerRo4fVkQEAQBlQKAEAAAAAAAAAAACqueMX3Hm9XtlstmIX4d1111368ccftX79eitiAkClS8zK08r9KTLNsk8kKQlDkmFI3ZuEKyrQtxKvBAC1286dO9WrVy917NhRc+bMka8vr6lATXL33XdLks4991x5vV6dd955ys/PV8OGDRUQECC32y2Hw2FxSgAAUB4USgAAAAAAAAAAAIBaIjk5WS1btlR8fLwuvPBCq+MAQIVKzMrTin0plVok+TtDUo+mlEoAoDzy8vLUpUsXXXHFFXriiSesjgOggvzTZgcAAKDmoFACAAAAAAAAAAAA1GCmaRYu4DEMQ08//bQ+/vhjbdu2zepoAFBhUnNdWrrniLwWrHCwGVLv5vUV5ues+osDQB3AYnSgejv+zyh/XgEAqH1sVgcAAAAAAAAAAAAAUDJer1fSsUU8BQzDkM1mK7zv3nvv1eHDhxUfH29JRgCoaB6vqdUHUmXVdpleU/r1QKo8VrRZAKCWKW7vY8MwtH37dgvSACiJ4wsklEkAAKh9mFACAAAAAAAAAAAA1CBpaWkyDENut1s///yzfHx89PPPPyspKUmHDh3S3r17tWbNGjVo0ED79u2zOi4AlNtfSenampJldQzFhgeqfWQ9q2MAQK3z/vvva+zYsfrss880bNgwq+MAAAAAdQqFEgAAAAAAAAAAAKCGME1TF1xwgfbt26cdO3aoWbNmSklJUYMGDdSkSRPZ7XZ169ZNvr6+6ty5swYOHGh1ZAAol5ScfC3Zk2x1jEJ9mkco3N/H6hgAUKvk5ORo9OjR+u9//6vnn39e9913H1MQAAAAgCpCoQQAAAAAAAAAAACoQRYuXKhly5apX79+Mk1TzZs3V4sWLZSenq7w8HCr4wFAhVq+N1lJ2fmqDgsbDEmRAT7q2SzC6igAUOt4vV49/vjjevbZZ3Xbbbfptddek8PhsDoWgJPwer2y2WxWxwAAABWAQgkAAAAAAAAAAABQw5mmWbiLc8HCnuNvA4CaKDPfrYU7k0553J5tWzTrjRe1fcM6pR1JlK+fv5rGxGromNvUpW//wuNef+QeLZk7q8jjG0e31uvfLCtxrv7RkQryYZEzAFSGd999V7fddpv69++vmTNnKjg42OpIAP7GNE2lpqbq/fff1wMPPMD3nQAA1HD8DQcAAAAAAAAAAABQA52sOFKwSyyLegDUdDvTsmVIp5xOknRgn3KyMnX+pZcrLKqh8nJz9PPCBXr29ut0y4Tn1H/kqMJjnT6+um3SCyc8PiCo5IuVjf/l6hBVr+RPBABQYjfddJNatmypyy67TL169dL8+fPVtGlTq2MBOI5hGFqzZo0eeughnXbaabrkkkusjgQAAMqBCSUAAAAAAAAAAAAAAKBa8Zqm5icclttbtiUNHo9HD40YoPy8vMLpI68/co9+Xjhfn/2eUK5sDpuhwTENZKO4BwCV5q+//tKgQYPkdrs1f/58nXnmmVZHAnAc0zR14YUXav/+/Vq/fr0cDvY2BwCgprJZHQAAAAAAAAAAAAAAAOB4GXnuMpdJJMlutyuiYWNlZ6QXuc/j8Sg7M6PM53Z7TWXku8v8eADAqbVv314///yzGjVqpF69emnBggVWRwJwHMMw9Nxzz2nz5s16//33rY4DAADKgUIJAAAAAAAAAAAAAACoVlLzXKV+TG52ttJTk3Vozy599dF0rV32ozp063nCMXk5Obr27Fhde3acRndtp3cnPqqcrKxSXystt/T5AACl06hRIy1dulQXXHCBhgwZomnTplkdCcBxzjrrLI0aNUpPPfWUMjMzrY4DAADKyDBNs+xbegAAAAAAAAAAAACoFrxerwzDkGEYVkcBgHL74/BR7UzLVmkWNLzz1MNaOPMTSZLNZlPXCy/WrROfU1BIqCTp0xcny5SpVu06yPR6tXbZEi2ZO0unndVFEz+eLbvDUaLrGJKiQwPUqUFIqZ4TAKBsPB6PHnjgAb3yyiu699579fzzz8tut1sdC4Ck3bt3Ky4uTo888ojGjx9vdRwAAFAGFEoAAAAAAAAAAACAWiAvL08PPPCARo8erbPPPtvqOABQLkv2HFFKTummgOzbsU3Jhw4qNfGwVn7zlRw+Tt381LMKrR950sfMfvs1/eeVZ3Xvi2+q56BLS3ytCH+nejevX6p8AIDyeeONN3T33XdryJAh+vTTTxUYGGh1JACSHnroIU2bNk0JCQlq1KiR1XEAAEApUSgBAAAAAAAAAAAAagGPx6MzzjhDUVFR+v7775lUAqBGW7wzSen57nKdY+KYK5WVka5nZy046WtiXm6ORp3VRucPH6nbJ71Y4nPX83HoguiTF1UAAJVj/vz5uvLKK9W2bVt99dVXatiwodWRgDovLS1NrVu31mWXXaZ33nnH6jgAAKCUbFYHAAAAAAAAAAAAAFB+drtdU6ZM0Y8//qiFCxdaHQcAysVbAXtjdhswWAnr/9CBndtPeoyvn7+CQsOUeTStVOeuiHwAgNIbPHiwli1bpgMHDqhr167asGGD1ZGAOi80NFRPPvmk3nvvPW3cuNHqOAAAoJQolAAAAAAAAAAAAAC1xODBg9WzZ089/PDD8nq9VscBgDLJzMxUfn5euc+Tn5crScrOzDjpMTmZmcpITVG9sIhSndvGFCgAsMyZZ56pX375RaGhoerevbsWL15sdSSgzrvtttvUokULPfzww1ZHAQAApUShBAAAAAAAAAAAAKglDMPQ1KlT9eeff+rzzz+3Og4AnJTb7VZCQoIWLFigl19+Wbfeeqv69u2rJk2aKDg4WH/+/nuJz3U0+UjR87tcWjr3C/n4+alp61jl5+UqJzOzyHFfvPWyTNPUmb3OL1V+p51CCQBYqWnTplq+fLm6d++ugQMH6v3337c6ElCn+fr6asqUKZo/f76WLFlidRwAAFAKhmkyhxUAAAAAAAAAAACoTYYNG6Y//vhDmzdvlq+vr9VxANRRpmkqKSlJW7Zs0datW0/4efv27XK5XJIkf39/tWnTRnFxcYqNjVVcXJyizuiqbN9glWRBw9Q7xygnM1Ptzu6q8AYNlXYkST99Fa/9OxI0+uGnNOT6W5S4b68eGN5fPQddqibRrSVJf6xYqt+Xfq8ze52vx975RDZbyfbkNCRFhwaoU4OQMv6fAQBUFLfbrbFjx+rtt9/Wo48+qkmTJpX49RxAxTJNU127dpVpmvrll1/4swgAQA1BoQQAAAAAAAAAAACoZTZt2qT27dvr5Zdf1l133WV1HAC1XHZ2trZt21ZYFikojmzdulVpaWmSjk1QatGixQmlkYKfmzZtWmTB4a6j2fr90NESXX/5grn6fvYM7dm6WRlpqfIPDFKr0zvo4lFj1KXvAElSVvpRvTfpCW3983elJh6S1+NVwxYtdd7g4Roy5lY5nM5SPefODUPUIiSgVI8BAFQO0zT10ksv6cEHH9QVV1yhjz76SH5+flbHAuqkn376Sb1799Z//vMfXXXVVVbHAQAAJUChBAAAAAAAAAAAAKiFbrrpJs2dO1fbt29XvXr1rI4DoIbzeDzas2dPsdNG9u7dW3hcREREkcJIbGysYmJiSrW492iuS9/vPlIZT6VC9GtZXyG+pSuhAAAq1+zZszVq1CidddZZmjt3riIjI62OBNRJQ4cO1bp165iYCQBADUGhBAAAAAAAAAAAAKiF9u/fr5iYGD344IOaOHGi1XEA1BDJycknlEUK/jshIUF5eXmSJF9fX8XExCguLq5IcSQiIqJCcnhNU/MTDsvtrX5LGhw2Q4NjGshmGFZHAQD8zS+//KIhQ4YoODhYCxYsUFxcnNWRgDpn8+bNat++vZ577jndd999VscBAACnQKEEAAAAAAAAAAAAqKUeeeQRvf7669q+fbsaNmxodRwA1URubq4SEhKKnTaSkpJSeFzz5s2LnTbSvHlz2e32Ss+5PjFdCalZqk6LGgxJMWGB6hDF5CcAqK527dqliy++WIcOHdLcuXN13nnnWR0JqHNuvfVWzZo1S9u3b1dYWJjVcQAAwD+gUAIAAAAAAAAAAADUUqmpqWrdurWuvPJKvfnmm1bHAVCFvF6v9u3bd8KUkYKfd+/erYKlAiEhIYWTRo4vjsTExCggIMDS55CZ79bCnUmWZihO/+hIBfk4rI4BAPgHaWlpGjFihJYtW6YPPvhAo0aNsjoSUKccOnRIMTExuu222/T8889bHQcAAPwDCiUAAAAAAAAAAABALfbCCy/okUce0caNGxUbG2t1HAAVLDU1tciUka1bt2rbtm3KycmRJDmdTsXExBQ7bSQyMlKGYVj8LE5u+d5kJWXnV4spJYakyAAf9WwWYXUUAEAJ5Ofn65ZbbtFHH32k8ePHa9y4cdX6PQ+obSZMmKDJkydry5YtatmypdVxAADASVAoAQAAAAAAAAAAAGqx3NxcxcbGqlu3bpo1a5bVcQCUQV5ennbs2FHstJGkpP+f4NGkSZMihZG4uDi1aNFCDkfNnKiRkpOvJXuSrY5RqE/zCIX7+1gdAwBQQqZpavLkyXriiSf0r3/9S++++658fHgdB6pCZmam2rRpo759++qzzz6zOg4AADgJCiUAAAAAAAAAAABALffRRx/p+uuv1y+//KJzzjnH6jgAimGapvbv31/stJGdO3fK6/VKkoKDg4stjbRp00ZBQUEWP4vK8VdSuramZFkdQ7HhgWofWc/qGACAMpgxY4auu+46de/eXfHx8QoLC7M6ElAnvPvuu7r55pu1Zs0ade7c2eo4AACgGBRKAAAAAAAAAAAAgFrO4/HojDPOUFRUlL7//nsZhmF1JKDOSk9PL1IY2bJli7Zt26asrGOlCYfDoVatWhVbHGnQoEGd+zPs8ZpavCtJ2S6PrFjgYEgKdNrVr2Wk7La69f8eAGqT5cuX69JLL1X9+vX19ddfq1WrVlZHAmo9t9utjh07qmHDhnwvCgBANUWhBAAAAAAAAAAAAKgD5s+fr0suuUTffvutBgwYYHUcoFZzuVzasWNHsdNGDh06VHhcw4YNiy2NREdHy+l0WvgMqp/UXJeW7jkirwUrHGyG1Lt5fYX58TUBgJpu27ZtGjRokNLS0vTll1/q3HPPtToSUOsVfC86f/58DRo0yOo4AADgbyiUAAAAAAAAAAAAAHWAaZrq3bu30tPT9fvvv8tms1kdCajRTNPUoUOHip02smPHDnk8HklSYGBgkcJIbGysYmNjVa9ePYufRc2SmJWnFftSqnRKiSGpR9NwRQX6VuFVAQCVKTk5WZdeeql+/fVXffLJJ7r88sutjgTUaqZpqm/fvkpMTNSff/4ph8NhdSQAAHAcCiUAAAAAAAAAAABVwGuayshzKzXPpbRcl9LyXHJ7THlNUzbDkMNuKNTXqVA/p8J8nQr2dchmGFbHRi2zatUqde/eXZ9++qmuueYaq+MANUJmZqa2bt1a7LSRjIwMSZLNZlOrVq2KLY40btxYBq/nFSYxK08r96fINFXpxRJXXp7WfjlDj4y9TaGhoZV8NQBAVcrNzdWYMWM0Y8YMPfvss3rooYd4vwYq0Zo1a9SlSxe9++67uvHGG62OAwAAjkOhBAAAAAAAAAAAoBJl5ru1My1bO49my+099s8yhopfBHv87Q6boeiQAEWHBijIh907UXGGDx+utWvXavPmzfL1Zcd9QJLcbrd27dpV7LSRAwcOFB4XFRVVbGmkdevW8vHxsfAZ1C2puS6tPpCqLJen0q4R5LTrruED1TG2tT7++GM5nU7Z7fZKux4AoOqZpqlx48Zp0qRJuummmzRt2jQ5nU6rYwG11tVXX60lS5Zo27ZtCgwMtDoOAAD4HwolAAAAAAAAAAAAlSAlJ18bj2QoMTv/pAWSUyl4XFSAj9rVD1a4P4uVUX6bNm1S+/bt9dJLL+nuu++2Og5QZUzTVFJSUrGlke3bt8vlckmS/P39FRsbW2xxhCkV1YfHa2pTcoa2pmSV+X327wrOExseqLYRwfrvF7M0cuRIeb1e2Wy2kz7O6/Vq165dio6OZnd7AKiBPvroI910003q27evZs2apZCQEKsjAbXSzp07ddppp+mJJ57Qk08+aXUcAADwPxRKAAAAAAAAAAAAKlBVLHC121isivK56aabNGfOHG3fvp0Fc6h1srOztW3btmKLI0ePHpUkGYahli1bFlsaadq06T+WB1C9VGaB0zTNEhVEVq1apenTpyskJESvvPJKGRIAAKz2ww8/aPjw4WrWrJkWLFig5s2bWx0JqJXuv/9+TZ8+XQkJCWrQoIHVcQAAgCiUAAAAAAAAAAAAVJjUXJdWH0hVlstTadcIdNp1TuMwhfk5K+0aqP3279+vmJgYPfDAA3r66aetjgOUmsfj0Z49e4otjezdu7fwuIiIiCKFkbi4OLVu3Vp+fn4WPgNUtMx8t3amZWvn0Wy5vceWQZysYHL87Q6boeiQAEWHBijIx1Gma6elpen777/XQw89pEGDBum1114r03kAANbatGmTLr74YuXm5mr+/Pnq3Lmz1ZGAWiclJUWtW7fWVVddpTfffFO5ubnasGEDf94AALAQhRIAAAAAAAAAAIAKkJiVp5X7U2SaFTOV5GQMSYYhdW8SrqhA30q8Emq7Rx99VK+99poSEhLUqFEjq+MAxUpOTtaWLVuKFEcSEhKUl5cnSfL19VWbNm0KyyIFxZHY2FhFRERY/AxQ1bymqYx8t9JyXUrNdelonksujymvacpmGHLaDYX4OhXm51Son1PBPg7ZSjCFpNhreb0yTVN2u12///67zjvvPHXo0EFz585lx20AqKEOHz6sIUOG6K+//tKMGTM0ZMgQqyMBtc6LL76ohx56SFOmTNGrr76qAwcOaM+ePWrWrJnV0QAAqJMolAAAAAAAAAAAAJRTYlaeVuxLqdQiyd8Zkno0pVSCsktLS1OrVq00cuRIvfXWW1bHQR2Wm5urhISEYqeNpKSkFB7XvHnzYqeNNGvWTHa73cJngLrI7XbL4Tg20WTmzJkaNWqUhg4dqnHjxql9+/ay2WwWJwQAlFV2drb+9a9/KT4+Xi+//LLuvvtuqyMBtco333yjoUOHyuVyyTAMmaapP//8Ux07drQ6GgAAdRKFEgAAAAAAAAAAgHJIzXVp6Z4j8lrwLy42Q+rdvL7C/JxVf3HUCi+++KIefvhhbdy4UbGxsVbHQS3m9Xq1b9++YqeN7N69WwX/bB0aGnpCWaTgv2NiYhQQEGDxswCO8Xg8hSWmJ554QpMnT9Z9992ne++9V02aNJEkmaYpo4yTTwAA1vN6vXr44Yf1wgsvaOzYsXr55ZcpsALl5PF4NHz4cM2bN082m01er7fwvlWrVqlbt24WpgMAoO6iUAIAAAAAAAAAAFBGHq+pxbuSlO3yVOl0kuMFOe3q1zJSdhuLVlF6ubm5io2NVbdu3TRr1iyr46AWSE1NLTJlZOvWrdq2bZtycnIkSU6nUzExMcVOG6lfvz6L8FFtffvtt0pKStK1114rSRo+fLi+++47Pf/887rmmmsUEhJicUIAQEV7++23deedd2rgwIGaMWOGgoKCrI4E1Fgul0tdunTRn3/+WeS+77//Xn379rUgFQAAcFgdAAAAAAAAAAAAoKbalJyhLJfH0gyZLo82JWeofWQ9S3OgZvLz89PTTz+t6667TqtXr9Y555xjdSTUAHl5edq+fXuxxZGkpKTC45o2barY2Fj16NFD119/fWFxpEWLFnI4+Kdq1DwZGRkaPXq07Ha7pk6dqvT0dM2cOVMXXHCB/Pz8Co/buXOn3njjDYWEhKh169a65pprLEwNACiPW2+9VS1bttQVV1yh8847T/Pnz1fjxo2tjgXUSE6nU7/88ovGjRun559/XoZhFE4pKSifAwCAqseEEgAAAAAAAAAAgDJIycnXkj3JVsco1Kd5hML9fayOgRrI4/GoU6dOql+/vn744QemQ0CSZJqm9u/fX2xpZOfOnYULv4KDgxUXF1dk2kibNm3YwRu10pNPPqlnnnlGZ511lqZPn65OnTrJZrNJkrxer1JTUzVixAh5PB7Z7XYdOnRIl112mSZNmmRxcgBAeaxbt06DBg2SJC1YsEAdO3a0OBFQsy1fvlxXX3219u7dK0n6z3/+o6uuuqrwfq9pKiPPrdQ8l9JyXUrLc8ntMeU1TdkMQw67oVBfp0L9nArzdSrY1yEb38sCAFAmbPsCAAAAAAAAAABQBhuPZMiQVB127jJ0LE/PZhFWR0ENZLfb9eyzz2rw4MH67rvvdNFFF1kdCVUoPT29SGFky5Yt2rZtm7KysiRJDodDrVu3VmxsrIYNG3ZCcaRBgwaUkFCnPP3009q+fbt+/vlnNWnSpLBMIh3782S325WXl6cHHnhAQ4YM0bp169S3b1+de+65hQuRAQA1T8eOHfXLL79o8ODB6tmzp2bNmsXnZqAcevbsqQ0bNuj666/X7NmztWXLFklSZr5bO9OytfNottzeY3/jcrK/e0nNcRXe7rAZig4JUHRogIJ8WBYLAEBpMKEEAAAAAAAAAACglDLz3Vq4M8nqGEX0j45k4QTKxDRN9e7dW0ePHtXatWtPWCDNzrA1n8vl0o4dO4qdNnLo0KHC4xo1anRCWaTg5+joaDmdTgufAVD9nHbaaRo6dKimTp2q3NxcXXrppTp69Kh8fHyUmJioJUuWqEGDBpKkW265RSEhIXr22WdPeH0FANQ8mZmZuuqqq/TNN99o2rRpuuWWW6yOBNR4P/30k+I6dda2o7lKzM4v8+YdBY+LCvBRu/rBTHEFAKCEKJQAAAAAAAAAAACU0vrEdCWkZpV6gcN/335VM16ZqmZt4vTKVz+ecJ8rP1/zPnhbS778Qkn79ykgOFit25+hWydMVUTDxqc8tyEpJixQHaLqlTIVcMyqVavUvXt3ffLJJxo1alSpdoY9/va6vDNsXl6eNm7cqGXLlmnTpk1q1qyZrr/+ejVq1KjSr22apg4dOlTstJEdO3bI4/FIkgIDA4sURuLi4tSmTRvVq8frB1BSKSkpWr16tQYMGKABAwZo9+7deuONN3TgwAF99NFHysrK0urVq7Vv3z717NlTI0aM0Isvvmh1bABABfB4PLrnnnv0xhtv6IEHHtDUqVNPKAyapskEN6CEPF5Tm5IztDUlq8KmwBacJzY8UG0jgmW38ecRAIB/QqEEAAAAAAAAAACgFLymqfkJhwsX2JdU8qEDGjuwlwzDUGSTZicUStwul565ZZS2rF2jCy6/Ri3i2irr6FFtXbdWV9xxn5q3iSvRNRw2Q4NjGjAdAmU2fPhwJWfn6Zl3P2Zn2JPIy8vT5s2btXbtWh08eFA9evRQjx49ZLfb9frrr+uDDz5QSEiI4uLitGHDBuXn5+uFF17QeeedJ6/XW+7pBJmZmdq6dWux00YyMjIkSXa7XdHR0YVlkeOLI40aNWKBI1CBMjIydNZZZ+nuu+/WnXfeKUnat2+fOnfurI4dO2rlypXq0qWLJk6cWGGvAwCA6uG1117TPffco+HDh+uTTz6Rw+HQ8OHD5Xa79c0335TqXEwFRF2UmuvS6gOpynJ5Ku0agU67zmkcpjA/Ji4CAHAyFEoAAAAAAAAAAABK4WiuS9/vPlLqx710361KT0mR1+NRelrKCYWSue9N04xXn9Okz+aqTcczy5WvX8v6CvFloQRKz+M19fOOfTrktstmGOwMW4z9+/dr7NixWrNmjRo1aqSQkBDt27dPI0eO1BNPPKHXX39dPj4+uvXWW2Wz2bR+/Xrdfvvtio6O1scffyyPxyO73X7K67jdbu3atavYaSMHDhwoPC4qKqrYaSOtWrWSj0/tKfEA1dnevXs1bNgwPfrooxoxYkTh7X369NENN9ygFi1aqFGjRmrTpo2kYwWU4OBgq+ICACrYvHnzdNVVV6l9+/aKi4vTJ598Iklat26dOnTocMrHMxUQdVViVp5W7k+RaVbMVJKTMSQZhtS9SbiiAn0r8UoAANRcfJoEAAAAAAAAAAAohdQ8V6kfs+HXn7XquwV6IX6h3p/0xAn3eb1eLfj4fZ1zwUVq0/FMedxuuV358vUPKFO+tFwXhRKUWuHOsB6HDKPiFvQUnGdrSpb2Z+TW+J1hg4ODde211+qll15Sy5YtJUnPPPOM3n//fQ0fPlz33HPPCceffvrpOuuss7R+/fp/PO9XX32lZcuWFZZGtm/fLpfr2GuNv79/YVGkR48ehcWR2NhYhYaGVsKzBFAazZo1U58+fTR+/Hj16NFDUVFRWr58uQ4dOqSGDRvqvPPOkyRt3LhRL774on766Sedd955uuiii3T55ZdbnB4AUF5DhgzRTz/9pPPPP1+rV6+WJDkcDr3xxht65513Tvq4lJx8bTySUexUwJN9Fj/+drfXVEJqlralZtXKqYCo3RKz8rRiX0qlFkkKmJJMU1qxL0U9mlIqAQCgOBRKAAAAAAAAAAAASiEt13XSHWOL4/F49P6kJ3TBZVerRVzbIvfvS9iqlMRDahHXTm89+aCWzP1Cble+mse21ZjHJqpDtx4lzmboWDGgRUiJHwKcsDNsZcp2ebR0z5EavTNsvXr1NGzYsBNui42N1aFDh9S0aVNJx0pikmSz2ZSenq6vv/5at9xyiyQVO53ENE3NmTNHS5YsUVxcnPr373/CtJEmTZrIZrNV8jMDUB4vvPCC1q1bpxEjRig9PV1hYWGKiooqnEqSlZWl6667TkeOHNHtt9+ugwcP6rbbblNwcLAuuugii9MDAMpr165dysjIKPy12+3Wxx9/rOeee04hISd+c+bxmtqUnKGtKVkqmN1X1o/hBY9Lys7Xkj3JtWYqIGq31FzXse8/q/i6pqSV+1PUu3n9Gr3JAQAAlYFCCQAAAAAAAAAAQCmk5blKtfBh4ecfK+nAPj314cxi7z+4e6ckaf5H0xUUEqZbJkyVJMW/87om3XSNpv73a7WMa1eia5mSjpZhggrqLnaGLZvs7Gx98803+u2337R06VL9+9//VlhYmCSdUP6YNGmSAgICdPvtt//j+aZPny6Hg3+6BWqyr7/+Wp988ok2bNighg0batiwYYWTjD7//HNt3LhR+/btK5ws1Lx5cz388MPq3r276tWrZ11wAEC5HDp0SFdffXWR23Nzc/Xvf/9bd911V+FthVMBXR5JTAVE3ePxmlp9ILXSNzM4Ga8p/XogVf1aRlK8AgDgOPytJAAAAAAAAAAAQCm4PSVf+ZCRmqLPX3tBl992j0LCI4o9Jic769jPWVl6Yc5C1W/URJLUoVsP3Tmgh758703d/fwbJb6mqxT5ULexM2zZ7d+/X08//XThwvAXXnhBp512mjp06FB4zLx58/T5559rxowZCggIOOm5DMOgTALUAg6HQ9dff72kY5OHDMOQ+b/VkllZWWrXrp1CQ0OVlZWlwMBAtW3bVsHBwfz5B4Aarl69err99ts1f/58JSQkSFLhe8D48eM1duxYGYbBVEBA0qbkjMJClVUyXR5tSs5Q+0gKvQAAFGA2MgAAAAAAAAAAQCl4S7EC6D+vPqeg0FANHDXmpMf4+vpJkk47q0thmUSSIhs31WlnnaPNa9dUWj7UXdVlZ1iPt/r9fs3NzdVff/2lgwcPFi4G/7s2bdrojz/+0JIlSzR//nxFRkZq3Lhx2rt3ryRpx44deuihh3TLLbeoV69eVRkfQDVgGIa2b9+u/fv3yzAMXXjhhfrjjz/0448/KjAwUJL0yy+/KDExUS6XS16v1+LEAICyCggI0Msvv6xt27bp0KFD+vzzz3XTTTcpPDxcqampSkpKKpwK6DUrbirJyZg69ll7xb4UJWblVfLVgJJLycnX1pQsq2NIOjbNJyUn3+oYAABUGxRKAAAAAAAAAAAASsFmGCU67sCuHVo861MNGjVGqYmHlbhvrxL37VV+fp48LpcS9+1VRlqqwqIaSJJCIuoXOUdIRISy0o9WSj7UbQU7w1pZ5yjYGdYKXq9Xu3fv1qJFi/TGG2/orrvu0oABAxQdHa2AgAB16NBBn332mVwu1z+ex+12KywsTMOGDdPevXu1f/9+SdITTzyhc845R08++aQkKTs7W0eOHKn05wWgekhMTNSUKVO0fv16SVLbtm01efJkXXfddbrzzjs1ZMgQPfXUU3rssccUEhIim42lGwBQGzRo0EAjR47UO++8o+TkZLndbjnrhVk6FTA1958/zwJVZeORDFWXv60wdCwPAAA4htmpAAAAAAAAAAAApeCwl2wJRMrhQ/J6vXr/mSf1/jNPFrn/tgu6atC/btRVdz0kh9OplMRDRc+ReFj1wiJKlc9Zwnyou6rbzrCNg/wU7u9TKedPTU3V1q1btWXLlsKft2zZom3btik3N1eS5OPjo5iYGMXGxmrkyJGKjY1VXFycOnbsKKfTWex5XS6XnE6nHA6H0tLS9J///Ed2u11nn322pk2bps8//1zdunXTxRdfrD///FMHDx7UkCFDNHfu3Ep5ngCql6ioKPn4+OjJJ59Ujx49VK9ePT3wwAPq2LGjHn/8cW3evFljx47V4MGDrY4KAKhMhk2rDyRbPhWwX8tI2W18nwjrZOa7lZh96okgOVlZ+vL9N7Vt3VolrP9DmUfTdMfkl9V3+Mgix+7bvk0fTnlKm39fLYfTR2f17qfrHhmvkPBT/x2KKSkxO1+Z+W4F+bCEFgAA3g0BAAAAAAAAAABKIdTXqdQc1yl3mG0eG6eH3ni/yO0zXn1OOVmZGvPYRDVs1lL+QUE687y++m3JYu3bsU1NW7WRdGxxxJa1a9R/5KgSZzMkhfgWvwAeKFCwM6yV00kKFOwM27NZ6YpTx8vLy9P27duLFEe2bt2qpKSkwuOaNm2q2NhY9ezZU2PGjFFcXJxiY2PVokULORwl/2fT5ORkTZ48WW3btlVCQoL+/PNP2Ww2vfTSS3I4HPJ4POratas6deqkZs2a6f7771e7du3UqFGjMj9HADXPm2++qTPPPFNXX321YmJi1KlTJ73wwgvy8/PTLbfconvuuUf16xedTgYAqD0KpgJaqWAqYPvIepbmQN22My27RN+DZqSm6Is3X1b9xk3UIq6dNqxeWexxyYcO6MlRwxQQXE9X3/OIcrOzNe/Dt7Vn6yY9O+trOX1OvWGB8b9cHaL4swEAgGGaVnWgAQAAAAAAAAAAap5dR7P1+6GjZX78uGtHKD0tRa989WPhbXsTtuqRKwbJPzBIF187RpL09ScfyONx64U5CxXRoOQL0Ts3DFGLkIAy50Ptlpnv1sKdSac+sIr1j478x51hTdPU/v37iy2N7Ny5U16vV5JUr169wqLI8T+3adNGgYGBFZI1Pz9f1157rfbu3avIyEj16NFDAwcOVIcOHSrk/ABqj6NHj+rFF1/UsmXLlJaWpjPPPFPDhw9X7969FRwcbHU8AEAlSsnJ15I9yVbHKNSneUSlTQUE/onXNDU/4bDc3lMvU3Xl5ynz6FGFRUYpYf2fevjygcVOKJk+4VH9OGemXvv6J0U2bipJ+nPlT5o45krdMuG5Em/M4bAZGhzTQDaDCT4AgLqNCSUAAAAAAAAAAAAllJmZqTXLfpKtzZkVet5mMbF6+pPZ+uTFZzT77VdlGDa179ZD/3rwyVKVSSQp1I8JJTi5ku4MW5ycrCx9+f6b2rZurRLW/6HMo2nFLu4preN3hk1PTy9SGCn4OTs7W5LkcDjUunVrxcbGatiwYSeURxo0aCCjkhcD+fj4aObMmZV6DQC1Q0hIiCZOnChJysjIOKFEYppmpb9eAQCsU9umAgJllZHnLlGZRJKcPr4Ki4w65XE/L1ygzn0uLCyTSNIZ3c9T45attPLbeSUulLi9pjLy3Ux6BQDUeRRKAAAAAAAAAAAA/kFKSoq++uorxcfH67vvvpPL7dbna7fL7lO23V0nfjK72Ntbnd5RT31QvkXqDpuh4H+Y8oC6zWua2nk0u8yL2jJSU/TFmy+rfuMmahHXThtWr6yQXKakv/Yn6aKz2unA/v2Ftzdq1EhxcXE655xzdO211xYWR1q2bCmnkwU/AGqGguLI3yeSUCYBgNorM9+txOx8q2MUMiUlZucrM9/9j1MBgcqQmueq0PMlHz6oo8lHFNO+Y5H7Yjqeqd+X/lCq86XluiiUAADqPD4hAgAAAAAAAAAA/M2hQ4c0d+5czZ49Wz/++KO8Xq+6d++uyZMna/jw4coICFNCala12G22gCEpOiRANhao4iRKszNsccKiovTesj8UFhmlhPV/6uHLB1ZYNt+AAI29/yE1b1BfcXFxatOmjerVq1dh5wcAq5S3OOI1TWXkuZWa51JarktpeS65Paa8pimbYchhNxTq61Son1Nhvk4F+zr4LAAAFivPVEBJ2rFhnWa+8aI2//6r8vNy1aBZC114+TUa9K8by5zp+KmAJcV7UPVU074uabmuCp3Wk5qYKEkKjWxQ5L6wyChlHk2VKz9PTh/fU57LkJSa61KLkAoKBwBADUWhBAAAAAAAAAAAQNKuXbsUHx+v+Ph4rVy5UjabTd26ddP48eM1YMAANWzYUDabTQ6HQ/VDA7QtNcvqyCcwJUWHBlgdA9VYeXeGdfr4KiwyqoLSFHXVmBvVIoTfwwDqDq/XK5vNVux9mflu7UzL1s6j2YVlwJMtxkzNcRXe7rAZig4JUHRoALvQA4AFyjsV8I/lSzTltusU3a69LrvtHvkFBOrQ3l1KPnywXLlMSTuPZuv0yOBTlgt4D6qeaurXJS3PVaGbceTn5UqSnMVMjXX6HiuR5OfmlqhQYko6WsETVAAAqIn45AYAAAAAAAAAAOqsTZs2FZZIfv/9d/n6+qp///6aNm2axo4dqxUrVmjFihV68sknT3jcxIkTdf51tyspO79aTCkxJEUG+LBoB/+ooneGrUjsDAugrvF6vVq3bp3CwsLUokWLwttTcvK18UiGErPzi7xmn+z1+/jb3V5TCalZ2paapagAH7WrH6xw/6ILLgEAlaM8UwGzMzP0+iN3q3Offnrg1XdPWjosK7fXVEa+WyG+zmLv5z2oeqrpXxe3p2K/A/Xx9ZMkufLzi9znyss7doyfX4nP56rgfAAA1ET8qwIAAAAAAAAAAKgzTNPU2rVrC0skmzZtUlBQkAYNGqSHH35YAwcOVHBwsEzT1Hvvvae1a9fKNE9cXFCvXj3deOON8g0N1pI9yRY9kxOZktrVD7Y6Bqq5it4ZtiKxMyyAusblcunqq6+W3W7XypUrFRAYpE3JGdqakqWCfePL+ppd8Lik7Hwt2ZOs2PBAtY0Ilt32zzvSAwDKrzxTAZfNn6O0I0m6+p5HZLPZlJudLR8/vwotlqTluooUSjxek/egaqi2fF28ZsV+FxoWdWxqZlrS4SL3pSYlKigkrETTSQpUdD4AAGqiiq0xAwAAAAAAAAAAVDNer1crVqzQ/fffr1atWqlz585688031bVrV82bN09JSUn6/PPPdcUVVyg4+FgpwzAMjR07tkiZxOFw6IcfflCjRo0U7u+j2PBAK55SEbHhgez8ilOq6J1hKxo7wwKoS3x9ffXf//5Xu3fv1oSpL2jxriRtTcmSVHGTpArOszUlS4t3JSk1l+IeAFS2gqmAZbFu5TIFBAUr+fBBjb2op645K0bXnh2rd8Y/ovy83HJnK5gKeLzUXBfvQdVQbfq62IyKLa1ENGikeuERSvhrXZH7EtatVXTb00t1vorOBwBATcSEEgAAAAAAAAAAUOu4XC4tXbpUs2fP1ty5c3Xo0CE1bNhQw4YN0/Dhw9W7d285nc5iH7tz505NmTJFH374oex2u7xeb2Gx5LXXXlPnzp0Lj20bEaz9GbnKdnksmfxgSAp02tU2gukk+H8ej0d79uzRli1btHXrVm3ZskVbtmzRZY8+o6imza2Od1LsDAugrmnXrp3mfb9UyUFRynZ5KvVa2S6Plu45ou5NwhUVWPJduwEApVOeqYAHd++Ux+PW1DuuV78RV+ma+x7ThtUr9fWnHygr/ajue+mtcmX7+1TAxKw8rdyfosr+GM57UOnUtq+Lw17xhY1u/QdpydxZOnJwv+o3aiJJWrdqmQ7s2qHB191cqnM5KyEfAAA1DYUSAAAAAAAAAABQK+Tm5mrhwoWKj4/XvHnzlJqaqpYtW+rqq6/WiBEj1K1bN9lsJx/evn37dk2ePFkff/yxwsPDNWXKFDVv3lwjR46UYRi6/PLLdeutt57wGLvN0DmNw7R0z5FKX+xRHMOQujQOk93GAoi66MiRI4WFkeN/TkhIUF5enqRjO+C3adNGcXFxCgoMsDjxP2NnWAB1TWJWnlLrNZShitt5/GRMSaYprdiXoh5NWdALAJWlPFMBc7OzlJeTo/5X/ks3PDFJktSt/8Vyu1xaOPMTXXnXg2rcslW58hVMBUzMytOKfSlVsjEC70ElVxu/LqG+TqXmlLxo9fWnHyg7I10piYclSWt+XKSUwwclSQNHjVFgcD2NuGWsVn37lZ4afbkGXXuDcrOz9eUHb6l5bFv1HT6yxNkMSSG+xW82AgBAXUKhBAAAAAAAAAAA1FgZGRn6+uuvFR8frwULFigrK0tt27bVHXfcoeHDh6tTp04yTrFIfevWrXrmmWf02WefKTIyUs8//7xuvvlmBQQEyDRNTZ48WRkZGXrvvfeKPVeYn1Pdm4RX2aKP4/nZbfoz8ahCfZ0K9XMqzNepYF8HC/NrkdzcXCUkJBROGTm+OJKSklJ4XPPmzRUXF6c+ffrolltuUVxcnGJjY9WsWTPZ7XZJ0pI9R5SS4zrZpSzHzrAA6pLUXNex3cer+LqmpJX7U9S7eX2F+bGAEgAqWnmm7vn4+UmSeg669ITbew4epoUzP9HWP34rd6HEa5q8B1VTtfXrEurnLNVzmvfB20o6sK/w178s+lq/LPpaknTeJSMUGFxP9Rs10cRP4vXRs+P16UuT5XD6qHPvfhr98FNy+pS8GGNK/F4EAEAUSgAAAAAAAAAAQA2TnJysr776SvHx8Vq4cKHy8vLUuXNnPfbYYxo2bJjatm1bovNs3rxZkyZN0owZM9SwYUO9/PLLuvHGG+Xv7194jGEYWrp0qWw2m4KDg096rqhAX/VoGn5s8YdZ+buMF8h2e5Xt9p6w26fDZig6JEDRoQEK8uGfgmoCr9ervXv3FjttZPfu3TL/tygtNDRUcXFxiouL0+DBgwtLI23atDnh9+3JlHZn2KrEzrAA6hKP19TqA6mWTDeTJK8p/XogVf1aRjLlDAAqWHnK/eGRDbR32xaFRtQ/4faQiAhJUmb60XJlk4597uY9qPqpzZ8Nwkr5fd7bP6wu0XHN28Rp3PszyhLpBKEUSgAAoFACAAAAAAAAAACqv4MHD2ru3LmaPXu2lixZIq/Xqx49emjKlCkaNmyYWrZsWeJzbdiwQZMmTdLMmTPVpEkTvf766xozZoz8/rcb7N+FhISU6LxRgb7q3by+Vh9IVZbLU+I8FeH4NSdur6mE1CxtS81SVICP2tUPVri/T5XmQfFSU1OLFEa2bNmibdu2KTc3V5LkdDoVExOjuLg4XXHFFYWlkbi4ONWvX/+UE3f+SWl3hi3O159+oOyMdKUkHpYkrflxkVIOH5QkDRw1RoHB9cp0XnaGBVCXbErOqPLPCn+X6fJoU3KG2keW7XUbAFA8Rzmm7rU6vaP+XPmTUhIPqUmrmMLbU//32TskLLzc+VymqVy3t9znKQ/eg4qqzZ8Ngn0dctgMub3Vb2sDh81QMBtxAAAgwzSt6rUCAAAAAAAAAACc3M6dOxUfH6/4+HitWrVKdrtd559/voYPH65LL71UDRs2LNX51q9fr6efflr//e9/1axZMz322GO67rrr5OvrW6G5PV5Tm5IztDUlS4aqblpJcQquHxseqLYRwewAWwXy8vK0ffv2YqeNJCUlFR7XtGnTwqLI8T+3aNFCDkflLGg5muvS97uPlOsct/Y9R0kH9hV731uLf1FU02ZlPne/lvWZUgKg1kvJydeSPclWxyjUp3kExVMAqEB/HD6qnWnZZfo+cMfG9Xpw+AD1GjxM97wwrfD2l++/Xau+m6+3v1+t8Aal+z64OuM96Ji68NlgfWK6ElKzqtW0TENSTFigOkRRbAIAgHolAAAAAAAAAACoNjZu3FhYIlm7dq18fX01YMAAffTRRxo8eLDCw0u/I+sff/yhp59+WvHx8WrZsqWmT5+uf/3rX/LxqZyFK3abofaR9dQ4yE8bj2QoMTvfsmJJwTW3pmRpf0auzmkcxhSICmCapvbv31/stJFdu3bJ6z22429wcLDi4uIUFxen/v37F5ZG2rRpo6CgoCrPXRE7w779w+oKTPT/2BkWQF2x8UiG5YXTAoaO5enZLMLqKABQa5RnKmCrdh3Ud8SV+mH25/J43Dq9y7n6a/Uqrfr2Kw2/eWytKpPwHvT/6sJng+jQAG1LzarQc5aXqWO5AAAAE0oAAAAAAAAAAICFTNPU77//Xlgi2bx5s4KCgjR48GANHz5cAwcOLPPC+99++00TJ07UvHnz1Lp1az3++OMaNWqUnM6qLVRk5ru1My1bO49mFy7kt2KxiCHJMKTuTcIVFVixU1lqq6NHj2rr1q3FThvJzs6WJDkcDrVu3brYaSMNGjSQYVSvqTDsDAsA1snMd2vhzqR/PGbPti2a9caL2r5hndKOJMrXz19NY2I1dMxt6tK3f+Fxi2Z9pp/mzdb+nQnKSk9XeFQDnX7OubrijvtLPS2qf3Skgij1AUCFKO9UQLfLpfh3XtMP8TOVmnRY9Rs31cCrr9Pg0TdVYMrqo66/B5Xks4EVKvrr8uOPP2rdUZeandb+2F9MWMyQFBngQ6EJAID/oVACAAAAAAAAAACqlMfj0apVqwpLJLt371Z4eLiGDh2q4cOH64ILLpCfn1+Zz7969WpNnDhRCxYsUJs2bfTEE0/o6quvlsNh7SIVr2kqI9+ttFyXUnNdOprnUo7Lq2y3p0pzGJJ6NKVUUsDlcmnHjh3FThs5fPhw4XGNGjUqtjQSHR1d5SWl8qgrC5YAoDoqSanvt6Xf6+tP3ldcp84Ki2qovNwc/bxwgTat+UW3THhO/UeOkiRNn/Co8nJy1CL2NAWGhChx314t/uIzeT0evTh3cYl3safUBwAVy2uamp9wuFxTAa1U0mKjJO3bvk0fTnlKm39fLYfTR2f17qfrHhmvkPCSLdLnPajkhf+E9X/oxzmz9NfqlUrav1fBoWFqc0ZnXX33Q2oc3brwuNcfuUdL5s4q8vjG0a31+jfLSpSpIr8u27Zt04MPPqgvv/xSQ68apX89NfV/V7Ben+YRCvevnMm1AADUNBRKAAAAAAAAAABApXO5XFqyZIlmz56tuXPn6vDhw2rUqJGGDRum4cOHq3fv3uUufKxatUoTJ07Ut99+q9NOO01PPvmkRo4cKbvdXkHPomKl5rq0dM8RWbHOyGZIvZvXV5hfzSlClIdpmjp06FCxpZEdO3bI4zlW6gkMDCxSGImLi1ObNm1Ur17tWeS0fG+ykrLzq82Uks1rftGH4x9Uo0aNZLfbZbfbZbPZ5Ovrq0mTJumMM86wOiIAlFt5Fhh7PB49NGKA8vPy/nEx6Pa/1umhyy7SNfc9quE3jy3x+R02Q4NjGshWDXYMByrD1KlT9eijj+ruu+/Wyy+/LEk6fPiwHnroIS1atEgZGRmKi4vTY489puHDh1ucFrVBdZwKWFIlLTYmHzqgB4b1V0BwPV08aoxys7M178O3Vb9RYz0762s5fUq2UL8uvweV5rPB83fdpM1rf1X3AYPVIq6t0o4k6ZvPPlRudpamfD5fzWNPk3SsULLi6y9126QXTnh8QFBwkULQPynv1yU1NVUTJ07UG2+8oUaNGmnq1Km68sorteFIhramZJXpnBUpNjxQ7SNrz/f4AACUF9v8AAAAAAAAAACASpGTk6OFCxcqPj5e8+bNU1pamqKjozVq1CiNGDFCXbt2lc1mK/d1li9frokTJ2rRokU6/fTT9fnnn+uyyy6rtkUSSfJ4Ta0+kCqrtv3ymtKvB1LVr2Wk7Lbas3AnIyND27ZtK1Ic2bp1qzIyMiRJdrtd0dHRio2N1eDBg08ojzRu3FhGHVjI1K5+sJbsSbY6RqGZrz+vhIQEJSQkFLnvzjvvpFACoFbIyHOXebd6u92uiIaNtf2vP//xuKgmTSVJWRnppTq/23tsilqIb90omqJuWbNmjaZPn64zzjjjhM95o0ePVlpamubNm6eIiAjNmDFDI0eO1Jo1a6r1Zw/KMTVDdGiAtqVav2i+LDr37qfOvfudcNvAa67XQyMG6KuP3ikslMx+53Xl5mTrudnfKrLxsfefmI6dNHHMlfpxzqzC406lLr8HleazwSXX3ax7Xph2QlGn+8Ahum9IP8159w3d/fwbhbfbHXb1HjKiXNnK+nVxuVx6++23NX78eOXn52vChAm699575e/vL0lqGxGs/Rm5ynZ5LClcGZICnXa1jQi24OoAAFRfFEoAAAAAAAAAAECFSU9P19dff634+Hh9/fXXysrKUrt27TR27FgNHz68yEKu8li6dKkmTpyoH374QR06dNAXX3yh4cOHV0hJpbJtSs5QlstjaYZMl0ebkjNq3K6cbrdbu3btOqE0UvDfBw4cKDwuKipKcXFx6tSpk0aOHFlYHGnVqpV8Srhbbm0V7u+j2PDAarMz7CfT31Lnzp3ldrsLb7fZbOrUqZP69y/5LroAUJ2l5rlKdXxudrby83KUnZGhX39YqLXLflSPgUOKHJeRmiKv16ukA/v1xZsvSZI6dutZ6nxpua4ii0Y3bNig5cuX65Zbbin1+YDqICsrS9dcc43effddTZo0SeZxbe6VK1fqrbfe0tlnny1Jeuyxx/Tyyy/rt99+q7aFktpWjqnNgnwcigrwqVZTAcujuGLjzwsXqHOfCwvLJJJ0Rvfz1LhlK638dl6JCyVS8e9BdUFpPhucdlaXIrc1btlKzWJitW/7tiL3eTwe5eVkKyCo7MWJ0nxdTNPUggUL9MADD2jr1q0aM2aMJk2apIYNG55wnN1m6JzGYVq654glG2wYhtSlcVit2lgDAICKQKEEAAAAAAAAAACUS3JysubNm6fZs2dr0aJFys/P19lnn63HH39cw4YN02mnnVZh1zJNUz/++KMmTJign376SZ06dVJ8fLyGDh1aI4okkpSSk18tFvJL0taULDUO8lO4f/UqWJimqcTExBOmjBT8vH37drlcxxbe+Pv7KzY2VrGxserZs+cJ00ZCQ0OtfRLVXHXaGdYe2VGvv/66brvttsL7vV6v0tLS9NVXX+mSSy6pE5NjANRuabkuGVKJX3P/PXWCFs78RNKxkl3XCy/WjU8+U+S4m3p3lis/T5IUHBqmGx5/Wmf06F2qbIak1FyXWoQc+/WGDRs0evRo/fbbb5Kkq666SvXq1awCKiBJd9xxhwYPHqy+ffvq6aefPuG+7t27a+bMmbr44osVGhqqWbNmKTc3V3369LEm7CnUtnJMXVDdpgKW5j1I+udiY/LhgzqafEQx7TsWeVxMxzP1+9IfSpXr+PeguqS0nw3+zjRNpSUfUbOY2BNuz8vJ0bVnxyovJ0dBIaHqOWioRt3/hPwDA0t87tJ8XdavX6/77rtPixcvVt++fTVz5sx/fO0J83Oqe5NwrdiXUqXfixqSujcJV5hf3SsvAQBwKhRKAAAAAAAAAABAqR04cEBz5sxRfHy8li5dKq/Xq549e2rq1KkaNmyYWrRoUaHXM01Tixcv1sSJE7V8+XJ17txZX375ZY1caL7xSEa5Fo1UJEPH8vRsFmHJ9bOzs7Vt27Zip40cPXr0WEbDUMuWLRUXF6f+/fsXFkbi4uLUpEmTGlMkqm6q286wt9xyixYuXKh58+bJNE2ddtppioyM1NChQ9WlSxdNnDhRAwYMqHF/3gGgQFqeq1Tv/YNG36huAwYpNfGwVn7zlbxej9yuojuZPz79U7ny87Rv+zb99NVs5eZklzqbKelonkt//fWXrrvuusIiSYG8vLxSnxOw2syZM7V27Vr9+uuvko59pjz+c8TMmTN15ZVXqn79+nI4HAoICFB8fLxatWplVeR/VJvKMXVFdZoK6OewKdftLdVj/qnYmJqYKEkKjWxQ5HFhkVHKPJoqV36enD6+p7xOwXtQXVTazwZ/99NX8Uo5fFBX3vVA4W1hkVEaeuPtatWug0yvV2uXLdG3//m3dm3eqIkfz5bdUbLloiX5uhw+fFjjxo3Te++9p9atW5fq72iiAn3Vo2m4Vu5PkWlW/t+P2IxjZZKowFP/ngQAoC6iUAIAAAAAAAAAAEpkx44dio+PV3x8vFatWiWHw6G+fftq2rRpuvTSS9WgQdHFJOVlmqa+++47TZw4UatWrVKXLl00f/58XXzxxTVyYXlmvluJ2flWxyhkSkrMzldmvltBPkX/2Wj37t3lLgd5PB7t3r272Gkje/fuLTwuIiJCcXFxOv300zV8+PDC0kjr1q3l5+dXrgwoXnXaGdYwDH3wwQdq37699u/fr9dff119+/bVDz/8oCeffFIDBw5U9+7d9fTTT6tv375VmBYAKobbU7pX2qat2qhpqzaSpD6XXq6JY67UlNtG69lZC074DNShWw9J0lnn9dU5/Qbo3kv6yi8gUBePGlOq663fsEljLz6v2Ps6d+6swFLsan4ypf3sVtOPry45ypq7uuY63qBBgzRhwoQit+/bt0933323Fi9eLB+fY5P4zL81aJ988kmlpaVp8eLFioiI0Ny5czVy5EgtW7ZMp59+epFzejwede/e/ZSZSvO8jj/2wgsv1MSJE4s9rjLKMT169ChTzpp2vNXH2h1OXfXks6oXESmb3V7i81cUr8ej9CP/K380aFSqx/5TsTE/L1eS5PQpOunS6XtswX5+bm6JCiWSdOBQop79z3uSqtfvn8o+vkW/IbL5B5Xq/AX27dim9yY+prhOndXn0isKbx91/2MnHNdz0KVq3LKV/vPKs1r13Xz1HHRpia/hOslnl9zcXL3yyiuaPHmyHA6HXnrpJd12222Fr7clFRXoq97N62v1gVRluTylemxpBDnt6tI4jMkkAAD8AwolAAAAAAAAAACgWKZpauPGjYUlkj/++EN+fn4aMGCAPv74Yw0ePFhhYWGVdu2vv/5aEydO1OrVq9WtWzd98803NX5Cwc607FNOJ9mzbYtmvfGitm9Yp7QjifL181fTmFgNHXObuvTtf8KxXq9XC2d+okUzP9GBnTvk4+evlqe10/WPjlfL04ouhCuO8b9cHaLqFd6Wnp6usWPH6uOPP9bixYvVr1+/U57nyJEjRUojW7ZsUUJCgvLzj5VofH191aZNG8XGxmrUqFGF00ZiY2MVEWHNlJS6rjrtDBsaGqpvvvlG33//fWFppG/fvjr//PO1cOFCPfnkk+rXr5/69OmjiRMnqlevXpWcFkBd5Ha7lZ2dXaofOTk5pzxm/Gdfyu5f9lJGtwGD9c5TD+nAzu1q0iqm2GMaNm+p6Lana9lXc0pdKNE/TPxKTEyUo4Q7mv/d3xfxV5aquk51uS4ZjunYsWOxt//2229KSkrSWWedVZjN4/Hop59+0htvvKHNmzfrjTfe0IYNG9S2bdvCcy1btkzTpk3Tm2++WeScpmlq7dq1lfI8TNNU69ati72vMsoxkrR69eoS5arNqur57TxwnZ7+bI6c8qnSUonX45HL5dLk26/XPS++qdBSPv6fio0+vscK/678opsluP431cqnFJsCpB49qhdeeOGE20rz9Snt17Kyzl3aHM+d2UuRTUpfKElNStTkW/6lgOBgPfDqu7Kf4vfV4Otu0uevPad1q5aVqlDi/dvzMU1Ts2bN0sMPP6z9+/fr9ttv11NPPaXw8PBSP4cCYX5OXdAyUpuSM7Q1JavCprkWnCc2PFBtI4ILJ2MCAIDiUSgBAAAAAAAAAACFTNPUb7/9Vlgi2bJli4KDgzV48GA9/vjjuuiiixQUVLYdNEt6/Xnz5mnixIn6/fff1bNnTy1atEj9+vWr0UUS6dhijJ1Hs0+5OCLpwD7lZGXq/EsvV1hUQ+Xl5ujnhQv07O3X6ZYJz6n/yFGFx0577D4tmx+v3kMv08BrrlduTo52bvxLR5OPlDiXKWnn0WydHhksm2Fo+fLluuqqq3TgwAEZhqE//vijsFCSk5OjhISEYqeNpKSkFJ6zefPmiouL0/nnn69bb721cNpIs2bNTrnYBVWvOu0M26FDB3Xo0OGE2wzD0IABA9S/f3/Nnz9f48aN03nnnacLL7xQTz/9tLp27VppmQFUH16vt0TFjbIWPgp+uP63+/qp2Gw2BQQE/OOP+vXrKyAgQP7+/vL18ZG7HM+/YDf47MyMUx5X3ALfUylYAFyc4OBghYSEKCQkROHh4apfv74iIyPVuHFjNWnSRA0bNlRYWFjhj5CQEN7vYalBgwYpKSlJXq9XHo9HHo9Hr7/+usLCwnT55ZfL5XIpIiJCtr8Vqex2u7xeb7HndDgchSXpqlQZ5RhJJX6tQ/ksX75cF198seZPe0GX3f9klU4FtNvtOq9FpK76608t3pmk9PzyvAudWGwMi4qSJKUlHS5yXGpSooJCwko8nUSSYmNidORIyb+HrS3K8nXJykjXMzdfo6z0dE36bI7CGzQ85WN8/fwVFBqmzKNppbqW7bi/g1m9erXuvfderVy5Updccom+++47xcXFlep8J2O3GWofWU+Ng/y08UiGErPzy1wsKXhcZICP2tUPVrh/6aamAABQV1EoAQAAAAAAAACgjvN4PFq5cqVmz56tOXPmaM+ePYqIiNDQoUP14osvql+/fvIrxe6iZeH1ejV37lxNnDhRf/75p3r37q0ffvhBffr0qfFFkgIZeW65vadeEtG5dz917n3iRJCB11yvh0YM0FcfvVNYKFnxzTwtmTtLD73+vrpeOLBc2dxeU6nZuXpp8iRNmTJFhmHI6/XKZrPpgw8+0MKFC7Vlyxbt2bOncCFbaGho4YSRwYMHF/53TEyMAgICypUHVa8m7AxrGIYuueQSDRo0SHPmzNFTTz2lbt26adCgQZowYYI6d+5cAYkBlJZpmsrLyytT0aM0ZY/c3NwSZ/L39//HokfDhg1Pet+pHlvww8fHp1SfUZbsOaKUnFMv4D6afEQhEfVPuM3tcmnp3C/k4+enpq1j5XG7lZOVqaCQ0BOO27ZurXZv3axeg4eVOFeBvOysk9535MiRUi/0dTqd8vf3V1BQkOrVq6fQ0FBFREQoMjJSDRs2VKNGjVS/fv3CEkpoaGjhfxdMYQDKyuFwFNkxf8qUKSf8OikpSdKx74VM01RaWpoee+wxxcbGVlnOkrjgggu0fv36E2677rrr1LZtWz3yyCPKzs6WYRilKsegaixZskSDBw9Wly5d9M5LzynbcFo2FdBhL//31McXG5u0ilG98Agl/LWuyHEJ69Yqum3JpmUWcFZAvpqotF+X/LxcTblttA7s2qGnPpipZjEle73KycxURmqK6oWVbiqo025oz549evTRR/Wf//xHHTt21KJFi3TBBReU6jwlFe7vo57NIpSZ79bOtGztPJpd+HcoJ/v+9PjbHTZD0SEBig4NUJAPy2IBACgN3jkBAAAAAAAAAKiD8vPz9eOPPyo+Pl5z585VYmKiGjdurGHDhmn48OE677zz5HBU7j8jeE1TR3Pz9f2Kn7Vmw2YFRzbUHS9NV2SDBgoKCJBhN/RnYrpC/ZwK83Uq2Ndxwg6ZNU1qXtl3Abbb7Ypo2Fjb//qz8LavPpquNh3PVNcLB8rr9So/N1d+5ShyXHfbnZr/yQeSVFga8Xq92rlzp2JjYzVy5MjC0khcXJzq169fa8o+OKam7Axrs9k0YsQIDRs2TLNmzdL48eN19tln69JLL9WECRPUsWPHCrsWUNO5XK4yFz1KU/goeN84FR8fn38saYSHh6tp06YlKnScrPjh5+dXZGF1dRDi4yhRoeTtpx5STmam2p3dVeENGirtSJJ++ipe+3ckaPTDT8k/MFBZ6Ud1y/lnq/vAIWoWEyc//wDt3rpJP86ZqYCgerrstntKlc2QNKBPL4W8+abuu+++IuWd119/XQcPHtTBgwe1b98+HThwQIcOHVJycnKRc9ntdtntdhmGoZycHGVmZurAgQOlyuN0OhUQEFA4GaVgKkqDBg0UFRV1wjSUv5dRAgIC+HyCUimYplO/fn2dd955FqcpKjAwUO3atStyW0REhNq2bSu3263WrVvrlltu0QsvvKDw8HDNnTtXixcv1vz58y1KjUWLFmno0KHq2bOn5s6dq4CAAAVJlk0FDPV1KjXHVaLP9SUpNkpSt/6DtGTuLB05uF/1GzWRJK1btUwHdu3Q4OtuLnFeQ1KI78knGNZmpfm6eDwevXTvrdr6x296eNqHijvz7CLH5OflyuNyy/9vU2W/eOtlmaapM3udX+JshqTNa3/TRVdeqpCQEL377ru6/vrrq2QCWZCPQx2i6un0yGBl5LuVlutSaq5LR/NccnlMeU1TNsOQ024oxNepMD+nQv2cCvap2X9nBACAlQyzpH+zAwAAAAAAAAAAarScnBx99913io+P11dffaW0tDS1atVKw4cP14gRI3TOOedUyQLMzHy3tqdmKiE5Q4bdIdM05fV4ZC+mwFKbdpv84/BR7UzLLvHi/NzsbOXn5Sg7I0O//rBQHz//tHoMHKJ7Xpim7MwM/avLaRpw1WgFBAXr608/UG52lqKaNteo+x9Tj4FDSpXNkPRj/Od6/bH7jv3aMAoXB0dERJR6V3LUDjVlZ1i3263//Oc/mjBhgnbs2KHLL79c48ePL7L4EqhOPB5PiSdzlKfs4Xa7S5THbreXqMRRlh8FxQ9/f/9KL6tWRwWvpdvTslSCQWVavmCuvp89Q3u2blZGWqr8A4PU6vQOunjUGHXpO0CS5MrP1ycvTNJfv6xU0v69ys/LVVhkA3Xs3kuX3XqPopo2K3XOzg1D1CIkQAcPHtSdd96p+Ph4SVJwcLDS09OLfYzH41FycrIOHTqkgwcP6tChQ4U/jv/1wYMHi5zDMAwFBQXJz89Pdrv92OdBr1f5+fnKz89XXl5emaYr2O12BQYGql69egoLC1P9+vULfxRXQDn+1/Xq1auWZSTg7/r27atOnTrppZdekiQlJCTokUce0fLly5WVlaWYmBg98MADuuaaayxOWjctWLBAI0aMUL9+/TR79uwi0z49XrPKpwLuOpqt3w8dLdG5pt455h+LjUOuv0WSdOTgfj0wrL8C64Vo0LU3KDc7W19+8JbCGzTSc//9Wk4f3xLnL3gPqmtK83X5YPI4Lfj4PZ19/oXqXsz3+72HjFDivr16YHh/9Rx0qZpEt5Yk/bFiqX5f+r3O7HW+HnvnkxK/z5mmqXfGPaizY1ro0UcfVXBwcMmfGAAAqHEolAAAAAAAAAAAUIulp6drwYIFio+P19dff63s7GydfvrpGjFihIYPH66OHTtW2S7OKTn52pCUrqQclzweT5l2tixYKBNVCVMPKtuSPUdKtDN5gXeeelgLZ34i6dhEhq4XXqxbJz6noJBQ7di4Xg8OH6Dg0DDZHQ5dfsd9CgwK1oJP3lfC+j/0+PRPS7X7qCRF+DsV63Rp7ty5mjVrln766afChZzp6eksIKnDvKZZI3aGdblc+ve//62nn35ae/fu1apVq3TOOecU+xpnmqZycnKUlZUlwzAUFhZ2wmtSTk6Oli1bpnXr1iknJ0ft27fXgAEDFBAQIK/XK5vNpt9++03PPfec/vjjD0VGRurBBx/U0KFDq/IpoxKYpqnc3NxyFz1OVfjIy8srUR7DMEo0laO8P5zOurkzeGVKyckv97SnqtSvZf0Tdoj/9ttvddNNN2ngwIGaPn16uc+fnZ2tw4cPn7RwcnwZ5e9FqMDAQIWGhqpevXry9/eXj8+xz38ul0t5eXnKzs5WZmamMjMzlZ2dXez1bTZbYWH2ZEWVgpLL8VNRwsPDT1pAOf7XoaGh/DkCoDlz5mjkyJEaNGiQZs6cWfh6VZyKeJ8o6ffHR3Nd+n53yTYJKEmxscCebVv00bPjtfn31XI4fdS5dz+NfvgphdaPLNXz+Pt7UF1Rmq/LuGtHaMOvq056/+zNB5SVflTvTXpCW//8XamJh+T1eNWwRUudN3i4hoy5VY5Svk+183HptOjmpXoMAAComSiUAAAAAAAAAABQyxw5ckTz5s1TfHy8Fi1apPz8fHXp0kXDhw/XsGHDFBcXV6V5PF5TG5KOaltqtrxeb5mKJH93qh1Yq6PFO5OUnl+yneIlad+ObUo+dFCpiYe18puv5PBx6uannlVo/UhtXPOLnhw1TJI0ZeZ8xZ5xliQpJytLt1/QVY2jW+uZ/3xZqnz1fBy6IPr/F/4cOXJEX375pbZv365nnnmmyopHQHnl5+fr/fffV/369XXppZcWWeCbn5+vN998Ux999JHWrVunjh07at68eWre/NhiKZfLpWnTpun9999X06ZNZbPZdPDgQfXr10+TJk2Sr6+vVq5cqbFjx6pdu3YaOXKkfv31V82ePVs333yz7rrrrjKX5nBypmnK5XJVWNHjn8oeJeXn5/ePEzkq4oevry+vvzVMZew8X9kcNkODYxpYUgb8O6/Xq5SUlBMKJiebgJKamnrCY+12uyIjIwunkRQUUHx9fWWz2QpfR3JycpScnKwjR44oJSVFaWlpcrmKln4Nw5DD4Sh8Pfd4PHK73TrZMpuAgACFh4efUDb5p4kox//a39+/4v9nAqhSs2bN0tVXX60RI0bo008/LXHJrCqmAnpNU/MTDheevzqpTu9BVY2vCwAAqC4olAAAAAAAAAAAUAvs379fc+bMUXx8vJYuXSrTNNWrV6/CEknBQumqlpSZoyUJ+2X4+stms1XKNQKddp3TOExhftV7R9OFOxKV6fKU+fETx1yprIx0PTtrgbb/tU4PXz5QUU2b663FP59w3LTH7tVPX8XrP2u3y+7454VFxwty2tW/VVSZ8wHVjdvtlmEYRYodeXl5+vDDDxUSEqL169dr9uzZ+uGHH9SkSRNJ0vLly3Xdddfp+uuv1+OPPy5JeuWVV/Tqq6/qww8/VJ8+ffTAAw/o22+/1Zo1a+Tn5ydJevrppzVjxgytWrVKISEhVftkLfZ/7N13eFPl+8fxd2b3LlD23nsrlD1E2UUEZSOIA1RAQXCwEZEhKEsBgRZZUkCWICJbhqIgCCJ7lu7dphnn9we/5kvpIJ0peL+uKxdNcs5z7qSlOUmfz3ObTKZMwxl5Gfgwm237HarT6WwKa+Qm+OHo6CihIZFOVLKRk3ejSMjF631BUwGVvFyoXdTd3qVkm8FgsHY9yarjyb1790hJSUmzr4uLC8WLF8fPzw8/Pz98fHxwd3fH2dkZvV5vPW81Go1ERUURERFhvYSFhREREUFMTEyG4RKtVoter0er1aJSqbBYLJhMJlJSUjL9PabX661hFFsCKA9fd3V1leDZYyQmJvLNN9/w119/MWrUKOrWrQs8CJlevHgRk8mEj48PxYoVs76uC5EdQUFBDBo0iFdeeYVvv/0WbTbeh6XK766Af4XGcjkqoVAFHZ/k16C8It8XIYQQQhQG2T97FUIIIYQQQgghhBBCCCFEoXDlyhWCg4MJDg7m+PHjaLVa2rVrx5IlS+jevTvFihWzW20pKSl8t20nTtXqo9Y55FuYBCDRaObgzXCalfSmqItDvh0nt3K7suczz3Vh2aRx3L12Be+iD763nj5F0m3n7uOLyWgkOSkRFzfbJ4DIyqPiaZPZRD4HBwdef/114MFq9itWrEgzwTd1lfrKlStbbytbtixGoxFPT08URSEsLIxSpUrh6OhIXFwcbm5uNGzYkBkzZnDq1Cnat2+Poih2n+BrsVhITk7O86DHo2GPRydqZ0atVj82qOHr65ur4IeTk5PNK4ILkZdCEwwcuxPJk7akpwKU93S2dxk54uDgQJkyZR4bnFYUhejo6CwDJxcvXiQkJITw8PA0+6pUKooUKYKfnx/FixenatWqtGrVCj8/P4oVK4arqyt6vR6NRkNycjKRkZHW4MnDXz98yagTktFoJCYmhuTkZMLDw60dVcxmM0ajEYPBgMFgyPDxaTSaNCGT7ARSPDw8/hPhuG3btjF+/Hh8fHxo3bo1devWJTw8nG+++YagoCDi4+NJSEjA39+f6dOnU6tWLXuXLJ4gK1euZNiwYQwZMoSvv/46x/+n1KoHgREPBx1l8yGbXN7TmX+jEvJ+4Fx4kl+D8op8X4QQQghRGEigRAghhBBCCCGEEEIIIYR4QiiKwvnz560hkjNnzuDo6EinTp0IDAykc+fOeHl52bXG1JX/N/+4j+HT56HWaPI1TAIPJjsoChy9HUnzUoU3VKLV5G5ieYohGYDE+DhKVqiEZ5GiRIbeS7ddVOh99A6OOLm4Zmt8XS7rE+JJYrFYUKvVODk5YTQarSESgLp169KnTx++/fZbLl++TExMDH/99Rfvv/8+9erVA6Bx48aMHz+e06dP06BBAxISEli2bBkA169ff+zxFUUhJSUlX4IeDwc+kpKSbH5OHhfa8PPzy3W3D71eb/eQjRD5ITTBwNHbkYVqdXFbqIAiznpc9U/31BGVSmUNUFSvXj3LbY1Go7XrSUYBlH///ZdDhw5x7949kpOT0+zr5ORk7XiSGkCpVatWmut+fn64u7sTFxeXaeAkozBKQkLGk41TOzLpdDoMBgNhYWGEh4dbu6IYDAaSkpIy3R/A3d09Wx1RHr6u1+uz/w0pIKmv9WvXrmXHjh0MHz6cixcv4u7+IHC9detWFixYwNSpU3nttde4fv06/fv3Z8yYMfz444/5/h5GPB2WLFnCm2++yRtvvMFXX31VqH9uXPVaijrrCUtMKRSvV/+V16DHke+LEEIIIQoDeeUXQgghhBBCCCGEEEIIIQoxRVH47bffCA4OZvPmzfz777+4ubnRtWtXPv74Yzp16oSLi4u9yyQ5OZkVK1Ywa9YsHDy8+XT9djRaLRTgxGEFOHYnklZlfPFyLHyr03s66IhKMj52kkhMRDgePr5pbjMZjRzcugm9oyOlKlYBoPnz3di5Zjlnjh6kbvNWAMRGRXDq5z3UeqZ5tiYzqQAPh8L3nAmRX1JDDW5ubhiNRkwmE/Dgd663tzcBAQHs3LmT77//Hjc3N+Li4ggNDcVkMqHVannxxRc5ffo0HTp0wMXFBQcHB6pVq0b16tWJi4vL8JiRkZFUq1bNGvawWCw21arX67MMaXh7e1OqVKlsdfB49DZHR8dCPQFSiMIsKtn4oDOJvQvJAQWo4etm7zIKFZ1OR6lSpShVqlSW2ymKQlxcXKYdT0JCQjh69CghISGEhoaiPNK6xtfXN134xM/PjwYNGqS57unpiUqlwmKxEBsb+9juJw/fFxsbm+lrkouLC66urjg5OeHg4IBWq8VsNhMWFkZISAgpKSkkJyeTkJBAXFxcmk5eD3N2ds5WAOXh687OzvkWMlQUBbVazeHDhwkMDOStt97CaDRy4sQJ63unGzduUKRIEbp27QpAuXLl6NSpE9u2bePmzZuUK1cuX2oTT48FCxbw7rvv8s477zB//vwnIjRbw9eNAzcj7F0GIK9BD5PvixBCCCHsTQIlQgghhBBCCCGEEEIIIUQhYzabOXr0KJs3b2bLli3cunULHx8fevTowRdffEG7du1wcCgcXTiSkpL45ptv+OyzzwgJCaH/gIG8+ME0TCqNXSZWWhQ4dTeKduWKoFEXrgk9no46m56TpZPGkRQfT41GTfEu5kd0eBiHtgdz5+plBo2fhNP/T4ILeG0Ux3Zv5/O3h9N18Gs4u7mzd/0aTCYj/UZ/kK3aFCiUIRwhHmY2m0lKSrIGMh7XoaNGjRq0a9cuy6CEi4tLmg4lKpWK27dvM2bMGFq2bMncuXPR6XTs2LGDd955hxIlSvDWW2/h5+fHnDlzGDhwIOHh4VSuXBmz2Uznzp0pUaKEdayHubq68u6772Yr9OHk5IRWK3/SFaKwMlsUTt6NQnkS0yRAFW8XvJ0Kb4eJwkylUuHu7o67uztVqlTJcluTyWQNamQUQLl+/TrHjx8nJCSE+Pj4NPvq9fo0AZNHAyiVKlWy3pbR+4OUlJR04RNbwigPd+5KpdPp8PDwwNXV1RpG1Ol0aDQaVCoVJpOJe/fuce3aNZKSkoiPjycmJiZdJ5eHx8tuR5TU6+7u7lm+vqtUKkJCQpg+fTqNGzema9euzJ8/H61Wi5OTEwA9evTgzJkzLFy4kMGDB3P//n1++OEHmjdvLmES8VizZ89m/PjxjBs3jlmzZj0RYRIAbyc9VbxduBSZedeigiKvQf8j3xchhBBC2JtKeXQZBCGEEEIIIYQQQgghhBBCFLiUlBT2799PcHAwW7duJSwsjBIlShAQEEBAQAAtWrQoVJOKExMTWbZsGbNnzyYsLIz+/fszceJEUrz8Cs0kiFpF3O1dRhoxyUZ+vhH+2O2O7NzKz5vXcfPSReKio3BycaVCzdq80H8ojds+l2bbkFs3WDN7Kn/9egSTyUjVeo3oP3YilWrXy3Z97cr5SpcSkSOKopCcnJwmzGFL4CO7F4PBYFM9KpUKJycnXnvtNebNm5flBL8LFy5Qp04dTp48Sf369QE4ceIEzz77LJGRkXh6elq3HTp0KFFRUWzZsgVFUdKNu337dvr06cPt27fx9vbO/hMphHjinAuLLRTnPdmlAlx0mkIZwP2vi4+PTxM2yawDyv3799N1uvLy8koXOMnoure3d5ZhDEVRiI+PzzJwktElJiYmw/Hc3NysIZDUsGRqVxSVSoWiKJjNZlJSUkhKSiIhIYHY2Fiio6OJjY3NcEy1Wo2Hhwc7duygWbNmGW4TEBBAvXr1+OSTTwCYN28e+/bt47vvvsPT05PExESmTJnCihUrMJlMxMbGMmbMGKZOnYqzs7Mt3y7xHzVt2jQ++eQTPv74Y6ZMmfLEhElSmS0K+66HkWDMuPNQflMB8VERzBjyEt26dqFBgwbUqVOHKlWqFKrPPApa6vcl0Wi2y+Iccm4ghBBC/Lf9d8/ChBBCCCGEEEIIIYQQQgg7S0xMZM+ePQQHB7N9+3ZiYmKoUKECgwcPJiAggCZNmmQ52cseEhISWLJkCZ9//jmRkZEMHDiQCRMmUKlSJSKTUjhwM8LeJQJwKTKBEq6OhWJlTaPRyJ49e/hu3ToCJsxErcu6Jv/OPfDv3MOmsf1Kl2XclytyXaNWrcJNb/ufjSyKQpzBRJTBSHSykWiDEZNZwaIoqFUqtBoVng46PB11eDnocHPQon7CJlo9DRRFwWg0ZhjOyMvAR1JSErauYefg4JBlZw5fX1+bOnhkdXFwcLB5Yp+rqyuKomAymay3eXl5odPpWL9+Pa+//joAJ0+e5JdffmHo0KHAgxDg8ePHqVevHi4uLvzwww+8+eabjBo1SsIkQvxHRCalPJFhEgCVChqX8JIJo4WQq6srlSpVolKlSlluZzabiYiIyDRwcufOHX7//XdCQkLSBT10Oh3FihXLNHDy8PXsdOowmUxERUU9tvtJat2pX2cUGNVoNHh7e1OtWjVrVxQnJyccHR3RarVoNBoASpYsmWEtt2/f5s8//2Tr1q0EBQXh5uZGWFgYFouFl19+maCgICZPnsyZM2fYsGEDzZs35/jx47z88suUKlWKd999N814qec59ggOKIrCtm3bWLNmDdeuXaNWrVpMnz6dsmXLptnu6tWrGAwGvL298fX1tT5HIu8oisLHH3/MjBkzmD59Oh9++KG9S8oRjVpFJS8XzoRmHNjKbyoVnAxeyz8XL/D5xQvW23U6HVWrVuWtt96ynoP/l2jUKpqU8OLgzXC7dD6TcwMhhBDiv006lAghhBBCCCGEEEIIIYQQBSgmJoadO3cSHBzM7t27SUxMpFatWvTq1YuAgABq165dKFc4jYuLY9GiRcydO5fo6GiGDBnChAkTKF++vHWbI7ciCEtMsctqmo9SAUWc9fiX9rHL8RVF4dSpUwQGBrJ+/XrCw8OpVasWU79eA95+heI5SqUCKnm5ULvo4zu6xKeYuBadyLWYREwWxbp/Ro/n4du1ahXlPZwp7+mMazaCK08zs9n82JBGXoQ9zGbbVh7W6XQ4OTnlOsyR1cXR0bHQTG6Mjo7m77//5s6dO/Tp04cJEyZQsWJFqlSpQrNmzRg1ahQ//fQTHTp0wGg0cuXKFbRaLStXrqRkyZIYDAZGjhzJoUOHiIuLw8PDg969e/PJJ5/8p1dWFuK/pDCd92SHCmheypuiLg72LkUUkMTERO7fv59hx5NHwygPBywB3N3dH9vxxM/PL8cBBkVRSExMzLLzSUadUaKiolAUhRs3blCmTJl04xqNRv766y9u3bpFREQERqORpUuXEhsbS6lSpViwYAHPP/88ixcvpmfPnphMJrRaLe+//z7nzp1j+fLlacIqFovFbkF/k8nE119/za1bt7h69Sp79uzh119/pXr16sCDkOvmzZuZO3cuISEhxMXFUa9ePaZOnUqrVq2sXdXu3r3LypUrCQ0NpWzZsnTt2pUqVarY5TE9iRRFYdy4ccyZM4fPP/+c9957z94l5VhUspGDN8Ox2OkFrF5Rd3w1ZkqWLEl8fHy6+0eNGsXChQvtUFnhEJpg4OjtyAI9v5BzAyGEEEJIoEQIIYQQQgghhBBCCCGEyGdhYWH88MMPbN68mX379mE0GmncuDG9evWiZ8+ehXoiT2xsLF9++SXz5s0jLi6OV199lQ8++CDdirjxKSb2Xgt77Hg3//2HjV/N5cr5s0SHh+Lg6ESpSlXoPvQNGrftmOE+JqORsT3ac/vKvwx8/2O6v/qGzfV3LF+kQAMM165dIygoiKCgIC5dukTx4sV55ZVXGDBgAHXq1CHBaLbpeSpoj3ueIpNS+Ds8jtDElEwDJI+Tul9RZz01fN0KRfeYjFgsFpKTk23uzJHToEdKSopN9ahUqnwNeTg7O+Pk5IROp8vnZ7Zw2b17N507d8bFxQVvb29MJhMODg4MGjSISZMmYTabWb16NcePH8dsNlOjRg0CAgLShOguXLhASEgIer2eokWLUqZMGRwcZBKWEP8Ftp73FDZqFTQrKRNGRcYsFguRkZHpup1kdD0qKirNvhqNhqJFiz6244mfnx+urq65rtVsNhMdHY2np6fNQZbBgwdjNptZvHgxbm5uFCtWjLfeeouJEydaw6CDBw8mMjKSFStWUKRIEeu+qaEMe0lOTsbR0ZHly5czY8YMjhw5Yg28HD58mKFDh9KlSxdmzZpFTEwMY8aM4c8//2Tv3r2UKFGCU6dOMXr0aBwcHKhcuTLnzp3Dz8+P2bNnU6FCBbs9rieFoii8++67LFy4kAULFvD222/bu6QcM1sU9l0PI9Fotlsg0lWnoV25Inw261M++uijNB2AKlWqxB9//IGLi4udqiscQhMMHLsTiaLk7L13dqiBKa++jBIfzcSJE+nWrRuOjo75fFQhhBBCFDayPI4QQgghhBBCCCGEEEIIkQ9u377Nli1bCA4O5tChQwC0aNGCOXPm0KNHjwxX0i1MoqOjWbhwIfPnzycxMZHhw4czfvx4SpcuneH216ITbQoahN29TVJCPG169MarqB+G5CSO793JrDcHM2LKbDr26Z9un11BKwm/dyfbj0H1/3XZ0nkjN6Kioti4cSOBgYEcPXoUFxcXAgIC+Oqrr2jbtm2aSW6uei1FnfWFZkXz1E4umYVJzBaFCxFxXIpMIHUKXU7rTt0vLDGFAzcjqOLtQnUfNzRq2ybnKYpCSkpKtkIbOQl8JCUl2fyYHB0dswxqFC1aNNdhD71eXyi7Fj3pnn/+eSwWS6b3azQahg4dytChQzPdpnr16tbVwYUQ/y22nPdkJ0R7dPcPbF/1NXeuXkat1lCmclV6DHuThq3b51nNrjoNjUt44eX43woQCtup1Wp8fX3x9fWlVq1aWW5rMBi4f/9+poGT8+fP8/PPP3Pv3r10IVoXF5fHdjwpXrw4RYoUybTrl0ajwcfHtk6EqWGQK1eu4Ovra+00MmzYMIKCgtDpdNSpU4dz586xbt06lixZgq+vr01jP+qPP/7g0KFDtGnThjp16uRojIykBlZDQ0NxcXFBr/9fMPvu3btotVoCAgJwcHCgaNGidO/enb/++otLly5RokQJli5dSkJCAt9//z1+fn7cvXuXl19+mSlTprB69Wq7dmAp7CwWC2+++SbLli1j6dKljBgxwt4l5cqFiDgSjLZ1MMwv8UYzFyLiGDlyJLNnzyYmJgb43//V27dvU7VqVbvWaG9FXRxoVcaXk3ej8vX75arT0MjPg79P/UpKSgp9+vTB1dWVl19+mUGDBtGsWTN5LyqEEEL8R0iHEiGEEEIIIYQQQgghhBAij1y+fJng4GCCg4M5ceIEOp2Odu3aERAQQPfu3SlatKi9S3ysyMhIFixYwIIFCzAYDLz22muMGzfOugJuRiyKwo7L9zFZcvYnB7PZzLhez5FiMPDl7sNp7ouJCGdkJ3+6DRnB+oWfZ7tDiVatokulYqjzeBKEwWBg165dBAYGsnPnTkwmEx06dGDAgAH06NEjyxVVI5MeBCoKi9ZlfDLsFhKVbMzXCSyKopAUE8WZHZsIuX7FprBHVgGAh+l0unzv6uHo6CgT74QQ4j/CoijEGUxEGYxEJRm5FpP42H1+P/gzuwJXULVewzQh2gu/nUgTot0VuIIVMz6mYav2NGzTHqPBwC9bNnD94t+8v3A5z3R8Icd1p4ZeshviFCKvKIpCdHT0YzuehISEEB4enmZflUpFkSJFMg2flCxZEn9/f5trOXz4MCqViubNm6NSqVAUhYULF7J582Zu3bpFiRIlGDlyJH379s3RBOq7d+/SoUMHLly4wDvvvMP8+fOBB+8Rp0yZwq+//opOp6NDhw6MHz8+y/dXjzKZTGi1WkaNGsWff/7Jjh078PDwAODmzZt8+OGHuLi4MHbsWFQqFe+//z5JSUls3rwZRVHo1KkT/v7+zJo1y9rZZfbs2axatYoDBw5k+D715s2baDQavLy8cHJy+k9OKjebzQwfPpxVq1axYsUKhgwZYu+ScqUwvg9d9sVcJk6cCMCUKVP47rvvuH37NsuWLaNfv352rtD+Hl3gIS8meWZ0bjB48GDWrFlj7Raj1WoxmUzUqlWLP/74I9NwnxBCCCGeHhIoEUIIIYQQQgghhBBCCCFySFEUzp07Zw2RnD17FicnJzp16kSvXr3o3Lkznp6e9i7TJhEREcyfP5+FCxdiMpl4/fXXef/99ylevPhj941JNvLzjfDHbpeVma8P5Mq5M6w4cibN7YsmjubW5UuMnreEN9s/k+1ACUC7cr54OKRdjfv69ets2rSJt99+27ri7+MoisKxY8cIDAxk48aNREVFUb9+fQYMGMDLL7+Mn5+fzTWdC4vlUmRCth5HnlMUiLhL0vV/0gU3dF6+VH+uJyq1GrVa8/ixcshsNmMxm9i+6HMiblzNk6CHk5OTTHgRQgiRJ+JTTFyLTuRaTKI1OJubCZ0ZhWhHPuePi7s7szbutE7YToyPY3jLBtR+pjkfLF6V7eOk1ljUWU8NX7cMg6NCFDZGo5H79+9nGjhJvX7v3j2Sk5MpW7Ys169ft3fZANy7d4+RI0fi4eHBjRs36NSpE++//z53797lueeew8/Pj/Hjx3Pnzh3WrFmDh4cHGzdutPmcNTVQ0qdPHxITE1m/fn2aAPuiRYv49NNPiYyMJDk5md69ezN//nxKlCgBQI8ePYiIiODgwYOo1WpMJhMBAQGcPXuWH374IcNuKm3btuWXX34BHoS1vby8rBdPT0+br7u5uT2RIWyTycSgQYNYv349a9aseSrCDUduRRS6Tpl1PfVUqlSJTp06sWrVKhISEnjzzTcJDAxk2LBhLFiwAGdnZ3uXa3eRSSn8HR5HaGLKg/fxOQh4ZXVusGXLFgICAtLt07NnT4KDg3NRuRBCCCGeFPJpuhBCCCGEEEIIIYQQQgiRDYqicOrUKYKDg9m8eTOXL1/G3d2drl27MmnSJJ577rksu1MUNmFhYcybN4+vvvoKi8XCW2+9xdixYylWrJjNY0QZjNk+bnJiIimGJBLj4ji1fy9/HP6F5s93S7PNv2f/4MDWTUxfuxUVOV8RNzrZaA2UREVFMWPGDBYsWIDJZKJRo0a0adMmy/3//fdfAgMDCQoK4tq1a5QuXZoRI0bQv39/atasmaOaqnm7cjs2iUSTbR038prZZOL+rRuM6d4eY4oBACcnJ5ydnanXvBUjZn6BSq3K1zAJgEajQaPR0Gv0RzQv5U1RF9vCPUIIIUR+enji5qMBktxMxNVoNPj4leDKuf8FaJMS4ihRrkKa1f+dXd1wdHFB7+iY7WOoVVDR04Xyns646mVKiHhy6HQ6SpUqRalSpbLcTlEU4uLiiIqKKqDKshYaGsrHH39MiRIleOedd+jduzdubm7Ag+4kd+7cYcWKFTRp0gQAX19f+vbty/nz56lbt65Nx9BoHpyTf/jhh6hUKhwf+t1w5swZfHx82LNnD5UqVSIiIoK1a9dy/PhxunfvjkajYfTo0YwePZrmzZvToEEDEhMT+fPPP/H19c20A+D8+fO5c+cO0dHRREVFWS+p1+/du8fff/9tvR4bG5vhOGq1Gg8PjxwFUjw9Pe0SFDcajfTr148tW7awfv16evfuXeA15LX4FNODMEIhocCD19hiHly5cgUXFxdUKhWurq6sXr2aNm3a8NZbb3H8+HE2bdpEtWrV7F2yXXk76fEzRPH157NRefvx3MsDcXR+8MO9siYAAQAASURBVLmTrUFXrVqFg0aNSVG4GZtEbIoJLwcdbg5aOnToYO1Kkqpz585s2LAhfx6QEEIIIQod+fRACCGEEEIIIYQQQgghhHgMs9nM4cOHCQ4OZsuWLdy+fRtfX1969OjBwoULadu2rc1dLgqL+/fvM2fOHBYvXoxarWbkyJGMGTOGIkWKZHus6GRjtlfrXv3ZFPZuCAQeTDJq2uEFhn08w3q/oiismP4RzZ7vRtX6jQi9fSvbdcGDyRVRyUb8HA0sWrSIKVOmEB8fb504lZiYmG4fo9HIrVu3WLduHZs2beLMmTO4uLjQsmVLhg8fToUKFUhOTubQoUP8+OOP6bp7PHxJSkrK9L7yNWoxfe1WtDq9dZJYgVAUtFoN7auX5d7dOzg5OeHo6IharSYq2cjBm+FYCnjZWgU4dieSVmV88XLUPXZ7IYQQIj+YLQoXIuK4FJlgjbLm9iXxcSHamk2e5dc9O9kVuIJGbTqSkpLM7qCVJMbF0nnAsGwdSwWU9XCmdlH3NLcnJCRw69at//yEXPF0UKlUuLu74+7u/viN81lSUhKfffYZt27dYs+ePRw4cACLxYKHhwcAbm5ulClThgMHDlgDJWfPnsXNzQ0vLy+bj5MaOEvtJKIo//vNVKNGDWrVqmV9P1GiRAnGjh2LSqWy7ufv78/SpUvZsWMHf//9N506dSIuLo6EhIRMF0N45513MJlM+Pj4WC9FihShatWqaW5LvWg0GmJiYjINoDx6/fr162muZxZscXNzy1ZHlIevO+YglGcwGOjTpw+7du3i+++/p3v37tkeozC6Fp1o03v2m//+w8av5nLl/Fmiw0NxcHSiVKUqdB/6Bo3bdgTAYrFwYOsmTvy0i2sXzhEfE03RUmXwf6E73Ya+jt7Btudd9f91PfqapVKpGDJkCE2aNKF37940bNiQJUuWMHDgwOw/8KdAVFQU06ZN46uvvsLPz49Zs2bxUp3yJJgsRCcbiUo2EmMwYjBZMJgtGDN5M2+0KBgtZjCaiUoyWn8WtGoV5T2c6fbiSwSv/w4AHx8ffvvtN27evEnFihUL6JEKIYQQwp5UysPvMoQQQgghhBBCCCGEEEIIAUBKSgo///wzwcHBbNu2jbCwMEqWLElAQAABAQH4+/vbZbXU3Lp37x6ff/45S5cuRavV8vbbbzN69Gh8fHxyPOaBm+FEJmWvS8ntq/8SEXKPqND7HNu9Ha1ex2uTZuHp+yDQsn/zer6ZNpEvdx/Gt3hJQm/f4o32TRn4/sd0f/WNbB3LEh/N4FaNSUhISHdf6dKl0el0JCYmkpCQQEJCQqaTmR6l0WhwdnbO3aVIcShb/cGAqpx3YckOFWTYDcRsUdh3PYxEoznXk2dzylWnoV25ImjUBfNcCJHfFEVJ03VACFF4RSUbOXk3igSjOU/HXTZpfLoQ7etTZ+Pq4QlATEQ48997k79+PWLdx93Lmw8Wr6Jq/UbZPp6Pk45WZXwBCA8P58svv2TBggUkJiYSHx+PXq/P/YMSQgAPOobcvXuXb775Bq1Wy65du5gxYwbz58+3Bkg2b97M22+/TXJyMs7OzjRo0IBRo0bRvn17u9Zet25dWrRowezZs3F2dk53/7hx4wgJCSEiIoKIiAgiIyOJiIggKiqKjKaaubi44OPjg7e3d4aBk9TLw/d7enqiVqvTdJ2xNZDy8CUlJePOG46OjtkKoTg7OzN+/HiOHj1KcHAwnTt3zvPn3R4sisKOy/cx2bBqwO8Hf2ZX4Aqq1muIV1E/DMlJHN+7kwu/nWDElNl07NOfpIQE+jesTJW6DWnYpj0e3r5c+vM3DmzdRPVGzzBl9Sabz3+1ahVdKhVDncn2CQkJjBw5klWrVjFkyBC+/PLLJ6ojbG4YjUaWLVvG5MmTSU5OZsKECYwZMwYnJ6c022XVVc1WqfudOXoQXVQIw/u/TMuWLUlJSeHw4cOP7RwlhBBCiCefBEqEEEIIIYQQQgghhBBCiP+XkJDAnj17CA4OZvv27cTGxlKxYkV69epFQEAAjRs3Rq1W27vMHLlz5w6zZ8/m66+/xsHBgXfeeYd33nkHb2/vXI+971oYsSmmXI0xdWhfEuJimbVxJ0kJ8Yzq5E+Hl/rT9+33AXIVKEmMDGNAs7oZ3te+fXuKFCnCP//8w99//01ycjIVKlSgdevWtGvXjuLFi6cLgTg5OeHs7IxOp8uTieKhCQaO3YlEUXK/CvrjqFXQrGT6MAnAubBYLkWmD90UtCreLtQqYv8Vp4XIKZPJRGxsrHWSo4uLC9WqVZNgiRCFWH6+Fj8uRJuUkEDQ3OkkJybRqHV7khLi2b76G2KjIpgetIXiZctn63juei2VVAnMmTOH5cuXYzQarWFZk8lUsF3RhHiKRUdH8/zzz3PixAn8/f0pVqwYoaGh3L59mz59+jBz5kw2bNjA559/jr+/P506deLIkSPs3buXjz76iG7duj3+IHlEURRiY2Px8PAgOjqaefPmsWTJEnbs2EHTpk2zNZbZbCY6OtoaNHk0cJLZJSkpKd1YarUaLy+vDMMmWYVRHg3AJCUl2RxAefR6RosOAGi12jShk+x0SfHw8ChUnxvEJBv5+UZ4jvc3m82M6/UcKQYDX+4+jDElhSvnzlCtQeM0221cNI8NX87hk5Xrqduspc3jtyvni4dD1l0qV69ezZtvvkm5cuXYtGkTNWrUyNFjeRIoisKuXbt47733+OeffxgyZAjTp0+nePHiabZ7tKtanpy/KAqoVFTxdsEtKYaWLfxxdnbm0KFDOepmK4QQQognhwRKhBBCCCGEEEIIIYQQQvynRUdHs3PnToKDg9m9ezdJSUnUrl3bGiKpVavWEz0J+NatW3z22WcsX74cJycnRo8ezdtvv42np2eeHWPv1VDic7ma994NQSybNI6Fuw5xaEcwP65dxfS1W3FwfLD6ZsT9u3zUrycBI96mQ+9+eBUths7GFbZddRrqOFv46quv+PLLL4mLi7Ouquvt7U1kZCTlypWjf//+9O/fn6pVq+bqseREfq2K/jBXnYbGJbzwckw/WScyKYUDNyPy7djZ1bqMD95OsoK6eHIpisK+ffv4+OOPOXHiBC1atGDatGm0atXK3qUJIR4RmmDg6O3IAuvO9XCIVqVSMX14P9QaDROXrrFuExcdxcjn/KnTzJ+x85dla/zIkDsMb90YlUqVpouASqVi2rRpODg44ODggKOjY5ZfZ3Z/XgVqhXjSmc1m/vjjD86fP8+tW7eIjo5mx44dhIWFER8fz6ZNm/jiiy9o1KgRs2fPtu43aNAgIiMjWblyZYFN0LZYLBw4cICZM2fi6OjIlStXGD9+PIMHDy6Q48OD0EdWoZOM7ouMjMywe6Sjo+Nju588evHy8sowUGc0Gq0hoL/++oupU6dSunRpmwIpMTExGXZrUalUuLu72xxAefS6Tpd1uCK7rsckcjokJldjzHx9IFfOnWHFkTOZbnPjnwuM6d6OVz+cxgsDXrV57IZ+HpT1SN8l51F///03L730ElevXmXx4sUF+vNbUP766y/Gjh3LTz/9ROvWrZk3bx7169dPt11BfH7gotPgZ4ylY8vmlCpViv379+Ph4ZFvxxNCCCGEfWntXYAQQgghhBBCCCGEEEIIUdBCQ0PZtm0bwcHB/PzzzxiNRpo0acLkyZPp2bMnlStXtneJuXbjxg1mzZrFypUrcXV15ZNPPmHkyJG4u+d95wd1HkwqTDEkA5AYH0f43bvEx0TzbpfW6bYLXraQ4GULmbNlL+Wr17K5Pj8/P+vj/+qrr7h16xYA1atXZ9asWTRv3tyukyO9HHW0L1ckz1cYTR2nircL1X3c0Kgzfox/h8fl3aqmuaTiQT3+pX3sXYoQOaZSqejQoQPt27dn165dfPLJJ9bOR1OnTqVZs2b2LlGI/6zk5GSio6OJjo4mNDaBcDc/FJWqwM4DnnmuC8smjePutStodDr+OPwLr0/9PM02bp5eVG/YmIunf8v2+CkGA0C6Sc6KorBgwQIMBoP1khMqlcrmUEp+f63VaiXcIuxGo9HQqFEjGjVqZL0tJSWFW7duMX/+fMqVK8c777xD9+7dgQcdgrRaLXXr1iU4OJiwsLACC5So1Wpq1KhBu3btUKlUTJkyhYYNGxbIsVM5OTlRsmRJSpYsafM+FouFmJiYLIMoMTExPPvss/Tq1Qs3Nzfu3r3LpEmTWL9+fbrfg56enumCJq6uruzcuZPQ0FAmTJhAvXr10tzv4uKS6e8Zi8WSpivd4wIot2/fTnPdZMq4y6eLi0u2AigPX3dyckpXb3SyMdvv9ZITE0kxJJEYF8ep/Xv54/AvNH8+66460eGhALh52d4FVcWDcERZG3IKNWrU4OTJk7z99tsMGTKEX375hUWLFuHq6vrYfS2KQpzBRJTBSHSykWiDEZNZwaIoqFUqtBoVng46PB11eDnocHPQ5snnHLa6f/8+n3zyCcuXL6dChQps3bqVbt26Zfiz93BXtfyUaDRzTeXCtn0HeL5lM7p06cKePXvSdQgSQgghxNNBAiVCCCGEEEIIIYQQQggh/hNu3brFli1bCA4O5vDhwwC0bNmSuXPn0qNHD0qXLm3nCvPGtWvX+PTTT1m1ahUeHh5MnTqVN998Ezc3t3w7plZj+0SLmIhwPHx809xmMho5uHUTekdHSlWsQucBQ2nS/rlH9otg2aRxtOn5Eo3bPUfRUmVsPmZ0RDjPvzmQn376CbVaTZcuXZg3bx7u7u40bdq00KyyqVGrqFXEnRKujvwdHkdoYkqOQx6p+xVx1lPD1y3Lbh/xKSZCE1NyWHXeU4DQxBTiU0y46uVPWeLJplKp6Ny5My+88AJbt25l0qRJNG/enE6dOjF16lQaN25s7xKFeOKkTjBOnZSb0b9Z3Zec/CDEqtM7MO+HnynmYkGjLbjXm4dDtBaz+f8fU/oVxk0mExZzxpONs1KzWlUOHz7Me++9x4kTJ1Cr1VgsFtzd3QkNDbVupygKKSkpGAwGkpOTrSGTvPw6KSnJ+pxntX1KSs7OQ1Qqld1DLalfawvwZ0gUPoqioFKpuHTpElqt1hrib9SoEUuWLKF+/fo0b96cM2fOMG/ePLp06ZLl+8+zZ88yYcIEfv/9d4xGI2XLlmX8+PG8+OKLaDQafvjhBzZv3szly5dxdnamY8eOvPHGG1lOrPfz82PChAnpas6IxWJBrVbn8NnIO2q12hqYqFixok37VK5cme+++44VK1Zw9epVwsPDMw2kXL58mT///BODwYBarWby5MnpxtPr9Y/tfpJ6X/HixalVqxbe3t6P7TKiKAoJCQlZBlAevn7lypU09yUlJWU4rl6vTxc4CRj7Cd6lytr0/KVa/dkU9m4IBB58H5p2eIFhH8/Icp+tKxbj7OpGg5ZtbT6OAsQYjDZv7+zszPLly2ndujWvv/46J0+eZNOmTdSqlfFiE/EpJq5FJ3ItJhGT5cE768zeY0clGa23a9Uqyns4U97TOV/fkyYnJ7NgwQJmzJiBRqNh7ty5vPnmm+gz6cZakF3VFEBR4J7ek60//ULn1v706tWLbdu2ZVqfEEIIIZ5c8o5WCCGEEEIIIYQQQgghxFPr33//JTg4mODgYE6ePIlOp6N9+/YsW7aMbt26UbRoUXuXmGeuXLnCzJkzWbNmDd7e3sycOZPXX3/dptU6c8vTQZdm8kVWlk4aR1J8PDUaNcW7mB/R4WEc2h7MnauXGTR+Ek4uLlSoWYcKNeuk2S/09oOOIqUrVaVp++dtrs1kNLJ3WzBxcXF89dVXvPTSS3h7275iqj14O+nxL+2TrckvD9+e3ckv16ITcxxc+X7pAtZ98RmlK1fli+2/WG//88gBju7+gX/P/sGdK//i41eCpftP2jyu6v/rql007zvqCGEPKpWKnj170r17d77//nsmTZpEkyZNuHz5MhUqVJAV9sV/iqIo1qBBdoIgqf/GxsamW3U+lYeHB56entaJtJ6enlSrVi3N9dR/tSUrkujkAfn0/8+WEG2KIRm1Ws3RXT/Qsc8A6++CiJC7XPjtBNUbNsnWMVWAh4OOev7+/Prrr2zfvp3333+fS5cu4eDgkHbbhzqN5EcHu+ywWCzWcEt+BVwSEhKIjIx87PZGo+0Tmx+mVqvtHmpJ/VrCLQUv9f9uv379rAEugG+++YYxY8bQt29fTCYT3t7ePPPMM4wZMybLwL9Wq2XgwIF8+OGHuLq6snv3bt544w30ej0dOnRg48aNuLi40LdvX5KSkggKCuLGjRvMmDHD5rB8ZuceZrOZ4OBgRo4ciZ+fH8WLF8fPz896efS6u7t7oTyPcXJyombNmpneHx4eTseOHXFxceHYsWPUq1ePuLi4dKGTjMIot27dsn4dGxub4fju7u7pAidZhVHKlCmTrefSYDDYHEZR5eB3QudBw3jmuc5Ehd7n2O7tWCxmTFn8fty8dCFnjx1m+KRPcXHP3oINRnP234n279+fRo0a8dJLL9G4cWO++uorhg4dan3+IpNSMl2kIbOjPXy7yaJwOSqBf6MSKGrDIg3ZpSgKmzZtYvz48dy6dYs333yTSZMm4eOTeZfOqGTjg84keVaFbRQgyr0Ym3f+SLeO7ejfvz/r1q1Do9EUcCVCCCGEyE8qJbNPWoQQQgghhBBCCCGEEEKIJ4yiKPz1118EBwezefNmzp07h5OTE88//zwBAQF06dKl0HSjyCuXLl1ixowZrF27liJFijBu3DhGjBiBs7NzgdVwPSaR0yExNm17ZOdWft68jpuXLhIXHYWTiysVatbmhf5Dadz2uUz3C719izfaN2Xg+x/T/dU3bK5NURTKaI00rpS9FVkLE4uiEJdiIjrZSFSykRiDEaNZwaIoqFUqdBoVHg46vBx1eDrqcNNrUds4EcmiKOy4fN8aWMmOiJC7jHq+BSqViiIlS6cJlHz5wbsc2/0D5WvUIvzeHdRqTbYCJfAgGNOlUjGbH4sQTxKz2cy6devo27evTPwVTySTyfTYLiFZhUQy60jh4OCQLvjx6L+Z3efu7m7z5MbIpBQO3IzIy6cknc9GDs0yRNttyAgAlnz8Hvs2fUetps1p2uF5khMS+HHdKqLCQpm8ahM1Gz+TreM29POgrMf/zgPNZjOBgYEYjUaGDx+ep4/xaZQabsmvri3Z+Tqn4RaNRlMg4RVbtpUJxw/ExMRw79494uPjqVixIl5eXjbvazab0Wg0NGrUiObNmzN9+nRiY2NxcXHB09MTgLVr1/LWW2+xb98+GjVqlGX3kcexWCz8888/bN68mXv37hESEmK93Lt3L11nDCcnpywDJ6nXixYtWmi6Gty/f58OHTpw//599u3bR+3atXM8ltFoJCoqKsMOKJl1RomIiMjwdVCr1aYLn2QVRkm9/9HA4KP2Xg0l3pi+E1Z2TB3al4S4WGZt3JnuZ+vorm3MH/smbXv15c3pc7M9tqtOQ8cKOVvsIykpiXfffZevv/6afv368dXixdw2wKXIhBwvmvCo1HGqeLtQ3ccNjTp3709PnjzJmDFjOHr0KF26dOHzzz+nWrVqWe5jtijsux5GotFc4IGSVK46DQl//UrvXr0YNGgQ33zzTaHoZCSEEEKIvCGBEiGEEEIIIYQQQgghhBB2kZtJLg+zWCycOnXK2onk8uXLuLu707VrV3r16sVzzz1XoOGKgnLx4kWmT5/OunXr8PPzY/z48QwfPhwnJ6cCryUm2cjPN8IL/Li2alfOFw8Hnb3LKJRy872bN+Z1YiMjsZjNxEZHpgmURN4Pwd3bB61Ox8wRA7n578VsB0pAvndCCJFfFEUhISEh20GQ1H/j4uIyHFelUllDH1mFQjILiTg6OhbI4z9yK4KwxJR8nZRpa4jWbDKxZ/0a9m9ex70b1wGoVLseL77xLrWfaZ7t48pr59PDYrHYPdSS+rXJZMrRY9BqtXbv2JL69ZM88fnGjRvUqFGDuXPn8vrrr6e7/8qVK9SrV4/9+/fTuHHjPHuv/ShFUYiLi0sTMHk0cJL6dWhoaLpuUj4+Po/teFK8eHE8PT3zrevJ3bt3adeuHTExMfz8889Ur149X46TldTX4KwCJxndFx0dnWGHLhcXlyy7n5Rq1Rm1c+46l+7dEMSySeNYuOsQJStUst5+5uhBZr4+iLrNWzL+q5VochCUdtdraV++SK7qW7duHTPnLWDU7C/xLV4y37qPueg0NCnhhZdj9l9nb926xYQJE1i7di21a9dm3rx5tG/f3qZ9z4XFcikyIdvHzGtVvF3448dtDBw4kHfffZd58+YVyg5FQgghhMg+We5GCCGEEEIIIYQQQgghRIG7efMmZcqUyfH+JpOJw4cPExwczJYtW7hz5w5FihShR48efPnll7Rt27bQrH6a186fP8/06dPZsGEDJUuWZOHChbz66qsFNgEzI85aFSrFgqIqfJO0tGoVbnr5c0hmogw5W/n6/Knj/LpnJ3OC97Ji+kfp7vcu5pfb0gCITjbKpFjxn3T27FlmzpzJiRMnuHHjBmvWrKFfv35pJmzNnDmToKAg7t27R9myZRk9ejSDBg2y3p+YmMiUKVPYuXMnCQkJdOrUiTlz5uDi4mKPhyTygdFozHYQ5OFtMpsg7uTklC7wUaZMGerUqfPYLiFubm6FftJ2fIqJ0MSMO6TkJf/OPfDv3OOx22m0Wl7oP5QX+g/N9THlvOfpolarcXJysktg/FFms9kaMskqgJKb0EpsbCyhoaGP3T434ZachFEWLFhglwUKwsLCaNu2LZcvX0ar1fLpp58yePBg4H+LMxiNRnQ6HbNmzaJGjRqULl0aIN8meKtUKtzd3XF3d6dKlSpZbmsymQgLC8s0cHLjxg2OHz9OSEgI8fHxafbV6/UZBk4qVapEQEAATk5OOXqMt27dom3btiQnJ3Pw4EEqV66c7THygkqlwtXVFVdX12x9LmI2m63dULIKo4SGhnLx4kXr9Q+Xl6d6wya5qjnFkAxAYvz/AqWXzpxm9qhXqVirDmO/WJajMAmATpP7n9d23QJwbNAKs9mSb2ESgESjmYM3w2lW0puiLll3hkkVHx/P7NmzmTNnDm5ubnz99dcMHTo0W13VCkOYBB50fun8Yh++io1l5MiReHp6MmnSJHuXJYQQQog8IJ8kCCGEEEIIIYQQQgghhCgQe/fuZcGCBZw+fZoyZcrQrFkzhg0bRs2aNbFYLI+dfGgwGPj5558JDg5m27ZthIeHU6pUKXr16kVAQAD+/v42/0H+SfTXX38xbdo0vv/+e0qXLs3ixYsZMmQIDg62TWLID/fv32flypV8/fXXtHxpIN2HjMjXyRvZpQLKezijLkQ1FTbRyUZUkK0V2s1mMyumf0T7F1+hbNX8W9FXBUQlGynr8b/bFEVh165dTJ48GbVazYkTJ/Lt+ELYU1xcHBUrVqRfv34EBARgMpnSTJz85JNPWL16NTNnzqR69eocPXqUt956Cw8PD7p3745KpSIgIIDY2Fg++ugjnJ2d+fLLL3n55ZfZvHkzOp0EtQqD1JXebQ2APHpbQkLGkws1Gk2GXULKlSv32C4hnp6edj23KAjXohOz/doH8P3SBaz74jNKV66apisXwMXTpwicM52rf/+Fs6sbzTp15ZXRE3AqwACXnPeI/KTRaHB2di4UnR8fDrfkV1eW6Oho69cnT57E398fbQ4ny+eUt7c369evJzQ0lN27d7NgwQJatGhB/fr1UalUmEwmdDodn3/+OTt37mTVqlX4+eVNqDsvaLVaihcvTvHixR+7bXx8PPfv38+048mpU6dwcHBg+PDh6HS6HIVJFEVh//79mEwmDh06RPny5XPysOxKo9Hg6+uLr69vtvb77U4Et+INKDz+eYuJCMfDJ+34JqORg1s3oXd0pFTFB0Gi21f+ZeaIARQpWZqJS9fg4Jiz4JsKcr2AQGiCgaO3I1FQoc7nz4QUQFHg6O1ImpfKOlRisVhYvXo1H374IZGRkYwePZoJEybg7u6erWP+HR6Xo/OW/KDiQT1vvfUWMTExfPjhh3h4ePDuu+/auzQhhBBC5JIESoQQQgghhBBCCCGEEELki9RVUwGCgoKYN28erVq1YvLkyZw+fZqvvvqKixcvsnv3bhQl8z+N//jjjwQGBrJjxw5iY2OpVKkSr776KgEBATRu3DjfVl8tLP7880+mTZtGcHAw5cqVY9myZQwaNMhuHVgUReHgwYMsWbKELVu2oNFo6Nu3L8N7dyekkH0vFKC8p/0nvRVm0QZjtiem7F2/hrC7t5n07YZ8qSmVAsT8fwcVi8XCDz/8wKRJkzh79iwAPj4++Xp8IeypefPmNGvWDJVKhU6nSxe6/PHHH+nTpw8vvfQSOp2OBg0asG7dOg4cOEDXrl05f/48P/30E6dOnaJBgwYANGjQgIoVK3L48GHatm1rj4f1VDIYDNkOgjx8n8ViyXBcFxeXdIGPChUqpAuAZBQOcXV1ferPj3LKoihci0nM9mtfRMhdgpctxDGDyfTXLpxjypA+lKxYicEfTCYi5B4/rFzKvRvX+OibtXlTuA3kvEf8VxSmcEt+0mg01KxZk5o1a9KmTRvOnj3LkiVLWLBgAU5OTmi1WmbMmMHSpUv56quv6NixY6ZjWSwWEhISUKvVmXYqs1gs7Nq1iw8++ABFUXLUzSU3X1eoUIGKFStm+Zw8/BlDdqlUKmsnt7fffjvDDiipl6ftZ8vX1Ymb8bZ15lo6aRxJ8fHUaNQU72J+RIeHcWh7MHeuXmbQ+Ek4ubiQFB/PtGEvkxAbQ/dX3+D3gz+nGcOvdFmq1m9k0/EsisIfxw7zT0oCPj4++Pj44O3tjY+PDy4uLo/9fkclGzl2J7LAwxYKcOxOJK3K+OLlmD4Qc+DAAcaMGcMff/xBnz59mDVrFuXKlcv2cWztqnbz33/Y+NVcrpw/S3R4KA6OTpSqVIXuQ9+gcdv//W7oVa1EpmPUadaCSSuzfo+vAKGJKcSnmJgwYQIxMTGMHj0ad3d3hg7Nfac1IYQQQtiPBEqEEEIIIYQQQgghhBBC5JnIyEgCAwP58ccfqVy5Mh07dqRLly6oVCq6d+/OhAkT0Ov1NG7cmOLFi/PKK69gNpsz7SxiNpvZt28f586dY+zYsQQEBFCzZs3/xCTJ33//nalTp/LDDz9QsWJFVq5cSf/+/e22qnxUVBRr1qxh6dKlXLx4kapVqzJ79mwGDRqEl5cXAEduRRCWmFJoVs4s4qzHVS9/CsmKyZy971ZcVCTrF86h9xvv4uGd/4EOo1lh3rx5zJ8/n9u3b6eZVG82m9m/fz9qtRqNRoNarc7R19nd57/w+0cUDqk/axl18apfvz779+8nJiYGX19frly5wtmzZ3n33XfRaDSEhoaiVqupXbs2ACaTiVKlSqHX6zlw4ACtW7d+bGew/wqLxUJsbKxNAZCMtklKSspwXK1Wmy7s4ePjQ6VKlWzqEiJdZPJHnMGEyZL9M5XVs6dSpW5DLGYzsdGRae5bO38WLu4eTF2zGWdXNwCKlizFko/f588jB6jn3zovSs+SnPcI8fTz9fXl7t271iDiuHHjWLt2LUuWLKFbt26PDVtERkbyzz//kJKSgsViQaVSWS/JycncvHmT6OhounTpkmkHl4SEhMd2eUlOTs5ywYis6PX6dEGT6tWrs3r1atzc3B7bJSYpKQknp6w7ZQwaNAiVSsVnn31GREQE4eHhmM3mNNu4ublZgyaPBk4evu7r6/tEdEn1ykYHkObPd+PnzevYs34NcdFROLm4UqFmbQa89yGN2z4HQFx0FOH37gIQNHdmujFa93jJ5kCJSqVi2ocfcO3C+XT36fV6a8jk4Utq4MTHtwiejVqBzsEunVItCpy6G0W7ckXQqB8c//Lly7z//vts3bqVJk2acPToUZo1a5bjY9jaVS3s7m2SEuJp06M3XkX9MCQncXzvTma9OZgRU2bTsU9/AN6e/WW6fa+cO8PONcup27yVTTWp/r+u2kXdmTVrFjExMQwfPhw3Nzd69+6dvQcohBBCiEJDPk0QQgghhBBCCCGEEEIIkWsmk4kvvviChQsXUqJECTp27Mj169fp1q0b27dvp2/fvukmWly7do1q1apx9+5dSpcuneG4arWa6dOnM2fOnIJ4GIXCyZMnmTp1Kjt37qRy5cqsXr2aV1555bGTZ/KDoij89ttvLFmyhPXr12M0GgkICGDx4sW0bt063YSlGr5uHLgZUeB1ZkThQT0ia5ZsTvb6bsFsXD09eb5/waw+alYU3n//fevEuYdX8o+OjqZdu3YFUsejCiK4Utj3eVLqfBrCQIqipAt/LFq0iFGjRlG2bFm0Wi0mk4k5c+bw4osvAg+6kaSuXD558mS0Wi0LFiwgISGBW7du5XiiZ2GVlJSU7SBI6r8xMTGZPh9ubm7pAh9VqlSxqUuIs7PzE/sz9zSL+v/OV9lx/tRxft2zkznBe1kx/aM09yXGx3H22CG6DBpuDZMAtOrem28/ncyxH7cXSKBEznuEeLrMmjWL5s2bU716dVJSUti2bRvfffcd33zzDc7Ozrz33nv8+OOPbN68mWeeeQYgy9cctVpN2bJlKVu2bL7XrigKJpMpy9CJrV97eXnx2muv4eDg8NjgxogRI6hevTrvvvvuY8M1AwcO5PLly0ybNi3D++Pi4khMTOTatWvWx2SxWDLsKubg4ICTkxMuLi64uLjg7u6Oh4cHHh4e1uCDr68vHh4eOergotPpcn0+4eagRatW2RSo9O/cA//OPbLcpmip0my+eDdXNaXSqlX8e+4s8XFxREREEBkZSURERIaXyMhIbt68ab3ebfgouj/TAbUdz7fijWYuRMRRSmdh2rRpfPnll/j5+bF27Vr69u372AD3Tz/9hIODAy1btkx3X3a6qjVs1Y6GrdK+N36+3xDG9XqO7auWWQMlrbr1Srfv+ZPHUKlUtHjM9z2VAlyLSaRmETfUKhWLFi0iLi6Ofv364ebmRqdOnWwaRwghhBCFiwRKhBBCCCGEEEIIIYQQQuRa6ircy5Yto0OHDtbww+nTpzl48CCdO3e2TtY0mUzodDoOHz5M3bp1KV26dIarr8ODSTGOjo4F+ljs5ddff2Xq1Kn8+OOPVK1alaCgIPr06WOXIElCQgLr1q1jyZIlnD59mjJlyvDRRx8xdOhQ/Pz8Mt3P20lPFW8XLkUmFGC1Gavi7YK3k97eZRR62Zl8c/f6VfZtDGLIhClEhd633p6SYsBsNBJ6+xZOrq64eXrlWX0alYoLFy4wbdo01q1bB2BdQbho0aL8+uuv1sldFosFs9mcJ18/CfubzWbrCtP2qiWjSXWFXV4HV+rUqcOaNWsee9zk5GSOHj2KxWLB39//satnPyyjQMnatWv5+eefWbBgARUrVuT48eNMmTKF2rVr4+/vj7e3N6tWreK9997jyy+/RKVS8cwzz1C7dm2bJiX+9NNPJCYmFljgSFEU4uPjiY2NJS4ujpiYGGJjY4mNjbWGPrIKiRgMhgwfh16vTxf8KFasGNWqVXtslxAPDw+7vAaL/BWdbLRppe9UZrOZFdM/ov2Lr1C2avV099+8dAGzyUTFWnXT3K7T6ylfvSbX/j6X+6JtIOc9Qjxd7t69y8CBAwkJCcHd3Z0KFSqwbNky+vfvz2+//ca8efMAGDZsGBaLBUdHRzQaDVu2bKFUqVJ2rV2lUqHT6dDpdLi6uhbIMV988UWCg4MpX748vXr1ynTBiodNnTqVV199lWvXrtkccElISLCee6SesyQkJJCYmGgNt167dg2TyZSn4d3sBFAy+7p0Y3+8K9VEVYg61KmAolqF33/7jbi4OKKioqyX6OhoevXqRcOGDTPcNzIppdAsZvFPRDyDh7/CxT9+45NPPmHMmDE4OzvbtO+rr77KrVu3ePHFF5k/f36a/7857aqWSqPR4ONXgivnzmS6jTHFwPG9u6jR+Fl8/ErYPLbJohCXYsLDQYdGo2HVqlXExsYSEBDAnj17aNGiRY7rFkIIIYR9yCdgQgghhBBCCCGEEEIIIfJE3759cXFxsV43m834+vrSoEED4MHEEkVR0Ol0/PXXX/z6669s374d4LGrNj7Njhw5wtSpU/npp5+oUaMG69ato3fv3o9dgTU/nD9/nqVLl7JmzRri4uLo3LkzU6dOpVOnTjbXU93HjTtxySQazTZP1sxLKsBFp6G6j6zSbQutxvZASeT9ECwWCytmfMyKGR+nu/+N9k3pPHAYQydOzbP6dBoVVcpXITAwkClTpjBlyhQCAwNRFAW9Xk+FChXy7Fgi+xRFsa7YnF+BlsIe9PH19c3yOUoNTK5bt45XX32VmjVrsnHjRqpXr86hQ4cyXI04o+f54ddJRVF45513WLRoEa+88goqlYrWrVvz999/8/nnn9OsWTPUajUvvvgizZs359q1ayiKQu3atXnmmWcoXrz4Y193AwMDCQwMtO0HoQCpVCpUKpW144xGo0Gj0eDq6opWq7Ve12g06HS6NIGVmJgY4uLiuHPnzn+uu4+9ugMVxs5A0QZjts5P9q5fQ9jd20z6dkOG90eFhgLgVaRYuvs8ixTjwu8nclKmzeS8R4in08KFC5k7dy7JyckYjUZUKhWenp6oVCpq1KjBqVOnSEpKIjQ0lOTkZJKSkkhISMDN7b/3u6Bjx47cuXOH7777jo8//pizZ89muWjFw/Kra0vqece9e/cICQkhJCSEe/fucefOHe7evcu9e/e4f/8+9+/fJyoqKt3+qR1O3N3dcXNzw8XFBWdnZ2s4RK/Xo9VqsVgspKSkWIMvycnJxMTEZBiIcd+xi6nrtuf5Y80NBXixXQvuXLuS5vbUz44iIiJ49913MwzKnA+Py1ZAND9ZLBa6Dx+J8/KFnDt3jvfffx8fH590l9SONR4eHtafzcjISAC2bNnCjh07mDRpEqNHj8bBwSFHXdWSExNJMSSRGBfHqf17+ePwLzR/vlum258+uJ+E2Bhadu2Z7WNFJxvxcNABoNPp2LhxI507d6ZLly788ssv1s8ChRBCCPFkkECJEEIIIYQQQgghhBBCiDyRGia5f/8+H374Idu3b8fd3Z2IiAgSExNxdna2Tir85JNPaNGixVP5B2ZFUWyaPHnw4EGmTp3K/v37qVWrFhs3bqRXr14FHq4xGAxs3ryZpUuXcvjwYYoVK8aoUaMYPnx4jibXaNQqmpTw4uDNcPJwUVabqVTQuIQXGnXhmsBaWHk66IhKsm1ybZkqVRn31Yp0t69bMJukhHiGTpyKX+lyeVabCqwTVAAqVKjA6tWrmThxIlOmTEkTYBP28fDkfunkkDG1Ws3ly5fZs2cPTZs2pXjx4iQkPOji9MMPP9gUKEkdJ5XBYCA2NpaiRYtaX29UKhXFixfn5s2b1u00Gg2lSpWyrnR8584d/v33X1544YXHvk6NGjWKLl26WDuBxMTEpFmRO/Xf1JBGXFwcJpMpw7H0ej2urq7WS+qkyIf/dXJywtnZGScnJ+slddJgamgpP4NDtm5nNBoxGAwFesxHv37SpP6OKCzBl74ffYrG2bYJ13FRkaxfOIfeb7yLh7dPhtsYDMnAg44kj9I7OJCSnJzzJ88Gct4jxNMrtcvHo1xcXDLt2vBf8+yzz5KcnMyJEydwdXVl2bJlzJo1i86dO9t10YrUAJCnpyfVq6fvbvUwo9FIaGioNXSSGkB5+PrVq1e5d+8eSUlJafZ1dHTEz8+P4sWL4+fnR7ly5dJcT/26aNGi6PV6jtyKICwxpVCEMMwmE+dOHEsXJgGs3V2+/vprvv7663T3+5Upx6K9x/K9RltpNBpqNm3O1aM/c+Pff7hw4QIRERFERESQnMF5gFqtxtvbG29vb+v7ArPZjNlsZsKECcydO5fZs2dT/4WAbIdmVn82hb0bAq3HadrhBYZ9PCPT7Q9tD0and+DZ57pk5yGjAqKSjZT1+N9tTk5ObNu2jfbt2/Pcc89x6NChx/78CyGEEKLwkE92hRBCCCGEEEIIIYQQQuSpsLAwYmJimDZtGgDTpk3j999/Z9KkSZQtW5affvqJ48ePs3fvXus+ly5dokqVKvYqOU8cP36c+vXr4+DgkOV2JpOJ7t27s2vXLurWrcvmzZvp0aNHgU94uXLlCl9//TUrV64kPDycNm3asGHDBnr06IE+g0mR2eHlqKNZSW+O3o7EYmPAJi+ogGYlvfFyTD/xyh4sikKcwUSUwUh0spFogxGTWcGiKKhVKrQaFZ4OOjwddXg56HBz0KIuoOfqzp07HDx4kH/DY6jVsbtN3yN3Lx+atn8+3e07Vy8HSHPf9X/+5rf9D/6P37t5jcT4OL5f8gUAZavWoHHbjo89ngIZfi+rVq3Kd99999j9hbC31IDhtGnTqFevHh07dmT58uUkJiYCZNndJDExkStXrqDValEUhbt37/LPP//g4eGBn58fzz77LOPHj8fb25tKlSpx+PBhlixZwsSJE62vJ9u2baN27doUL16cU6dOMXToUHr06EHTpk2zrDspKYl27doRFxcHPJiM5uHhgZeXF56ennh5eeHn50f16tWt11MnTT68Teptjo6OefSMCiDbARt7BV8K+piP2y4lJQWLxYKC7a+z3y2YjaunJ8/3H5rpNg4OD36+jSkp6e5LMRjQ5+PPf2E77xFCiIK0cuVKkpKSOHz4MK6urgC8/fbbjBs3jj179vDcc8/ZuULb6HQ6SpYsScmSJbPcTlEU4uLiMgycpF6OHTtGSEgIoaGh1lBGKh8fHxr6t+K1TxeiKgQdYjVaLe+83JPJQyx89NFHzJw5M839rq6uvPfee7Ro0QIgTbcVipVFUSyoVFk/jst//ckvWzZy7uQxwu7cws3Ti8p1G/LKO+MoUb6idbte1UpkOkadZi2YtDLjLmUPUwHdB7/GuEF9MBqNuLq64uPjg16vt3ZsS+28knpuklHYBCA8PJxRo0axum4zVC7ujz32wzoPGsYzz3UmKvQ+x3Zvx2IxYzJm3OkkMT6O0wd/pkGrtri4e2S4TWYUICaDDipubm7s3r2bVq1a0aFDB44cOUK5cuWyNbYQQggh7EMCJUIIIYQQQgghhBBCCCHyVK1atdi0aZP1eqlSpZg4cSJHjhyhbNmyBAUF0bZtWywWCwMGDOCHH37AwcGBf/75By8vLztWnjOff/45n332GcWKFcPZ2ZnOnTszefLkTLdXqVR06dKF1157jW7duhVY2AIehFl27NjB0qVL2bNnD56engwePJgRI0ZQrVq1PDmGwWBgx44dBAUFcSMimnFfrkSr06HWaPJk/MyoVQ8mVRZ1yTrQUxDiU0xci07kWkwiJsuDiTyZrSz6cHcQrVpFeQ9nyns646rP2z/h3Lp1i4MHD3LgwAEOHjzI5cuXAWjdqTO1n+uRp8cCuHr+L9YtmJ3mttTrrXu8ZFOgBMBTJsmKJ1RqmGTdunWEhIQwe/Zsjhw5QkpKijVQ8uqrr2a6/++//07r1q2tkwHfffddAAYOHMiqVatYt24d48aNo3v37sTExODn58eoUaMYPXq0dYxDhw4xcuRI4uLiKFKkCJ06dWLq1KlZdpOxWCyEh4dz+PBhayDEzc3Nrqt8i7RUKhUajQaNRpPhyvUia/uuhRGbknE3nYfdvX6VfRuDGDJhClGh9623p6QYMBuNhN6+hZOrK15FiwIQFXY/3RjRYffxLlIs74p/SGE67xFCCHvo2bMnAwYMQKfTWc+7nnnmGSwWC7t3735iAiW2UqlUuLu74+7u/tjFOEwmE+Hh4Rl2PLl4dD/Vmre1e6ikircL3k4PFrKYPn06165dY8OGDVgsFgAqV67M5MmT8fX1Zfjw4bz++uuUKVMGi6Kw4/J96/vsrGz5ZhEX/zhFs+e6ULZqdaLDw9i99lve7/Ucn67fQZkqDz4DeXv2l+n2vXLuDDvXLKdu81Y2PR4F0PgW58TJk6z77juuXr2aJgST0dePdpwBrOGThIQEbt29S5nK2QuUlKpQmVIVKgPQukdvpg7ty6dvDGLWxp3pPns6vmcnKYZkWnQJyNYxUhnNGX8PvL292bt3Ly1atKB9+/YcPnyY4sWL5+gYQgghhCg4KuXRSLIQQgghhBBCCCGEEEIIYQPlMZ0nzGYzGo2Gn376iR49erB//358fHyskx+cnZ3p1KkTI0aMoEOHDgVVdp5atWoV8+bNY/bs2VSqVImjR48yZMgQPvvsM0aOHImTk1OG+z3uuctrd+7cYfny5XzzzTfcuXOHJk2a8MYbb/DSSy/h7Oyc6/EtFgtHjx4lKCiIjRs3Eh0dTcOGDRkwYABdXuzDZYOaBKM5Dx5Jxlx1GhqX8LL7Ct2RSSn8HR5HaGJKpgGSx0ndr6iznhq+btZJNtl148YNa3jk4MGDXL16FXgQ+GrVqhWtW7emZcuW+BYpYvOEnIKmVavoUqlYgXVtESKvhYSEMGbMGJ599llGjRrFvn37+Oijj5g3bx7NmjUjNjYWd/esJ4mlTqpL7bagVqutIYLUcIrJZEKj0eDq6pomYBATE0NkZCQGgwG9Xo+fn1+e/M4X4kl24GY4kUkZr9T9sHMnjjFp0ItZbtN54DD6jHqPIc/Wosug4Qx8/2PrfcaUFAY/U5Nmz3flrRnzcl33wwrLeY8QQhQGqe+tU8+Tli1bxoQJEzhw4AB16tSxd3mFjtmisO96GIlGc47er+aWCnDRaWhXrgga9f/e5xkMBtq0acOvv/5K2bJluXr1KpcvX2bx4sV8++23xMfH061bN15/dwwJfpVsOtbF06eoWKsuuoc6sN69fpUx3drx7HOdeefzrzLdd/FHY9m/eT3LfjmFj1/mHUwe1a6cLx4Otr0+nzp1iiZNmqDX63nllVd48803ady4MfDgPcBP18JIMFlsPnZG9m4IYtmkcSzcdYiSFdI+b5OHvMSVc2dZefQMOn32A6quOg0dKxTN9P7r16/j7++Pl5cXBw8exNvbO9vHEEIIIUTBkQ4lQgghhBBCCCGEEEIIIWwWHx/Pjz/+SHBwMC1atGDYsGEZro6tKAoajYYbN26wbt062rdvT40aNYiOjmb27Nm0adOGhg0b2uER5A1FUUhISGDx4sV07tyZTp06YTQaqVSpEjt37mT+/PlUqVKF7t27ZxgeKYgwicVi4eeff2bp0qVs27YNR0dH+vXrx4gRI2jQoEGeHOOff/4hMDCQtWvXcv36dcqUKcObb75J//79qV69unW7chaFCxFxXIpMyHHQ4lGp41TxdqG6j1uaySgFzfzI44OcP8bU/cISUzhwM8Kmx6coCteuXbOGRw4cOMCNGzcAqFOnDl26dKFVq1YPAiS+vun2L+/hzOWoBLtMKMqMigd1SZhE2ENycjJRUVFER0cTHR1t/Tqzf1euXEnZsmXTjRMUFMSFCxeYPHkyv//+O8ePHyckJIRZs2YxZMgQvLy8aN26dZa1pHYGyahDiF6vR6/PPHTm4eGBh4dH9h68EE85Twddmu5gmSlTpSrjvlqR7vZ1C2aTlBDP0IlT8StdDhc3d+o824JDPwTT+43ROLm6AnDwh+9JTkygWaeueVJ3YTrvEUIIezCbzUyaNIl79+7h4uLCuHHjKFWqlPW9deq5UuPGjfHx8eHEiRPUqVPHutCFeECjVtGkhBcHb4ZT0EtQWyxmLGYzewJXcFil4Ofnh5+fH8WLF8fPz48NGzbw4osvMnLkSNRqNVWqVOGLL75g+vTprF27lq+++orPFi7irRnzbPpMpVqDxuluK1GuAqUrVeH2lX8z3c+YYuD43l3UaPxstsIkANHJRpsDJQ0aNGDr1q20aNEiXdhCrVajUauB3AVKUgzJACTGx6W5PSr0PudPHKN1z5dyFCYBHvtevVy5cvz000+0bNmSb7/9lrFjxz52TJPJlGU3RSGEEELkH3kFFkIIIYQQQgghhBBCCJGlqKgoduzYwebNm9mzZw/JycnUrVuXjh07ZhgmWbt2LX/++Sd//vknp0+fpn79+nz++ee4ubnh5ubGe++9Z4dHkTspKSmsXbsWb29vmjVrhq+vL66urkRFReHj45NmWwcHB1JSUti2bRtt27bFzc2tQGuNiIjg22+/ZdmyZVy+fJlatWqxcOFC+vXrlycTi0NDQ9mwYQOBgYGcOnUKDw8PevfuTf/+/WnRokWGk541ahW1irhTwtUxzzp4FMllB4+8EpVs5OTdKGsHlryak5M6zqXIBO7EJdPkoZXIFUXhypUraTqQ3Lp1C5VKRb169ejZsyetWrWiRYsW6X4+M1Le05l/oxLyqPK8ofCgLiFywmw2Exsb+9ggSGb3GQyGDMfVarV4eXnh5eWFp6cnXl5eFClSxNpF5GEWi4XY2FjOnDlDkyZNcHBwQKfTER0dze+//07jxo2pVMm21ZWFEHnH01Fn02u1u5cPTds/n+72nauXA6S575V3xzPx5e58PDCADi/1JyLkHtu/XUbd5q2o36JNruotbOc9QghhDwaDgaZNm+Lm5kbNmjVZu3Ytd+/e5fvvv0+3bYMGDfD39+fzzz9n6NChEibJgJejjmYlvTl6O7LAFhVQLBZQ4OeVi/jjyAFCQkIICQnBaEzbNczNzY3p06ezfPnydIGT2bNnk+BeFMViRqXJ2ZRHRVGIjgindKUqmW5z+uB+EmJjaNm1Z7bGVvHg84GyNn7sotFo6N69e6b3azW2h0djIsLx8Em7eITJaOTg1k3oHR0pVTHt4z2yaxsWi4WWXQNsPsajdDbUV716dc6cOUOJElkHcxRF4dChQ5w6dYrBgwdnuBCGEEIIIfKXBEqEEEIIIYQQQgghhBBCpHP//n22bt1KcHAw+/fvx2Qy8eyzzzJt2jR69uxJxYoVM933mWeeYffu3bRs2ZLFixdTuXLlAqw8b5nNZmbOnMnnn39OtWrVCAkJoXz58nz22Wc888wzdO/enU8//RR/f3+aNGnC0qVLuXfvHu3bt+fs2bNcv36d2rVr53udiqJw7Ngxli5dyqZNm1AUhd69e7Nq1SqaNWuW644oSUlJbNu2jaCgIH788UdUKhUvvPACGzdupGvXrjg6Oto0jreTHv/SPsSnmLgWnci1mERMlgdTWDILmDx8u1atoryHM+U9nXHV2/9PHKEJBo7dicz3lV0TjWYO3Agj+sxx9m3bzIEDB7h79y5qtZr69evz0ksv0apVK/z9/fHy8sr2+K56LUWd9YQlphSKLiUqHkycLQzfY2EfiqKQlJRkcwDk0W1iYmIyHdvd3T1NIMTT05OqVaumu+3Rfz09PXF2drb596larWbs2LEMHz4cFxcXvLy8uHTpEv3792fw4MG89dZbHDx4MK+eMiGEjbxsXDU8OyrUrMOkb9cTOGcGqz6djKOLC2179aX/mIm5GrewnfcIIYQ9GAwG2rdvT9myZdm4cSMODg5069aNqVOnYjAYcHD4X3cFo9GITqdj2LBh7Nixg2PHjtGiRQs7Vl94FXVxoHkpb+v72fx+H6jRqGlW0psX58223maxWIiKirKGS+7du2f9OvX6uXPnCAkJITIyEoBle4/i65vz18RD24OJvH+Pvm9nvtDJoe3B6PQOPPtcl2yNrQAxBuNjt7OVrV3VAJZOGkdSfDw1GjXFu5gf0eFhHNoezJ2rlxk0fhJOLi5ptj+8PRjvon7UbNIsR7WpwOZOLI8Lk8CDLr63bt3iwIEDrF+/nn379uHp6Zmj2oQQQgiRMypFKegGdkIIIYQQQgghhBBCCCEKoxs3brBlyxaCg4M5cuQIKpWK1q1bExAQQI8ePShZsqS9SyxwmzdvZurUqcybN482bdrwxx9/8MorrzB+/HiGDh1KeHg4AQEB3Lt3j3v37uHk5MS6deuoXr06pUuX5ty5c9SoUSPf6ouNjSUoKIilS5fy119/UbFiRUaMGMGQIUNyvaKjxWLhwIEDBAUF8f333xMXF8czzzxD//796dOnT56sGGlRFOJSTEQnG4lKNhJjMGI0K1gUBbVKhU6jwsNBh5ejDk9HHW56LepchmPySmiCoUBXdDWbzSgWC9/Pm0Y5Xy9rgCQvus4ARCalcOBmRJ6MlRdal/GRVdifcCaTiZiYmBx3CXl0teJUer0+XZeQzAIgj97m4eFh11WqQ0JCaNGiBX379mXatGkkJiai1WrR6+VnXYiCYlEUdly+bw20FiYqoJyHE95O+kJ33iOEEPayceNGtmzZwqxZsyhbtiwAX3/9NUuWLKFixYoUK1aMTp060bVrV+s+UVFRHD9+nOefT99pSqT1aMfN/OCq09D4oY6bOWEwGDCbzRy7n0BsiilHY9y++i8TXupC6UpVmLZ2a4bvCxLj43i1eV3qt2zDuC9XZPsY7not7csXyVF9j7oek8jpkMyD8g87snMrP29ex81LF4mLjsLJxZUKNWvzQv+hNG77XJpt71y9zNsvtKTr4BEM/mBSjutr6OdBWY+87Sr622+/0aRJE4YPH86yZcvydGwhhBBCZE2WsRBCCCGEEEIIIYQQQoj/sH/++Yfg4GCCg4P57bff0Ov1dOjQgeXLl9OtW7c8CQ08iSwWCyaTiZ07d1K8eHFatGiBWq2mYcOGODk5WZ8XX19fduzYwaVLl0hKSrKufnr16lVKlChBRET+TND/888/WbJkCWvXriU5OZmuXbsyZ84c2rdvj1qtztXY586dIygoiLVr13L79m0qVKjA6NGj6d+/f553m1GrHgRGPBx0lM2bXESBiEo2PljJtQCPqdFoQKPhlQ+m0qqMb64m42TE20lPFW8XLkUm5Om4OVHF20XCJIWAoigkJCTkqEtIVFQU8fHxGY6rUqnw8PBIF/YoWbLkY0MiXl5eNndEKow8PDzo06cPTZo0AcDZ2RlFUVAUJdedpHLLYrFw7tw5bty4QZcuXexejxD5Ra160PXjclRCoejKlUoFVPJyoXZRd3uXIoQQhcoLL7xAsWLFKFWqFAC7d+/m9ddf55VXXqFGjRrs2LGD33//nfLly1OrVi0sFgteXl4SJrGRl6OO9uWKcCEijkuRCZl2Ds2u1HGqeLtQ3ccNjTp355apnWgsSsbvMR4nKiyUmSMG4uzmxnsLvsk0ZH58z05SDMm06BKQo+OER0ZAHgVKstNVzb9zD/w797Bp25IVKrH54t0cVvU/nnn0mYTJZEKr1RITE8Mrr7xCkyZN6NevHxaLJdefbwkhhBDCdhIoEUIIIYQQQgghhBBCiP8QRVE4c+YMwcHBbN68mb///htnZ2deeOEFxowZQ+fOnXF3/+9NZIuJieGbb76hRYsWNG3aFLVajV6vx2g0YjKZOHjwIP7+/owaNYrY2FjOnj1LuXLlqFmzJu7u7jRq1CjNeKtXr6Z48eLpbs+NpKQkNm7cyJIlSzhx4gQlSpTgvffeY9iwYdbJNTl179491q1bR2BgIH/++Sfe3t706dOH/v378+yzz8rE4oeYLQon70Zhr/7vFgVO3Y2iXbkiuZ6U86jqPm7ciUsm0Wi2yyRbFeCi01Ddx80OR386GY1GmwIgmd1mMmW8+q+Tk1O6oEfp0qWpU6fOY7uFuLu7/2cnBjk5OTF9+vQ0txWm36+rV69m3rx5NGnShKlTp9KxY8dCVZ8QeaW8pzP/Rtk/QPkwhQd1CSGEIM1EcldXV1q1agVAYmIix48fZ/78+bzzzjsAjBo1imLFinHkyBFq1ar1nz3PzA2NWkWtIu6UcHXk7/A4QhNTchwsSd2viLOeGr5ueb5QQE46dyXExTLjtX4kxMYyfe0WvIv5ZbrtoR3BOLu506hN+xzVFx4axuefb+f999/P0f4Pc3PQolWrCmVXNa1ahZs+99NOU8Mkt27d4plnnqFs2bIsXryYunXrolKpCkXwXgghhPivkECJEEIIIYQQQgghhBBCPOUsFgsnTpxg8+bNBAcHc+3aNTw9PenatSszZ86kY8eOODk52btMuzCbzaxatYrp06dz48YNRo4cSe3atXF2fjChb+zYscyePZs5c+bwwgsv0LhxY0aNGsX69ev54YcfGDx4MG+++SZms5mLFy+iKAqrV69mw4YNTJ48OU+e13/++Ydly5axatUqoqKi6NixI1u2bKFLly5otTn/mD8+Pp6tW7cSGBjIvn370Gq1dOnShUmTJvHCCy+g10uHiIxciIgjwWi2aw3xRjMXIuKoVSRvw18atYomJbw4eDPcLoEZlQoal/DK86DMk0xRFOLi4nLcJSQxMTHDcdVqdYbBj3LlyqULgGQUDkldIVg8PdRqtfW17uOPP6ZTp040b96cadOm0aZNG3uXJ0SectVrKeqsJywxpVB0KVHxYOKtax5MzBRCiCfd7du3WbRoEYMHD6Zq1aoA1knlzs7OvP/++7i6ugIP3s8bDAZq1apFiRIl7Fn2U8HbSY9/aR/iU0xci07kWkyiNcyQWcDk4du16gddwMp7Oufba5pWk733iimGZD59YxB3r19l0soNlK5UJdNto0Lvc/7EMVr3fAmdPmfvdzzd3dh94ACjRo3KdWfFwtxVrbyHc47CPfDgM8rUsIhWq+XChQv4+/tTv359Fi5cSI0aNf53LAmTCCGEEAVGPpEQQgghhBBCCCGEEEKIp5DJZOLQoUNs3ryZLVu2cO/ePYoWLUrPnj0JCAigdevWEhgAIiIi+P333xk1ahQAU6dOZeDAgdbOIvXq1eO7777jww8/xN3dnfXr16PRaBg2bBjjxo3jxx9/ZNiwYej1ek6ePMmXX36JWq3m22+/pV27djmuy2g0sm3bNpYsWcL+/fvx8fFh2LBhjBgxgooVK+Z4XLPZzM8//0xgYCBbtmwhISEBf39/lixZQu/evfHy8srx2P8FkUkpXIosHCuaX4pMoISrY56v+OrlqKNZSW+O3o4s0EkrKqBZSW+8HHUFeNSCYTAYbA6APBoWiY6OxmKxZDiui4tLusBH+fLladCgwWO7hLi5ucnkHJGOSqWiXbt2tG3blh9//JFPPvmEtm3b0qZNG6ZOnYq/v7+9SxQiz9TwdePAzQh7lwE8mIhbw1e6cwkhxO3bt2nZsiXXr1/n5s2bfPrpp5QpUwaVSmXtWuLi4mLdXqPRsHfvXuLi4ihTpowdK3+6uOq11C7qTs0ibsSlmIhONhKVbCTGYMRoVrAoCmqVCp1GhYeDDi9HHZ6OOtz02hyHDGzl6aAjKslo03tVs9nMvNGvc+nP3xm/6Fuq1s+6g+yRXduwWCy07BqQo9pUwJ3L/3D//n10urx5X/s0dlVbv349ly9f5pNPPuG3336jdevWtG3blrlz51K5cuX/HUdRWLx4MWq1Gh8fH1566aU8qF4IIYQQmZFAiRBCCCGEEEIIIYQQQjwlkpOT2bdvH8HBwWzbto3IyEjKlClDnz59CAgIoFmzZmg0GnuXWaj4+vrSv39/qlWrhre3N3PnziUwMJCaNWtau4vExsZy/PhxBg8ejEajQVEU3NzciIiIICkpCYPBgF6vp3v37rRo0YJKlSrluJ6bN2/y9ddfs2LFCkJCQvD39ycoKIhevXrleHVLRVE4c+YMgYGBfPfdd4SEhFClShU++OAD+vXrR/ny5XNc73/N3+Fxma7MWtBUPKjHv7RPno9d1MWB5qW8OXYnEkXJ/8erVj0IkxR1KZxdLywWC7GxsTYFQDL6Nzk5OcNxtVptuuCHj48PlSpVsqlLSF5NUhLiUSqViueff55OnTrxww8/8Mknn9CiRQs6duzItGnTaNKkib1LFCLXvJ30VPF2KRRB0SreLnkeEBVCiCeNwWBgwYIFNG7cmAULFtCnTx8URWH27NmUKlUKtVoN/K9jwfXr1zl06BAjRozg66+/pl69enas/umkVj0IjHg46CjrYe9qHvB01Nn8/nT1Z1M4tX8vjdp0ID4mmoM/bE5zf6tuvdJcP7w9GO+iftRs0ixHtVkUhf27djBq1Kg8C+8/jV3VypYtS//+/bl27RqbNm2ia9eufPrpp5QrVw7AuqDCsGHDOHHiBHq9npSUFPbu3cvy5cvz4FEIIYQQIiMSKBFCCCGEEEIIIYQQQognWHx8PLt37yY4OJidO3cSFxdHlSpVGDFiBL169aJBgwayCn0W1Go1zZr9b7LApEmTeP/99xk4cCANGzYEwN3dnUuXLnH27FkiIyPx9vbmypUrhIWF8cILL+Dm9mBFaW9vb7y9vbNdg9lsZs+ePSxZsoRdu3bh4uLCwIEDGTFiBLVr187xY7t9+zZr164lMDCQ8+fPU6RIEfr27cuAAQNo1KiR/FxkU3yKidDElMdud/Pff9j41VyunD9LdHgoDo5OlKpUhe5D36Bx245ptt0VtJIfv1vF/Vs3cffyptnz3Xj5nXE4Oj9+tU8FCE1MIT7FlKvJHJkp6uJAqzK+nLwbRYLRnOfjp3LVaWhcwitfO5MoikJycrLNAZBHt4mJiUFRMp6+4+bmlq4DSOXKlbMMgqR+7eLiIv8PRaGmUqno3r07Xbt2JTg4mEmTJtG0aVO6dOnC1KlTqV+/vr1LFCJXqvu4cScumUSj2S6TNFWAi05DdR/pTiKEEFqtloYNG1K3bl26du3K4cOHad68OTqdjk8//ZQSJUpYtw0NDWXSpEkcPHiQlStX8vLLL9uxclGQvBxsf994/cJ5AH775Sd+++WndPc/HCi5c/UyV86fpevgEdbwUnapVCq++HQ61SuUzdH+mXnauqo1b96c3bt38/zzz1O3bl3mzp2b5v936vN/8+ZN+vfvz/Dhw4mLi6Nly5bMnDmTiRMn5ur4QgghhMiYSsnsE3AhhBBCCCGEEEIIIYQQhVJUVBTbt29n8+bN7NmzB4PBQL169QgICKBXr15Ur15dJilnk6Io1uesePHi9OnTh5kzZ+L8/xP7165dy2uvvUbdunWpUqUKwcHBtG/fnsWLF+Pn55ejYxoMBlauXMns2bO5fv069evX54033uDll1/G1dU1R2PGxsayefNmAgMDOXDgAA4ODnTv3p0BAwbQsWNH6WiQQykpKew/f4UER3dUj5lc8vvBn9kVuIKq9RriVdQPQ3ISx/fu5MJvJxgxZTYd+/QHIHDOdLYuX8yzz3Wh9rP+3L58iT3r11CraXM+WbHOprpUQCUvF2oXdc/tQ8yU2aJwISKOS5EJedadJXWcKt4uVPdxQ6N+/O8rs9lMTExMjruEpKRkHAbS6XR4eXnZFAB59F8PDw+0Wlm7Tfx3mM1mNmzYwOTJk/n333/p2bMnU6ZMyVX4UQh7i0o2cvBmOBY7zJpQq6BVGd98DVUKIcSTxGg0pnnPeuTIEdq2bcuAAQOYMWOG9b13REQEiYmJhIWF0aBBA3uVK+zAoijsuHwfkz1euB/DYjISUKM06nz4PO5cWGyh6apWq0jefP6wefNmevfuzbfffsugQYMAuHjxIt9++y16vZ7jx48zceJE2rRpA8CiRYvYu3cvQUFB1oVdhBBCCJF3JFAihBBCCCGEEEIIIYQQT4CQkBC2bt1KcHAwv/zyCyaTiWbNmhEQEEDPnj2pUKGCvUt84plMJrRaLYsXL2bixIkcOHCAevXqWe/fuXMnJ06cIDIykoEDB9KkSZNcHa9Zs2b88ccf9O3blzfeeIPGjRvnKAhkNBrZu3cvgYGBbNu2DYPBQOvWrRkwYAC9evXC3T3/wgZPK4PBwMmTJzlw4AAHDx7k+IkTLP3ld5xzOGnBbDYzrtdzpBgMfLn7MFGh9xnRtjH+nXvw9mcLrdvtClrJiukf8cHiVem6mWRGq1bRpVKxdJNW4uLi+O677+jTpw+enp45qvthkUkp/B0eR2hiSq6DJc6WFBxiQokPC7G5S0hsbGym43l4eNgUAMkoLOLk5CQBPCGyyWQysXbtWqZMmcL169d56aWXmDx5MtWqVbN3aULkSGiCgaO3Iwu0S4kKaF7Km6IuDgV4VCGEeDIoioKiKKjVavbv30/Hjh0ZPnw4n3zyCatWreLQoUOsX78eDw8Pe5cq7OCv0FguRyXYpbtYZixmM6rIEHr5N0p/n8XCzZs3KVeuXI7HN1sU9l0Ps3tXtXbliti0IIStli1bxpYtW9i2bRsXL16kUaNGdOrUCS8vL27cuMG1a9f4888/8fb2plevXty5c4ejR4+i0WjyrAYhhBBCPCCBEiGEEEIIIYQQQgghhCikbty4QXBwMMHBwRw9ehS1Wk3r1q0JCAigR48elChRwt4lPrWKFy/OgAED6NatGxs2bKBNmzYEBATk2fgmk4kLFy5QqlQpvLy8sr2/oij89ttvBAYGsn79esLCwqhZsyYDBgzglVdeoXTp0nlW639BcnIyx48f5+DBgxw8eJBff/2V5ORkPDw8aNGiBR269qBUqxdydYyZrw/kyrkzrDhyhuN7d/H528OYuCyQhq3aWbeJjYpgyLO1adGlJ+/OWWTz2O3K+eLh8GAlX4vFQlBQEO+99x5hYWEsX76cV199NVe1pzIajYRERnMtOpEIRYuiUqMoCihKhp1bzCYTao0GlUpFYlwsP21cy571a7h/60aa7RwdHW0OgDx6m7u7u0wmEcJOjEYjq1atYtq0ady5c4d+/frxySefUKlSJXuXJkS2hSYYOHYnEkXJm25cWVGroFlJCZMIIcTjmM1mNBoNe/bsoXv37lSuXJnz58+zY8cOXnghd+/PxJMrPsXE3mth9i4jnQauUK5k8TS3GY1G/vjjD+Lj42nbtm2uxn9au6rdvHmTMmXKMHToUM6dO8exY8fQarUkJSXxwgsvcOPGDfR6PSqVipEjRzJixAjpFCqEEELkA3l1FUIIIYQQQgghhBBCiELk4sWL1hDJ77//jl6vp2PHjqxYsYJu3brh4+Nj7xKfaAkJCdy8eZPKlStn+Adoi8WCWq2mf//+zJkzhzlz5tCuXTvee++9PK1Dq9VSu3btbO93/fp1goKCCAoK4p9//sHPz48BAwYwYMAA6tatK50WbJSYmMjx48etHUhOnDiBwWDAy8uLli1bMnPmTFq1akXdunXRaDRcj0nkdEhMto6RnJhIiiGJxLg4Tu3fyx+Hf6H5890AMKYYANA7OKbZx8HRCYAr589m61jRyUY8HHScOnWKt956i1OnTqFSqVCr1URFRVm3UxSF+Pj4DDuAPO7f6Oho4uPjrWOpNRpKVaxMxZp1qFCzDpVq1cXNwxO9oyNYLJiNKSRGhmGKi0ZtSMJZq+K5etXo22ZJupCIo6NjRg9LCFHI6XQ6hg8fzsCBA1m+fDkzZszgu+++Y9CgQXz88ce5WoVZiIJW1MWBVmV8OXk3igSjOd+O46rT0LiEV75MyBRCiKeNRqPBYrHw3HPP0alTJ/bs2cOBAwdo2bKlvUsTduSq11LUWU9YYkrh6FKiKHg7aChXshiKolg/lzGbzSQmJvLOO+9w9OjRXB/Gy1FHs5Ledumq1qykd76du6QuiOLh4UHx4g8COYqi4OTkxNChQwkODmbs2LF4eXlRoUIFtFott27dAsDBwYGiRYvmS11CCCHEf40ESoQQQgghhBBCCCGEEMKOFEXhzz//JDg4mM2bN3PhwgVcXFx44YUXeP/993n++edxd3e3d5lPvLi4OBYtWsTcuXPx8/Pj7NmMJ+xHRkYyZMgQdu7cSd++ffnoo4+oUaNGAVebVlRUFJs2bSIwMJAjR47g7OxMQEAACxcupG3btrIyow0SEhI4duyYtQPJiRMnMBqN+Pj40LJlS2bPnk2rVq2oXbs26gw6bUQnG1GRvRXLV382hb0bAgFQq9U07fACwz6eAUDJ8hUB+OePU9R+prl1n79/OwlA5P0Qm4+jAu5Fx9Gvc0eOHj1qnbyS2qB+7ty5LF261BoKMZszniTr7OycrgNI2bJlqVev3mO7hLi5uWX4vAkh/hscHBx46623GDp0KMuWLePTTz8lMDCQV199lQ8//JBSpUrZu0QhbOLlqKN9uSJciIjjUmRCtl/7M5M6ThVvF6r7uKFRSwBYCCGyY8KECfzwww8cOXKEZs2a2bscYWcmk4nqPq6EJkbau5QHVCrq+Hn9/5f/e43XaDQMGDCAEydO8OKLLzJixAg6dOiQq/fORV0caF7K+6nqqpb6nNWsWZOdO3dy69YtypcvD8Dp06eJjY3F398fgOjoaGbOnMm8efMoU6YMbm5uzJw5k/bt2+dbfUIIIcR/hUpJ/YuCEEIIIYQQQgghhBBCiAJhsVg4fvw4mzdvJjg4mOvXr+Pl5UW3bt0ICAigQ4cOODk52bvMp0JsbCxffvkl8+bNIy4ujldffZUPPviAsmXLZrh9WFgYc+fO5eWXX6Zu3bq5Pn5iYiLOzs7Z3i8lJYVdu3YRFBTE9u3bMZlMtG/fngEDBtCjRw9cXV1zXdvTLD4+nqNHj1o7kJw6dQqTyUSRIkVo1aqV9VKzZk2bJnMcuBlOZJIxWzXcvvovESH3iAq9z7Hd29Hqdbw2aRaevkUA+KBPF279+w+vfjiNWk2bc/vqv3w9+QOiwu5jsVjYdP6WzccyxUbSp0mtdLerVCqqV69Oly5dMgyCPBwS0ev12Xp8QgiRmYSEBBYtWsTs2bOJi4tjxIgRTJgwwbrisBBPgsikFP4OjyM0MSXHwZLU/Yo666nh64a3k7zWCiHEo1JSUtiwYQMDBgzI8H6LxUJgYCA1atSgcePGBVydKEwSEhKYPXs2//zzD+vXr+dcWCyXIhPsXRZVvF2oVSTtQjAWi4UvvviCsWPHMmzYMI4fP865c+eoUKECw4cPZ8iQIRQrVizHx4xKNj6VXdUGDx7Mr7/+ypAhQ7h06RLnz5+nQ4cOTJs2DZVKxZIlS3j77bdZsWIFVapU4ddff+Xjjz/mwIEDNGrUqMDqFEIIIZ5GEigRQgghhBBCCCGEEEKIAmA0Gjl48CDBwcFs2bKFkJAQihUrRs+ePQkICKB169bodAX3R9qnndFoZP/+/bz22muEhIQwfPhwxo8fT+nSpfP92PHx8SxZsoSNGzdSokQJmjVrxpgxYx77/VUUhV9//ZWgoCA2bNhAZGQk9erVY8CAAbz88ssyETcLsbGxHDlyxNqB5LfffsNsNlOsWDFreKR169ZUr149zYqhttp3LYzYFFOuapw6tC8JcbHM2rgTlUpFxP17zBv9OhdPnwJArdHQdfBr/H3qOHeuXSHw1EWbx3bXaylrimbRokWsWLGChIT/Tap5+eWXWbt2ba5qF0KInIiLi2PBggXMnTuX5ORk3nrrLcaNG0fRokXtXZoQNotPMXEtOpFrMYmYLA+mVmQWMHn4dq1aRXkPZ8p7OuOql25yQgiRkeTkZF588UV++uknzp49S9WqVe1dkiiELBYLa9asYeLEiURERDB69GimT5+OSq1h3/UwEo3mfO/UkREV4KLT0K5ckTTdxxRF4caNG1SpUgVvb29CQ0P56KOP6NChA8uXL2fDhg1YLBZ69uzJiBEjaNOmTY4+pzBblKeyq9qUKVM4ceIEycnJ+Pv78+GHH+Lg4EBSUhIdOnSgVq1aLF26FEVRUKlUDBgwAF9fX+bPn1/gtQohhBBPEwmUCCGEEEIIIYQQQgghRD5JTk7mp59+Ijg4mB9++IHIyEjKli1LQEAAAQEBPPvss2g0GnuX+VRRFIWHP/YODQ3FYrFQokSJAjl+aGgo/fr1IzExkd69e5OUlMSHH37IvHnzGDlyJFpt+gmFoaGhLFq0iKCgIK5evUqpUqXo168f/fv3p1at9F0nBERHR1sDJAcOHOD06dNYLBaKFy9O69atrSGSqlWr5mhixqP2Xg0lPpcrf+7dEMSySeNYuOsQJStUst5+9/pVosPDKF62PF5FijKsRX18/Irz2aZdNo/tqtPQscKDCdrx8fGsXbuWL774gosXL9K9e3e2bt2aq9qFECI3oqOjmT9/PvPnz8disTBq1Cjee+89fHx87F2aEDazKApxKSaik41EJRuJMRgxmhUsioJapUKnUeHhoMPLUYenow43vRZ1HpyDCCHE0yoxMZGePXty6NAhtm3bRseOHe1dkiiEDh06xOjRozl9+jQvvfQSs2bNonz58tb7o5KNHLwZjsUOsx/VKmhVxjdNBw+LxUJCQgJTpkwhISGB0aNHs3HjRiZNmkTLli357rvvcHBwYM2aNSxbtoyLFy9SpUoVXnvtNQYNGoSvr2+263gau6oZDAYURcHR0dF6W1JSEt27d6devXrMnj3b2hH4jTfewGKxsGzZMjtWLIQQQjz5JFAihBBCCCGEEEIIIYQQeSguLo7du3cTHBzMzp07iY+Pp2rVqvTq1YtevXpRv379PJngLtJKXZmwoP3xxx/cvXuXzp07A7BgwQKWLVvGli1brKurduvWDUdHRzZu3Jhuf7PZzG+//UaHDh148cUX6d+/P61atZKg0SMiIyM5fPiwtQPJH3/8gaIolCxZ0hogad26NZUqVcqXn4O86FCyY81yvp35CbM27qRynfoZbnPr8iXe7dKagNdG0W/MBJvHdtdraV++SJrbFEXh6NGj+Pr6Uq1atVzVLoQQeSEiIoI5c+awcOFCNBoNo0ePZvTo0Xh6etq7NCGEEEIUoISEBLp27cqJEyfYsWMHbdq0sXdJopC5cuUK48aNIzg4mMaNGzN//nyaN2+e4bahCQaO3o4s0C4lKqB5KW+Kujiku+/7779n7Nix3Lx5k2eeeYaRI0dStGhRBg0ahNlsJigoiA4dOqAoCocPH2bp0qVs3rwZgN69ezNixAj8/f2z/dnG09pV7fLly5QuXRoHBwcCAwMZMmQIx48fp06dOoSEhFC7dm0+/vhj3nvvPXuXKoQQQjzRJFAihBBCCCGEEEIIIYQQuRQZGcn27dvZvHkze/fuxWAwUL9+fXr16kVAQADVq1e3d4kiH2zdupWAgABat27NN998Q8WKFXn99dc5d+4cGzZsoGTJkiiKQp8+fejVqxd9+vTJdKykpCScnJwKsPrCLSIigkOHDlk7kJw9exZFUShTpkyaDiQVKlQokCDRgZvhRCYZbdo2JiIcD5+0q4qajEYm9OnC7av/svLoXzi5uKTbz2KxMOuNwZw7eZQFOw9SpEQpm+vzcdLRqkz2VzIVQgh7CA0NZfbs2SxatAhHR0fGjh3LO++8g5ubm71LE0IIIUQ+i42NpXPnzpw5c4Zdu3bh7+9v75JEIRIdHc306dNZuHAhxYoVY9asWbz88suo1eos9wtNMHDsTiSKkrMOHdmhVkGzkhmHSVKZTCZ27NjBokWL2LdvH0WKFKFfv36cPn2aw4cPM3HiRCZPnmztYhsWFsaqVav4+uuvuXz5MjVq1GDEiBEMGDAALy+vbNX3NHVV+/fff5kzZw7vvPMONWrUAGDy5Mns2bMHrVbLiRMnaNSoEcHBwfj5+dltsRkhhBDiaSCBEiGEEEIIIYQQQgghhMiBkJAQtmzZQnBwML/88gsWi4VmzZoREBBAz549KV++vL1LFPnEYrGgVqv54IMP2LRpE5UrV2bw4MH07duXX3/9lZdffpn69evj6enJ9u3bMRqNdO3aleHDh9OiRYvHToT4LwoLC7N2Hzl48CB//fUXAOXLl7eGR1q3bk25cuUKpJ6UlBTOnj3LiRMnOHnyJMXqPUPTTt1Q2fC9+2zkUJLi46nRqCnexfyIDg/j0PZg7ly9zKDxk+g2ZAQAK2Z8jNFgoFz1mpiNRg7v3Mrls38wctYCWnd/0eZaVUB5T2fqFfPI6cMVQgi7uHfvHp9++inLli3Dzc2NcePG8dZbb+GSQehOCCGEEE++6OhoOnXqxMWLF9mzZw9Nmza1d0mikDCZTCxbtoxJkyaRlJTEBx98wNixY3F2drZ5jKhkIyfvRpFgNOdbna46DY1LeOHlqLN5n4sXL7J48WJWrVpFYmIi1apV48KFCzRv3px169ZRsmRJ67YWi4VffvmFpUuXsnXrVrRaLX369GHEiBE888wz/7mwhMlkol27dhQvXpzAwEB0ugfPe2BgIPPmzUOj0fDhhx/Ss2dPO1cqhBBCPPkkUCKEEEIIIYQQQgghhBA2un79OsHBwQQHB3Ps2DHUajVt2rQhICCAHj16ULx4cXuXKApIREQEffv2ZerUqYwZM4YWLVrw6aefotFoCA8P56OPPuLYsWNMmjSJ0qVLM3v2bG7evMl7773HSy+99J9fNfH+/fvW8MiBAwf4+++/AahYsaI1PNKqVSvKlCmT77UoisK1a9c4ceKENUBy+vRpDAYDOp2OunXr0mPwcKq36wI2fM+O7NzKz5vXcfPSReKio3BycaVCzdq80H8ojds+Z91uf/AGdq75hpCb11Gp1FSqU49eI96h9jPNs/0YGvp5UNbD9ok2QghRmNy6dYsZM2awYsUKvL29mTBhAiNGjJDOXUIIIcRTJCIigo4dO3L9+nX27t1Lw4YN7V2SKCR2797N2LFjuXjxIoMGDWLGjBmUKFEiR2OZLQoXIuK4FJmAirzpVpI6ThVvF6r7uKFR5+yznLi4OAIDA1m0aBF///03Wq0WBwcHAgMDMwxEhISE8O233/L1119z/fp16tSpw4gRI+jfvz/u7u65e1BPkMjISOrXr0/Dhg1xd3fHx8eHpUuX0qpVK/r3788rr7wC8J//nE0IIYTILQmUCCGEEEIIIYQQQgghRBYuXLhgDZGcPn0aBwcHOnbsSEBAAF27dsXHx8feJYpcUhSFkJAQihUrZu0ekvrReWZ/jL5w4QLDhg3jyJEjjBo1ikuXLrFw4UKqVavGpUuXGDBgAGPGjKFPnz4AJCUl0bVrV5o2bcqMGTMK5oEVIvfu3bOGRw4ePMjFixcBqFKlirUDSatWrShVqlS+1xIVFcXJkyet4ZETJ04QHh4OQIUKFWjatClNmzalSZMm1K9fH0dHR2KSjfx8Izzfa8upduV88XCwfYVUIYQojK5fv860adNYvXo1xYoVY+LEiQwbNgwHBwd7lyaEEEKIXAgNDaVDhw7cvXuXffv2UbduXXuXJAqB8+fPM3bsWPbs2UOrVq2YN28eDRo0yJOxI5NS+Ds8jtDElBwHS1L3K+qsp4avG95O+jypTVEUDhw4wLx589j5f+zdd3yN9/vH8dc5mTJEQmKPoLFXkNhRe49YtVXtGlUdRlGrpdWiX0qMEjFLglbVrlFCrNjECCFG9l5n3L8//JyvfK0kkpzgej4e/aP3ue/Pfd1Hxsn9ud+f66+/UBQFV1dX1qxZQ7Vq1Z7bX6/Xs3fvXry8vPjzzz+xtLSkd+/eDB8+nDp16mRLTXndo0ePWLp0KRcuXECr1dK+fXuaN2/OBx98AEiYRAghhMgOEigRQgghhBBCCCGEEEKIZyiKwrlz5/Dz88PX15dr165hbW1N+/bt6datG23btsXW1tbYZYr/cfToUUqWLEmZMmUyfExcXBzr169n6dKlXLx4EXd3dyZPnkyTJk0oUKDAC495Okk9efJkHj58yOrVqzlw4ABTpkxhxIgRVKlSBVtbW6pWrUpKSgqmpqbAk5Uoy5Yty4QJE5g4cWI2XHHedv/+/XQdSG7cuAFAxYoVDR1ImjRpkuVVRzMqLS2N8+fPp+s+EhQUBIC9vT1ubm6G8IibmxuOjo4vHEevKOy8+RitPu9NqZiqVXQoXxi1PDwhhHhH3Lhxg5kzZ7J+/XpKlizJN998w6BBgzAzk+CcEEII8bZ5+PAhLVq0ICoqigMHDlC5cmVjlySMLDw8nGnTprF8+XKcnZ358ccf6dKlS44EAhLStATHJBEcm2T4e/5lAZNnt5uqVTjbWeFcwAobc9Nsr+upkJAQPv74Yw4ePAhAo0aN+Pzzz+nYsaPhftKzQkNDWbVqFStWrOD+/fvUrl2b4cOH07t3b2xsbHKszrxEq9W+8L0RQgghxJuRQIkQQgghhBBCCCGEEOK9p9fr8ff3x9fXFz8/P+7evYu9vT2dO3fG09OTli1bYmlpaewyxf+Iiopizpw5rF69GkdHR3Q6HcOGDWPMmDHky5fvpccFBgaybNky1q9fb+gcMnLkSFq0aGHoUPIqGo2GcePG0atXLzw8PNi/fz99+vQhNjYWMzMzzp49S6NGjejVqxfDhw+nWLFiLFiwgP3797N8+fIXrjj5tgsJCUnXgeTWrVsAVKlSxdB9pEmTJhQpUiTHalAUhdu3b6cLj5w7d47U1FTMzMyoWbNmuu4jH3zwQaYeWLkYFsfN6MQsrWyaU1RAeXtrqjnlN3YpQgiR7a5evcq3337L77//TtmyZZk2bRp9+/aVB8iEEEKIt8T9+/dp3rw5iYmJHDx4EBcXF2OXJIwoNTWVX375hdmzZ6NSqZg2bRqjR4/G3Dx7On+8il5RiE/TEpOiITpFQ2yqBo1OQa8oqFUqzExU2FmYYW9pRgFLM2zNTXN10YZDhw7RrVs34uLi0Gq1lCxZkpEjRzJkyJAXLnyh1Wr5+++/8fLyYteuXdjY2NCvXz+GDx/+zncAkm4kQgghRM6QQIkQQgghhBBCCCGEEOK9pNFoOHToEH5+fmzfvp1Hjx5RpEgRunbtiqenJx4eHrISdh73zTffcPDgQebPn0/ZsmVZsmQJ3t7e7Ny5k+rVqz+3v16v56+//qJTp04UK1aMoUOHMmTIEEqUKJGp8yYkJFC4cGHatWvHv//+S1JSEsWKFcPc3JyffvqJFi1asGTJEhYuXIi5uTmPHz+mePHifPvtt3Tt2jW7Lt+o7ty5YwiPHDp0iDt37gBQrVq1dB1IXtbxIztERUUREBCQLkASGRkJQLly5dKFR2rWrPnGobCENC17g8Ozo/Rs1crZMUdXTBVCCGO7ePEi06dPZ9u2bbi4uDB9+nR69eqFiYmJsUsTQgghxEvcvXuXZs2aodVqOXjwIOXKlTN2ScJIFEXB19eXr776ipCQEEaOHMn06dMpVKiQsUvLUyIjIxk0aBA7d+6kWrVq3LhxA71eT69evfj0009xc3N7YZDi7t27rFy5klWrVvHw4UPc3d0ZMWIEPXv2xMrKyghXIoQQQoi3kQRKhBBCCCGEEEIIIYQQ742UlBT27t2Ln58ff/zxB9HR0ZQpUwZPT0+6detGvXr1MtShQuS+yMhIfv/9dxo1akS1atW4du2aobPI559/DkB4eDhFihTh+vXrlC9f/oXjpKWlsW/fPlq3bp2hFc5ftPJhTEwMgwYNIiEhgT59+tCnTx/Onz/PmDFj6NWrFxMmTEBRFCIjI/H396datWqUKVPmjd8DY3na+ePZDiQhISGoVCpq1Khh6EDSuHHjHHsgJDU1lfPnz6cLj9y4cQMABwcH3NzcDOERNze3HKvj33uRhCel5YkuJSrA0cqcRiULGrsUIYTIFWfPnmXatGn89ddfVK5cmRkzZuDp6Smf3YQQQog85tatWzRr1gxTU1MOHjxI6dKljV2SMJLTp08zfvx4/v33X9q1a8f8+fOpVKmSscvKsxRF4eeff2bixInUrFmTVq1asXHjRoKDg6lTpw6ffvopvXr1emFXXo1Gw86dO1m2bBl79+7Fzs6OAQMGMHz4cKpUqWKEq8k9Go0GjUYjARohhBDiDUigRAghhBBCCCGEEEII8U6Lj49n165d+Pn58ddff5GYmEilSpUMIZKaNWu+cIU/kTvi4uKwtrZ+5SrjCQkJ9OjRg7179zJjxgy++eYbFEWhUKFCjBw5kqlTp6JWqxkxYgQWFhZMmTKF4sWLZ7mm+Ph4tm3bxo4dO9i8efNzwRNFUQx1P/ta/fr1qVGjBj/99BPW1tZZPr+xKYrCzZs303UgCQ0NRa1WU7NmTZo2bWoIkNjb2+fI+W/dupUuPHLu3DnS0tIwNzenZs2ahvCIu7s75cuXz7Xv4ajkNA6FRObKuTKiaamCOOQzN3YZQgiRq06cOMH06dPZu3cvNWrUYMaMGXTq1Mkon+f0ikJ8qpboVA0xKRpiUjVodQp6RUGtUmFqoqKAhRkFLM2wtzDD1sIUtXzuFEII8Q67fv06zZs3x9ramgMHDmS6I6h4N9y/f5/Jkyfj4+NDlSpV+Pnnn2nVqpWxy3prnDhxgl69epGQkMCqVaswMzNj8eLF7N69m4IFCzJkyBBGjBjx0sVLbt++zYoVK1i1ahXh4eE0atSI4cOH07179zfu3prXKIpCaGgojRs3Zs2aNXh4eBi7JCGEEOKtJIESIYQQQgghhBBCCCHEOycyMpI///wTX19f9u3bR2pqKq6urnTr1o2uXbvKaoh5wLVr15gzZw6urq6MHj0aMzOzl+4bHx+Pm5sbjo6OlChRgpkzZ1K+fHnmzp3LwYMHiYuLIyAggAoVKlCyZElOnTrFokWL6N+/f4YfLtVqtezfvx8fHx+2b99OUlISTZo0Ye3atZQqVeqV4+j1etRqNcHBwTg7O2f6vciMp+fKToqicP369XQdSB4+fIharaZ27dqGDiSNGjWiQIEC2XpuePL9GhAQkC5AEhUVBUD58uVxd3c3BEhq1qyJhYVFtteQGZfC4wiKSjRqDQAuDtZUdcxv7DKEEMJojh49yrRp0zh06BB16tRh5syZtGnTJleCJQlpWoJjkgiOTUKrfzLdroIXdrB6drupWoWznRXOBaywMX99pzQhhBDibXL58mWaN29OwYIFOXDgAEWKFDF2SSKXJSYm8uOPP/LDDz9gY2PDrFmz+OSTTzLUIVakFxUVxccff8wff/zBhAkT+P7777lz5w5Lly7lt99+Iy4ujo4dO/Lpp5/SokWLF94rSktLY/v27Xh5eXHw4EEcHBwYNGgQw4YNo0KFCka4qpyRkpJChw4dCAgI4ODBg9SpU8fYJQkhhBBvHQmUCCGEEEIIIYQQQggh3gkPHz5k27Zt+Pn5cejQIfR6PQ0bNsTT05OuXbu+dNU+kbuuXLnCrFmz2Lx5M8WLF2fJkiV06tTplcf4+Phw9uxZ3N3dmTdvHhMmTKBfv34oikJISAgdO3bkm2++wdPTE51Ox5QpUzh27Bg//fQTDRo0QFGUFz5cqigK586dw8fHh40bN/L48WMqVqxI//796du3L6VLl86ptyHDHj16xIYNG9i2bRtpaWl07tyZjz/+mKJFi2Z5TEVRuHr1qiE8cvjwYR4/foyJiQl16tQxdCBp2LAh+fNnb2AhNTWVwMDAdOGRmzdvAuDg4GAIj7i7u1O3bl0KFiyYrefPDjq9wv474SRpdC98cDinqQBrMxOal3HERC2r3AshxMGDB5k6dSrHjx+nfv36zJo1i2bNmuVIsCQqOY0rEfGEJaW9NEDyOk+Pc7Iyp3IhW+k0JYQQ4p1w/vx5WrRoQbFixdi/fz+Ojo7GLknkIr1ej4+PD5MnTyYiIoLPPvuMyZMnY2dnZ+zS3mqKorBo0SK++uorXF1d2bx5M6VLlyYxMZENGzawePFiLly4gIuLC6NGjWLQoEEvfc+DgoJYvnw5a9asITIykg8//JDhw4fTtWtXzM3f/s+jCQkJtGzZkqCgII4cOUKVKlWMXZIQQgjxVpFAiRBCCCGEEEIIIYQQ4q0VHByMn58ffn5++Pv7Y2JiwocffoinpyddunSR1TDzkIsXLzJr1iy2bt1KyZIlmTRpEh9//PEru03odDpMTEz4/vvviYmJYcaMGbRo0YIaNWqwZMkSAH744QcOHDjAn3/+iVqtxtTUlH///ZcBAwawZs0amjRp8ty4TwMVPXr04MqVKzg5OdG7d2/69++Pq6trrqxs/jKhoaEUKVIEExMTtFotw4YNM9SaL18+vvnmGzp16sTChQsz/GCGXq/n8uXLhg4kR44cITw8HFNTU9zc3AwdSBo0aICtrW22XYuiKNy8eTNdeCQwMJC0tDTMzc2pVatWuu4j5cqVM+p7nxnRKRoOh0SgN8IMi1oFHqUKYW/58q4+QgjxvlEUhb179zJ16lROnTpFkyZNmDVr1gs/B2SFTq9wNTKeoKjELAdJ/tfTcVwcrKlU0FZCgkIIId5aZ86coWXLljg7O7N37948uTCAyDlHjhzh888/58yZM/To0YN58+blePfW982pU6fo2bMnMTExrFmzhs6dOwNPPgP/+++/LFmyBF9fXywsLOjXrx+ffvop1apVe+FYKSkp+Pr64uXlxdGjR6lTpw4BAQFvzf2YV4mOjqZp06aEh4fz77//UrZsWWOXJIQQQrw1JFAihBBCCCGEEEIIIYR4q1y5csUQIjl37hwWFha0bt2abt260aFDBxwcHIxdonhGYGAgs2bNws/PjzJlyjB58mQGDhyYqdUPGzZsyJdffkmXLl2YO3cue/fupXnz5pQqVYrU1FRmzZrF3bt3DfuvXr2ab775hqNHj7508lir1TJ69Gg6d+5My5YtMTU1feNrfRNXr16lffv2WFlZsWHDBqpXr463tzdTpkxh5cqVtGnTBoDFixezaNEiTpw48dKHdPR6PRcvXjR0IDly5AiRkZGYmZnh7u6Oh4cHTZs2pX79+lhbW2fbNURERBAQEJAuQBIdHQ3ABx98kC48UqNGjVeGid4GYYmpHLsflatdSlRAwxIOOFm/3e+dEELkFEVR2LlzJ9OmTSMwMJAWLVowa9Ys6tWrl+Uxo1M0BDyIJlGjy8ZK07M2M8GtmL2EBYUQQrx1Tpw4QZs2bahYsSK7d++mQIECxi5J5JJbt27x1Vdf4efnR506dViwYAGNGjUydlnvrJiYGAYPHsy2bdv47LPPmDdvXrp7aw8fPmT58uV4eXnx8OFDPDw8+PTTT+nSpQtmZi/+jHnlyhXDvsa+L5ZdHj9+TKNGjdDpdPz7778UK1bM2CUJIYQQbwUJlAghhBBCCCGEEEIIIfI0RVE4e/asIURy7do1bGxs6NChA56enrRt2xYbGxtjlyn+x5kzZ5g1axY7duygbNmyTJkyhf79+790EvtlHj16xJgxY1i9ejU2NjaMHTuW5cuXo9FoGDZsGGPHjqV27do0bdqUnj17cubMGXx9fRk/fjwTJkxArVa/cFxFUfLE6ot6vR61Ws1//vMfpkyZQsOGDfnkk0/o3r07v//+O2PGjMHPz4+GDRsCMHHiRO7fv8+6deteOp6zszMhISFYWFhQr149QweSevXqYWVllS11p6SkEBgYaAiPnDx5ktu3bwNQsGDBdOERNze3dzboFZaYyvHQKBQle1arfxW1ChoUlzCJEEJkhF6vZ9u2bUyfPp3Lly/Trl07Zs6cSe3atTM1Tm79nFcBKvk5L4QQ4i1z9OhR2rVrR82aNdm1a1e2drwUeVdMTAxz5szhl19+wdHRkblz59KnT5+X3n8R2UdRFBYvXswXX3xBjRo12Lx583PdYDQaDdu2bWPx4sUcPXqUYsWKMXz4cIYNG5bpTs4nT57kzJkzNGzYkBo1amTnpeSou3fv0rhxY2xtbTl8+DCFChUydklCCCFEnieBEiGEEEIIIYQQQgghRJ6j0+nw9/fH19cXPz8/QkJCcHBwoHPnznh6etKiRQssLS2NXaZ4gYCAAGbNmsXOnTv54IMP+Oabb+jTp0+WVzo8fvw4jRs3plOnTuzatYsKFSpgbm5OoUKFWLp0Kc7Ozqxfv569e/dy6dIlypQpw+eff24IYLwNIiIiGDJkCD169GDRokV4enoyceJEYmNj6d+/P8nJyeTPn59Tp04RGRnJ3Llz6d2790snxNevX0+JEiVwd3fPlu8TRVG4ceNGuvDI+fPn0Wg0WFhYUKtWrXQBkrJly+aJsE5uyY2V623MTKgrK9cLIUSm6fV6fv/9d7799luuX79O586dmTFjRoYeiJNOVEIIIcTLHTx4kI4dO+Lu7s6ff/6Zrd0vRd6k1WpZvnw506dPJykpia+//povvvgi2xauEBl35swZevbsSWRkJL/99huenp4v3O/ChQssWbKEdevWodFo6NatG6NHj6ZBgwavvW+TmprKsmXL2Lt3L4cOHcLNzY2NGzdmOpRiLNevX6dx48aUKlWKgwcPkj9/fmOXJIQQQuRpEigRQgghhBBCCCGEEELkCRqNhkOHDuHr68v27dt5/PgxRYsWpWvXrnh6etKkSZNMd7cQuefEiRPMmDGD3bt3U6FCBaZOnUqvXr2yHCR56tq1awwePJgyZcowZMgQmjVrxo4dO/j2228ZOnQoo0aNAp48MPo04PC2OXToEFOnTuXIkSO0a9eOYsWK8fPPP2NnZwdAnz59uH//PsOGDcPMzIxJkybh7u7O7NmzKVeuXLbXEx4eTkBAgCE8curUKaKjowFwcXFJFx6pUaMG5ubm2V7D20anV7gaGU9QVCIqsmcV+6fjuDhYU6mgLSbq9yekI4QQ2U2r1bJhwwZmzJjB7du36d69OzNmzKBy5cov3D86RcPhkAj0RphJV6vAo1QhCREKIYTIs/bs2UOXLl1o0qQJ27Ztk0DBe2D37t1MmDCBq1evMnDgQGbPnk3x4sWNXdZ7LTY2liFDhrB161bGjBnDjz/++NJ7YjExMaxZs4YlS5Zw8+ZNatSowejRoxk8ePALO8voFYX4VC2hUTEkKWpOBF7E3DIfxUuWxMLMDFO1igKWZhSwNMPewgxbC1PUeXBhkcDAQJo2bUqNGjXYvXs3+fLlM3ZJQgghRJ4lgRIhhBBCCCGEEEIIIYTRJCcns3fvXvz8/Pjjjz+IiYnB2dkZT09PunXrhru7+wsnNkXecezYMWbMmMG+ffuoXLkyU6dOpUePHpiYmGRqnMuXL+Pk5ETBggXT/ZvrdDri4uKwt7c3bEtOTqZ169b07t2bYcOGZfpceYWiKKhUKtq1a0fbtm0ZM2YMn3/+OUFBQWzcuBFbW1u2bt3Kd999h5eXF3Xr1gXgyJEjfPHFFwwbNowhQ4YYxsmKlJQUzp07ZwiPBAQEcPv2bQAKFSqULjzi5uaW7t9BPC8qOY0rEfGEJaVlOVjy9DgnK3MqF7LFIZ8EdoQQIrtoNBq8vb2ZNWsW9+7do3fv3kyfPh0XFxfDPjq9wv474SRpdLnaneRZNmYmNC/jKGFCIYQQec7OnTvp1q0brVq1YsuWLdI99h13+fJlvvjiC3bv3k2TJk1YsGABrq6uxi5L/D9FUVi6dCnjx4+nWrVqbN68+ZULj+j1evbt28fixYuJiori2LFj6V5PSNMSHJNEcGwS2v9PVr/s3saT7QqgwlStwtnOCucCVtiYv9nCMtnt2LFjtGrViqZNm7Jt2zZZFEUIIYR4CQmUCCGEEEIIIYQQQgghclVcXBy7du3Cz8+PXbt2kZiYSOXKlenWrRuenp7UqFEjyw/Hi9xz5MgRZsyYwcGDB6latSrTpk2jW7dumQoApaam4uvry7Jlyzh69CjffPMNM2fOfOW/v16vR61Wk5yc/E6sLHj58mW+/fZbVqxYQYECBVi7di1z5szB0dGRli1bUrp0aWbPns3NmzcN1x4YGEi7du1YunQpnTt3zvC59Ho9N27cMIRHTp48yfnz59FqtVhYWODq6pouQOLs7Czfi1mU+YcwnsjLD2EIIcS7JC0tjVWrVjFnzhwePnzIgAEDmDp1KmXLluVSeBxBUYnGLhEXB2uqOuY3dhlCCCGEgZ+fH7169aJTp05s3LhRHsx+h4WHhzN9+nSWL19OmTJl+PHHH+nSpYvcI8ijzp07R8+ePQkLC2PVqlV07979tcckJCSQL18+TExMsmVxDEWvR6VW58nFMfbu3UvHjh3p2rUr69evf2sXphFCCCFykgRKhBBCCCGEEEIIIYQQOS4yMpI//vgDX19f9u3bR1paGnXq1MHT05OuXbtSsWJFY5coMkBRFA4dOsSMGTM4fPgwNWrUYNq0aXTp0iVTQZLbt2/j5eXFb7/9RkREBB9++CEjRoygS5cu790DKYsWLWLWrFkMHDiQP/74gzt37qBWqylZsiTTp0+nePHitGzZEi8vL3r16kVKSgrz58/n77//5u+//6Z48eIvHTs8PDxdeOTUqVPExMQAUKFCBUN4xN3dnWrVqr13731u0CsK8WlaYlI0RKdoiE3VoNEp6BUFtUqFmYkKOwsz7C3NKGBphq25KWp5QEcIIXJNSkoKXl5efP/990RGRvLZpG+o33eYscsyaFqqYJ56GE8IIcT7a9OmTfTr148ePXqwdu1azMzMjF2SyAGpqan88ssvzJ49G5VKxdSpUxk9ejQWFhbGLk28RlxcHMOGDWPz5s2MGjWKn3766bUdhHR6hauR8QRFJWY5SPK/no7j4mBNpYK2eabjnp+fHz169GDw4MEsX75cwlFCCCHE/5BAiRBCCCGEEEIIIYQQIkc8ePCAbdu24efnx+HDh9Hr9TRq1MgQIildurSxSxQZpCgKBw4cYMaMGfz777+4uroyffp0OnbsmOEJWK1Wy19//cXSpUvZs2cPBQoUYNCgQQwfPvydDxQlJycTGxuLo6Pjc6sgent7M2/ePFxcXGjRogUeHh58/vnnfPDBByxatAgzMzP69+/P6dOnMTc3586dO5QuXZoff/yR1q1bv/B8Wq2WFStWMGrUKAAcHR3ThUfq1KmDvb19jl+3EEII8bZISkri119/RVvCBZeadSAPPGCmAhytzGlUsqCxSxFCCPGeCQwMpF+/fqxZs4Y6deqwdu1aPv74Y/r27cvq1atldf93kKIo+Pn58dVXX3H37l1GjBjB9OnTcXR0NHZpIhMURWH58uWMGzeOypUrs3nzZj744IMX7hudoiHgQTSJGl2O1WNtZoJbMXvsLfNGAM3b25tBgwYxYcIEfvzxRwmVCCGEEM+QQIkQQgghhBBCCCGEECLb3L59Gz8/P/z8/PD398fU1JRmzZrRrVs3OnfuTOHChY1dosgERVHYs2cPM2fOxN/fn7p16zJ9+nTatWuX4UnXBw8esHLlSlasWMH9+/dxc3Nj5MiR9OzZEysrq+f2j46OfmfCDoqi8NNPPzFlyhQGDhzIsmXLnuvkkpKSgkajwdbW1rDt008/5cyZM6xcuZKqVauiKAoBAQE8fPiQ2rVrU7JkydeeNyQkhBMnTuDm5kaZMmVkklwIIYR4jYQ0LXuDw41dxnNaOTtiY25q7DKEEELkQXpFIT5VS3SqhpgUDTGpGrTPdEQ0NVFRwOJJN0R7CzNsLTLWEXHEiBF4eXmRP39+xo0bx+zZs/nkk09YtmyZhEneQWfOnGH8+PEcPXqUtm3bMn/+fCpXrmzsssQbCAwMpGfPnjx69IgVK1bQq1evdK+HJaZyPDQKRcmeriQvo+j16LRabh7cyYj+vXFwcMjBs2XMf/7zH8aOHcusWbP45ptvjF2OEEIIkWdIoEQIIYQQQgghhBBCiGyQU5P4eZ2iKFy5csUQIgkMDMTS0pLWrVvTrVs3OnTo8M6EA94niqKwa9cuZs6cSUBAAPXq1WP69Om0bt06Q8EEvV7PgQMHWLZsGTt27MDCwoK+ffsyYsQIXF1dn9s/OTmZP//8Ex8fH3bv3s2ZM2eoWrXqc+GLt41Go+Ho0aNcvnyZVq1aUaFChVfur9PpMDExYceOHVy4cIEhQ4ZQtGjRXKpWCCGEeL9dDIvjZnRilh+q06SlsumXHzm8w5fEuFhKV6hE73FfUaOhR5ZrUgHl7a2p5pQ/y2MIIYR49ySkaQmOSSI4Ngmt/slvLhUvfjD82e2mahXOdlY4F7B6aVhRo9Hg6OhIbGwsKpUKRVHo1asXGzZseOv/RhfphYaGMnnyZNauXUuVKlX46aefXtoJVbx94uPjGTFiBBs2bGD48OEsWLCAfPnyEZaYyrH7UTkaJHmWoujR6/WsnTmJedMm54mw0uzZs5k6dSqLFi1i7Nixxi5HCCGEyBMkUCKEEEIIIYQQQgghxBvIyUn8vEpRFM6cOWMIkVy/fh1bW1s6dOiAp6cnbdq0wcbGxthliixQFIU///yTmTNncubMGRo2bMj06dNp0aJFhoIkkZGRrF69Gi8vL27evEmVKlUYOXIk/fr1w87OLt2+er2eI0eO4OPjw9atW4mLi8Pd3Z3+/fszYMCAdB078pqEhAQOHz5MQEAALi4utG3bNk+ssiiEEEKIrNErCjtvPjZ8ns+Knz8fyYm9f9F+wBCKli7LoW2buXnpPDO8t1CptnuWxzVVq+hQvvA7EUYXQgjxZqKS07gSEU9YUtpL7z29ztPjnKzMqVzIFod85ule37VrF+3bt//v/ioV9vb2HDt2jIoVK75J+SKPSExMZP78+fzwww9YW1szc+ZMhgwZgqnp23V/UryeoiisWrWKMWPG4OLiwta/dnM5Cd7gI2+WaTVpBO3245svxuf+yf+Hoih8+eWX/PTTT6xZs4aBAwcauyQhhBDC6CRQIoQQQgghhBBCCCFEFuTGJH5eotPpOH78OL6+vmzbto2QkBAKFixI586d8fT0pHnz5lhaWhq7TJFFer2eHTt2MHPmTAIDA/Hw8GDatGl8+OGHrw2SKIqCv78/S5cuZcuWLSiKQo8ePRgxYgQNGzZ87vgrV67g4+PD+vXruXfvHs7OzvTv35++ffvi4uKSk5eZZSkpKYav76NHjzJmzBhSU1Nxdnbm4cOHODg44Ofn91xoRgghhBBvh9gUDQfuRmT5+BsXzjGxZ3sGfDmVzp+MBCAtNYXxHZth51CQ7zb9+Ub1NS9TCDsLszcaQwghxNtLp1e4GhlPUFRilu9B/a+n47g4WFOpoC0m6id/u/fr14+NGzei1+vT7V+pUiWuXLmSDWcWxqLX61m3bh2TJ08mPDyccePGMWXKFLmX8R64cOECn43/nHH/+Q29iVmudSd5lqLXE/34IR83qY1aRYYWrsnRehSF4cOHs2rVKrZs2YKnp6dR6xFCCCGMTaLFQgghhBBCCCGEEEJkwv9O4kPWJ/KfHheelMahkMjnJvGNLS0tjUOHDuHr68v27dsJCwujWLFidO3alW7dutG4cWNZvfAtp9fr8fPzY9asWVy4cIFmzZpx6NAhPDw8XntsXFwc69evZ+nSpVy8eJGyZcsya9YsBg0ahKOjY7p9Hz16xMaNG/Hx8eHcuXPY29vTq1cv+vXrR4MGDYw+ifwiKSkpTJkyhVWrVvHzzz8zePBgHj16xPTp06lYsSLr1q3D1NSUEydO0KpVKw4dOkTnzp1fOWZcXBy2trZ58nqFEEKI91l0quaNjvffsxO1iQkte/UzbDO3sKR5t96sX/A9EQ9DKVS0eJbHj0nRSKBECCHeU9EpGgIeRJOo0QHZEyZ5dpygqERC41NwK2aPuS6NzZs3o9frUalUKIqCqakpLVq0YOTIkdl0ZmEMR48eZfz48Zw5c4bu3bszb948ypYta+yyRC6pXr06v2zyIygq0Wg1qNRq7AsX5VJYDDWK2Kd7Ta/Xk5aWhoWFRa7dM1OpVCxdupS4uDg++ugjdu7cSatWrXLl3EIIIUReJLO9QgghhBBCCCGEEEJkUG5O4ttbGueBseTkZPbs2YOfnx9//vknMTExlC1bloEDB+Lp6YmbmxtqtdootYnso9Pp2Lp1K7NmzeLy5cu0bNmSo0eP0qhRo9ceGxgYyLJly1i/fj3Jycl07NiR+fPn06JFi3RfG4mJiWzfvh0fHx/27duHqakpHTp0YOrUqbRr1w4LC4ucvMQ39uDBA7y9vSlXrhz37t0DwM7OjoCAAFasWGEIU5UvX56EhARKlSr1wnH0ej2bN29m4sSJWFlZcfXq1Vy7BiGEEEJkTEyK5o1WfA++eoliZcpiZWObbnv56jX///XLWQ6UqHjyd0hpWTxcCCHeO2GJqRwPjULJ4XYCSRodh0MiiLt0Cq1Wi5mZGV26dKFbt260bduW/Pnz52wBIsfcvn2br776Cl9fX+rUqcORI0do3LixscsSuSwqOc2oYZKnVGo1t2JTKGmX9lyn7gkTJnD8+HFGjBhBnz59sLW1fcko2cfExIS1a9cSHx9P165d2bt3Lw0bNszx8wohhBB5kQRKhBBCCCGEEEIIIYTIgNyexG9Q3AEn69x54D4uLo6//voLPz8/du3aRVJSElWrVmXs2LF4enpSvXp16ajwjtDpdGzatInZs2dz7do12rRpw4oVK6hfv/4rj0tOTub3339n2bJlnDhxgmLFijFhwgSGDBlCiRIl0o1/8OBBfHx88PPzIzExkUaNGvHrr7/So0cPHBwccvoSMyQmJoYCBQq8cp9FixYxadIkDh48yN27d4mLiyN//vw0aNCARYsWodPpiIyMxMfHhxkzZlC5cuUXjqMoCiVLlqRHjx64u7uj0+kwMTHJgasSQgghRFbFpGreKCweHR6GvWPh57Y/3RYd9jjLYytA7Bt2UBFCCPH2CUtM5dj9qGxbzORVFEBRwLZKXX7/aw8dmzXB0tIyF84sckpsbCxz5sxh0aJFODo6snbtWvr27SuLxLynrkTEv1F4OjupeFJPo5IF/7tNpaJTp07cv3+fUaNG8cUXX9CnTx9GjBhBrVq1crQec3Nztm7dSps2bWjfvj3//PNPjp9TCCGEyIskUCKEEEIIIYQQQgghxGsYYxL/2P0oGpbIuVBJREQEf/zxB35+fuzbt4+0tDTq1q3L1KlT8fT0xMXFJUfOK4xDq9WyYcMG5syZQ1BQEO3bt8fb2xs3N7dXHnf9+nW8vLxYs2YN0dHRtGrVCj8/Pzp27Gjo0AFw/vx5fHx82LBhAw8fPsTFxYWvv/6avn37UrZs2Zy+vNd6/PgxR44c4dChQxw+fJgHDx4QFRX10v1jYmI4evQo27ZtIzo6moCAAO7du0eVKlXYsWMHXl5ejBkzhg8++IDSpUuzdetWbt68yS+//IKdnR2KohhCWCYmJjRq1ChD3V+EEEIIYRxa3Zt90k9LScHU3Py57Wb/35EtLTXljcbXvGF9Qggh3i7RKZoni5rk8nkVwKx8NZIxQeIkbyetVsuKFSuYNm0aSUlJTJkyhQkTJmBtbW3s0oSRJKRpCUtKe+U+Ny8G8s+237kUcJzw0HvYFrDngxq16TPuK4o5l0u37651v7F7wxoe3wshv70DDdp2ove4r7C0sspQPQoQlpRGQpoWG/Mn9xZVKhWtW7emdevW3Lt3j1WrVrFixQqWL19O3bp1GT58OB999FGOfR3ny5ePP//8k+bNm9O6dWuOHj1KhQoVcuRcQgghRF4lsWMhhBBCCCGEEEIIIV7BmJP4x0OjiE7JvtWIQ0NDWbx4Mc2aNaNw4cIMGTKE+Ph4fvjhB+7evUtAQAATJ06UMMk7RKPRsHr1aipWrMjAgQOpVKkSp0+fZufOnS8Nk2g0GrZu3Urz5s2pWLEia9euZciQIdy4cYM9e/bQtWtXTE1NuX//Pj/88APVq1enZs2aeHt70717d06ePMm1a9eYOnWq0cIkDx8+ZNOmTYwcOZLKlStTpEgRevbsyb59+6hfvz7/+c9/0Gq1zx2n/H8LooULF1KhQgVKly6Ns7MzcXFxJCYmAhAeHs7ff//NyJEjCQgIwNfXl7lz53Lx4kWWLFmSq9cphBBCiOyhf8M2hOaWlmjTnn9QT5Oa+uR1izd7LPdN6xNCCPH20OkVAh5E53iH3JfRK3DqQTQ6vfzuedvs2bOHmjVrMmrUKNq3b09QUBDTpk2TMMl7Ljgmidf1nd62Ygkn9u2ier1GDJ48k5Y9+3H19Am+7NaakKBrhv185s9m1exvKPVBRQZPmUm9Vu34e/1v/DDmk0zVpPr/ul6kZMmSfPvtt9y9e5ft27dTqFAhhg4dSrFixRg9ejQXL17M1LkyKn/+/Pz99984OjrSokUL7t69myPnEUIIIfIq6VAihBBCCCGEEEIIIcRL5JVJ/OZlHDFRPz/1pygKGzZsoG7dui8Ngdy6dQs/Pz/8/Pw4ceIEpqamNG/enGXLltGpUycKFy6c05chjCAtLY21a9fy3XffERwcjKenJ1u3bqVmzZovPSYkJIQVK1awcuVKHj16RMOGDVm3bh3dunXD0vLJQ5Dx8fH4+vqybt06Dh48iIWFBZ06deK7776jdevWmJmZ5dIVphcaGsrhw4cNHUiCgoIAqFChAk2bNmXq1Kl4eHhQrFixV46jUqmIiIjg1q1bjBw5EgAPDw8WLVqEl5cXp06domHDhhw7doxdu3YZjmvbti3z588nPj7eMI4QQggh3h7qN/zdbe/oRNTjR89tjw5//OR1pzf7zP2m9QkhhHh7XI2MJ1GjM2oNCRodVyPjqeqY36h1iIy5cuUKEyZMYPfu3TRu3JjTp09Tu3ZtY5cl8gC9ohAcm/TahZI6DhrGZ/OXYPZMx70GbTvxeafmbFuxmHE/LiY67DF/rlmOR+fujJ33i2G/omXKsmr2N5w6uJe6zVplqC4FCI5NoqKDFTqt1nDf8VmmpqZ07tyZzp07c+fOHVasWMGqVatYsmQJDRo0YPjw4fTo0YN8+fJl6JwZUahQIfbt20ejRo1o0aIF//77b4bvnesVhfhULdGpGmJSNMSkatDqFPSKglqlwtRERQELMwpYmmFvYYathal8xhdCCJGnSIcSIYQQQgghhBBCCCFe4ukkvjHXZHw6if+/FEVh4sSJ9OvXj0mTJqXbfunSJWbOnEnNmjUpX74806dPp2jRovj4+BAeHs7u3bsZOnSohEneQampqXh5eeHi4sKwYcOoU6cO58+fx9fX94VhEp1Ox65du+jUqRPOzs4sWrQIT09PLly4wL///kvfvn0xNTVl165d9OnTh8KFCzN48GD0er0heLJ582Y6dOiQq2GSe/fu4ePjw5AhQ/jggw8oUaIEffv25dixYzRv3pzNmzfz8OFDrl27xrJly+jdu/cLwyTKC9Jily5dYuPGjRw7doxmzZrh7u7O5cuX+f3339m9ezcmJiYkJSVx+PBhdLonD/mcOHGCI0eOUL169Ry/diGEEEJkP1OTN3uYq0zFKjy4c5ukhPSf22+cPweAc6UqbzS+2RvWJ4QQ4u0QlZxGUFSiscsAICgqkajk57tvibwjIiKCTz/9lOrVqxMUFISvry+HDx+WMIkwiE/Vos1At6GKrnXThUkAipUpS8nyLty/dQOA64Fn0Gm1NGzXOd1+jdo/+f9ju3ZkqjatXiFJp9C3b1+6du3K/v37X3ifDqBMmTLMmTOHe/fusWXLFqysrBg4cCDFixdn/PjxXLt27YXHZUWxYsXYv38/SUlJtGrViujo6Ffun5Cm5WJYHDtvPubA3QjOPoolOCaJqGQNcWlaEjQ64tK0RCVrCI5J4uyjWA7cjWDnzcdcDIsjIe35DspCCCGEMUiHEiGEEEIIIYQQQgghXiCvTeIXs7HEId+TiT1FUZgwYQILFiwAYNeuXRw9epRdu3bh5+dHUFAQ+fPnp0OHDkydOpU2bdpgbW1tzEsQOSwlJYXffvuNuXPncv/+fXr16sVff/1FlSovfnjx8ePH/Pbbbyxfvpw7d+5Qs2ZNli5dSp8+fbCxsUFRFE6fPo2Pjw+bNm0iLCyMypUrM23aNPr27UvJkiVz9fru3LmTrgNJcHAwAFWrVqVNmzZ4eHjQpEkTnJycXjpGYmIiZ86c4eTJk5w8eZKUlBR27tz53H4ajYaKFSvy119/4ebmxpdffsmSJUuwtrZm2bJl2Nvb06xZMwYNGkSnTp2IiYkhICCA4cOH07Fjxxx7D4QQQgiRcwpYmBGdrMlykLx+6w788dsy9m1eR+dPnnQ506SlcnDbZj6o4UqhosWzXJsKsLMwThc4IYQQuetKRDwqMOrCJk+peFJPo5IFjV2K0eTVjgOpqan85z//Yfbs2SiKwty5cxkzZgwWFhY5fm7xdolO1WT5WEVRiImMoGT5J12xNWmpAJhbpO8mYmH5pEPIrcsXMn2OqOQ0WrVqxeLFi2nZsiUVK1bk008/ZcCAAeTP/3yHJDMzM7p370737t25efMmy5cvZ/Xq1SxcuJAmTZowYsQIPD093/h7oWzZsuzbt48mTZrQtWtXDhw4gImJyXO1X4mIJywp7bmf2y/7Gf7sdq1e4WZ0IjeiE3GyMqdyIVvDvX8hhBDCGCRQIoQQQgghhBBCCCHEC+TVSXxFURgzZgxLliwxvJ6SkkKTJk0oVKgQnTt3ZuHChTRr1kwmkt8DycnJrFy5krlz5/Lo0SN69+7NN998Q8WKFZ/bV1EUDh8+zLJly/Dz88PExISPPvqIkSNHUrduXVQqFXfv3mXRokWsW7eOa9euUbhwYfr27Uv//v2pWbMmqlx4MEJRFIKDgw3hkUOHDhESEoJKpaJ69ep07NiRpk2b0rhxYwoVKvTCMXQ6HVevXjWER06ePMmlS5fQ6/VYWVlRp04dGjRogF6vR61O38i7adOmHDt2jPz58xuu9+TJk+zevZugoCDc3d3ZtGkTu3btYvfu3Tg6OrJw4UI+/PBD8uXLl+PvjxBCCCGyXwFLszf63O9Sw5X6bTqyfsH3xEZFUKSUM4e2/0546D1Gzf7pjWpTAHtLCZQIIcS7LiFNS1hS3ukIogBhSWkkpGmxMX+/Hi9LSNMSHJNEcGySobvDy+4RPhtINVWrcLazwrmAVY68Z4qisG3bNr766ivu3LnD8OHD+fbbb3F0dMz2c4l3Q0yKJsv3t4/86UfU44d8NPYLAIo7lwPg+rlTVKvX0LDfldMBAEQ9fpSp8VVAbKqW4cOHM2zYMI4cOcKSJUv47LPPmDRpEgMGDODTTz+lcuXKLzy+fPny/PDDD8yaNYtt27axbNky+vTpQ6FChRg0aBDDhg3jgw8+yMKVP1G5cmV2797N0aNH090P1ekVrkbGExSVyNOtWf074ulx4UlpHAqJxMXBmkoFbTFRS3dCIYQQuU+lvKxXmBBCCCGEEEIIIYQQ76mENC17g8MzfdzWZYvYuHAeJT+owMI//wEg7P49RrZwf+kxLXr0YeSs+Rkav2XpgnzUrSu7du1Kt12lUtGiRQt27dqFqen7Ncn/vkpKSmL58uXMmzeP8PBw+vXrx+TJk3FxcXlu35iYGLy9vVm2bBnXrl2jQoUKjBgxggEDBuDg4EBMTAxbt27Fx8eHI0eOYGVlRdeuXenfvz/NmzfP8a8pRVG4efNmug4k9+/fR6VSUbNmTZo2bYqHhweNGzfGwcHhhWM8ePAgXXjk9OnTJCQkoFKpqFKlCu7u7ri7u+Pm5kaVKlUyfE1PAyc7duxg48aNfP3119SqVSs7L18IIYQQeUBsioYDdyPeaIy01BQ2LvqBI3/6kRgbS+kKlfho7FfUatz0jetrXqaQdCkRQoh33MWwOG5GJ2bpweT/TPyMQ9t/f+nryw+foWDhopkeVwWUt7emmtPznQLeRa/qOJBRT4/L7o4DZ86c4fPPP+fIkSO0bduW+fPnv/RBeyGeOhQSQVRy5ruU3L99g0k9O1CyvAuz1m83dOeY2KsD925c55Mps6jq3pD7t2+w/NuJRIc/Rq/Xs+XyvUydp2A+MzxKpV8sJjQ0FC8vL5YvX87jx4/58MMPGT16NJ06dXrt/bxr166xfPly1qxZQ3R0NM2bN2f48OF07twZc/OsfS/qdDrD9UenaAh4EE2iRpelsTLC2swEt2L2EigXQgiR6yRQIoQQQgghhBBCCCHE/8jKJH7koweMadsYlUqFY/GShkBJSlISJ/f//dz+gUf/4ciffkxY6EWDNh1fO74KIPIhng1rA6BWq1EUhae392xtbYmIiMjy5Jh4OyQmJrJ06VJ+/PFHIiMjGThwIJMmTaJ8+fLP7Xvq1CmWLl3Kpk2b0Gg0dO3alZEjR9K0aVM0Gg1///0369at488//0Sj0dC8eXP69+9P165dsbGxybFrUBSFoKCgdB1IHj58iFqtxtXVFQ8PD5o2bUqjRo0oUKDAc8cnJCRw5syZdAGS0NBQAIoVK2YIj7i7u1O7dm1sbW1z7FqEEEII8W7QKwo7bz42rEKel5iqVXQoXxh1LnSKE0IIYRxv+nvo+rnTPLp3N902RVFY/u3XOBYvyaKdh7Jc2/vwe+h/Ow5kx6eBp+O8aceB0NBQpkyZwtq1a6lUqRI///wzrVu3zoYKxftgf3A4cWnaTB0THR7GlD6d0Wk1fL9pJw6Fixhei3z8kJ/Hj+Da2VMAqE1M6DhoGFdOnSA0+BY+p65l6lz5zU1p4fziDjtpaWn4+vqyZMkSjh07RokSJRgxYgRDhgyhcOHCrxw3OTmZrVu34uXlxbFjxyhcuDCDBw9m6NChODs7Z6rGp8ISUzkeGoWi5GxHcxWgUkGD4g44WUv3cSGEELlHAiVCCCGEEEIIIYQQQjwjq5P4P38+grioKPQ6HXExUYZAyct8+3FPbl08z6pj5zG3sMzQOUzVKqzvXSH0/n2CgoK4evUqly9f5vbt2+h0OoKDgylVqlSm6hZvh4SEBJYsWcL8+fOJiYnh448/ZtKkSc9NgiYmJrJx40aWLVvGmTNnKFWqFMOGDeOTTz6hcOHCnDhxgnXr1rF582YiIyOpUaMG/fv3p3fv3hQrVixHalcUhatXr6brQPL48WNMTEyoXbu2oQNJw4YNsbOzS3esTqfjypUr6cIjly9fRq/XY21tTZ06ddJ1HylRokSOXIMQQggh3n1vsjJ8TnnfVoYXQoj3VXZ0yvpfV8+c5Ju+Xenz2US6jRj7RmO9y52y8kLHAZ1OR4cOHXBxcWHRokXAk/s78+fP54cffsDKyoqZM2cydOhQ6UwsMmXv7TASMvG1nRgfx/QB3Qh/8IDZ67dRsvzznZABHty5TUxEOEVLO2Pv6MSQxrUoWKQo87bseuH+L2NjZkKrsk6v3S8wMJAlS5awfv16tFotPXv25NNPP6VevXqoXhN2u3TpEl5eXvj4+BAXF0fr1q0ZPnw4HTp0yPD3U1hiKsfuR+Xq3wkqoGEJCZUIIYTIPRIoEUIIIYQQQgghhBDiGVmZxL986gTfDurBfL+9rJr9zWsDJdFhjxnWtDYenbsz+vuFmTrXiybxdTodCQkJzz2ML95+cXFxLF68mJ9//pm4uDg++eQTJk6cSOnSpdPtd/nyZZYtW8batWuJj4+nXbt2jBgxgrZt23Lnzh3WrVvHunXruHnzJsWLF6dv377069ePatWqZXvNer2ey5cvc/jwYcN/4eHhmJqaUrduXUMHkgYNGjzXPSQ0NDRdeOT06dMkJiaiVqupUqVKuu4jlStXxsTEJNvrF0IIIcT7KSFNy97gcGOX8ZxWzo7YmMvDo0II8S67E5vE2Uex2Trm8hmT2LtpLb/uO4FTiZJvNFbtInaUtrPKpsryjrzScWDBggV8/vnnAAQEBHDt2jUmTZpEeHg448aNY/LkyS/s4CrE62SmQ0laagozP+nN7csXmP7bZirUqpOh4+7dDOKzDk3xHDaGvp9PylR9r+pQ8iLR0dGsXr2aJUuWcPv2bVxdXRk9ejQfffQR+fLle+WxiYmJbN68GS8vLwICAihWrBhDhgxhyJAhlCz58p+R0SkaDodEYIxGhmoVeJQq9NIwmhBCCJGdJFAihBBCCCGEEEIIIcQzMjuJr9Pp+NKzNRVq1mb4jHlM69/ttYGSP9csZ83cb5n22yZqNGiSqfre1Ul8kV5MTAz/+c9/WLBgAYmJiQwdOpSvv/463QRnamoqvr6+LFu2jKNHj+Lk5MSQIUMYOnQotra2/P777/j4+ODv74+NjQ3du3enf//+eHh4ZGsQQ6/Xc/HiRUMHkiNHjhAZGYmZmRlubm6GDiQNGjTA2tracFxCQgKnT582hEcCAgIIDQ0FoHjx4unCI7Vr18bGxibbahZCCCGEeJF/70USnpSWJ7qUqABHK3MalSxo7FKEEELksMDHsQTHJGXb7x+tRsOQxjUpXrY8czbseKOxVIBzAStqFn63FjHJKx0Hrl+/TvXq1UlLS8PExARLS0sSExPp1q0b8+bNo1y5crlYoXjXHAqJICpZ89r9dDodP475hLNHDvL1ktXU9mieofH1ej1zRw7iUsAxFv11GMdimescXDCfGR6lCmXqmKfn3b17N0uWLOHvv//G3t6eTz75hJEjRz7XzflFzp07h5eXF+vXrycpKYn27dszfPhw2rRpk+6eqU6vsP9OOEkandH+PrAxM6F5GUdM1K/uxCKEEEK8KVnKRAghhBBCCCGEEEKIZ8SkaFCR8ZUJ925aS/iD+0xfvTnD5zj6px/2joWpVq9RpmpT8WRVtNLv1hy+eEZ0dDSLFi1i4cKFpKamMmzYML766iuKFy9u2Of27dt4eXnx22+/ERERwYcffsjmzZtp06YN+/bt47PPPmPXrl3o9Xpat27Nxo0b6dSpE1ZW2RNE0ul0nD9/3tB95MiRI0RHR2Nubk69evUYNWoUTZs2pV69eoZz6nQ6Ll++nC48cvnyZfR6PdbW1tStW5d+/frh7u6Om5tbuusVQgghhMgtlQvZcigk0thlAE/+HqlcyPa1+wkhhHj7xaRqsvVh5cB/DxEfE03jjp5vPJYCxKa+/oH0t0l0iuZJZ5JcPq8CHA+NMnQc0Ol09OvXD51OBzy5d5KYmMjMmTOZOnVqLlcn3kUFLMyITn79zxfveTM4dXAvdT5sSUJsDIf/8E33ukenbgCsmjMVTWoqZSpVQafRcPSv7dy8cI7RcxdlOkyigue6cGeUWq2mXbt2tGvXjlu3brF06VJWrFjB/Pnzad++PZ9++imtWrVCrVa/8PhatWqxbNkyfvzxRzZu3MiyZcvo0KEDpUqVMnQtKVq0KFcj40nU6LJUY3ZJ0Oi4GhlPVcf8Rq1DCCHEu08CJUIIIYQQQgghhBBCPCMzk/jx0VFs+mU+PUZ+hp1DxlYOfhB8i1uXL9Bh4LCXTmq9zLs4iS+eiIyMZOHChfzyyy9oNBpGjBjBl19+SdGiRQHQarX89ddfLF26lD179lCgQAEGDRrE0KFDiYyMxMfHh+HDhxMTE0OdOnWYP38+vXr1onDhwm9cm1arJTAw0NCB5OjRo8TGxmJpaUn9+vUZN24cHh4euLu7ky9fPgDu37/P33//bQiQnDlzhsTERNRqNVWrVqVevXqMGzcONzc3KleunK0dU4QQQgghssohnzkuDtYERSUauxRcHKxxyGdu7DKEEELkAq0ue6MNR3duw9TMjIZtOmbLeJpsrs+YdHqFgAfRKEa6JL0Cpx5E07yMI3PmzOH06dPpXlepVKxcuZKvvvoKCwuLl4wiRMYUsDTL0H3uO1cvA3D6n32c/mffc68/DZQ4V6rKX2tXcHSnHyqVmvLVazJ99e9Uq9cw07UpgL1l1gIlzypXrhzz589n5syZbNy4kcWLF9O2bVvKly/PqFGj+PjjjylQoMALj7W1tWXYsGEMHTqU06dP4+Xlxdy5cwkLC+PbefPzxN8EAEFRiRSzsZS/DYQQQuQolaIY6yOyEEIIIYQQQgghhBB5z/7gcOLStBna1+vbiVzwP8rCP//BzPzJhM60/t2Ii4li4Z//vPCYTb/8yJZfF/DD1t2Uq1o90/XlNzelhbNjpo97n+gVhfhULdGpGmJSNMSkatDqFPSKglqlwtRERQELMwpYmmFvYYathSlqlcootUZERPDTTz+xePFi9Ho9n376KRMmTDAEQUJDQ1m5ciUrVqwgNDQUNzc3RowYQa1atdi6dSvr16/nzp07lC5dmn79+tGvXz8qVqz4RjVptVrOnDlj6EBy9OhR4uPjyZcvHw0aNMDDw4OmTZvi5uaGhYUF8fHxnD59Ol33kQcPHgBQokQJ3N3dDZ1HateujY2NzRu/b0IIIYQQOUWnV9h/J5wkjS7XVy6HJ6s1W5uZ0LyMIyZq43xGFUIIkbv23g4jIZtWwU9OTOSTRtWp6t6QycvWZsuYNmYmtCrrlC1jGdul8Lg88ZC4I2k0qVgGeBIi+d/H9w4cOECzZs2MUJl4l8SmaDhwN8LYZbxU8zKFstyl5GUUReH48eMsWbKELVu2YG5uTr9+/fj000+pXv319+JjY2OfdFpOUIhITjPK3wP/SwU4WpnTqGTGFrQSQgghskI6lAghhBBCCCGEEEII8Qx9BtdfeXDnNvt/X8fHk2YQHfbYsD0tLRWdRkPY/Xvks7HBtoB9uuOO/rWdYs7lshQmyUx976OENC3BMUkExyah1T95n1Twwom/6OT/dqIxVatwtrPCuYAVNua5c8s0LCyM+fPn8+uvv6JSqRg9ejSff/45jo6O6PV69u3bx7Jly9ixYwcWFhb07duXnj17cuXKFX799VdOnz6NnZ0dPXv2pH///jRs2DDTHW+e0mg0nD59mkOHDnH48GGOHTtGQkICVlZWNGrUiIkTJ+Lh4UHdunVRq9VcvnyZkydPsmbNGk6ePMmVK1dQFAUbGxvq1q3LgAEDcHNzw93dnWLFimXzOyeEEEIIkbNM1CrcitlzOCTCKKuXq1RQt5i9hEmEEOI9kp2LXAQc2E1qcjJNOnpm25jGWoQju0Ulp+WJMAlAOOZ8PGoMBa0sKF68OLa2tob/ChYsSN26dY1dongLhIaGUr16dczMzChRogRlypShRIkSFClSBEVR+Gz8eEzVKsN90rzEVK3CNgfuw6pUKho2bEjDhg35+eefWbFiBcuWLWP58uU0btyY0aNH07VrV8zMXhxksbOzIyFNS3h4+GvPdfNiIP9s+51LAccJD72HbQF7PqhRmz7jvqKYc7kXHqPVaJjQpQX3b91gwJdT6fzJyNeeRwHCktJISNPm2r1rIYQQ7x/pUCKEEEIIIYQQQgghxDMy2qHk0snjTB/Y/ZX7tB8whMGTZxr+P+j8WSb16sBHY7+kx6jxWapPOpQ8Lyo5jSsR8YQlpb00QPI6T49zsjKnciFbHPKZZ2+R/+/Ro0f8+OOPLF26FFNTU8aOHcv48eMpWLAgkZGRrF69Gi8vL27evEmVKlX45JNPsLOzw9fXlz179qBWq2nXrh39+/enffv2WFpaZrqG1NRUTp06ZehAcuzYMZKSkrCxsaFRo0aGDiSurq48fvzY0Hnk5MmTnDlzhqSkJNRqNdWqVUvXfaRSpUqYmJjkwLsmhBBCCJH7whJTOXY/KldXJVYBDUs44GRtkYtnFUIIYWyHQiKIStZky1izh/bl6pkAfjt2Hot8VtkyZsF8ZniUKpQtYxnTv/ciCU+SjgPi3ZGYmIijoyPJycnAkzCFSqVCr9cDsHnzZio1bcPN6MQ88XX/lAoob29NNaf8uXI+jUbDjh07WLx4MYcPH6Zo0aIMHz6cYcOGUbRo0ef2vxgWl6H37MexQ7l27hQNWnegdIVKxESE8/f61aQkJfL9pp2Ucnm+i/Qfq73Y/J8fSUlKynCgBHL/PRNCCPH+kUCJEEIIIYQQQgghhBDPyOgkflx0JFfPBDy3feOiH0hOTGDw5JkUKVmG0hUqGV5bNWcqu3xWsWTvcYqUKpOl+t6VSfzsoNMrXI2MJygqMctBkv/1dBwXB2sqFbTNtpWhHzx4wA8//ICXlxcWFhaMGzeOcePGYW9vj7+/P0uXLmXLli0oikK3bt1wd3cnMDAQX19f4uPjqV+/Pv3796dnz54ULJi5hw1SUlIICAgwdCDx9/cnOTmZ/Pnz06hRI5o2bYqHhwfly5cnMDDQEB4JCAjg4cOHAJQsWTJdeKR27dpYW1tny3sjhBBCCJFXhSWmcjw0CkXJns+ar6JWQYPiEiYRQoj3UeDjWIJjkt74d01sVCRDm9SiUfsujJ33S7bUpgKcC1hRs7BdtoxnLAlpWvYGv77jQG5r5ewoHQfEG+nVqxdbt241hEie+uSTT1i5cqV87f+PS5cusWTJEnx8fEhNTaVbt258+umnNGrU6EkYR1HYefNxhrq6XDt7inJVa2Bm/t+FiR7cuc3nnZpTv3V7xv24ON3+sZERjG7TiE4fD2fTLz9mKlACT7q6dChf+J3pGiWEECJvkU+kQgghhBBCCCGEEEI8o4CFGdHJmtdO4ue3L4h7i7bPbf/LeyXAc6/pdDqO//0HLjVqZzlMogLsLMyydOy7JjpFQ8CDaBI1OiD7HvB7Ok5QVCKh8Sm4FbPH3jLr7/n9+/eZN28eK1asIF++fEyaNImxY8eiVqtZv349S5cu5eLFi5QtW5ZPP/2UtLQ0tm/fzsaNGylXrhwTJkygb9++lC9fPsPnTE5O5sSJE4YOJP7+/qSmplKgQAEaN27MrFmzaNSoEaamppw+fZqTJ0+yZs0arl69iqIo2NraUrduXQYNGoSbmxvu7u4vXK1PCCGEEOJd52RtgUepQuk+d+YEGzMT6r7h504hhBBvrwKWZtlyX+PYrh3otFoad/DMhtGeUOCd+P0UHJOUocVIkhMT2bHqV25cOMfNi4EkxMbw6XcLaObZK91+Ny6c459tv3Pj/FnuBl1Fp9Xie+1BpmpS/X9d0nFAZFZycjLbt2/H29ubvXv38ux64iqViqFDh7Js2TIAbMxNcbIyz3PdeYwVpKpatSpLly5l7ty5eHt7s2TJEpo0aUL16tVZunQplV3rZChMAlDRte5z24qVKUvJ8i7cv3XjudfW/TSH4s7laNKpG5t++THTtWv1CvFpWpkfEEIIkSMkUCKEEEIIIYQQQgghxDOyaxL/f104fpSYiHC6DR+b5THelUn8N/XsStE5KUmj43BIRJZWig4JCeH777/nt99+w8bGhmnTpjF69Ghu377N119/zfr160lOTqZVq1bUq1ePU6dO8fPPP+Pg4MBHH31Ev379qFevHqoMrDiXlJSEv7+/oQPJyZMnSUtLw97eHg8PD77//nsqVKhAfHw8p06dYvv27UydOpXk5GRMTEyoVq0ajRs3ZsKECbi7u1OxYkVMTEyy+rYJIYQQQrxT7C3NaFHG8a3pjCeEEOLtY59NDwcf/XMbdgULUb1B42wZ76kCb/m9KL2iEBybsQ4w8dFRbPl1AYWKFad0hcpcDjj+wv3OHj7Aga0bKO1SicIlSvHgzu1M16UAwbFJVHG0lY4D4rUUReH48eN4e3uzefNm4uLiaNiwIUuXLmXWrFmEhoaiVqvp1q0bv/76a7p7ipUL2XIoJNKI1f+XwpN6jM3Ozo6xY8cyevRoDhw4wOLFi3F0dCQ6A53LX0VRFGIiIyhZ3iXd9hsXznFo+xZmr9+Oiqx/v8ekaCRQIoQQIkdIoEQIIYQQQgghhBBCiGe86ST+TB/fF26v1bhpplcqfJG3fRL/TYUlpnLsflSurKinAIoCx+5H0bDEq0MlsbGxTyYMY2L4/vvvWb16NXZ2dsycOZOPP/6Yv//+m1atWnHy5EmKFClCy5YtiYyMZO/evZiZmdGxY0dmzJhBmzZtMDc3f2VdCQkJHD9+3NCBJCAgAI1GQ6FChWjSpAmzZ8+mQIECPH78mFOnTvHDDz/w6NEjAEqVKoW7uzuzZs3Czc0NV1dXrK2ts/NtE0IIIYR455ioVVR1zE8xG0uuRMQTlpSW5WDJ0+McrcypXMgWh3yv/uwnhBDi3WdrYYqpWpXhVfFf5vvNf2ZTRf9lqlZha6ROAtklPlWb4ffW3smJlUcDsXd04ubF83zd4/nuxACtew+ky9BPsbDMx4qZk7MUKAHpOCBe7+7du/j4+ODt7c3NmzcpVaoU48aNY8CAAYaOxg8fPmTGjBm0aNGCdevWPbdQjEM+c1wcrAmKSjTGJaTj4mCdpz7/qtVqWrZsScuWLQEIfBz7RgHyI3/6EfX4IR+N/cKwTVEUVs3+hgZtO1GhVh3C7t/L0tgqnnTtLm2XxeKEEEKIV3i7P/ELIYQQQgghhBBCCJHNsmsSPye8C5P4byI6RfOkM0kun1cBjodG4VGq0As7xDx48IAaNWqg1+uJi4vDwcGB7777jmbNmrFu3ToqVqxIdHQ0tWrVwsPDw9AlpEmTJixbtowePXpQoECBl54/Pj6eY8eOGTqQnD59Gq1Wi6OjIx4eHnz++eeYmZlx7949Tp06xbZt21AUhfz581O3bl0GDx6Mm5sb7u7uFClSJOfeKCGEEEKId5xDPnMalSxIQpqW4JgkgmOTDH83vOzBs2e3m6pVONtZ4VzACpv3+HO9EEKI9NSqJ78fbkYn5vo9j1dRAc52Vm9994zo1Ix3HDAzt8De0em1+xUo5PgmJaUjHQfE/0pISMDX1xdvb2/++ecfrK2t6d69O8uXL8fDwwO1Wp1u/zFjxmBhYcG4ceNeulBNpYK2hMankKTRGeXnjAqwNjOhUkHjdyd5lZhUTZbfn/u3b7By5mQq1KxN0y49Ddv/8dvM3aCrfLFo+RvVpgCxmfh5JoQQQmSG3KUSQgghhBBCCCGEEOIZMomfN+n0CgEPolGM9I+iV+DUg2ial3HERP3ff4Nz587RrFkzYmJiAOjevTudO3dm9erVfPnll9jZ2VG+fHlCQkI4d+4cFStWZMqUKfTp04cyZcq88FyxsbH8+++/HD58mEOHDnH27Fl0Oh1FihShTp06DBw4EK1Wy82bN/nrr79ITk7GxMSE6tWr06RJE7744gvc3d2pWLHicxPMQgghhBDizdmYm1LNKT9VHG2JT9MSk6IhOkVDbKoGjU5BryioVSrMTFTYWZhhb2lGAUszbM1N39vP80IIIV7NuYAVN6KN3z3gWQpP6nrbxaRo3qjjQE6SjgPiKb1ez+HDh/H29mbr1q0kJiby4YcfsmbNGrp164aNjc1Ljy1YsCCTJk165fgmahVuxew5HBJhlPurKhXULWaf7r5qXqTVZe3NiQ4P47vhA7CyteWLRSsMXWKSEuJZv+B7Og8eSaGixd+4Pk0W6xNCCCFeRwIlQgghhBBCCCGEEEL8D5nEz3uuRsaTqNEZtYYEjY6rkfFUdczP9evXmTlzJhs2bEi3z7Zt29i6dSulS5emePHihIaGcu/ePfr06UO/fv2oXbs2qv95iDAmJoajR48aOpCcO3cOvV5P0aJFqVSpEh06dCAuLo7Lly+zc+dOAEqXLo27uzuenp64ubnh6uqKldX7+/UhhBBCCGEMatWTwIidhZk8CCqEEOKN2Jib4mRlTnhSWp4IPqgARyvzd6Kj1pt0HMhp0nFA3Lx5k7Vr17J27Vru3r1LuXLl+Prrr+nfv/9LF6PJKntLMxoUd+DY/dztAK0CGhR3eGHn57xGn4W0TWJ8HHOG9SUxLo7Z67fhUPi/HaJ3/LYUrUZDw3adCbt/D4DIxw8ASIiLJez+PeydCmP2ks4y2VGfEEIIkRFv/6d+IYQQQgghhBBCCCGymUzi5y1RyWkEReWNgE9QVAJL581h6c8/vjDAodM9Cb2EhYXRpUsX+vXrR8uWLTEz+++EaVRUFEeOHDF0IDl//jyKolC4cGFDUOTx48fcvn2bhw8fkj9/ftzc3Bg6dChubm64u7tTuHDhXLtmIYQQQgghhBBC5LzKhWw5FBJp7DKAJ0GHyoVsjV1Gtshqx4HcIh0H3j+xsbFs2bIFb29v/v33X/Lnz0/Pnj0ZNGgQDRo0eG4xmuzkZG1BwxIOHA+NQlFyvnOPWvUkTOJkbZHDZ8oeme0mmJaawvcjB/Lgzm2m/7aZkuVd0r0e8eABCbExfNah6XPH+nn9gp/XL8zfthfnSlVzpD4hhBAio97PGWghhBBCCCGEEEIIIV5DJvHzjisR8ajI+QnOjNDr9BSvVQ93d3dOnDjxwn0KFy5MUFAQ+fPnByAiIoIjR44YOpBcvHgRRVEoVKgQTk5OlC1blnv37vH48WMiIyOpXr06rVu3NoRHKlSogFqtzs3LFEIIIYQQQgghRC5zyGeOi4N1nlhUw8XBGod8GVsxP6/L6yv65/X6RPbQ6XQcOHCANWvWsG3bNlJTU2nZsiUbNmygS5cu5MuXL9dqcbK2wKNUIQIeROdoR2gbMxPqFrN/KzqTPGVqkvHAhk6n4+fxIwgKPMPXS1ZToVad5/Zp338wbi1ap9sWGxmJ1/Sv+LBrT+o2b41TiVIZPqdZJuoTQgghMkMCJUIIIYQQQgghhBBCvIBM4ucNCWlawpLSMn3c1mWL2LhwHiU/qMDCP/8BIDU5iYN+mzl1YA93b1wjJTGRoqXL0KJnP1r27IeJiclrx1WbmFCxTj125Xu+O8lTYWFh7Nmzx9CB5PLlywDY29tjY2ODjY0N8fHxREREYGNjg7u7O6NGjcLd3R1XV9dcnUAWQgghhBBCCCFE3lGpoC2h8SkkaXRGWVhDBVibmVCp4LuzsEleX9E/r9cn3szVq1fx9vZm3bp1hIaGUrFiRb799lv69etH8eLFjVaXvaUZLco4cjUynqCoxGxbzOfpOC4O1lQqaIuJ+u34+lYUhevXr/M4LA6zwiV4ciWv5j1vBqcO7qXOhy1JiI3h8B++6V736NSNslWqU7ZK9XTbw+7fA6Bk+Qq4t2ib4RpVgJ3F2xPOEUII8XaRQIkQQgghhBBCCCGEEC8hk/jGFxyTlOkJzchHD/Dz+gVLq/Shj8f3Qlg1+xuq1W9Ex0HDsLK2JfDYIVbMmMSNwLOMmbcoQ+OrgK/nLWDy4L5ERkby8OHDdK8rikLPnj2xtbVN11lEr9dTsWJFQ+cRNzc3ChcunIkrE0IIIYQQQgghxLvMRK3CrZg9B4Mfg0qNKpfDBioV1C1m/9Y8BJ4Rmek4YAzSceDdExUVxaZNm/D29iYgIAB7e3t69+7NwIEDqVu3bq5/X7+MiVpFVcf8FLOx5EpEPGFJaVkOljw9ztHKnMqFbPP84kjx8fEEBATg7++Pv78/J06cICoqimaevRg152cy8k905+qTRYRO/7OP0//se+51j07dsrVmhSdBIEVRuHXrFkWLFsXa2jpbzyGEEOL9JYESIYQQQgghhBBCCCFe4ukk/uGQCBQjJErexUn8zNArCsGxSZmexPT+YSYuNWqj1+mIi4kybC/g6MjPfxyk1AcVDNtafdSfJZPHc9BvM91HfUbR0s6vHV8BlAJOlChZkkuXLr1wH5VKhYuLiyE84u7ujouLS7qAiRBCCCGEEEIIIcT/Wuv1K79t9mXaqo1k6KnmbKICGhR3wN7y3VoBv4CFGdHJGqMsFvM60nHg3aHRaNizZw/e3t788ccf6HQ62rZty5YtW+jYsSMWFhbGLvGlHPKZ06hkQRLStATHJBEcm4RW/+Q75mUBk2e3m6pVONtZ4VzAChvzvPc4qqIo3Lx50xAe8ff35+LFi+j1euzs7KhXrx5jx46lfv36VHatS0BkSobGnenj+/qdXsCpREl8rz3I0rEFLM24d+8eCxYs4OTJkzRu3Jg5c+ZgZfXybtpCCCFERuS93+BCCCGEEEIIIYQQQuQh9pZm1HWyxf9BNCqVGlUuBQLe1Un8zIhP1RomLzPq8qkT+O/5i/l+e1k1+5t0r+W3L0h++4LPHePWoi0H/TZz/9aNDAVKALR6hfvhkS99vX///nh7e2eqdiGEEEIIIYQQQrzf5s2bx8SJE/nqq69oVLIg/g+iUZSsdQzIDLXqyX0oJ+u8+9B7VhWwNMvU+7dr3W8kxccRFfYYeNJ9IOrxk+60bfsNxto2P2Gh9znyx1YAbl2+AMDWpQsBKFSsBE07d8/QuZ52HBBvrwsXLrBmzRrWr19PWFgY1atX5/vvv6dv375vXWdiG3NTqjnlp4qjLfFpWmJSNESnaIhN1aDRKegVBbVKhZmJCjsLM+wtzShgaYatuSnqPNJ1BSAxMZFTp06lC5BEREQAUKlSJerXr8/o0aOpX78+lSpVSt9hWlEwjX6c6XvSucFUrcLW3BTs7GjRogWurq4MHToUS0tLpk+fjqWlpbFLFEII8RaTQIkQQgghhBBCCCGEEK+g1+v5YuRQgkIfM2W5z0tXZctO7/IkfmZEp2oytb9Op2PV7G9o0b0PpStUyvBxMRHhAOS3d8jU+X7+1Ytlc2dx8eJFbty4ke61oKCgTI0lhBBCCCGEEEKI95eiKMycOZNvv/2W6dOnM336dFQqFR6lChHwIJpEjS7Hzm1jZkLdYvbvbLDBPpMdQP74bRnhD+4b/v/kvl2c3LcLgCYduz0JlNwPYeOiH9Id9/T/q9Stn+FACTwJvIi3S1hYGBs2bMDb25vAwEAcHR3p06cPgwYNombNmsYu742pVU8CI3YWZpS2M3Y1r6YoCsHBwfj7+3P8+HH8/f25cOECOp0OW1tb3N3dGTlyJPXr16devXrY29u/cjy16km3lZvRiXmqq5EKcLazevJvY2dH165d8fb2xt7eno4dOxrCJIqioMpD4R4hhBBvDwmUCCGEEEIIIYQQQgjxCl9++SWbN2/m999/58MyTjKJn4tiUjSZCvDs3bSW8Af3mb56c4bPoUlLY+faFTiVKEX5ajUzfJwKcCzljK+vLwDR0dEcOXKEAwcOsGfPHtq2bZvhsYQQQgghhBBCCPH+UhSFSZMmMW/ePL7//nsmTpxoeM3e0owWZRy5GhlPUFRiti108nQcFwdrKhW0xUT97j6AbGthiqlaleGOA8sOBrx2n6ruDfC99uBNS/tvxwGR56WlpbFz5068vb3ZtWsXKpWKjh07MmPGDNq2bYuZmdzLzQ3JycmcPn06XYAkLCwMABcXF+rXr8+IESOoX78+lStXxsTEJNPncC5gxY3oxOwu/Y0oPKnrWVOnTqVXr17UqFHDsE2r1RIbG8vFixdp3Lgxpqby80UIIUTGyG8MIYQQQgghhBBCCCFe4qeffuLnn3/ml19+oXv3JysLyiR+7olJ1WT4/Y2PjmLTL/PpMfIz7BwKZvgcK2dN4f7NICZ7+WCSiQk2BYh9poOKvb09nTt3pnPnzhkeQwghhBBCCCGEEO83RVH47LPP+OWXX1iwYAGfffbZc/uYqFVUdcxPMRtLrkTEE5aUluV7Uk+Pc7Qyp3IhWxzymb/ZBbwF3oaOAyJvUhSFM2fO4O3tzYYNG4iKiqJOnTosWLCA3r17U7Bgxu9BisxTFIWQkJB04ZHAwEC0Wi3W1ta4ubkxdOhQQ/eR7Pr3sDE3xcnKnPCktDzxM0PFk5/ZNuamaLVaTE1NWbVqFdHR0Xz88cdYW1sb9p0xYwZ//PEHAA8fPmTkyJHMmDFDupYIIYR4LQmUCCGEEEIIIYQQQgjxAhs2bOCLL75g4sSJjBkzxrBdJvFzj1aX8Xd1w6IfsClQgLb9Bmf4mO2rfmX/lvX0HvcVtT2aZ7o+TSbqE0IIIYQQQgghhHiWXq9n1KhReHl5sXTpUkaMGPHK/R3ymdOoZEES0rQExyQRHJtk6LrxsntTz243VT8JVjgXsMLmPeuKkfLwLoplIWOXkc6LOg6IvOHhw4esW7eONWvWcOXKFYoWLconn3zCwIEDqVKlirHLe2elpKRw5swZ/P39Df89fPgQgPLly1O/fn0GDx5M/fr1qVq1ao5236hcyJZDIZE5Nn5mKDypBzBc87Rp0/j444/TfT1euHCBTZs20bt3bz7++GOCgoKYPHkyWq2WWbNmZalby4voFYX4VC3RqRpiUjTEpGrQ6hT0ioJapcLUREUBCzMKWJphb2GGrYWpBOeEEOIt8H79dSCEEEIIIYQQQgghRAbs27ePQYMGMWDAAL777rsX7iOT+DlPr2QssPHgzm32/76OjyfNIDrssWF7WloqOo2GsPv3yGdjg20Be8NrB/02s27+HFp9NIDuIz/L0fqEEEIIIYQQQgghnqXT6RgyZAje3t6sXr2aQYMGZfhYG3NTqjnlp4qjLfFpWmJSNESnaIhN1aB55qFeMxMVdhZm2Fs+ebDX1vz9e6j3/PnzfPvtt2zfvp15m/6gfM06xi4JSN9xQOQNycnJ7NixA29vb/bu3YuZmRldunThp59+okWLFjkaXnhf3bt3L1145OzZs2g0GqysrKhbty4DBw40dB9xcnLK1doc8pnj4mBNUFRirp73RVwcrHHIZ45er0etVrNs2TISEhIYOHAgVlZPQmmKomBjY4O1tTWNGzembNmylC1blpCQEGbMmMH48eNxdHREUZQsdyvJzDxIdLJG5kGEEOIto1IUmfUUQgghhBBCCCGEEOKps2fP4uHhQaNGjfjjjz8wMzPL0HF6RZFJ/Gy2PzicuDTta/e7dPI40wd2f+U+7QcMYfDkmQAEHNjNj2OH4ta8DRMWeqFWq7NUX35zU1o4O2bpWCGEEEIIIYQQQryfNBoNAwYMYMuWLfj4+NC7d29jl/TOuXDhAjNmzMDPz49y5coxdepU2nXrydHQGGOXZtC0VEHpVmxkiqLg7++Pt7c3mzdvJjY2lvr16zNo0CB69uxJgQIFjF3iOyM1NZVz586lC5Dcv38fAGdnZ+rXr2/4r3r16hm+J5/dNV68eJGzZ8+ya9cuAs9f4Ne9x0jVZ607+ZtSAdZmJjQrXYh/jx7B2tqaunXrUrRoUT766CO+++478uXLB0B8fDy3bt3iu+++w9LSkpUrV2Jubs7nn3/Ov//+i4+PDxUqVCA5OZmIiAiCgoJo3jxjHbujktOyrVO7k3RqF0KIPEsif0IIIYQQQgghhBBC/L/bt2/Trl07KlasyJYtWzI1caVWPQmM2FmYUdouB4t8j5iaZCxwU8qlAl8tXvXc9o2LfiA5MYHBk2dSpGQZAC6fOsGCz0dRuU49Ppu/OMthEgCzDNYnhBBCCCGEEEIIAU8eWO7duzc7d+7k999/x9PT09glvVMuXrzIzJkz2bp1K87Ozvz222/069fPcI/PxUGTpzoOCOMICQnBx8cHb29vbty4QcmSJRk9ejQDBgzAxcXF2OW9Ex48eJAuPHLmzBlSU1OxtLSkTp069O7d2xAgKVKkiNHqjI2NZdKkSRw9epRr166h1f53cSMTExMq5zclMFaLMZZsV6mgbjF71CrYvXs3P/zwAxUqVCAhIYEBAwYYwiQA3bp1IyIigjJlynDx4kWsrKxo27YtJ0+eZPbs2ZQtW5aEhAR69OhBcHAwJiYmREVFMX36dEaMGPHC8+v0Clcj4wmKSuTpXfCsvg1PjwtPSuNQSCQuDtZUKmiLiVrurwshRF4hHUqEEEIIIYQQQgghhADCw8Np0KABAMeOHcPJycnIFb1/FEXh7t27nD17lrNnz2LpXIlKDZqiymLoY1r/bsTFRLHwz38ACAu9z4QuLdBq0hj41TTy2dim2790hUqUqVA5Q2OrAOcCVtQsLOkhIYQQQgghhBBCvF5KSgrdunXjwIED+Pr60r59e2OX9M64fPkyM2bMYMuWLZQpU4apU6fSv3//5xaL0ekV9t8JJ0mjM2rHgeZlHOVB6lyWmJiIn58f3t7eHDx4kHz58tGtWzcGDhzIhx9++EaLzrzvNBoNgYGB+Pv7c/z4cfz9/QkJCQGgVKlS1K9fnwYNGlC/fn1q1KiBuXneCVOFhIRQrly5dEGSp8qWLUtwcDD9hn9K188m5+rPDBXQsIQDTtYWhm2XLl1izpw5bN68mY4dOzJ37lwqVarEhg0bGDhwIJcvX6ZMmTKoVCoWLlzIkSNHWLp0KSVKlECn0zFlyhS8vLzYsWMHFSpU4NChQ3z77besXLmShg0bpjt/dIqGgAfRJGp0OXaN1mYmuBWzx94y97vRCCGEeJ50KBFCCCGEEEIIIYQQ772EhATat29PXFwc/v7+EibJBXq9nlu3bnHmzBlDgOTs2bNER0cDULRoUXoNH41KlX2T62H3Q0iKjwNgxczJz73e89PPMxwoUUAmu4QQQgghhBBCCJEhiYmJdO7cmePHj7Nz505atGhh7JLeCVeuXGHmzJn8/vvvlCpVihUrVjBw4MCXdh02UatwK2bP4ZAIo3YckDBJ7tDr9Rw9epQ1a9awdetWEhIS8PDwYNWqVXTv3h1bW9vXDyKe8/jx43ThkdOnT5OSkoK5uTm1a9emR48ehu4jxYoVM3a5r1SqVCl++eUXRo0a9dxrt2/fBqCqc0kalnDgeGgUipL1Lh0ZpVZBg+LpwyQAVatWZePGjUyaNInx48fz/fffs3btWk6cOEHlypVxdHQ0hHWaN2/OnDlziIqKokSJEpiYmLBlyxYmTJhAkyZNSE1NpVevXvj6+rJ27dp0gZKwxFTDteakJI2OwyERL7xWIYQQuU8CJUIIIYQQQgghhBDivabRaOjZsydXr17l0KFDlC1b1tglvXO0Wi3Xr19PFxw5d+4c8fHxwJOJO1dXV8aPH4+rqyuurq4ULVqU2BQNB+5GZPm8M3180/1/VfcG+F578EbX8qwCEigRQgghhBBCCCHEa8THx9O+fXvOnTvH7t27adKkibFLeutdvXqVWbNmsWnTJkqWLMmyZcsYNGhQhjof2Fua0aC4A8fuR+V6x4EGxR1kgZJccOvWLdauXcvatWu5c+cOZcuW5csvv6R///44Ozsbu7y3ilar5cKFC4bwiL+/P8HBwQAUL16cBg0a8N1331G/fn1q1aqFhcXbFwxwcnJCpVKhvCBBYWZmxogRI8hvbYFHqUI53rXDxsyEuq/p2lG9enUOHDhgWJipa9eu7NmzhytXrhiCIY8fP6ZcuXIEBwdTvXp14uLiKFiwoGHxJhMTE+BJx/CYmBjgSQArIlmTaz8bFUBR4Nj9qOe6sQghhMh9EigRQgghhBBCCCGEEO8tRVEYOnQo+/btY9euXdSuXdvYJb310tLSuHLliiE4cubMGc6fP09ycjIA5cqVo3bt2kyZMgVXV1dq1apFoUKFXjiWrYUppmoVWr0Rlox8DVO1Cltzub0qhBBCCCGEEEKIl4uJiaFt27ZcuXKFvXv3Ur9+fWOX9Fa7fv06M2fOZOPGjZQoUYKlS5fy8ccfZyhI8iwna4s80XFAZJ+4uDi2bNmCt7c3R48exdbWlh49ejBo0CAaNWqUrV2Q32Xh4eGG4Ii/vz+nTp0iKSkJMzMzXF1d6dy5s6H7SMmSJY1d7hvRarVMmjSJ+fPn07ZtW/bv349GozG8bmJiQpcuXcifPz/wJIzWoowjVyPjCYpKREX2/Ox4Oo6LgzWVCtpmuIORvb09iqJQu3ZtmjVrRufOnenTpw/58+dn06ZNVKxYkWbNmgFgbW1N165dmTt3Lh988AEtW7Zk586d+Pr6Mm/ePBRFITZN9+RnYjZcU2YowPHQKDxKFZLAnRBCGJFKeVG0UgghhBBCCCGEEEKI98CUKVP47rvvWLduHX379jV2OW+dlJQULly4kK7zyMWLF0lLS0OlUlGxYkVDxxFXV1dq1qxJgQIFMnWOi2Fx3IxOzPWJrFdRAeXtranmlN/YpQghhBBCCCGEECKPioyMpFWrVty5c4e9e/fKQiZvICgoiFmzZrFhwwaKFSvG5MmTGTx48Bt3Q4hO0eSJjgPiSdeZY8eOUaNGDapWrUq+fPnQ6/Wo1eqXHqPT6Th48CDe3t74+fmRkpJCixYtGDhwIF27dsXKyioXr+Dto9VquXTpUroAyc2bNwEoWrSoIThSv359ateujaWlpZErzj6PHj2iV69eHD9+nB9//JFx48bx22+/MWTIkHT77dixg06dOj13fFRyGlci4glLSstysOTpcU5W5lQuZItDvswF4/7XsWPHmDdvHmZmZlSpUoWPPvqIypUro9PpDB1JvLy8mDRpErVq1SIoKAi9Xs/KlStp1boN+++Ek6TRGe0+vI2ZCc3LOGY4UCOEECJ7SaBECCGEEEIIIYQQQryXFi9ezJgxY/jxxx/54osvjF1OnpeQkMD58+fThUcuX75smJCqUqWKIThSu3Ztqlevjo2NzZufN03L3uDwbLiC7NXK2REb6VAihBBCCCGEEEKIF3j8+DEtWrTg8ePH7N+/n+rVqxu7pLfSjRs3mD17NuvWraNIkSJMnjyZIUOGvHGQ5Fk6vZJnOg68b/R6PX///TczZ87k2rVr1KpVi+DgYOrWrcvWrVtfelxiYiJz5szBx8eH+/fvU6FCBQYOHEi/fv3e+q4ZOSkyMpITJ04YwiMnT54kMTERU1NTatasaQiPNGjQgFKlSr2zXV3+/fdfevbsCcDvv/9Oo0aNOHHiBG3atKF48eKEh4cTHh5O/vz5CQ8Pf2UHpIQ0Lceu3CTe1Aq12ZPQ2Mt+jjy73VStwtnOCucCVtl+jzkxMRFra2vD/+/Zs4dq1apRrFgxw7bDhw8zYcIEqlatysKFC7mvURMUlZitdWSFi4M1VR1lESchhDAGmfEUQgghhBBCCCGEEO+drVu3MnbsWMaPH8+ECROMXU6eExMTQ2BgIGfPnuXMmTOcPXuW69evoygK5ubmVK9enXr16jFq1ChcXV2pVq1ajq1QZ2NuipOVOeFJaXmiS4kKcLQylzCJEEIIIYQQQgghXig0NJTmzZsTFxfH4cOHqVSpkrFLeuvcunWLWbNmsW7dOpycnFi4cCFDhw7NkftPJmoVVR3zU8zGMts6DjhmU8eBd11ISAg//fQTLVu2ZMeOHdjb27N9+3aGDh3KH3/8QadOnV7YpSRfvnz4+fnRoUMHBg4ciLu7+zsbfsgqnU7HlStX8Pf35/jx4/j7+xMUFASAk5MT9evXZ+rUqTRo0IDatWu/F91cFEVh4cKFfPnllzRq1IhNmzZRpEgRDh8+TIcOHahZsyZ//fUXjx49olGjRvTt2/eVYRKARyF36OReA1Qquvbqg87ckimzvyc2VYNGp6BXFNQqFWYmKuwszLC3NKOApRm25qaoc+hr9tkwSVRUlCGQ9/XXX2NhYUFcXBxz585Fr9fTp08f9BZWBD2OzJFaMisoKpFiNpbys1MIIYxAOpQIIYQQQgghhBBCiPfK4cOHadWqFZ6enqxfv/65Ccn3TURERLquI2fPnuXWrVvAk8nZmjVrGjqPuLq6Urly5ddOpGW3qOQ0DoXkjUktgKalCsqklhBCCCGEEEIIIZ5z9+5dmjVrhkaj4eDBg5QvX97YJb1Vbt++zezZs1m7di2Ojo5MmjSJYcOG5dhCJi+SkKYlOCaJ4NgktPonj9UZu+PAuyAwMJBff/2VO3fu0LBhQ/r06YO9vT3r1q3D09OTUqVKAU+6K3Tp0oXatWszd+5cFEV5LiyiKAparRaz/+8IISA6OpqTJ08awiMnT54kPj4eExMTqlevToMGDQwdSJydnd+7AE58fDyffPIJW7Zs4YsvvuD777/H1NSUPXv20LVrVxo0aMCOHTsMYYyUlBRMTU0xNX359/K9e/eoV68eDx48SLc9PDycQoUK5ej1ZMaJEycYNmwYjx49olatWpw5c4YSJUrg4+NDtWrV+PdeZJ5bzKlRyYLGLkUIId47EigRQgghhBBCCCGEEO+Nixcv0rhxY2rXrs2uXbuwsLAwdkm56uHDh8+FR0JCQgCwtbWlVq1auLq6Urt2bVxdXalQoQImJiZGrvqJS+FxBEUlGrsMXBysqeqY39hlCCGEEEIIIYQQIo+5desWzZo1w9TUlAMHDlCmTBljl/TWCA4OZs6cOXh7e1OwYEEmTpzI8OHDyZcvn9Fq0isK8WlaYlI0RKdojNpx4G12+/ZtJk6cyKFDh2jVqhU1atRg6dKllC5dmpUrV1KuXLl0+yckJFCpUiV++eUXunbtaqSq8za9Xs+1a9cM4RF/f3+uXr0KQMGCBdOFR+rWrZuuY8X76MqVK3Tr1o3Q0FDWrFmDp6cnADt27KBnz560bNmSrVu3Ziq4FhYWRoMGDQgODkav16d7bePGjXz00UfZeg3ZYf/+/dy8eZMqVarg4uJC4cKFiU/VsO9OxGuPDblxnd8X/8StyxeIiQjDwjIfJcq70HnwSOo2a2XY78aFc/yz7XdunD/L3aCr6LRafK89eMXIL9bK2VGCeUIIkcvkp64QQgghhBBCCCGEeC+EhITQtm1bypQpw7Zt297pMImiKNy7d4+zZ89y5swZQ3jk0aNHANjb21O7dm0++ugjQ+eRcuXK5eluLZUK2hIan0KSRmeU1dJUgLWZCZUK2hrh7EIIIYQQQgghhMjLrl27RvPmzbGxseHgwYMUL17c2CW9Fe7cucOcOXNYs2YNDg4O/PDDDwwfPhwrKytjl4Za9SQwYmdhRmk7Y1fz9jI3N6dWrVpMnTqVatWqAdCyZUtcXV0ND+Lr9XrDfcm///4bc3Nz3NzcjFZzZr2oi0p2io2N5eTJk4bwyMmTJ4mJiUGtVlOtWjU8PDyYOHEi9evXp3z58u9d95FX2bx5M5988gnOzs6cPn0aFxcXw/Z+/frRpUsX1q9fn6mO3DExMTRv3pw7d+48FyYxMTFhz549eTJQ0qJFC1q0aJFu253Y5Jd2YHpW+IP7JCcm8GGXHtg7FSE1JZkTe/9i7qhBDJ/xA6169QPg7OEDHNi6gdIulShcohQP7tzOdJ0qIDgmiWpOsqiTEELkJulQIoQQQgghhBBCCCHeeVFRUTRq1IikpCT8/f0pWrSosUvKNoqicOvWrec6j0RGRgLg5ORk6Djy9L/SpUu/lROLv238HZuq7qhNTFDncucUtQo8ShXC3tIsV88rhBBCCCGEEEKIvO3ixYu0aNECR0dH9u/fT5EiRYxdUp539+5dvvvuO3777Tfs7e35+uuvGTlyZJ4IkojspSgKkZGRFCpUyLBtx44drFy5knXr1mFn9ySto9VqMTU1pUOHDpQvX56FCxei0WgwM8u79+IuXbrE48ePadasWbbda1UUhevXrxvCI/7+/ly+fBlFUXBwcKBevXqG7iNubm7Y2sriNy+SlpbGV199xaJFi+jTpw/Lly83dGrx9vZm8ODB9OnTh9WrV2Nqmrk12QcNGoS3t/dLX3dycuLRo0d5/v67XlHYefMxWn3WHh/W6XR81a01aamp/OfvowDERISTz8YGC8t8rJg5md0b1mSpQ4la0aMKOkPbNm0yFfYRQgiRddKhRAghhBBCCCGEEEK805KTk+nUqRNhYWEcO3bsrQ6T6HQ6goKC0gVHzp07R2xsLAAlSpTA1dWVsWPHGsIjRYsWzfOTVxlx4sQJxgz5mJ+8VuJUxwNFr0eVSx1VVECD4g4SJhFCCCGEEEIIIUQ6Z8+epWXLlpQuXZq9e/eme2hePC8kJMQQJLGzs+O7775j1KhRhge9xbtHpVIZvi/+/fdfvv76a/z9/WnZsiVeXl6MHTsWS0tLTE1NCQwM5MyZMyxYsAAgz4ZJli1bxrx580hISKBIkSJUrVqVyZMnU61atUx3K4mPjycgICBdgCQ6OhqVSkWVKlWoX78+n3/+OQ0aNMDFxeWduM+b00JDQ+nZsyenTp1i8eLFjBo1yvC+LV26lFGjRjF06FCWLVuWpY7dI0aMICUlhe3bt5Oamvrc62FhYVy+fJmqVau+8bXkpPhUbZbDJPCkG0vBIsW4dem8YVuBQo7ZURp6lZqly1fRt08fPv74Y+bMmUP+/NKxRAghcpIESoQQQgghhBBCCCHEO0ur1dK7d2/Onj3LP//8Q4UKFYxdUoZpNBquXr3K2bNnOXPmDGfPniUwMJCkpCQAypYti6urK19//TWurq7UqlULJycnI1edc+bMmcPo0aMZ0a83YYmpHA+NQqvV5XinErXqSZjEydoiR88jhBBCCCGEEEKIt8uJEydo06YNFSpUYPfu3djb2xu7pDzr/v37fPfdd6xcuZL8+fMze/ZsRo0ahY2NjbFLE7no9u3bVK1alWnTphEUFMSCBQsIDg5m4cKFWFhY8N1339GpUyc++OADrly5woIFC3BwcGDevHm5Ut+zYZDLly/j7++Po6MjLVq0MISe9u/fz+LFi5kwYQKjR48mMDCQL774gs8//xxfX1/y58//0lCJoijcvHnTEBw5fvw4ly5dQq/XY2dnR7169Rg3bhwNGjTAzc3N0L1FZNw///zDRx99hLm5OUeOHKFevXqG137++WcmTJjAuHHjWLBgQZbDOfXq1WPTpk3MmzePKVOmUKVKFS5evIii/DecceLEiTwfKIlO1WT6mJSkJNJSk0mKj+fUwb2cO/oPDdt2yv7iFIXFq9YQHXyd0aNHc+TIETp06JDpwJYQQoiMk0CJEEIIIYQQQgghhHgnKYrC6NGj2blzJ9u3b8fd3d3YJb1USkoKly5dStd55MKFC6SmpqJSqXBxccHV1ZWuXbsawiPv20MKFhYWhlXIrNHiUaoQOwOvY1XAIccmkWzMTKhbzF46kwghhBBCCCGEECKdo0eP0q5dO2rWrMlff/0lK6e/RGhoKN9//z0rVqzAxsaGmTNnMnr0aAmSvKcGDBjAgAEDAGjdujVarZaNGzdy48YN4EkYoEGDBjRo0IBTp05Rp04dpk+fnmv1qVQqAgMDGTt2LNeuXcPZ2ZmUlBR8fHxYtGgRxYsX59ChQ+j1ekaPHk1qaio1a9bkp59+olatWuzatYuPPvoo3ZiKonD//n1GjRrFiRMniIiIAKBSpUrUr1+fMWPG0KBBAypWrJilbhniCUVR+OGHH5g8eTIffvghGzduxNHR0fDanDlzmDp1KpMmTWLOnDnZcj957969tGzZkl27dlG4cGGGDx9Onz59uHz5Ms2aNXvj8XNaTIoGFZCZHiXe82awd7MPAGq1GveW7RgydU6216ZSqYjX6qlXrx4eHh788MMPdOjQQcIkQgiRgyRQIoQQQgghhBBCCCHeSbNnz8bLy4tVq1bRoUMHY5djkJiYyIULF9KFRy5duoRWq0WtVlO5cmVq165Nv379cHV1pUaNGtja2hq7bKN5urKbSqXCx8eHr776Cmtra04dOsSQNm05eOkGj3Um6HQ6TLKhW8nTSTQXB2sqFbTFRC2TVEIIIYQQQgghhPivAwcO0KlTJ+rVq8cff/xh6Fwg/uvBgwd8//33LF++HBsbG6ZPn86YMWPe63tc74uMdBDQarWYmpoSHh7OvXv3KFmyJPv37ycyMpKHDx/SvXt39u/fj5WVVY7UePfuXfbs2UNycjJ9+vQxBA/i4uL46aefsLS05ObNm+TPn58//viD8ePHs2/fPgYNGoS1tTWxsbHAkwVwAK5fvw7AoUOH6NWrV7rrV6lUODk5odFoGDVqFPXr18fd3f29WywoJ8XGxjJo0CC2b9/O5MmTmTlzpuE+saIoTJ48mblz5zJ79mymTJmSbec8cuQIixYt4v79+4SHh1O3bl0qVapEpUqVsuUcOS0mVZOpMAlA+4FDqNe6PdFhjzn+95/o9Tq0msx3OnkdBUjUPakuKSnJELaSDiVCCJFzJFAihBBCCCGEEEIIId45K1euZNq0acyaNYvBgwcbrY64uDgCAwM5c+aMITxy7do19Ho9ZmZmVKtWjTp16jBs2DBcXV2pVq1ajk2Uvq2eThAtXLgQT09PbGxsqFmzJleuXGHmjG9pWL4E9yKi2XzIn7LVamV6VTXDef7/OEcrcyoXssUhn3k2XoUQQgghhBBCCCHeBbt27cLT05NmzZrh6+tLvnz5jF1SnvLw4UPmzp2Ll5cXVlZWTJs2jTFjxkgHl/fAvXv38PHxoUKFCnTq1Akzs+c7/ur1etRqNaamphw8eJCAgAC++OIL7OzsaNy4MSEhIZQoUSLHatTr9axfv54FCxYQEhJCQkICH374oSFQkpycTEBAAKNHjzZ8zX744Yc8ePCAMmXKANChQwemTJnChAkTGDlyJFeuXGH9+vVUrVqVhw8f8vDhQ4oVK5buvBYWFuzevTvHrut9duHCBbp160Z4eDh//PEHHTt2NLymKAqfffYZv/zyCz///DPjx4/PtvPu3r0brVZLhw4dOHv2LAC1a9fOtvFzg1aX+bvoJcp+QImyHwDQtEsPZg7+iO9HDmTu739le9AjKSWNZcuWsXr1agYOHEhycrL8zhVCiBwkgRIhhBBCCCGEEEII8U75888/GT58OCNHjsy2FccyIjIyknPnzqXrPHLjxg0ALC0tqVGjBh4eHowfP57atWtTpUoVzM0ltPAqwcHBxMbGYm1tzQcffMDWrVs5cOAADx8+ZPr06bRr1w4Ah3zmbJo7jVGffU7dVh0Ijk1Cq///zia8OGDy7HZTtQpnOyucC1hhYy63TIUQQgghhBBCCPG8bdu20atXL9q1a8fmzZsN3QkEPHr0iHnz5rFs2TIsLS2ZMmUKY8eOxc7OztiliRyUmJjItm3b8Pb25sCBA1haWjJp0iS6dev2wv1//vlnQkND2bdvHw8ePKB///4MHDgQACcnpxyvV6VSYW5uzieffELTpk2pVasW9+7do3r16gAULlwYFxcXVq9eTfXq1YmNjeW3335j1KhRuLm5AVCtWjXWrl3L0qVLWbJkCTY2Nvz000+cPXuWgIAANDnQrUG82Lp16xg2bBguLi7s3r2bcuXKGV7T6XSMHDmSFStWsHTpUkaMGJGt5965cyfVq1enVKlSrFy5Eicnp+eCRHmdXsnKskzp1WvdAa/pX/Eg+BbFy5bPhqr+635oKN7e3tjZ2VG1alUJkwghRA6T2VEhhBBCCCGEEEII8c7w9/enV69edO7cmf/85z851v788ePH6YIjZ8+e5c6dOwDY2NhQq1Yt2rVrh6urK66urlSsWBFTU7kVlxlTp05l3759nD17ljZt2vDzzz9Tvnx5Bg0aBDxZURCe/FvMnDmT2NhYBvfrA0AVR1vi07TEpGiITtEQm6pBo1PQKwpqlQozExV2FmbYW5pRwNIM2/9j787jbCz/P46/zjmzmcUsGIw9W7Zi7BS+lizZsm8hISXRglBZvtJGQotITBSiIvsWypbsS2qs2c0wi9nnLPfvD5lfvsgMM3NmeT8fD48e3ec+1/05c2bOcF33+/q4uWDOoO8VEREREREREcn+Fi1aRK9evejYsSMLFiy4Y/eF3OjKlSu89957fPbZZ7i7u/P6668zdOhQ/Pz8nF2aZBDDMPjll18ICQnh22+/JTY2lscff5wvvviCTp06/Ws3miZNmjB9+nRefvllevfunek/RyaTiY4dO6bM0xYoUIC9e/fSokULLBYLAPPmzWPBggV07NgRDw8PHnroIc6cOUN8fDzjx48nMDCQHj160Lp1a3x8fFKeFx4ezsaNGylRogSGYWTYvLRAUlISL7/8Mp999hl9+/bl008/vSVsYLPZ6Nu3LwsXLmTevHkpoaX0YrPZWL16Nc8//zwA+/bto3r16tnuPU+P+fDkpEQA4mNjHnis/1WqZEkKFSpE3rx5qVOnDoB+tkREMpBWsUVEREREREREJEf4888/ad26NdWrV+frr79OWcx7EIZhcOHCBfbu3XtLeOTixYsA+Pn5ERwcTKdOnVLCI2XLlsVsNj/wtXOzRYsW8fHHHzN//nxcXV0ZMGAAP/74I6+88grJycm4ublhNpuJiIhg3rx57N69m5UrV6Y832y6ERjxdXelhDbCFBEREREREZEHEBISQr9+/ejZsydffvmlNg0BwsLCeP/99/n0009xdXVl5MiRDBs2TEGSHOz06dN89dVXhISEcPr0aUqWLMmrr75K7969eeihh1I1RrVq1Zg7d24GV/rvXFxcsFqtuLq6UqtWLXbv3k18fDw+Pj4YhoGPjw/79u2jZcuWzJ49Gw8PD3744QcmT57MlClTeO+99zCZTLd8rx89epQvv/yS1q1bA+iG9wx09uxZOnfuzIEDB5g1axb9+/e/5eudnJxMjx49WL58OQsXLqRLly7pXsPOnTuJiIigTZs2AOzdu5dnn3023a+T0Vwsqf8+jb52Fd98+W85ZrNa2bpsCW4eHhQtXS69y+N6VCTLly9n5syZ1KhRA7j9Z8vhcGgtRkQknehfOCIiIiIiIiIikq3cbReq0aNHU6hQIX788cf7an9uGAanT5++rfNIeHg4APnz56d69er06dOH4OBgqlevTsmSJbVAmM7i4uKYPHkykydPTlmEHT58OKGhobRt2xZ/f3+qVq3Kyy+/TEBAAM888wzt27enfPnyTq5cRERERERERHKaWbNm8dxzzzFgwABmzpyZ629cDQ8P54MPPuCTTz7BYrHw2muv8fLLL+Pv7+/s0iQDxMTEsGTJEkJCQvj555/x9vamc+fOzJ07l8cffzzb/jzcrPuJJ55g0qRJREZG4uPjg8lk4tChQ2zYsIEtW7bg4eEBwFNPPcXy5cs5f/58yhjr168nf/78/PXXXyxZsoSiRYsyfPhwp7ye3GL9+vX06NEDb29vtm/fnhIyuCkxMZFOnTqxYcMGvvvuO9q2bZshdaxcuZLAwEBq1qzJxYsXuXz5MtWrV8+Qa2UkP3dXIhOsGKk4d+bYESTExlKxRm0CChYi6mo4P6/4ngunTtBn5FjyeHkBEHbhPD//uBSAk0cPAbD0s48AyB9UlEbtOqWqNrvNxo71axk1ahQDBw684znXr1+nSpUqPPvss/Tv35+goKBUjS0iInemQImIiIiIiIiIiGRJMTExLF68mKVLlxIdHU3v3r3p1q0b/v7+t+085XA4qFixIh999FGqFrAdDgfHjx9PCY3s3buX/fv3ExUVBUBQUBDVq1fnhRdeSOk8UqRIEYVHMkFCQgKGYWC1WlOOTZ8+nSJFilChQgVMJhMLFiygUKFCdO/encDAQAIDA51YsYiIiIiIiIjkRNOnT2fo0KEMGTKEadOm5ep5oatXr/LBBx/w8ccfYzabefnll3nllVcICAhwdmmSzux2O5s3byYkJITvv/+ehIQEGjduzFdffUWHDh3w+vvG8ezs5rxy48aNGTx4MOfPn6d48eIAFCtWjMuXL3P69GlKly6NxWLhxIkT/Pjjj4wePRq73Y7FYuHw4cPMnDmT2NhYmjVrxuTJkylQoIAzX1aO5XA4mDRpEm+99RZPPPEEX3/9Nfny5bvlnLi4ONq1a8eOHTtYsWIFTzzxRIbVs2LFCp588knMZjP79u0DyJ6BEg/XVIVJAOq3bMum7xaybtFXxERFksfLm4cqVeHp18ZQs3HzlPPCzp9l4bT3b3nuzf+vVLNuqgMlZouFru1bU6tsSeD2Tcbsdjvff/89Z8+eZdy4cYwfP57mzZszdOhQmjVrlm3DbiIizmQyDCO1vxdERERERERERETSXXR0NJcuXaJEiRLkyZMHwzAwDINp06alLFR6e3uzcOFCfHx82LRp021jWK1WYmNj7xgmsdls/PHHH+zduzclQHLgwAFiY2MBKFmyZEpoJDg4mGrVqlGoUKEMf91yZwkJCXTs2BF3d3ceeeQRfv/9d/bt28eOHTsoWLBgyiJtmTJlmD9/vrPLFREREREREZEc6PPPP2fQoEGMGDGCd999N9eGSa5du8bkyZOZMWMGJpOJl156iVdeeeW2m7kl+wsNDSUkJIT58+dz7tw5ypYtS58+fXj66adTwhZZXXJyMgcPHmTHjh00aNCARx55BIvF8q/P8fT0ZPr06fTv3z/lWIsWLThy5Aj9+vXDarWyefNmChcuzMyZMylYsCAAkZGRuLu74+npmaGvKbeLjIzk6aefZvXq1bz11lu8+eabt72n169fp1WrVhw8eJBVq1bRoEGDDKvn5MmTlClThu+//56nnnqK8ePHM2PGDMLDw7Pd74noRCub/rrq7DLuqknJ/OR1c7nr19UwDLZt28ann37K0qVLsdlsABQqVIghQ4bw7LPPpvy8ZkUOwyAmyUZkkpWoRCtRSVZsdgOHYWA2mXCxmPBzd8XPwxV/d1d83F0wZ7PvMRHJXhQoERERERERERGRTGe1Wpk8eTIzZ87k2rVrlClThuDgYCZNmkShQoU4efIklSpV4osvvqBXr14AXL58maCgIObPn0/Pnj3vOG5SUhJHjx5NCY7s27ePgwcPkpiYCEDZsmUJDg6mevXqKeER7aSY/h50MWTHjh2MGzeOwMBAYmNjKV26NFOmTEnZiWzChAn8+eefzJkzBw8PDye+UhERERERERHJaex2O1euXGHx4sUMGzYs290knB4iIiKYMmUK06dPxzAMhgwZwquvvkr+/PmdXZqko6ioKBYvXkxISAg7d+7E19eXbt260adPH+rUqZPlv/cvX77Mzp07U/7s2bOHxMRE3NzcmDFjBs8+++xdAyU35xnr1q1LuXLl6NmzJ2fPnqVVq1bkzZuXefPmsWrVKtzc3GjevDkdOnTQJkSZbP/+/XTs2JGoqCi+/vprWrZseds5ERERNG/enBMnTrB27Vpq166doTVNmzaNESNGcO3aNby9vWnXrh2JiYmsW7cuQ6+bERyGwcoTV7A5st7twy5mE63LFEx1gOLm98i0adM4fvw4cKMTUcuWLXnllVf4z3/+k2U+z2KTbZyOiud0dHzK194Ed+wW88/jLmYTpXw9KeXnibebSyZVKyK5iQIlIiIiIiIiIiKSISIiIti5cyd//PEHrVu3pnz58imPfffdd4waNYoJEybQqFEjjh49SufOnRk6dChvvfUWu3bt4rHHHiM5ORmLxUJiYiIeHh4UKVKEmjVrMnfu3Nu6kdjtdvz8/IiNjcVsNlOhQoVbOo9UrVqVvHnzZvaXIVd5kMWQ4t7ulMnnk7IYkpycjJubG9OnT2fbtm18++23wI3FoWrVqjF06FCGDRuW0S9JRERERERERHIhu91+z84GOVFERAQffvgh06dPx2638+KLL/Laa69RoEABZ5cm6cRms7FhwwbmzZvH8uXLsVqtNG/enD59+tC2bVvy5Mnj7BLvyGq1cujQoVsCJKdPnwagaNGi1K1bN+VPtWrVcHd3v+tYhmHw888/8/333zNnzhzi4+MBePzxx/nggw+oVatWprwmubsvv/ySF154gcqVK7N06VJKlix52zlhYWE0a9aMixcvsn79eqpVq5bhdTVt2hQXFxfWrl0L3Pjee/rpp3nnnXcy/NoZ4XDYdU5Ext1x/t5ZTEAZfy+qBN7fWs6+ffv4+OOP+eabb0hKSgKgcOHCDB06lGeffdZpwciIhGR+vxpDWHzyXddM7uXm8wI93aiY34eAPG7pW6SI5GoKlIiIiIiIiIiISLrbtm0b48aN46+//uLkyZN8/fXXdO/ePeXx1q1b4+3tzRdffIG3tzcA9erVo3bt2kydOpXjx49Tp04dRo4cyYgRI4AbIZRBgwZRsmRJZs6cSfXq1W+77pIlSyhatCiPPvoonp6emfNiJV0WQwyHA5PZfNtiyPr162nRogXPPfccefLk4dChQxiGwaZNm9L1NYiIiIiIiIhI7nD48GEeeughvLy8nF1KlhEZGcnUqVOZNm0aNpuNwYMHM3z4cAVJcpAjR44QEhLCggULuHz5MpUqVaJPnz707NmToKAgZ5d3m/Dw8FvCI7/99hvx8fG4uroSHBx8S4CkWLFiaRrb4XAwZcoUli5dSo8ePXjiiSeoUKFCBr0SSQvDMHA4HNSpU4fg4GCmTZt2xw7VFy5coEmTJkRHR7Np0yYqVqyY4bVdv36dfPny8dFHHzF48GCuXLlCoUKFWLJkCZ06dcrw62eE2GQb60+HO7uM2zxRqsADd+GIi4tjyZIlfPjhhxw+fBgAi8VCixYtGDlyJI899limdC2xOwyOXYshNCLuvtdO/tfNccoFeFEhnw8Wc9boviIi2ZsCJSIiIiIiIiIiku5+++03Nm7cSK9evWjQoAF9+/bljTfeSNnZ8bnnnmPXrl18+umn1K9fn3Xr1jF58mTGjRtH/fr1ARg7dixff/01gYGBhIeH4+3tTZUqVTh27Bjjx4+nVatWGIaRZVqV50YZsRhyYxTTLYshy5cvZ8yYMfj6+lK7dm3++9//6qYPEREREREREUmzkSNH8umnnzJ37lzatGnzr10McoOoqCg++ugjPvroI5KTk3nhhRcYMWIEgYGBzi5N0sHVq1dZuHAhISEh7N27l4CAAHr06EGfPn2oXr16lplXtdlsHDlyJCU8smPHDk6ePAnc6CxwMzhSr149goOD7xgwkOzhzJkzuLq6UqRIkbueY7PZSEpKuuv875kzZ2jSpAlWq5VNmzZRtmzZjCr3FkuWLKFLly6cOXOGEiVKsGbNGlq1asXJkyd56KGHMqWGjLDt3DXC45OzRJcSE1DA043HiuVL13GPHTvGjBkzCAkJSelIVLhwYYYNG8aAAQPw9/dP1+vdFJloZffFSOKs9gwZH8DL1UKtIH/8PVwz7BoikjsoUCIiIiIiIiIiIunO4XBgNpsB6NChAzabjW+++SalG8m5c+dYsmQJ8+bN48iRI1gsFoKDg+natSsvvvgibm5uJCcns3XrVn755ReKFClC9+7dOXHiBA0aNGDXrl1UrlzZmS8x13PWYohCRCIiIiIiIiJyv9q3b8+6devw9fXl888/p1WrVri6uqbMN+SWeYfo6Gg++ugjpk6dSlJSUkqQpGDBgs4uTR6Q1Wpl9erVhISEsHLlSgzDoFWrVvTt25cnn3wSNzc3Z5fItWvX2LVrV0p4ZPfu3cTFxeHi4kLVqlVTwiN169alePHiueJnMjfo3r07oaGh/PXXX/Tv35+XXnopzd1xjh8/TpMmTXB1deWnn36iRIkSGVTt7Xr37s2BAwc4dOgQABMnTuTDDz/k2rVr2fp7NCIhmS1nrzm7jBSNiudL6V6e3pKTk/nhhx/44IMP2Lt3L/D/XUtGjx5N3bp10+29DItLYseFCAwjvTbiujMTYDJBvSIBBHrl7pCsiDyYB+sLJSIiIiIiIiIicgdmsxmbzYaLiwv169fn008/5fr163h7e+NwOChWrBj58uXDYrGwfft2HnroIVauXMk777zD9evXGTduHK6urjRr1oxmzZqljHv06FF8fHwoXbq0E1+d/HMxJCPFWe1sPXuVil5mflrxAz179kwJJYmIiIiIiIiIpJbdbsdisVC7dm369+/PmjVr6Nu3LyEhIbRt25bExETy5MmTrW8KTo3r168zbdo0PvzwQxITExk0aBAjR46kUKFCzi5NHoBhGBw4cICQkBC+/vprrl69SrVq1fjggw/o3r27UzvO2O12fv/9d3bs2JHSgSQ0NBSAwMBA6taty5tvvkm9evWoXr06np6eTqtVMsaVK1do3bo1vr6+TJ48mYMHDzJ69GiefPLJNAVKjh49StOmTfHz82Pjxo3/2uUkvdntdlavXs3AgQNTju3bt4/g4OBs/3sjII8b5QK8CI2Ic3YplAvwyrAwCYCbmxtdu3ala9eunDlzhhkzZvDFF1+watUqVq1aRVBQEC+//DIDBw4kb968932dsLgktp+PyJSuLwZgGLD9fAT1iypUIiL3z+zsAkREREREREREJGeyWCwAPP7445w/f56wsDDgRtgkMjKSyZMnM2zYMOrWrUvBggV59tln6dq1Kxs3bkzZDTI8PJzY2FgAdu7cyciRIxkyZAh58uRx2uvK7W4uhjgyeGetmxwOg0PRVrYdOIyPj0+2X6ATERERERERkcx3c57K4XCwfPlyPvnkEx5//HGee+45Zs+eTe3atdm1a5eTq8w4169f5+2336ZkyZK8/fbb9O7dm1OnTjF16lSFSbKxy5cvM2XKFB599FGCg4NZuHAhvXv35uDBg+zbt4+hQ4dmepgkMjKSNWvW8NZbb9GsWTP8/f155JFHGDx4MIcOHaJZs2YsWLCAkydPcvnyZZYtW8bIkSN5/PHHFSbJodatW4fZbGbZsmX85z//YdiwYVStWpWkpKRbzjP+Zfei/fv307BhQwoWLMjWrVszNUwCsGvXLq5du0abNm1Sju3du5fg4OBMrSOjVMjng5erBWfNvJsAb1cLFfL5ZNo1S5YsyZQpU4iIiGDFihXUq1ePS5cuMXz4cPLly0fr1q357bffbnnOn3/+SbNmzTh+/Phdx41MtN7YjCujX8D/MIAdFyKITLRm8pVFJKdQhxIREREREREREblvN4Mfd3LzeLVq1bBarZw+fZqqVasC4O/vz9GjRylYsGDK+Q6Hgx07dlC0aFFiY2Px8fFh5cqVbNiwgSNHjhAWFkbXrl159dVXM/x1yZ05ZTHk7++jji+PITLRir+Ha2ZeXURERERERERykPLly7N7924Afvzxx5RQSevWrVPmrXKSmJgYZsyYwZQpU4iLi2PgwIG8/vrraeoKIFlLYmIiK1asICQkhLVr12KxWGjbti2TJk2iefPmuLpm3tyZw+Hgjz/+uKX7yLFjxwDIly8f9erVY9SoUdStW5eaNWvi5eWVabVJ1uBwODh69CiNGjXC4XAANzaOOn78OPPmzSMkJIRu3brx5JNP3nWdwWaz0adPHx566CHWrl1LQEBAZr4EAFasWEGBAgWoVasWAFevXuXs2bNUr14902vJCBaziVpB/mw9ezXDu5LfickENYP8sZgzP9JisVho3bo1rVu35vLly8yYMYOZM2emdC0pUqQIw4YNY9CgQUydOpWNGzfSpEkTdu/efVsg0+4w2H0x0ilfQwCHAb9djKRJyQJO+VqKSPZmMv4t2ikiIiIiIiIiIvI3m83Gn3/+yb59+1L+DBkyhPbt2+Picud9SxwOB2azmSJFivD8888zatSolB0hmzdvzqlTp3jzzTepXLkyq1atYtGiRbz77rspO33t3buXDRs2EBgYyOOPP07ZsmWBfw+ySMawOww2ngkn3mrP9N21bvJ2tWgxRERERERERETu2+nTp+nTpw8///wz+/bto0GDBuTLlw+z2cy8efN4/PHHMZvNzi7zrlI7JxYbG8vHH3/M5MmTiYmJYcCAAYwaNSrTd/XPTA7DICbJRmSSlahEK1FJVmx2A4dhYDaZcLGY8HN3xc/DFX93V3zcXTBnk/lFwzDYvXs3ISEhLFq0iMjISGrVqkWfPn3o1q1bpt1gHx0dza+//poSHvn111+JiorCbDZTpUoV6tatm/KnTJkymr/NpSIjI/n666/p2LEjhQsXJi4u7pYw0bZt21i5ciXFihVj2bJlxMXF8eabb9KyZcs7jme1Wjl58iRBQUHkzZs3s17GLSpXrkyNGjWYN28eAOvXr6d58+aEhoamrFnkBDe7k2fm/L8JqF80gEAv90y86r8zDIPNmzczYcIEfvnlFxwOBy4uLhiGgd1ux2KxULFiRbZt23bL9+SR8OuERsQ5sfIbygV4UbmAc35WRCT7UqBERERERERERERuk5yczO+//35LeOTAgQMkJCQAULp0aapXr86gQYNo1KjRXRcHbwZK2rVrh4uLC2PHjiUiIoJHH32U69evM23aNNavX8/ly5cpW7YsgwcPpmvXrpm6k56kjhZDRERERERERCS7ePvtt4mNjcVkMtG9e3cqVKiAi4sLoaGhDBw4kGeffZYXXniBl19+mQkTJvD4449z4MABDhw4QOnSpZ1d/m0uXrzIlClTaNeuHQ0aNLjreYZhsGvXLtq2bUt0dDT9+/dn1KhRFCtWLBOrzVyxyTZOR8VzOjoem+PGbXAmuOMN0f887mI2UcrXk1J+nni73XmzHGc7f/48CxYsICQkhD/++IOgoCB69+5N7969qVChQoZe2zAM/vzzz5TwyM6dOzl69CiGYRAQEECdOnVSwiO1atXCx8cnQ+uR7CEuLo7mzZvz+++/M3/+fFq1anXb2sHNG/LhRqePxo0b8/TTTzN8+HBnlHxPcXFxTJo0iZYtW/LYY48B8M477/Duu+8SGRmZpUOI9yMsLulGl3Ljzp+j6clsgnpFslaY5H9FRkYyY8ahUON3AAEAAElEQVSMlIDmTSaTiccee4yNGzfi5uZGREIyW85ec2Klt2pUPB8BedycXYaIZCMKlIiIiIiIiIiI5HKJiYkcPnyYffv2sXfvXvbt28fhw4dJTk7GZDLx8MMPExwcnPKnatWq+Pn5pWrs3bt3s3LlSubMmcOlS5cAKF68ONOnT6dt27YkJycTFxeHv79/Br5CeVBaDBERERERERGR7MAwDGrVqgVAjRo1+OmnnzCbzfTq1YsRI0bg6upK8+bN2bBhA2PGjOGtt95K2dhkypQpvPrqq84s/6569erFN998w4svvsjEiRP/dZf++Ph43nrrLV566SWKFy+eiVVmroiEZH6/GkNYfPJdAyT3cvN5gZ5uVMzvkyXmm+Lj4/nhhx8ICQlh48aNuLu706FDB/r06UOTJk1SbsRPbzExMezevfuWAElkZCQmk4lKlSqlhEfq1atHuXLl1H1E7iguLo769evTs2dPhg8f/q9dlW4+VqdOHVq0aMG4ceMyt9hUcjgcKR0qbvrtt984cuQIzzzzjBMryziRiVZ2X4wkzmrPsGt4u1qoGeSPv0f22FysTp06/Prrr7cdL1SoEOvXryfaL4jw+GSndXf/JxNQwNONx4rlc3YpIpKNKFAiIiIiIiIiIpKLxMbGcvDgwVs6jxw9ejRlV7BKlSqlBEeqV6/OI488gre3931dyzAMZsyYwcyZM2nXrh3NmjWjcuXKBAYGpvOrkoy27dw1LYaIiIiIiIiISJY3YsQIDhw4wJo1a1JuvK9Rowa///47zz//PFOmTOH7778nOTmZTp064eLigs1mu+VG4azk5o3Mo0aNIjw8nCVLlrB+/Xrq169/1+f82w3cOYHdYXDsWgyhEXH3HST5XzfHKRfgRYV8PljMmfv1MwyD7du3M2/ePL799ltiYmJ47LHH6NOnD507d8bX1zfdr3fixImU4MiOHTs4cuQIDocDX1/flO4j9erVo1atWul+fcmZbnYrX7RoEd26dUvVcxISEmjWrBljx46lWbNmGVxh+rHbbwQtMirglRXkxM/a+3X8+HHKlSuH2WzGYrFgs9n4523XhYqX5JP1O5xY4Z09UapAlu3AJSJZjwIlIiIiIiIiIiI5VHR0NPv3778lPPLHH39gGAZubm488sgjt3QeqVKlCh4eHs4uW7KY2GQb60+Hp/l5S2dOY+FH71GsbHk+WrH5jufEXY/mxRaPcT3iGq99NIu6LVqnenwthoiIiIiIiIjI/+rRowdBQUFMnjyZmJgYfHx8GDt2LCtXrsTV1ZUXXniB3r17O7vMf/W/gZDr169TpUoVTp48SdWqVQkODmbatGn4+/unbBKTW2TGrvlerhZqZdKu+WfOnOGrr77iq6++4uTJk5QoUYLevXvTu3dvypQpk27XiYuL47fffmPHjh3s3LmTXbt2cfXqVQAqVKiQEh6pW7cuDz/8MGazOd2uLfJvrFYrCQkJ/9p1SZwrp3aDSosrV67wyiuvkCdPHgoVKkTBggUpWLAghQoVIm/evJyMs2HKFwT3CHOeOHyAzT98y5HdOwi/cA4fP3/KPlqdHkNHEFSq9C3nOhwO1i+ez4bF87l4+hRuHnko+XBFnhk1jpIPV7pnzSagjL8XVQL1syUiqaMVVxERERERERGRHODq1avs37+fvXv3poRHTp48CUCePHmoWrUqjRs35rXXXiM4OJiKFSvi5pa9Ju3FOU5Hxad5oeja5Yt8//l0PDw9//W8RdM/IDkxIc01mf6uS4shIiIiIiIiIgI3brwEuHTpEjabDQAfHx8Afv75Z9q2bcvu3buZP39+lgyUXLp0iX379lGjRg0KFiyYctzhcHD+/HnKlSuHi4sLY8aM4ZlnnuGNN97A398fh8ORawIlYXFJ7LgQQUZvnRxvtbP17FXqFQkg0Ms93cePjY1l6dKlhISEsGXLFry8vOjUqRNffPEFDRo0eOAwh2EYnD59OiU8snPnTg4dOoTdbsfHx4c6derwwgsvULduXWrXro2/v386vTLJ7W52KEkLV1dXXF0zPrwl9y8gz41u4bHJNk5HxXM6Oh6b48YH8d3WDf553MVsopSvJ6X8PLPtBlEFCxbk66+/vuNjDsPg7IkrKV+Tf/PD7E/4Y/9v1GvemhLlKxB1NZw1X89leMfmvLNoJcXLPZxy7iejX+GXld/TsF0nWvZ8hsSEBE7/foToa1dTVbMBnI6Op1IBH8w5uGuZiKQfdSgREREREREREclmbi4w//PP2bNngRsL5dWqVUvpOlK9evWUBWeRtHIYBitTuRjyTx++MojrERE47HauR0XcsUPJ2dA/eK3DE3R+4WUWTf8gzR1KXMwmWpcpqMUQERERERERkVzsf29g3rp1K82aNaN9+/bUqlWLBQsW4HA4OHToEKGhodSsWZOdO3dSsWJFJ1b9/6KjoxkxYgTz58+ncuXKXLx4kf79+/Piiy+SP39+ADZv3szIkSPZvXs3AA8//DBeXl5cvXqVd999l+7duzvzJWSKsLgktp+PuK+d8e+XCahfNH1CJQ6Hgy1btjBv3jy+++474uPjady4MX369KFDhw54e3vf99jx8fHs2bMnJTyyc+dOwsLCAChfvjx169ZN+VOxYsVcE0ASkYzhMAxikm1EJVqJTLQSnWTFajdwGAZmkwlXiwlfd1f8PVzx83DFx80lR8/hRyda2fRX6kIef+z7jdKVH8X1H5u9XTxzilfaNqFu8ycZ+sHHAGxf8yMfvjyIETPmULtZyweqr0nJ/Pi6K7QlIvemOwlEREREREREBPh7EjjJRmSSlahEK1FJVmz/mAR2sZjwc78xAezv7oqPe86eBM4KDMPg3LlztwRH9u7dy+XLlwHw9/enevXqdOvWLSVAUrp06Qfexc7ZDMPApO+tLCEmyZbmMMnR33axc90qJn+/njkT37jreV9OeotaTVtSoXrt+6rN5rixcKXFEBEREREREZHc6eLFi3z00Uf06dOHSpUqAdCwYUNWrVrF66+/TkREBNWqVWPu3LkAXLhwAW9vb/LmzTodT2fOnMmxY8fYv38/BQoUYOPGjQwePJjExETefvttLBYLO3bsoGvXrgB8+umnXLp0iZiYGF599VXat2/v3BeQCSITrTc6k2TydQ1gx4UIGhbPj7/H/c0/HT9+nJCQEObPn8/Zs2cpU6YMo0aN4umnn6ZEiRJpr8kw+Ouvv24Jjxw4cACbzYaXlxe1a9dmwIAB1K1blzp16pAvX777qltE5G7MphuBEV93V0r4Orsa54tMsqb63IeDa952LKjkQxQrU47zJ4+nHFsxbxZlH6lG7WYtcTgcJCcm3rMb/N1EJVq1hiIiqaJAiYiIiIiIiEgul5Y21ZEJ1hzVpjorMQyDU6dOpYRGbgZIrl27BkBgYCDVq1fn2WefTQmPlChRIkcEL/4ZIFGYJGtJy2IIgN1uZ87EN2jaqQclyle463k71q7gz/17mLZqK2EXzt13fVoMEREREREREcmdLly4QKNGjTh58iSnT5/m/fffp1SpUgA0a9aMBg0aAODu/v/dJc6cOUOJEiWwWCxZYg4qPDyc+fPn07NnT8qXL4/NZqNLly6EhIQwe/ZsatSoQadOnUhISGDy5MlMnjyZPHny8MknnzBx4kSuXbuG1WolT548Tn0dGcnuMNh9MRIjs9Mkf3MY8NvFSJqULIDFnLrvl6ioKL799ltCQkLYsWMHefPmpWvXrvTp04d69eql6fsuMTGRvXv3poRHduzYkbLZUJkyZahbty79+vWjbt26VK5cWV2qJUv6+uuvuXjxIpUrV6ZWrVrZPuhk/P2B5OzfIZI1RCVa77qmmhqGYRB17SrFypQDID42hhOH9tO8ex++/vAdVi/4ksT4OAKLFqfXq6Op37Jtqsc2cSOUqeCPiKSG/hYpIiIiIiIikktFJCTz+9UYwuKTb5vsvNvE5z+P2xwGJyLjOB4ZR6CnGxXz+xCQx+0uz5R/stvthIaG3tJ5ZP/+/URHRwNQtGhRgoODGTJkCNWrVyc4OJjChQvnyAWK5ORkvvzySw4dOsT48eMpUKCAs0uSf0jrYsj6RV8RfvE8Y+cuvus5SYkJhLw/gdZ9BhBYtNh9B0q0GCIiIiIiIiKSOyUlJfHxxx9TtWpVZsyYQZcuXTAMgylTpqR0fXBzc0uZSzt37hzr16/nxRdfZPr06RQuXDjTa7569Srz5s2jWbNmPProowAUKFCAiIgIAgMDAVLCAHnz5iVv3rx8/fXXdOjQgfz581O9enU6duxI165dCQgIwNvbmw4dOtC3b9+U8ExOdOxaDHFWu1NriLXaOXYthsoF7t7Zxm63s2HDBkJCQli2bBnJyck0a9aMhQsX0q5du1SHfs6dO3dLeGT//v1YrVY8PT2pWbMmffv2Tek+cvP7RiQra9myJX/99Rfu7u4cP36cKVOm8Nxzzzm7rDSJiIggICAg5f9z4jqN3L+oJOsDddD6ecX3RFy5RLeXXgPg8tkzGIbB9tXLsbi48PTwN/Dy9mHV/DlMfeV5PL19qPb4f1I1tgFEp3HTMBHJvRQoEREREREREcll7A6DY9diCI2I4+a0933vnPP3f8Pjk9ly9hrlAryokM8n1bu15QZWq5Vjx47dEh45cOAAcXFxADz00EMEBwczcuRIgoODqVatWq5ZDIyPj6dp06YcP36cHTt2KEySBaVlMSQmMoJF0yfT+flh+AbcfZe5H2Z9jN1qo8NzLz1QbVoMEREREREREcmdXF1dqVGjBpUqVaJFixbs2LGD2rVr4+bmxvvvv0/RokUxmUwYhkFSUhIbNmxg9uzZfPzxxzz77LOZWqvNZuPzzz/nnXfe4eLFi7z55ps8/PDDKZ1TevbsyejRo/H19aVhw4aMHz+ec+fO0aJFC/bs2cPx48cZOHAg/fv3x9vbO2Xc9u3bM3HiRIKDgzP19WSmiIRkQiPinF0GAKERcQR5e9y2odLvv/9OSEgI8+fP59KlS1SoUIHx48fTq1cvgoKC/nXMpKQk9u/ff0uA5MKFCwCUKlWKunXr8vTTT1OvXj2qVKmCq6u69Er20r9/f2JiYti4cSNBQUEMHTqUefPmMXDgwGwRyjh48CATJkzAZrPx9NNP06lTJ5KSkti8eTO+vr5Ur14dNzdtspbb2ez3Hyc5f+o4X0wYTfmq1WnUvgsAifHxAMRERfLO4pWUe/TG7/kajZvzQtPaLP3so1QHSgCsD1CfiOQuCpSIiIiIiIiI5CKRiVZ2X4xM2dUtvaYRb44TGhHHhZhEagX54++R+xa4kpKSOHLkCHv37k0Jjxw6dIikpCRMJhPlypUjODiY9u3bp4RH/P39nV22U9hsNrp168bBgwfZvHkzZcuWdXZJcgdpWQz5Ztr7ePv50bJXv7ueE3b+HMu//IwBb04ij5fXA9enxRARERERERGR3MdsNtOuXbuUjh6VK1dm8+bNNGjQAFdXV9555x2CgoIwmUzEx8fTu3dv/vOf/1CqVKlMr/XSpUvs2bOHMWPGcOHCBWbNmkWXLl2oVKkSAJMmTeLIkSO89dZbnDp1ikqVKvHtt99iMpmoWLFiSneKf3I4HJjNZkaPHp3prycz/X41Jk2dczOSiRv1PFYsH9euXWPRokXMmzePPXv24O3tjZubG4sXL6Zz5853vVH+4sWLKcGRnTt3sm/fPpKSkvDw8KBGjRr06NGDevXqUadOHQoVKpS5L1AkjQzD+NdQyPXr1zl27BjPPfdcSriqZs2aXL9+nQ8++IAKFSpQoUIFypQpk1klp8mlS5cYOnQoycnJFC1alBdffJGAgACef/55vL298fT0pEOHDrz88svOLlWczGHc32+pyPAwJj3XG08fH16bNhuLxQKAm7sHAIFFi6eESQDyeHlR4z/N+HnF99htNiwuqbv1+37rE5HcR4ESERERERERkVwiLC6JHRciyOi5w3irna1nr1KvSACBXu4ZezEnio+P5+DBg7d0Hjly5Ag2mw2z2UzFihUJDg6mV69eBAcH8+ijj+Lj4+PssrMEwzB44YUXWL16NStWrKBWrVrOLknuIrWLDRfPnGLjtwt4ZtR4IsOupBxPTk7CbrUSdv4ceby9WTTjAwIKFqZS7XqEnT8HQNTVMACiI68Rdv4c+YOKYDab07U+EREREREREclZboZJDMPA4XBQq1YtNmzYQOPGjXF3d2f8+PEsWLCATZs2sXDhQqeESQAKFy7MM888Q7Vq1fDx8eHjjz9m0aJFvPHGG7i7u+Pq6sqyZcs4e/Ysrq6ulCxZEoCjR4/i7e1NcnLybWOmdt4kO4tNthEWf/trdxYDCItPps+A51gYMheHw0GrVq3o06cPISEhAPz1118pN9gnJydz8ODBlPDIzp07OXv2LADFixenXr16dOvWjbp16/Loo4+qy4FkK/cKkwBERERw+fJlwsPDuX79OpcvX2bw4MFUq1aN0NBQFi5cSPny5Zk6dSqFCxfOpMpTb8OGDURERLBjxw68vb0ZN24cvXr14umnn6ZVq1YsX76ccePGUbVqVf7zn9R3i5Ccx3wf3XbiYq7z9sCexF2/zsSvfyCg4P+HCAMCCwLgl6/Abc/Lmy8/NquVxIR4vHzyZlh9IpI7KVAiIiIiIiIikguExSWx/XxEpuzmZgCGAdvPR1C/aM4IlVy/fp0DBw6kBEf27t3LH3/8gcPhwNXVlSpVqlCjRg0GDhxIcHAwVapUuW3nQPl/48ePZ/bs2cydO5eWLVs6uxz5F6ldbIi4chmHw8Gct99kzttv3vb4801r82Tv/ly9eIHLf53mhaZ1bjtn9vhRAHy1+xheeX3TtT4RERERERERyZlMJhMWiwW73c7jjz/O6tWradOmDbt27eLIkSMsW7bMqR2CXVxcaNCgQcr/v/7663z44Yd07dqVypUrA+Du7n5b997Zs2dTq1YtgoODU3Xzdk5zOio+Vd1JThw+wOYfvuXI7h2EXziHj58/ZR+tTo+hIwgqVfqWc7ev+ZEV82Zx4dQJzGYLxcuWp33/F6jeqGmqarLbbBQoV5n33nuPDh06MGbMmJQwidlsZunSpYSHh7Nz50727NlDYmIibm5u1KhRg86dO1O3bl3q1q2b0q1BJDv6t8+jxMREdu/eTYMGDShZsiTt27dnwoQJrF69mr1799KnTx/effddPD09+fbbb3n99dcJDQ3NkoGS3bt3U7duXby9vYEbHdcffvhhJk2ahMVioWHDhly5coUVK1YoUJLLuVjS9vs5OSmRd57vw8Uzpxj75WKKlSl3y+MBBQvhVyCQiLBLtz03MuwKbu4e5PHyTvX1XNNYn4jkXgqUiIiIiIiIiORwkYnWG51JMvm6BrDjQgQNi+fH38M1k69+/yIiIm7pOrJv3z6OHz8OgIeHB48++igNGzbk5ZdfJjg4mEqVKuHunv1DM5ll1qxZjB8/nkmTJtG3b19nlyP3kNrFkOLlyjPi4zm3HV847X0S4mLpN3oChYqVJD72OtcjI24559zxP1k47X3a93+BclWr454n9WEsLYaIiIiIiIiICIDFYsHhcNCsWTNatWrF6tWr+emnn2jUqJGzSwPA4XBgNpt5/fXXef/99/nmm29466238PDwwDAMDMPg4MGDhIeH8/nnn7Nz505mzJjh7LKdwmEYnI6OT9V89g+zP+GP/b9Rr3lrSpSvQNTVcNZ8PZfhHZvzzqKVFC/3MACr589hzttvUr1hU/7z6misSUls/mExkwb1Zvj0L6jzRKt7Xsvi4kKD9p2p4pJI8+bNCQ0N/f+aHQ52797NhQsXqFevHpMmTaJu3bpUq1ZNc8eSI9z8nLpbh6SkpCRq1aqFxWJh1KhRdOnShSlTpvDEE0/g5+fHwIED6dWrFx4eHgA0bdoUq9XKpUu33zSfFfj5+bFt2zb++OMP8uXLx/r166lduzYWiwWr1YqrqytRUVGUL1/e2aWKk/m5uxKZYE3V7yy73c6HLw8i9MBeRn4yl/LVatzxvPot27Lqqy84uH0rj9ZvCMD1yGv8tmkdlevUT3WnMhPg65591mdFxLkUKBERERERERHJwewOg90XIzEyO03yN4cBv12MpEnJAljMWe/G7ytXrtwWHjlz5gwAXl5eVKtWjZYtW/LGG28QHBzMww8/jIuLplPu1/Lly3n++ecZPHgwr7/+urPLkVRI7WJIXv981G56e7eZVSFfANzxsZu8fG50IylTueq/nve/tBgiIiIiIiIiIv9rzJgxLFu2jF9++YX69es7u5wUZrMZm82Gi4sLo0aN4v3336dHjx5UrlwZk8mEyWTi5MmTTJ48mWLFirFz505KlCgBkOu6k8Qk2bA5Ujeh3abvQIZN/gRXN7eUY/VatuWVtk34YfbHDP3gYwBWL5hLmSpVGTUzJOXr2bhjNwY0CGbLsm9TFSgBsDkMnuzQiT///POOj//yyy+UKlUqVWOJZBexsbF4eXn9603sly9fJjw8nFKlSjF//nzc3Nxo3749zZs35/jx4yQnJxMYGJgyxv79+/Hw8Ej5nMtqXnzxRVauXEm/fv1ISkrioYceYseOHZw/f56iRYuyfft2/vzzT61zCH4erqne0C/kvfH89tN6avynGbHRUWz98btbHm/YtiMAHQYOYceaFXzw0gDa9B2Ip09e1i/6CpvNSs+XU/89Z0C22vBPRJxLd0CIiIiIiIiI5GDHrsUQZ7U7tYZYq51j12KoXCCv02owDIMLFy7cEhzZu3cvFy9eBG7sNhUcHEynTp0IDg4mODiYsmXLpnqXH7m37du3061bN5566immTZuW6xbCs6u0LIZkNi2GiIiIiIiIiOQ+NpsNk8mExWK54+PlypVj165d1KpVK5Mru7ebNQ8fPpz33nuPhQsX0rhxYxYuXEinTp146qmnaNq0KX5+fs4t1Mkik6ypPvfh4Jq3HQsq+RDFypTj/MnjKccS4mIIKvnQLXOSnt4+eHh54fZ3x4TUGjVhIsvmzebw4cMpna0tFgt2u52dO3cqUCI5ytGjRwkJCeH999//1/NKlChBs2bNaN68OXPmzGHWrFnkyZOH5s2bU6pUKUqXLk27du148cUXSUhIYOLEibzwwgvUrVs3k15J2hQqVIg9e/awd+9ezpw5Q/v27enTpw8NGjSgVq1a7Ny5k8cee4zatWs7u1RxMv80bHp15thRAPZs3sCezRtue/xmoMQvfwEmfrOMr96fwMqQ2dhsVspXrcHQDz6m5MOV0lSfn9ZQRCSVTIbhrD1KRURERERERCQjRSQks+XsNWeXkaJR8XwE5HG794kPyDAMzpw5w969e28JkISHhwOQP39+qlevnhIcCQ4OplSpUgo4ZKBjx45Rv359qlSpwrp161La2kvWF51oZdNfV51dxl01KZlfXUpEREREREREcomQkBC++uor1q5di4uLS5acz7Pb7djtdtzc7jwP6nA4MJvNvPTSS3z88Y3uGe3atWPWrFkUKFAgM0vNsg5cieZ0VPx9b3JiGAYDG9WgWJlyvDVnIQAfvjKInetW8czr46jxnydITk5kzYIv+en7xYyb+y3lq9VI1dgmoJSfJ1UL3ui4Gx4ezs8//8yWLVvYsWMH7733Hk2bNr3PykWyloULF9K/f3+GDBnCu+++e9fzHA4HAHXq1OGdd96hQIECvPjiiwQFBWE2mwkNDWXhwoU899xznDp1iqJFi9K9e3cGDx6cWS8lXSQnJ7N7927mzZuHj48PEyZMwMfHx9lliZM5DIOVJ66kurNWZnIxm2hdpiDmLPj3JRHJehQoEREREREREcmhtp27Rnh8cpboLmACCni68VixfHd83OFwYBjGXXcWvBuHw8Hx48dvCY7s27ePqKgoAIKCgggODr4lQFKkSJEsudicU124cIG6devi6+vLL7/8kut3WMxutBgiIiIiIiIiIlnBrFmzGDRoEM8++yyff/55lussbLfbWbx4MRMmTOCpp57i7bffvmONYWFh9O3bl7Vr19K3b1/eeustSpYsmfkFZ2Fbzl4lIiH1XUr+19Yfv2P6iCG88PYUmnTsDkD0tatMfe0FDu/clnJeXv8AXv90XqrDJDfly+NKw+L577s+kawuOTmZ1157jRkzZtCzZ08+//xzvLy87nr+zaDcqFGjCAoKYsiQIfz++++0bNmSK1eu8MorrzBp0iQArly5gqurKwEBAZn1ctLNzeBMVvv9I853OOw6JyLjssR67E0moIy/F1UC8zq7FBHJJlycXYCIiIiIiIiIpL/YZBth8cnOLiOFAYTFJxObbMPb7dbpiB07dtCxY0d69erFBx98cNcxbDYbf/zxR0poZO/evRw4cIDY2FgASpYsSXBwMK+99hrBwcFUq1aNQoUKZeTLknuIioqiZcuWAKxZs0ZhkmzIbDJRytczSy6GlPL1VJhEREREREREJBeYMWMGL730Ei+++CLTpk3LUjfz2u12vv32WyZMmMAff/xB69at6dy587/W+OijjzJlyhQqVKiQiZVmHzb7/c9CnT91nC8mjKZ81eo0at8l5bibRx6KlCpNvoJB1GjUlIS4WFaEzOb9l/ozccEPFC5RKtXXsD5AfSJZ3fnz5+nSpQt79uzhk08+4fnnn7/nBl03P++8vb3ZunUrQ4YMYenSpYSFhVGyZEn++usvtm7dSsOGDSlYsGBmvIwM8c/P9Zt7uGvzMoEbnauOR8Y5u4xbGNyoS0QktdShRERERERERCQHut/dcJbOnMbCj96jWNnyfLRic8pxm9XK959PZ/OyJURcuUxAwUI06diNpwa8iMUldftV/O9uOIZhMH36dF599VXsdjtVqlTh0KFDwI0dsI4cOXJL15GDBw+SmJgIQNmyZVM6jtwMj+TLd+fuJ+IchmHwzDPP8OOPP7Jt2zYqVqzo7JLkPsUm21h/OtzZZdzmiVIFbguoiYiIiIiIiEjO8v777zNy5EiGDx/Oe++9l2Vu3nU4HCxZsoTx48dz7NgxWrVqxbhx46hZs6azS8v21p8KI9ZqT/PzIsPDGNOjHXablXcWrSSg4P9vNjRxQE/MFgujZ36VciwmKpIXmz/GI/Ue49Wpn6f6Ot6uFp54KDDN9YlkdT/99BPdunXD3d2dJUuWUKdOnTQ9f82aNSxbtoz8+fPz8ccfs2HDBmJiYhg6dCgVK1bk888/x9/fP4OqF3GubeeuER6fnCU25jIBBTzdeKyY1k1FJPW04ioiIiIiIiKSwzgMg9PR8WmetLx2+SLffz4dD8/bd6yZNuJFdq5dSeOO3Shd+VFCD+xj4bT3Cb94gef/e/euIv9kAKej46lUwIe42Fj69evH0qVLUx4/evQo/fr14+DBgxw+fBir1YrZbObhhx8mODiYbt26ERwcTNWqVcmbVy2aszqHw8GMGTN45ZVXFCbJ5qLDr/Dn3t8oU7UGFovF2eWkLIYoTCIiIiIiIiKScxmGwX//+1/Gjh3Lm2++yfjx47NEmMThcPDdd98xfvx4jh49SsuWLZk7dy61a9d2dmk5xv10pI2Luc7bA3sSd/06E7/+4ZYwyeVzf7H/l80MmnDrPLaPnz8Vqtfkj317Mrw+kazM4XDw/vvvM2bMGBo3bsw333xDgQIF0jxOuXLlmD17Nr6+vixfvpxatWoBMHHiRAIDA7NFmMQwjFT/rknLuZLzVczvw5az15xdBnBjPbZifh9nlyEi2YxWXUVERERERERymJgkGzZH2vfACXl/AuUerY7Dbud6VETK8ROHD7BjzQo6vTCM7i+NAKB5t97k9fdnxbxZtOz1DCXLpy4wYHMYbN25my7tWnPt2q0Tqw6Hg+3bt/PYY4/Rr18/goODeeSRR/Dy8krzaxHns1gseHl58cgjjzi7FHkAkZGRtGjRAt9CRXjl4y+dXQ6gxRARERERERGRnM4wDMaMGcM777zD22+/zejRo51dEg6Hg++//57x48dz5MgRmjdvzhdffJHmHfzl3lwsabtBOzkpkXee78PFM6cY++ViipUpd8vj0VdvdN51OG7vemKz2XDYbWm6nmsa6xPJyqKioujTpw8//vgjY8aMYfz48fe9qVCpUqVYtGgR5cqVo2rVqimBi/bt26dv0engzJkznD59Gk9Pz1sCgWkJiChMIv8UkMeNcgFehEbEObsUygV4EZDHzdlliEg2Y3Z2ASIiIiIiIiKSviKTrGl+ztHfdrFz3SqeGTX+tsd+3/MrAI+1an/L8fqt2mMYBttX/5ima339/TKuXr2KYdweehk+fDhz5sxh8ODB1K1bV2GSLMowjDu+f//LbNbUU3aWkJBA27ZtuXjxIrOnT6VcgLezSwK0GCIiIiIiIiKSkxmGwSuvvMI777zDhx9+6PQwyc0gSbVq1ejcuTOFCxdm+/btrF27VmGSDOLn7kpqb9O22+18+PIgQg/s5dWPZlG+Wo3bzilUohRms5ntq3+8ZU7z2uWLHNvzK6UqVE51bSbA19011eeLZGWHDh2iRo0a/Pzzz6xYsYKJEyc+UIdqs9lM586dqVq1KpB1AxcrVqyge/fuNGnShDZt2rB69WoSEhLYv38/S5Ys4dKlS84uUbKpCvl88HK1pPp3WHozAd6uFirk04ZcIpJ26lAiIiIiIiIiksNEJVoxcWMX/9Sw2+3MmfgGTTv1oET5Crc9bktOBsDNw+OW4+558gBw6uihVNdmAl54dQS9Wjdn06ZNrFq1igMHDqQs5O3bty/VY4lznDhxgrlz57J//36efPJJOnbsSKFChZxdlqQzm81Gt27d2LdvH5s2baJChQrYHQYXYhKJt9pT/fmSnkyAlxZDRERERERERHIsh8PB4MGDmTlzJp9++inPP/+802oxDINly5Yxfvx4Dh48SNOmTdm2bRv169d3Wk25hZ+Ha6rnnkLeG89vP62nxn+aERsdxdYfv7vl8YZtO+IbkI/GHbuxcck3jOvbhdrNWpIYF8fahfNITkrkqYFDUl2bAfh7KFAi2d9XX33FoEGDKF++POvXr+ehhx5K8xiRkZHkzZv3lhBKVg2R/NOIESNo37493333HZ999hnLly/n888/Z9++fRQuXJi1a9cyadIkChYs6OxSJZuxmE3UCvJn69mrpGJPtnRnMkHNIH8s5qz/cygiWY8CJSIiIiIiIiI5TFSSNU03e69f9BXhF88zdu7iOz4eVKo0AH/s+42CRYunHD/2d+eSiCuXU30tA4ix2mnUqBGNGjXiv//9L1evXmXjxo1s2LCBJk2apKFyyWyXL1+mYcOG1KlTBzc3N0aPHo23tzd9+vRJOedmG3vJvgzDYNCgQaxatYoVK1ak7LZ5czFky1/hf7/PmduBRoshIiIiIiIiIjmX3W6nf//+hISEMGfOHPr16+eUOgzD4Mcff2TcuHEcOHCAxo0b8/PPP/P44487pZ7cyD8NHUDOHDsKwJ7NG9izecNtjzds2xGAgWPfpUT5ivz03UK+/vAdAMpUqcqQd6dTqWbaOs34KVAi2VhSUhLDhg1j5syZPPPMM3zyySfk+XvzsLRYt24dPXr04Oeff6ZixYrZZk3g5MmTXLlyhdGjR+Pj48Orr75KQEAAw4cP54033uDMmTP069eP4sWL89Zbb2Wb1yVZh7+HK/WKBLD9fESmbsxlAuoVCVDoUUTumwIlIiIiIiIiIjmMzZ76KcqYyAgWTZ9M5+eH4RuQ747nBDdsTIGgonz1/gTcPfLwUKVHOH5oH9989C4WFxeSkxLTVJ/1f+rLnz8/3bp1o1u3bmkaRzKXw+GgV69etG3blk8++QSz2cxLL71EaGgo0dHReHl54eLigslkUqgkm3vzzTeZM2cOISEhtGzZ8pbHoi9fYMZrL/P8u9OxuGReoESLISIiIiIiIiI5l9VqpU+fPnz77bcsWLCAHj16ZHoNhmGwcuVKxo0bx759+2jUqBFbtmyhYcOGmV5Lbufj7oKL2YTNce957gnzv7vnOQAWFxda9epHq14PFlRyMZvwcdPtdpI9/fXXX3Tq1IlDhw4xa9Ys+vfvf1/z+MuXL6dLly488cQTlC5dOlutBRw4cIASJUoQHR2Nj48P+/fvp0CBAowcOZKAgABq1qxJWFgYS5cuZezYsc4uV7KpQC936hcNYMeFCAyDDA+WmE031k8Cvdwz+EoikpNl7jaCIiIiIiIiIpLhHGnoo/zNtPfx9vOj5b8spLm5ezD68/l4+/nzwUv9eb5JLWaMHErnF17G29cPD0/PDKtPso7Lly8TERFBy5YtMZtvTCklJyezadMmKlSowFNPPcXkyZOB7NHWXu5sxowZvP3223zwwQf07t37lseuXLlCs2bN+Ov3Q1TO64LZdCPokdHMJqhfVIshIiIiIiIiIjlRcnIy3bp1Y8mSJSxevDjTwyQ3gyQ1a9akbdu2eHt7s3nzZjZv3qwwiZOYTSZK+XpmyrxTWpiAUr6emDX3KdnQunXrCA4OJjw8nO3btzNgwID7msdfvHgxHTt2pF27dnz33Xd4eHhkQLUZp3r16lgsFmbMmMGsWbMYP348ZcqUwcvLC7vdDkB0dDQOh8PJlUp2F+jlTsPi+fF0tWTodbxdLTQsnl/rJyLywBQoEREREREREclhUrugdfHMKTZ+u4Ane/UjMuwKYefPEXb+HMnJSditVsLOnyMmKhKA4mXL89GKzUxdsZmJX//A7J/30bRLT2IiIyhcsnSG1CdZS3JyMlFRURw9epTjx48zd+5c5s2bR9euXZk+fTpBQUF8//337N6929mlyn1avHgxQ4cO5dVXX+W111675bHo6GhatGhBXFwcGzZsoEKxwloMEREREREREZEHkpiYSIcOHVi5ciXff/89HTt2zLRrG4bB6tWrqV27Nm3atMHT05OffvqJLVu20KhRo0yrQ+6slJ9nhu/onlYGN+oSyU4cDgcTJkygZcuW1K5dm3379lGjRo37GmvevHn06NGDHj168M033+Dm5pbO1Wa8EiVK0KlTJ2bPns17771H9+7dSUhI4Ndff8VisbB///6UDiwiD8rfw5WmJQtQLsALSL8Num6OUy7AiyYlC6izu4ikC/XgExEREREREclhXCypm5KMuHIZh8PBnLffZM7bb972+PNNa/Nk7/70Gz0BuNF1onjZ8imP7926CYfDwSN1H09Tfa6prE+yhtOnT1OqVClKlixJnz59eOedd1i3bh2///4777//Pi+99BIAjRo1omzZsvzyyy/UqlXLyVVLWm3cuJGnn36anj178v7779/yWHx8PG3atOHMmTP8/PPPPPTQQ8D/L4YcuxZDaEQcJtKndfvNccoFeFEhnw8Wsz4zRERERERERHKa+Ph42rdvz7Zt21ixYgVPPPFEplzXMAzWrVvHuHHj+PXXX6lfvz4bN26kcePG6rqbhXi7uRDo6UZ4fHKWCJaYgAKebni76VY7yT4iIiLo1asXa9euZdy4cbzxxhsp3cfT6tNPP2Xw4MEMHDiQzz777L7HcTaTycTrr7/O66+/zqlTp3jooYc4efIkTZo0oX79+pw+fZrKlSvTs2dPZ5cqOYTFbKJygbwEeXvw+9UYwuKT73st5ebzCni6UTG/DwF5sl+oS0SyLv0tV0RERERERCSH8XN3JTLBes/JyOLlyjPi4zm3HV847X0S4mLpN3oChYqVvONzkxITWDTtffwLFOTxJ9unujYT4OuunXKyi4kTJ7J8+XJGjBhB586dGTt2LE8++SRFihShW7duFC9eHAC73U7evHmpWbMmvr6+Tq5a0mrv3r089dRTNG3alC+//PKWxUCr1UqXLl3Yu3cvGzdupEqVKrc8V4shIiIiIiIiIpJWMTExtG7dmr1797JmzRoaNmyY4dc0DIP169czbtw4du3aRd26dVm/fj1NmzZVkCSLqpjfhy1nrzm7DODGnFXF/D7OLkOyKYdhEJNkIzLJSlSilagkKza7gcMwMJtMuFhM+Lm74ufhir+7Kz7uLg/c6X3fvn107NiR69evs3r1alq0aHHfY02ZMoXXXnuNYcOG8eGHH2bbz8w1a9Zgs9moUqUKJUuWTNk46e2336ZZs2YsXbqU+vXrM3z4cPz8/JxbrOQ4AXnceKxYPmKTbZyOiud0dDw2x42VlLutqfzzuIvZRClfT0r5eSrcKCIZQp8sIiIiIiIiIjmMn4drqm7mzuufj9pNW952fFXIFwC3PDZ52HMEBBakaOlyJMTG8NP3i7hy7iyjP/+KPN7eqa7NALVeziZiYmJYvXo1UVFRfPPNN8THx9O7d29q1KjB9evXsdlsHDlyhPbt25OcnMysWbM4cOAAs2bNcnbpkgZ//fUXLVu2pGLFiixZsgRX1///+XQ4HPTt25f169ezYsUK6tate9dxtBgiIiIiIiIiIqkRFRVFy5Yt+f3331m/fj316tXL0OsZhsHGjRsZO3YsO3fupE6dOqxbt45mzZpl25uic4uAPG6UC/AiNCLO2aVQLsBLm59ImqVlrvSfm4Q96FzpnDlzGDx4MFWqVGHLli2UKFHivuo3DIOJEyfy1ltvMXr0aCZOnJitPzd79uxJlSpVKFy4MKVLl6ZSpUo8+eSTNGnShH79+vH55587u0TJBbzdXKgSmJdKBXyISbYRlWglMtFKdJIV6z+CZq4WE77urvh73Aib+bg9eNBMROTfaHVWREREREREJIfxz4AOIGUqP8JP3y9mw+IFuHl4UKF6LYZN/oRSFSqneSw/BUqyBR8fH+rWrUtMTAxhYWHMmjWLmJgYXnzxRfLkycNbb71Fy5YtWb58Od7e3oSGhrJ48WJKlizp7NIllQzDICAggMaNG/Pxxx/j5eV1y2NDhw5l4cKFLFq0iObNm6dqTC2GiIiIiIiIiMjdXLt2jebNm3Pq1Ck2bdpEjRo1MuxahmGwadMmxo0bx/bt26lVqxZr1qyhefPm2fqG6NymQj4fLsQkEm+131dH3AdlArxcLVTIp+4kknoRCcl37eZ8t+/jfx63OQxORMZxPDKOwDR0c05ISODFF1/kyy+/ZODAgUybNg0PD4/7eg2GYTB69GjeffddJk6cyJgxY+5rnKwiKiqKChUqcPnyZYoVK8aGDRtYt24dX331FQcPHuTEiRPs2rWL8uXL4+/v7+xyJRcwm26skfi6u1LC19nViIiAyTAMZ/x9W0REREREREQyiMMwWHniSsqOV1mJi9lE6zIFdeN4FmcYBiaTiffff5/o6GhGjhzJwIEDuXjxIlWrVuXjjz9m9+7dREdHM3fuXKpWrUr9+vX/tYOFZE12ux2z2XzbjRTjxo1j/PjxfP755wwcONBJ1YmIiIiIiIhIThEWFkbTpk25fPkyGzZs4NFHH82Q6xiGwebNmxk3bhy//PILNWrUYPz48bRs2VJBkmwqMtHK1rNXccZ0t9kEDYvnV9dtSRW7w+DYtRhCI+Lu2okkrW6OUy7Aiwr5fLCY7/w5durUKTp16sSxY8f47LPP6Nu3731f0+Fw8PLLLzN9+nSmTp3KsGHD7nusrGTPnj1MmzaNCRMm4Ovry86dO/n8889Zt24dFSpUwMPDg5o1azJjxgxnlyoiIpLpzM4uQERERERERETSl9l0ox16VlseNQGlfD0VJskGbi6ut27dmv3795M3b14WLVpEiRIlmD17NjVq1KBw4cI0adKE+fPn89prrylMkk1ZLJbbbqaYPn0648ePZ9KkSQqTiIiIiIiIiMgDu3jxIg0bNuTq1ats2bIlw8IkW7ZsoVGjRjRp0oT4+HhWrlzJ7t27adWqlcIk2Zi/hyv1igRk+ny3CahXJEBhEkmVyEQrG8+EExoRB6RPmOSf44RGxLHxTDiRidbbzlm5ciXVq1fn+vXr7Nq164HCJHa7neeee47p06czc+bMHBMmAahRowZlypShb9++uLi48OSTT+Lv70+7du347LPPaNiwIWXLlnV2mSIiIk6hDiUiIiIiIiIiOVBsso31p8OdXcZtnihVAG83F2eXIan0119/0ahRI3755ReKFi1KiRIl8PLyIk+ePDRq1IiBAwdSvnx5Z5cpqXSz88y/2bdvH9WrV+fVV1/lgw8+0M0WIiIiIiIiIvJAzp49S+PGjUlKSuKnn37KkJt1t27dyrhx49iyZQvBwcGMGzeO1q1ba14jhwmLS2LHhQgMI/1u1r8bs+lGmCTQyz2DryQ5QWZ9b5oA0z++N+12O+PGjWPixIm0adOGr776Cj8/v/se32az0bdvXxYuXMjcuXPp3bt3utWelQwaNIgTJ06wceNGChQowGeffUanTp2cXZaIiIhTqUOJiIiIiIiISA7k7eZCoKdblulSYgICPd0UJslmSpQoQfPmzTl37hx16tShQoUKHDhwgK5du7J48WL279/v7BLlLnbu3MmGDRtYs2YN8fHxwI3OM/faWyY4OJi1a9cqTCIiIiIiIiIiD+zUqVM0aNAAh8PBzz//nO5hkl9++YXGjRvTqFEjoqKiWLZsGXv27KFNmzaa18iBAr3caVg8P56ulgy9jrerhYbF8ytMIqkSFpfE9vMRODIh6GQADgO2n4/g+MUwWrZsyaRJk5g0aRLLli17oDBJcnIy3bp1Y/HixSxatChHhkkcDgcAH374IQ899BDdunUjNjaWevXq4XA4Uh4XERHJjXQXh4iIiIiIiEgOVTG/D1vOXnN2GcCNhY6K+X2cXYbcB09PT+rXr09wcDBz587Fzc2NESNGEBwcTNOmTZ1dntzB2LFjmT9/Pvnz5+fIkSM88sgjDB48mM6dO+Ph4XHPTiVPPPGEbroQERERERERkQfy559/0qRJEzw9Pfnpp58oWrRouo29fft2xo4dy6ZNm3j00Uf54YcfaNeuneYzcgF/D1ealizAsWsxhEbEYSJ9buK/OU65AC8q5PPBYtb3ktxbZKL1RmeSTL6ugcHeq3FExCexfv16mjRp8kDjJSQk0KlTJzZu3Mj3339PmzZt0qnSrMVsNuNwOPD09KRfv348++yzdOvWjYIFC2I2a192ERHJ3UzGvbYlFBEREREREZFs60j4dUIj4pxdBuUCvKhcIK+zy5D7cPHiRWbPnk3Pnj0pU6YMDodDiytZ2NKlSxk8eDDLly+nUqVK2O12qlatSnJyMgMGDODll19+oJ3qRERERERERETu5ciRIzRt2pR8+fKxceNGChcunC7j7tixg3HjxrFhwwaqVKnCuHHjaN++veaqcqmIhGR+vxpDWHzyfQdLbj4v0NONivl9CMjjlr5FSo5ldxhsPBNOvNWe6YESuNFtI4/FRIsyhR8oABUXF0fbtm3ZuXMny5cvp1mzZulYZdYWERFBYmIiQUFBzi5FRETE6fQvKhEREREREZEcrEI+H7xcLThrPzUT4O1qoUI+dSfJroKCghgzZgxlypQB0AJ9Frdt2zbat29PnTp1MJvN+Pn50bdvXzw8PFizZg3ffvstANpjRkREREREREQywv79+2nUqBGFCxdmy5Yt6RIm2bVrF82bN6d+/fpcunSJJUuWcODAATp06KC5qlwsII8bjxXLxxOlClDG3wuXf9xUf7f58H8edzGbKOPvxROlCvBYsXwKk0iaHLsWQ5yTwiRwY54+yTBx7FrMfY8RHR1N8+bN2b17N2vXrs1VYRKAgIAAhUlERET+5uLsAkREREREREQk41jMJmoF+bP17FWccf+4yQQ1g/wfaIcsyVx36kDi4qIppOziwoUL2O12ALy8vAC4du0aXbp04cyZM7z99tv06NEDb29vZ5YpIiIiIiIiIjnQ7t27ad68OWXLlmXt2rUEBAQ80Hi//vor48aNY+3atVSqVIlvv/2Wjh07KkQit/B2c6FKYF4qFfAhJtlGVKKVyEQr0UlWrHYDh2FgNplwtZjwdXfF38MVPw9XfNxcMJs0by1pF5GQnCU6wwOERsQR5O2R5kBUREQEzZs358SJE2zatIlatWplUIUiIiKSHehuABEREREREZEczt/DlXpFAth+PiJTd8syAfWKBODv4ZqJV5UHYRgGAwYMoHjx4owdO9bZ5ch96Ny5M927d+fDDz+kZcuWrFixgk8++YQzZ85QvHhxSpQowfr16+nQoYOzSxURERERERGRbCwiIoK6devy2muvMWDAALZt20arVq2oUqUKq1evxtfX977H/u233xg7dixr1qyhQoUKLFq0iM6dOytIIv/KbLoRGPF1d6XE/X/7idzT71djMIHTupP8k4kb9TxWLF+qnxMWFkbTpk25dOkSmzdvpmrVqhlWX1YUFxdHUlLSA4ceRUREchIFSkRERERERERygUAvd+oXDWDHhQgMI+MXOsymG2GSQC/3DL6SpKexY8fy5Zdf8tVXXzm7FEmlpKQkwsLCcHV1xdfXl86dO3PmzBnefPNNPv74YxITE1mzZg3Fixfn0qVLOBwOHA6Hs8sWERERERERkUziMAxikmxEJlmJSrQSlWTF9o+uDS4WE37uNzo2+Lu74uOeuq4NS5cuJTQ0lOeee46TJ08yY8YMateuzY8//njfnVH37NnDuHHjWLVqFQ8//DALFy6kc+fOWCyW+xpPRCS9xSbbCItPvud5CXFxLJ/zKccP7efE4QPERkcxeNJUGnfoetu5DoeD9Yvns2HxfC6ePoWbRx5KPlyRZ0aNo+TDlf71OgYQFp9MbLINb7d73wp64cIFmjRpwvXr19m6dSsVK1a853NymgULFjBkyBCuXr1K3rx5nV2OiIhIlqBAiYiIiIiIiEguEejlTsPi+dl9MZI4qz3DruPtaqFmkL86k2Qzn332Gf/973959913efrpp51djqRCYmIiXbt25dSpUyQlJdG/f3+GDx/OiBEj6N27N+Hh4QQEBFCkSBHgRvgkX758D7RDqIiIiIiIiIhkD7HJNk5HxXM6Oh6b48b2MnfbUT8ywZpy3MVsopSvJ6X8PP/15uT58+djNptxOBy89957PPLII6xatYo8efKkuda9e/cyfvx4VqxYQfny5fn666/p2rWrgiQikuWcjopPVXeSmMgIlnw6lfxBRShRviJHd++467mfjH6FX1Z+T8N2nWjZ8xkSExI4/fsRoq9dTVVNpr/rqhL47+GIM2fO0KRJE2w2Gz///DNlypRJ1fg5zYoVK6hXr57CJCIiIv9gMgwjK3RfExEREREREZFMYncYHLsWQ2hEXLq1Zb85TrkALyrk88FivvcuhpJ1/PDDD3Ts2JEhQ4bw0UcfYUrFLpTifNWrV6dw4cIMGzaMH3/8kR9++IG9e/cSGBh4y3lJSUlcvHiRnj174uPjw7p165xUsYiIiIiIiIhktIiEZH6/GkNYfPJ9z/3dfF6gpxsV8/sQkMftlsfPnTtH8eLFbzlmNpv57rvvaN++faqvs3//fsaNG8ePP/5I2bJleeutt+jevbuCJCKSJTkMg5UnrqSE9P6NNTmJ2Oho/AsEcuLwQUZ2bnnHDiXb1/zIhy8PYsSMOdRu1vK+a3Mxm2hdpuBdO0wdP36cxo0b4+7uzqZNmyhRosR9Xys7i4+PJ1++fEycOJFXX331jufYbDZq1arF4MGDefbZZzO5QhEREedQhxIRERERERGRXMZiNlG5QF6CvD3SbXG5wF0WlyXr27ZtG927d6dTp05MnTpVYZJsYurUqXh4ePDDDz/g6upK06ZN+f333zl+/DgnTpzA19eXSpUqAXDw4EGmTZuGp6enwiQiIiIiIiIiOdT/biID97+RzM3nhccns+Xstds2kVm0aBEmk4l/7mHrcDjo0qUL4eHh9+yOevDgQcaNG8eyZcsoU6YMX331Fd27d8fFRbcxiUjWFZNkS1WYBMDVzR3/AoH3PG/FvFmUfaQatZu1xOFwkJyYiIenZ5prszkMYpJt+Lrf3jn+6NGjNG3aFH9/fzZu3EhQUFCax88pNm3aRGJiIq1bt77rOX/++Sf79++ndOnSmViZiIiIc+lfYiIiIiIiIiK5VEAeNx4rlo/YZBuno+I5HR2fshhyt4DJP4+7mE2U8vWklJ8n3m6aYsiOjh49Sps2bahbty5fffUVZrPZ2SVJKsXHx2MymYiPj8fX15fly5fz008/ERERQWRkJP7+/owZM4aOHTtSq1Ythg4dSnBwsLPLFhEREREREZEMEJloZffFSOKsdiB9OhL/c5zQiDguxCRSK8gffw9Xpk+fjmEYKaESs9lMgwYNePrpp8mbN+9dxzt06BDjx4/n+++/p3Tp0sybN4+ePXsqSCIi2UJkkjVdx4uPjeHEof00796Hrz98h9ULviQxPo7AosXp9epo6rdsm6bxohKttwVK9u3bxxNPPEHRokXZsGEDBQoUSM+XkO2sWLGCsmXLUr58+bues3fvXgCqVauWWWWJiIg4nf5FJiIiIiIiIpLLebu5UCUwL5UK+BCTbCMq0UpkopXTl8I4c/Yc5StUwM3FBVeLCV93V/w9XPHzcMXHzeWu7dMl6zt37hwtWrSgePHiLFu2DA8PD2eXJKlw82YNHx8fIiMjefvttylRogQvvfQSEydOZNCgQZw9e5bJkyezcOFCmjVrRt68ealVq5azSxcRERERERGRDBAWl8SOCxEY6ZUiuYt4q52tZ69SOa8r58+fx2Kx0Lp1azp27Ejr1q3x9/fHMAz69+9PiRIleOutt1Kee/jwYcaPH893331HqVKl+PLLL+nVqxeurrfvpC8iklVFJVrvu9v7nVw+ewbDMNi+ejkWFxeeHv4GXt4+rJo/h6mvPI+ntw/VHv9PqsYycSNcWOIfDaJ27dpFixYtKF++PGvXrsXf3z+dKs+eDMNg5cqVdO/e/V/P27dvH2XKlLlnty0REZGcRIESEREREREREQHAbLoRGPF1d6WELxz/eT2vdOlCdHT0v+4sKNlPZGQkLVu2xGw2s2bNGi2MZCOmv0NcQ4YM4c8//+TPP//kwoULNG7cmFGjRmEymQgICOCRRx5h9uzZGBl9N4mIiIiIiIiIOE1YXBLbz0ek283N/8YADAMOR1tZv2M39R6piJeX1y3nfPTRR3z55Ze4uLjQp08fYmJimDBhAkuWLKFkyZLMmTOHp59+WkESEcmWopKs6fp5mxgfD0BMVCTvLF5JuUdvdJiu0bg5LzStzdLPPkp1oMQAov/RQWXr1q20bt2aatWqsXLlSq3xcCMocunSJVq3bv2v5+3du5fq1atnUlUiIiJZg9nZBYiIiIiIiIhI1hT/92JGnjx5nFyJpKfExETatWvHpUuXWLt2LUFBQc4uSVJh9+7dHDp0KOX/TSYTn3zyCcuXL6dNmzbY7XbsdnvK4xaLhRIlSihQIiIiIiIiIpJDRSZab3QmyeTrGkBcvqIkW9xuOb57925GjBhx4xzD4D//+Q+PPPIIu3fvZvbs2YSGhtKvXz+FSUQk27LZ0/cT1839RtfwwKLFU8IkAHm8vKjxn2acOHwAu82W6vGsf9e3bt06WrRoQd26dVmzZo3CJH9buXIlvr6+PPbYY3c9x263s3//foKDg+96joiISE6kQImIiIiIiIiI3FF8fDyurq5a5M1B7HY7PXv2ZM+ePaxcuZIKFSo4uyRJhdWrV1OnTh2GDBnCwYMHbwuJeHp6sm/fPtavX8/u3btZsmQJb731FoMHD8bPz885RYuIiIiIiIhIhrE7DHZfjMRZ+0g4DPjtYiR2x40CoqKi6NixIw6H40Z9djunT59m4sSJhIaG0r9/f80xiki250jnD92AwIIA+OUrcNtjefPlx2a1kpgQn+rxHIbB8uXLadu2Lc2aNePHH3+8rZNUbrZixQpatmz5r7+Pjh8/TlxcnDqUiIhIrqNAiYiIiIiIiIjcUVxcHJ6ens4uQ9KJYRi89NJLLFu2jEWLFlG3bl1nlySpcPbsWcaOHcugQYO4dOkSvXr1YufOnbd0I2nbti1dunShQ4cOdOjQgXHjxjF16lSeeuopJ1YuIiIiIiIiIhnl2LUY4qz2TO9O8k+xVjvHrsVgGAadOnXiwoULKYESuNE99eTJk7i5uf3LKCIi2YfZZErX8QIKFsKvQCARYZdueywy7Apu7h7k8fJO9Xgx16Pp2LEj7dq1Y+nSpXh4eKRnudnaxYsX2bt3L61bt/7X8/bu3QtAtWrVMqMsERGRLEOBEhERERERERG5o/j4eAVKcpBJkybx6aefMnPmTNq2bevsciSVLl26xCOPPMJLL73EH3/8gYeHBz169OCnn37CarWmnDdr1izWr1/PwoULWbx4MQMHDnRi1SIiIiIiIiKSUSISkgmNiHN2GQCERsQxbdYcNm3ahGEYmM1mLBYLFosFu91OSEgIsbGxzi5TRCRduFjSN1ACUL9lW65eusjB7VtTjl2PvMZvm9ZRuU59zObU3975x+9H6dGjB998843CfP9j1apVmM1mWrZs+a/n7du3j1KlShEQEJBJlYmIiGQNLs4uQERERERERESyJgVKco65c+fyxhtvMG7cOAYMGODsciQNatSogZeXFw8//DAAv/32G82bN6d79+7MmjWLJ598End3dy5cuEDx4sUpWbKkcwsWERERERERkQz1+9UYTODU7iQ3mYAKjZrTp08fypcvj6ur643jJhMmk4kCBQpoflFEcgw/d1ciE6yp/vxdveBL4mOuExF2BYA9mzcQceVGN5KWvfrh5ZOXDgOHsGPNCj54aQBt+g7E0ycv6xd9hc1mpefLr6e6NpvVipfZxLx589IUQsktVqxYQf369e8ZFNm7dy/Vq1fPpKpERESyDpNhGFnh35giIiIiIiIiksW89NJLbNmyhUOHDjm7FHkAq1atol27djz77LPMnDkTkyn9d1GTzJGcnJyys1yvXr344Ycf+PTTT6levTq9evWiR48ejBgxwslVioiIiIiIiEhGiU22sf50uLPLuM0TpQrg7aY9bUUkZzsTHc++y9GpPn9Q41qEXzx/x8c+2/grgUWLAXD53F989f4EDu/chs1mpXzVGvR6dTRlqlRN9bUMw6B6IV9K+nml+jm5RUJCAvny5WP8+PEMHz78ruc5HA78/PwYNWoUo0aNysQKRUREnE//mhMRERERERGRO1KHkuzv119/pUuXLrRu3ZpPPvlEYZJszs3NDbvdjsViYcGCBbz22ms899xzeHl5UbZsWYVJRERERERERHK401Hxqe5OkhAXx/I5n3L80H5OHD5AbHQUgydNpXGHrinnOBwOtixbwq8bVnP62BFio6MILFqcx1q1o22/Qbi5e9zzOqa/66oSmPe+X5eISHbg7+6apvNn/rQ7VecVKlaCETPm3E9JKUwmE/553B5ojJzqp59+IiEhgTZt2vzreSdPniQmJkYdSkREJFdSoERERERERERE7kiBkuwtNDSUJ598kqpVq7Jw4UJcXDQNlBNYLJaUUMnkyZNZtGgRpUqV4pdffnF2aSIiIiIiIiKSgRyGweno+FSFSQBiIiNY8ulU8gcVoUT5ihzdveO2c5ISEvhk9MuUe7Q6T3TrjW9AfkIP7GHxjMkc2rmN8SFL7rlBiQGcjo6nUgEfzNrMRERyMB93F1zMJmyO1H4SZx4XswkfdYq6oxUrVlC6dGnKlitHdKKVyCQrUYlWopKs2OwGDsPAbDKRkOTCoPHvUaRSVaITrfi4u+j3moiI5Br6W4SIiIiIiIiI3JECJdnXpUuXaN68OYGBgaxYsYI8efI4uyS5T4Zh3HbjhsViISkpiT59+nD9+nXWrFnjpOpEREREREREJLPEJNnSdBOzf2AgX/xyAP8CgZw4fJCRnVvedo6Lqytvf7Och4Nrphxr1qUnBYoU+ztU8guP1mtwz2vZHAYxyTZ807h7v4hIdmI2mSjl68mJyLhUh/sygwko5eup8MMdGIbBrn0HeOntKaw6GZbye/SO3b5cPXii69P8GWvnz9iruJhvvN+l/DzxVlhHRERyOLOzCxARERERERGRrEmBkuzp+vXrtGrViuTkZNauXUtAQICzS5IH4HA4sNvttx03mUzUq1ePo0eP4u3t7YTKRERERERERCQzRSZZ03S+q5s7/gUC73GO2y1hkptqN70RPrlw8niqrxeVmLb6RESyo1J+nlkqTAI3ghGl/LSW878iEpJZc+wv3pr/A0UfrXlLKPNu7+E/j9scBici41h/Opxt564RkZCcofWKiIg4kwIlIiIiIiIiInJHCpRkP0lJSXTo0IHTp0+zdu1aihcv7uyS5AFMmTKFJk2a4HA4bnvMzc2NIUOGUKxYMSdUJiIiIiIiIiKZLSrRSmbtPR91NQwAH//UbVRiAiIVKBGRXMDbzYVAT7dM+zy+FxMQ6OmmDhr/YHcYHAm/zpaz10gw/d056z67t9wMmITHJ7Pl7DWOhF/HnoZuYSIiItmF/iYhIiIiIiIiIncUFxeHl5eXs8uQVHI4HPTt25dffvmF9evXU6VKFWeXJA9g/vz5vPbaa4wePRpXV9c7nmO6z0UwEREREREREcl+opKsmbYr/rI5n+Lp7UNwg8apOt8AotPYQUVEJKuKi4tj4cKFhIeHExkZSUREBBERERw7doxr166x6+ARwpxd5N8MoGJ+H2eXkWVEJlrZfTGSOOuNrt8mc/rst37z929oRBwXYhKpFeSPv8ed5+1FRESyIwVKREREREREROSO1KEkexk+fDiLFy/m22+/pWHDhs4uRx7AmjVr6NevH/369WPixIm3POZwODCn0yKYiIiIiIiIiGQfNnvmxEm+mzmdQzt+YcDYd/DK65vq51kzqT4RkYy2ZcsWBgwYgNlsxmKx4HA4sNtvBBQ8PT1x88iD6XpspoX8/k25AC8C8rg5u4wsISwuiR0XIjAy+I2Jt9rZevYq9YoEEOjlnrEXExERySRafRYRERERERGRO1KgJPuYMmUKH374IdOmTaNTp07OLkcewK+//kqnTp1o2bIln3/++S1dSBYvXszBgwdxOBxOrFBEREREREREnMGR0XfIAttXL2fhtPdo0qk7Lbr3SdNzM6M+EZHM0Lx5cypUqACA1WpNCZMAfL9+E7+FOT9MYgK8XS1UyKfuJHAjTLL9fAQOgwx/bwzAYcD28xGExSVl8NVEREQyhwIlIiIiIiIiInJHCpRkD9988w2vvfYao0aNYsiQIc4uRx7AH3/8wZNPPkm1atVYtGgRLi7/31x4+fLl9OzZky+//PKWkImIiIiIiIiI5A7mDJ4POLh9K9NHDiW4YROeG/demp+f0fWJiGQWk8lEixYtbtnYx2Kx8PLoN0koUMLpYRIAkwlqBvljMeuzNzLReqMzSSZf1wB2XIggMtGayVcWERFJfwqUiIiIiIiIiMgdKVCS9W3YsIG+ffvSp08f3n77bWeXIw/g/PnzNG/enEKFCrFixYpbfva2bNlC165deeqpp/joo48UKBERERERERHJhVwsGTcfEHpwH+8PeZbSlR/h1Y8+x/KPTS5SyzUD6xMRySzbtm2jRo0aTJ06lZIlS2KxWDCZTAQWKkSzZ14gKzRjMgH1igTg7+Hq7FKczu4w2H0x0mnvi8OA3y5GYndkgW8MERGRB6BAiYiIiIiIiIjcxuFwkJiYqEBJFrZv3z46dOhAkyZNmD17tkIG2VhkZCQtWrQAYN26dfj7+6c8tnfvXtq2bUuDBg1YsGABFovFWWWKiIiIiIiIiBP5ubuSEbM/508eZ9JzT1OgSDFGz/wKd488aR7DBPi668ZmEcm+Lly4QM+ePXn88cdxdXVl165d/Pzzz7i6umIYBp98u5wEu5ElupPULxpAoJe7s8vIEo5diyHOanfq+xJrtXPsWowTKxAREXlwad9SQERERERERERyvISEBAAFSrKoU6dO0apVKx5++GGWLFmCq6sW7LOr5ORk2rRpw6VLl9i+fTtFihRJeeyPP/6gRYsWVKxYke+//x53dy0SioiIiIiIiORWfh6uab5hdvWCL4mPuU5E2BUA9mzeQMSVSwC07NUPs8nMf/t3J+56NO2efZ69Wzfd8vxCxUpQvlqNe17HAO2ULyLZUlJSElOnTmXixIl4enoyZ84c+vbti9l8Y5/uWbNmcfZqJEa+ICdX+v9czNpcCiAiIZnQiDhnlwFAaEQcQd4eBORxc3YpIiIi90WBEhERERERERG5TXx8PKBASVYUHh5O8+bN8fHxYdWqVXh7ezu7JLlPhmHg5uZGkyZNmDJlCg8//HDKY2fPnqVZs2YULFhQ77OIiIiIiIiI4H8fHUB+/HIm4RfPp/z/rxtW8+uG1QA0aNMRgKuXLgKwYMqk257fqH2XVAVK4EbgRUQkO1m9ejXDhg3j1KlTDBkyhLFjx+Ln53fLOU8//TTbzl0jPD45S3QnMQG/X43hsWL5nF2K0/1+NQYT6H0RERFJBwqUiIiIiIiIiMhtFCjJmmJjY3nyySe5fv06O3fuJDAw0NklyQMwmW7sJDd+/PhbjoeHh/PEE0/g4uLC+vXryZdPi1AiIiIiIiIiuZ2PuwsuZhM2R+pvnZ350+57nvPdHxcfpCzgxm75Pm66BUlEsocTJ04wbNgwVq1aRePGjfnhhx+oVKnSHc+NTbYRFp987zEPH2DzD99yZPcOwi+cw8fPn7KPVqfH0BEElSqdct7xQ/vZ/MO3HD+4j79Cj2G32dL0OWwAYfHJxCbb8M7Fn7upfV8S4uJYPudTjh/az4nDB4iNjmLwpKk07tD1tnO3r/mRFfNmceHUCcxmC8XLlqd9/xeo3qjpPa+j90VERLI7s7MLEBEREREREZGsJy7uRptwBUqyDqvVSpcuXTh27Bhr1qzhoYcecnZJkgGuX79OixYtiIqKYsOGDQQFBTm7JBERERERERHJAswmE6V8PTE5u5D/YQJK+XpiNmW1ykREbhUbG8uoUaOoVKkShw8fZunSpWzcuPGuYRKA01Hxqfrc/WH2J+zasJpH6jxGv9ETaNalF8f27GJ4x+acDf0j5bx9Wzexaek3mEwmChYtfl+vw/R3XblZat+XmMgIlnw6lfOnjlOifMW7nrd6/hw+fHkQef0C6PXqaDq/MIz42OtMGtSbXetXp6omvS8iIpKdKQ4pIiIiIiIiIrcpXLgw33zzDeXLl3d2KQIYhsGAAQPYsGEDq1evJjg42NklSQYwDINDhw5x/vx51q9fT5kyZZxdkoiIiIiIiIhkIaX8PDkeGefsMm5hcKMuEZGsyjAMFi5cyPDhw4mIiGDUqFGMGDHinhtqOQyD09HxpKYvVJu+Axk2+RNc3dxSjtVr2ZZX2jbhh9kfM/SDjwFo3r0P7QcMxt0jD7MnjObimVNpfz3A6eh4KhXwyZVhvrS8L/6BgXzxywH8CwRy4vBBRnZuecfzVi+YS5kqVRk1MySls3jjjt0Y0CCYLcu+pc4Tre55rdz+voiISPamQImIiIiIiIiI3MbPz48uXbpgNqu5aVbwxhtvEBISwoIFC2jWrJmzy5EMYjKZqFu3Ln/++Sd+fn7OLkdEREREREREshhvNxcCPd0Ij09O1Y20Gc4wKODphrebbj8Skazp4MGDDBkyhF9++YUOHTowZcoUSpYsmarnxiTZsDlS92n7cHDN244FlXyIYmXKcf7k8ZRjfvkLpGq8e7E5DGKSbfi6u6bLeNlJWt4XVzd3/AsE3vO8hLgYgko+lBImAfD09sHDyws3D49U15ab3xcREcnedFeIiIiIiIiIiNzGZDJhsVhumTwX5/j444+ZNGkSH3zwAT179nR2OZLBLBaLwiQiIiIiIiIiclcV8/tkjTAJN3aJf/eVwWzbts3ZpYiI3OLatWu88MILBAcHc/XqVdavX893332X6jAJQGSS9YFqMAyDqGtX8fEPeKBx7iYq8cHqy64e9H25k0q16rJ/22ZWz59D2PlznD91nNkTRhEfc50nn+6fprFy6/siIiLZm7YIEBERERERERHJopYuXcpLL73Eyy+/zKuvvursciQd2e12LBZLho3vMAxikmxEJlmJSrQSlWTFZjdwGAZmkwkXiwk/d1f8PFzxd3fFx90FswJkIiIiIiIiIlleQB43ygV4ERoR5+xSyJscQ9hfp3j88cfp2bMn7733HkWKFHF2WSKSi9ntdmbPns2YMWOw2WxMnjyZF198EVfXtHeMiEq0YoL7DvH9vOJ7Iq5cottLr93nCHdnAiITrZTwTfehs7wHfV/u5NkxE7keGcGct99kzttvApDXP4Bxc7+lfLUaqR4nN78vIiKSvSlQIiIiIiIiIiKSBW3dupWePXvStWtXJk+erG4x2dz8+fO5cOECCQkJvPnmm7i4uGRIqCQ22cbpqHhOR8djc9xYUrvb4lpkgjXluIvZRClfT0r5eeLtpilDERERERERkaysQj4fLsQkEm+1O6VbiQnwcrXQpGx5mv76K3PnzmXUqFEsW7aMN998k2HDhuHu7u6EykQkN9u2bRtDhgzhwIEDPPPMM7zzzjsULFjwvseLSrLe92fs+VPH+WLCaMpXrU6j9l3uu4a7MYDoDOjUkR08yPtyN24eeShSqjT5CgZRo1FTEuJiWREym/df6s/EBT9QuESpVI2Tm98XERHJ3szOLkBERERERERERG51+PBh2rVrx2OPPca8efMwmzWFk5116dKFqVOnsmzZMr7++mseeeQREhIS0jVMEpGQzLZz11h/OpwTkXEpYRK4+05t/zxucxiciIxj/elwtp27RkRCcrrVJiIiIiIiIiLpy2I2USvIH2ftP2IyQc0gfyxmE2azmWeffZbQ0FD69+/PmDFjqFKlCqtXr3ZOcSKS61y4cIFevXrx+OOP4+rqyq5du/jyyy8fKEwCYLPfX2whMjyMSc/1xtPHh9emzc6wTtXW+6wvu7vf9+XfTBk2kPCLFxjy7kfUbdGaxh27MeGrpdiSrXzz0btpGiu3vi8iIpK96W4EEREREREREZEs5OzZs7Rs2ZKSJUvyww8/aDfHbG7EiBEcPHiQFStWsHHjRtasWYOrqyvz5s0DwDAebHHJ7jA4En6dLWevER5/IwRyvyPefF54fDJbzl7jSPh17A4tfomIiIiIiIhkRf4ertQrEnCjM+kDzi+khQmoVyQAfw/XW477+fnx0UcfceDAAYoWLcqTTz5JmzZtOHHiRKbVJiK5S1JSEu+++y7ly5dn/fr1zJkzh127dlG7du10Gd9xH5+tcTHXeXtgT+KuX+eN2d8QULBQutRyJ/dTX06Q3q/78rm/2P/LZmo2bn7LcR8/fypUr8kf+/akabzc+r6IiEj2pkCJiIiIiIiIiACZu/AsdxYREUGLFi1wdXVlzZo15M2b19klyQM4fPgwP//8Mx9++CFFihTB29ub0qVLU6RIEQ4fPgyA6QG2Eo1MtLLxTDihEXHA/QdJ/tfNcUIj4th4JpzIRGs6jSwiIiIiIiIi6Sl/Hlc2h3yGNSkpU65nNkH9ogEEet19A5TKlSuzadMmlixZwqFDh6hUqRKjR48mNjY2U2oUkdxh9erVVKlShTfeeIMBAwYQGhpKv3790rXbtzmNc7fJSYm883wfLp45xeiZIRQrUy7darmTtNaXU6T3646+Gg6Aw2G/7TGbzYbDbkvTeLn1fRERkexNgRIRERERERERAW7c2G6327l69SpXrlzh6tWrJGXSYrRAQkICbdq0ISwsjLVr11K4cGFnlyQPqHDhwtSoUYOgoCAAHA4HZrOZqlWrEh4ennLsfoTFJbH17FXirbcvcqWneKudrWevEhanzwIRERERERGRrObbb79lxjv/xfX8n3i5WjL0Wt6uFhoWz/+vYZKbTCYTnTp14tixY7z++ut8+OGHPPzwwyxcuFCb2ojIAzlx4gStW7fmySefpFixYhw8eJCpU6fi5+eX7tdysaQ+GGC32/nw5UGEHtjLqx/Nony1Gulez/9yTUN9OUla3pfUKFSiFGazme2rf7zld9S1yxc5tudXSlWonKbxcuv7IiIi2ZuLswsQERERERERkaxh9erVrF69mtDQUOx2O/7+/pQoUYJOnTpRq1YtLJaMXZTOzWw2G927d2f//v1s3ryZ8uXLO7skeQCRkZFcv36dwoULM3HixJTFzJu74+XPn5/du3enHNuwYQNXr16le/fuqRo/LC6J7ecj0q0jyb8xAMOA7ecj7rkDqYiIiIiIiIhkHsMw6NatG0FBQTRo0AC7w+DYtRhCI+IwkT6dTG+OUy7Aiwr5fLCY03aTrKenJ+PHj6dv37688sor9OjRg88++4wZM2bw6KOPpkOFIpJbxMbGMmnSJKZMmUKhQoVYunQpHTp0eKAO0Pfi5+5KZII1VZ+nIe+N57ef1lPjP82IjY5i64/f3fJ4w7YdAQi7cJ6ff1wKwMmjhwBY+tlHAOQPKkqjdp1SVZsJ8HV3TdW5OU1a3heA1Qu+JD7mOhFhVwDYs3kDEVcuAdCyVz98A/LRuGM3Ni75hnF9u1C7WUsS4+JYu3AeyUmJPDVwSKpry83vi4iIZG8mQ9F/ERERERERkVzN4XDwzTffMHLkSEqUKEFiYiLHjx+nRo0aXL58mTNnzvDqq68yceJEZ5eaIxmGwaBBg5gzZw7Lli2jdevWzi5JHsCyZcuYPn06R48epUKFCvz3v//l8ccfT9nZzGQyMX36dBYtWsSOHTvYsWMHjz32GB988AGvvvrqPcePTLSy9exVHE6Y0TOboGHx/Ph7aEFMREREREREJKuKSEjm96sxhMUn33ew5ObzAj3dqJjfh4A8bulS2/r16xk6dCihoaEMGjSI//73vwQEBKTL2CKSMxmGwaJFixg+fDjXrl1j5MiRjBgxAk9Pz3QZf8+ePXz11VeULVuWihUrUqFCBQoXLozJZOJMdDz7Lkenapy3nu7I0d923vXx7/64CMCRX3cwts+dQyOVatZlwvzv7vjYnVQv5EsJ3/T5OmQnaXlfAAY1rkX4xfN3fOyzjb8SWLQYdpuNdYu+4qfvFnLprzMAlKlSlU7PD6NKnfppqi+3vi8iIpK9KVAiIiIiIiIiksudO3eOxo0bM3LkSPr37w/AmDFjiI6O5uOPP+bHH3+kf//+TJ06lZ49ezq52pxnwoQJjB07ljlz5tCvXz9nlyMPYN26dXTq1IkxY8ZQrVo1Ro4cSZEiRVi1atUt53366ad8//33zJs3j8qVK/PSSy8xYcKEe45vdxhsPBNOvNWeKd1J7sTb1UKTkgXSvCOpiIiIiIiIiNwfwzDuawf+2GQbp6PiOR0dj+3vnSnuFjD553EXs4lSvp6U8vPE283lfsu+q+TkZGbMmMH48eNxdXXl7bffZsCAAeqOLCK3OXjwIEOGDOGXX36hQ4cOTJkyhZIlS6brNaZMmcJrr72GyWRK2RTI09OTgIAAmrRqQ9tX3kzX66WnJiXz59huGMePH8disVCkSBHc3W/tmh2daGXTX1edVNm95eT3RUREci4FSkRERERERERyuf3799O6dWsuXLhAfHw8np6eHDp0iHr16hEbG4vNZmPy5MmsWbOGrVu3OrvcHOWLL75gwIAB/Pe//+WNN95wdjnyAI4fP84TTzzBsGHDGDp0KAArV65k9erV9OrVi3z58uHv709gYCArVqygf//+JCYm0q1bNz7//PNUXeNI+HVCI+Iy8mWkSrkALyoXyOvsMkRERERERERyPIfDgdlsfrAxDIOYZBtRiVYiE61EJ1mx2g0choHZZMLVYsLX3RV/D1f8PFzxcXPBfB8BlrS6fPkyo0aNYt68eVStWpUZM2bw2GOPZfh1RSTru3btGm+++Saff/455cuXZ9q0aTRr1ixDrvXHH39QoUKFOz5WunQZPlzzS0ooLytxMZtoXaZgpnxeZ7Zr166RP39+zBYLxUqXo0qtOlSsXouiZcrjlseToCJFsJqyZggxJ78vIiKSs6X/VgIiIiIiIiIiku14eXlx5MgRKleuDMDhw4fJly8fAC4uLhQpUoRLly45s8QcZ8WKFTz33HM8//zzjBkzxtnlyAP6/fff6dKly/+xd9/RUZRfA8e/W9N7g1BDbwGR3qWp9NAVEZSioCKgKCqgoqiIiopdaaEjKJGqgICUIMUSQEBaaKGkt90k2+b9Iz/yEpPAJiTZBO7nHE6yszPP3MlONuzMc+/N1cVn/vz57N+/n/Xr1+Pr60v9+vX56KOP0Ol0xMXF8fTTT/PVV1/ZNX5ihqlMJJMAnEo0EOzujK+L3tGhCCGEEEIIIYQQd6Wff/6ZrVu3cvjwYZ555hkeeeSRIncqUauyE0a8nHRU8yqBYIuoQoUKLFq0iKeffpoJEybQoUMHHnvsMebMmUNwcLCjwxNCOIDVauW7775j2rRpOYWunnvuOXS64u/2YLFY2LdvH+vWrUOr1WKxWHKeU6lUdO7cmY0bN3ImzcyZJIPDOkbnRwWEeLnetUkLendPJr43l+bdeuHq4YGiKFgtFrT/Ow/MDo6vIHf76yKEEOLudmdlDIQQQgghhBBCCFHuVa1aldatW/P000+zbds2vvnmG+bMmUPfvn0BMJlMxMTEUKVKFQdHevfYv38/Q4cOJSwsjM8++6xIkwFE2dKnTx9Gjx6Nv78/AC+//DI7d+5k9erVHDlyhJdeeom//vqLQ4cO0alTJ1atWmV3MgnA8fg0yspZoiI7HiGEEEIIIYQQQhS/HTt28Oijj5KYmIivry/Dhg1jz549ua4fKUpZmtp8Z1q3bs2BAweYP38+W7dupU6dOrz//vtkZWXZPUZh1hVClE179+6lefPmjB8/nn79+nHq1CkmT55crMkkGRkZrF+/nlGjRlGhQgUeeOAB1qxZQ2hoaE43KJVKRe/evdm8eTMuLi6EeLuWqWQSAAUI8XZ1dBjFLjHDxN5LCWw7H0/7foNx9fAAsl8TbQkkFRW3u/V1EUIIcW9QKXfTp0whhBBCCCGEEEIUybFjx3j++ec5cuQIKpWKvn378sEHH+Dr68v169dZtGgRwcHBjBgxwtGhlnsnT56kXbt2NGjQgK1bt+Li4uLokEQxs9ls7NixgwoVKuR0/QGoWbMmTz31FFOnTi3UeOkmC1uj42673rEDkbwxclC+z723agN17msGwA9fz+PQzq1cv3ieDIMBv4rBNOvUlYHjJuLl62d3XA+GBOCulwbIQgghhBBCCCFEcYmLi6Nt27ZMmjSJZ599FoB+/foxduxY7rvvPgICAtDr9XdtcZLk5GTeeOMNvvjiC2rUqMGnn35Kjx49brvd4sWLWbNmDYMHD+aJJ54o+UCFEMUmJiaGqVOnsnz5clq0aMFnn31Gq1atim38pKQkNm7cSEREBD///DNGo5F69erRv39/wsLCaN68OYcOHaJ169YADBo0iBUrVuRKZNl7KYE4o6lMJJaogABXPe2r2H8dt6yz2hSOx6dxOjEdm6LkJPeUJ3fj6yKEEOLeIgklQgghhBBCCCHEPU5RlJyb0JcuXcLFxSWny4IoXleuXKFNmzZ4eHiwZ88efHx8HB2SKCKbzYbNZkOrtS+h4tq1azzyyCOMHz+eoUOHFmpfR2NTOZNkuO0NyxsJJT0fH02t0PtyPde0wwN4+mTfzJozYQxevn5UqlELZzc3Ys6eZvuaFXj6+fPRum04u96+ipoKqOXjRmigZ6GORQghhBBCCCGEEAU7dOgQY8eOZcWKFTRo0ACANm3aoCgK//zzDy1atODRRx/lySeftPuaRHl0o/jNzp07eeWVV3jvvfcKXNdisXDo0CH27t3LF198QVBQEOHh4dSrV68UIxZCFFZWVhaffPIJb7/9Nq6ursyePZsnnniiWJIJLl++TEREBBEREezatQur1UqrVq3o378//fr1y/P+YLPZaNy4MS1atOC7777L8/6amGFi18WEO46ruDxQ1Q9fF72jwygWZ2Ku8se1VDSu7uUykeRmd9PrIoQQ4t4jCSVCCCGEEEIIIYQA4Pr16zg7O+Pl5QVAeno6BoMBd3d33NzcHBxd+ZeSkkLHjh1JSEhg//79VKlSxdEhiSJKS0tj+PDhfPHFF1SqVCnfqqA3J2opisLIkSM5efIkkZGRhZrwYVMUNp65jsV2+0t4NxJKpnzyLW0e7m3/AQH7f9nEhxPHMvmjL2nfK8yubbRqFb1rBaG+S6uiCiGEEEIIIYQQpW3//v088MADLF26lNatWzNv3jyWLVvGvHnzqF69Oh9//DEnT55k/fr1d/21JUVR+OGHH2jcuDE1atSw63pKeno6Tz/9NGq1mu+++w5nZ+dSiFQIUVg2m41NmzbRv39/JkyYwBtvvIG3t3eRx1MUhRMnThAREcG6des4fPgwWq2WLl26EBYWRr9+/QgODr7tGLfq/nQsLpVTiYYix1hc6vi60SigfBf5yczMZP369WyLPEjXUc+i0WjRlPMkybvhdRFCCHFvK99/iYUQQgghhBBCCHHHbtycDQ8Px9nZmUmTJhEUFMT777/PgQMHqFWrFpMmTaJjx463vaki8peVlUVYWBgXL15k7969d/0N/7tZVlYWAwYM4ODBg6SkpFC5cuV817vxe7J27Vp+/vlnfvvtN/78889CVw9Ny7LYlUzyXxnp6eidne2+ERdYKfucNKSl2r0Pi00hzWTBy0lX6PiEEEIIIYQQQgiRV5s2bRgzZgyPPPII3bt3Z//+/axevZoePXoA8Omnn1KjRg0OHDhw119fUqlUDBo06LbXIy0WS871Fnd3d8aMGUPPnj2ZNm2adCkRopRdunSJlJQUqlSpklO4Kj9qtZo+ffpw+vRpQkJCirQvm83GgQMHcjqRnDp1Cjc3N3r27MnkyZPp2bNnoZJUbnffo76fBzFpmRjN1tt2ki4JKsBNp6G+n4cD9n7nFEXh999/Jzw8nNWrV1O1fijTv1uOWqMp1/ecyvvrIoQQQtwgCSVCCCGEEEIIIcQ9bufOncyaNYsKFSqgKApz5szBZrMRFxfH+PHjWb58Oc8//zxLliyhcePGjg633LHZbIwYMYL9+/ezbds2GjZs6OiQRBHZbDZGjhzJnj17+OWXX3K9ljabDbVanWebgIAAUlNT2bdvH35+foXeZ1KWudDbfP7aZDKNBtQaDfWbtWLESzOoFdok1zqKopCWnIjVYuXqhWiWffQOao2Ghi3bFGpfyZlmSSgRQgghhBBCCCHuQEpKCunp6fj5+eHs7MwXX3zBmDFjCAgIYNCgQTmJIxaLBbPZTO3ate+pbsK3m2gcFRXFkCFDmDVrFmFhYaxcuZJKlSpRuXJl0tLS+Pvvvzly5Aj3338/bdoU7rqHEMI+NpuN5557ju+//57q1auTmprKm2++yaBBg9Dr9fkmhimKUuhkEpPJxI4dO4iIiOCnn37i2rVrBAQE0LdvX+bOnUvXrl1LrDORRq2iZbAPv12MR3FARolKBS2CfdCoy1fyxaVLl1i6dCnh4eGcOnWKypUrM2X6GzToPQSF8nUs+Smvr4sQQgjxX5JQIoQQQgghhBBC3OO2bNlCrVq1WLt2LQADBw7k+vXrbN26FU9PTwYPHsxjjz3Gtm3bJKGkkBRFYfLkyaxZs4a1a9fSoUMHR4ckikhRFCZNmsT333/P2rVr6dSpU85zP/30E66urnTt2jVPUkmnTp1o06YNer2+SPtNzjSjAruq3ml1Olo/2Iv7O3XB08eXS2dOsX7h18wY3p93Vv5EjQah/z9ufBxjOtyX89ivQkUmffgFlWvUtjs2FZCUaaZawcUGhRBCCCGEEEIIcQsrV65kyZIl7N+/n4cffpiZM2dSt25dmjZtSmpqKvHx8WzatIlGjRqRnJzMrFmzAHI6lgho0qQJY8aM4cknn2TevHmkpKTw7rvv4u7uzvDhw9mxYwc1a9bkrbfeonXr1ixcuLBIRT+EEAV7/vnniYqKYteuXQBERETwxBNPkJqaytNPP51vYpi9XSlSU1P5+eefWbduHZs3byY1NZWQkBCGDRtG//79adOmDRqNpjgPp0A+zjraVvJl3+XEUu1SogLaVvLFx7l8FPYxGAz8+OOPhIeHs2PHDlxcXBgwYABffPEFHTs9wM5LiRjNVkeHecfK2+sihBBC3IoklAghhBBCCCGEEPe4uLg4KleunPPY3d0dT09PPD09URQFf39/dDodBoPBgVGWTx988AHz5s3jyy+/ZMCAAY4OR9yB2bNn89lnn/HVV1/lei23b9/OkCFDGDRoEF27ds1326ImkwAkZ5ntvjlZ7/4W1Lu/Rc7jFl0eos1DvXmhX1eWz32PGfNX5Dzn7uXN6wtXYc7KIvrEMQ5s20ymsXC/4wqQUoQOKkIIIYQQQgghhIBff/2VsWPHMmPGDIYNG8aLL75I9erVmT17NgCenp5MnjyZyZMn8/XXX+d0Qf3tt98cHLnjXbt2DX9/f7RaLVqtlldffRUfHx/Wr1/Pli1b8Pb25p9//iEiIoJvv/2WHj16YDKZGD58ODNmzOCTTz65o+s1QohsiqJw+fJldu3axWuvvUajRo0AaNSoEcuXL+eTTz6hWrVq9OjRI98uJQW5fv0669evZ926dfz666+YTCaaNm3Kiy++SP/+/WnUqJHdYxW3QDcn2lX2JTImEUWxrxDQnVCrspMWAt2cSnhPd8Zms7Fnzx7Cw8NZs2YN6enpdOrUiQULFjBo0CA8PDwAOBaXiuEuSCYpL6+LEEIIYS9JKBFCCCGEEEIIIe5xVatW5cCBA/z111/4+Phw4cIFdDodMTExVKpUiZiYGFJSUqhYsaKjQy3TjEYjrVu3ZuTIkbzwwgssW7aMqVOnMm3aNMaPH+/o8MQdWLBgAa+99hpvvvkm48aNy1l+8OBBwsLC6NKlC4sWLcrTnaQ4WKx3dkuyYrUQWnR5iAPbtmC1WnOq9en0epq07QhA887dCW3dnmnD+uHl60/zzt3tHt98h/EJIYQQQgghhBD3otTUVKZPn87MmTN58cUXAUhLSyMuLo6ff/4ZX19fqlSpwrPPPkvTpk354YcfaNq0Ke3btycoKMjB0TuW1Wrlueee4/nnn6djx4451ztq1qxJVFQUFosFgDp16tClSxe8vb3x8fEBYMyYMTzzzDNMnz6d4OBgRx6GEOWW2WzGbDbj6uqKSqVCq9Vy6tQpatWqlWudwMBArl69SkREBO3atcPT0/OW4545c4aIiAgiIiKIjIxEpVLRsWNH5syZQ1hYGNWqVSvpQ7NboJsTnar6c/BKUokmR7jrNLQI9inTHTDOnj3LkiVLWLJkCefPn6dGjRq89NJLPP7444SEhORaNzHDxKnE8l+4rDy8LkIIIURhSUKJEEIIIYQQQghxjxs2bBh79+7lueeeIz09na5du3L8+HGmTZtGWFgYX3/9NRaLhVatWjk61DLtt99+4+jRo0yZMoV9+/axfv16Ro0axdtvv+3o0MQdWL9+PU899RTjx4/n9ddfz1l+/PhxevToQZMmTVi7dm2JVbW0KXeesOFfMRiL2URWhhFXd49816l3fwt8AoLYveHHQiWUFEd8QgghhBBCCCHEvcZms2GxWAgICMhZtnbtWs6dO8c333yDv78/9evX54MPPqBt27a0bdvWgdGWLSaTCT8/P4YPH86rr77KoEGDyMrK4scff6RatWoYDAYiIyPZsWMHZ8+eZfLkyQQEBNCsWTPWr19PtWrV0On+fxKwzWYjNTUVb29vxx2UEOXEBx98QEREBG5uboSFhTF48GCCgoLo2rUrTz/9NKtXr6ZatWq88MILeHt7U79+fXbt2kVycvItE0psNhuDBg3i33//5cEHH2ThwoX07t0bf3//Ujy6wvFx1tGtegAnEtI4lWhARfF0K7kxTh1fN+r7eaBRO6YTy62kpqayZs0aFi9ezN69e/Hw8GDIkCGMHDmS9u3bF9g95nh8WrH9nEpbeXhdhBBCiDshCSVCCCGEEEIIIcQ9TFEU6tWrx5w5c1i2bBkuLi688sorJCUlMWrUKIYOHUq9evX4/PPPady4saPDLVY2RSEty0JSlpnkTDPJWWYsVgWboqBWqdBqVHg76fB21uHjpMPDSYu6gBshAFu3bkWr1WKxWFi3bh0VK1Zk3rx5Bd48EWXf3r17GTp0KP379+ezzz7LeS0vXLjAgw8+SKVKldi4cSNubm4lFsOtzjl7Xb90Eb2TM86ut47TbMrCmJ5WqLGLIz4hhBBCCCGEEOJek5WVRUZGBlu2bMFms7Fnzx5OnjzJTz/9RGhoKJs2bWLq1Kns3r2b4cOHOzrcMsXFxYVvvvmGlStXMm3aNBYtWkRCQgImk4mXXnqJmJgYwsLCmDx5MlOnTuWPP/6gVatWdO7cmejoaD7//POcie0zZszg0KFDxMbG0qFDBz7++OMS6UArRHl36dIlRowYwbVr15g8eTKRkZF88skn+Pr68sgjj/Dhhx/Sr18/evXqRUxMDDVq1GDz5s1UqFABZ2dnrl27RtWqVQscX1EUfv75Zzw8PEr0Wmtx06hVNArwJNjdmePxacQaTUVOmLixXYCrngb+Hvi6lEwBo6KyWq38+uuvhIeHs27dOjIzM+nevTvLly8nLCwMV1fXW26fbrIQazTdcp0zR/9m57rvOXYwkriYS3h4+1C7STOGTXyZ4JCaOett+345u9f/QEz0GQypqfgGBtGwZRuGPPsigZWrFMvx3lDWXxchhBCiuEhCiRBCCCGEEEIIcQ9TqVTYbDaaN29O8+bNc5Z7eXmxY8eOnMc2m80R4ZWIdJOF6GQj0SlGLLbsWzsF3eRJyjDnLNeqVYR4uRLi7Yq7Pu8llU2bNmGxWHIeX79+nV69erF+/fpbVl8TZdOxY8fo06cPrVu3ZtmyZWg0GiD7de3evTtOTk788ssv+Pj4lGgcWo39CRspiQl4+frlWnb+5D8c3rmVph06o1aryTQaUanAySX3Db79v2wiPSWZmo0KlzimK0R8QgghhBBCCCHEvS4rKwuz2UxQUBCLFy9m5MiRKIpCVFQUb7zxBi1atABg4MCBzJ07l+PHjzs44rLr0Ucf5dFHH2XdunV4e3sTFBREgwYNGDp0KN27d+ejjz4CYMSIEQQFBXH69GnWr1+fM1l9x44dvPPOO7z88svcd999zJ8/n0aNGvH999/TqFEjRx6aEGXOrl27SEtLIzIyEh8fH5566ilq1qxJfHw8AA0bNmTfvn2cO3cORVFyuiodPHiQihUr3vb+gkajoUKFCiV+HCXF10VP+yp+hbr3cPPy2917cKQTJ04QHh7OsmXLiImJoV69erz++usMHz6cypUr2z1OdLLxtsk26777gpN/HaLtQ72pVrc+yfFxbFm+iJcGPsR7qzZStU697LFOHCOwclVadHkQNy8vYi9fYvua5fyxazsfRWzHN6jo51J5eV2EEEKI4iZ/6YQQQgghhBBCiHtcQVX3FEVBpVKRkZHBc889x5QpU6hfv34pR1d8EjNMBVYJK+gmxs3LLTaFM0kGTicZCPxPNarLly9z+vTpPNv/9ttvbNmyhaFDhxbXYYhScOHCBR566CGqVatGREQEzs7OAKSkpPDwww+Tnp7O3r17qVixYonH4u2ky5XYdCtzJ49D7+xM3abN8fL15/LZU2z7fhl6ZxeGvzgNgKsXzjHzyaG069mXSiG1UKnVnD0Wxe4NPxJYqQq9Hx9jd2wqwMtJV7QDE0IIIYQQQggh7jGff/45u3fvJjIyktGjRzNz5kwOHDiAu7s7AwYMQKv9/yk8BoMBq9VKYGCgAyMuH/r375/zvdlsxmq1otfrycrKQqPRoNVqqVy5Ml9//TWK8v9XWKKiomjcuDEzZ87EycmJnj17MnDgQDZt2iQJJUL8j6Io2Gw29u3bh5+fX05BpZSUFGrVqkXdunVJSkrKSeoKDAzM1bH7t99+o27dujRr1sxRh1Cq3PVaQgM9aRjgQZrJQnKmmaRMMylZZsw3dUfXaVR4Oenwcc7ukO6hv3V39NKWmJjIqlWrCA8P5+DBg/j4+PDoo48ycuRIWrRoUeiu7DZFITrFeNtr3H2eeIpJH36BTv//XUDa9ujLC327su67z5n4wecAPPXGe3m2bdn1YV4e9DC7flrDgKcmFCo+N60ajVpd5l8XIYQQoiRJQokQQgghhBBCCHGPS09PR6VSodVqUavVqFSqnBsCarWazMxMVq9ezbhx4xwcadFYbQonEtI4lWjgxqX/orScv3m7OKOJXRcTqOPrRn0/D9avX5+zzo0EnV69evH000/To0ePIscuSl98fDwPPfQQTk5ObNmyBS8vLwCMRiN9+vTh/Pnz7N69mxo1apRKPN7OOrvP15ZdH2LPxnVsWPQtGYY0PH38aNW9J0OefYGK1UIA8KtQkdYP9uLo7/vYFbEGi9lCQHBlejz2JAPHPY+Hj6/dsSmAj7MklAghhBBCCCGEELfz1VdfMXPmTF544QVq1KjB22+/TePGjRk4cCAAvr6+zJ07l44dOxIfH8/8+fNJT09n0qRJjg28nNHpdAwdOpTp06ezfft2evbsSXx8PHv27KFOnTokJyfj7u5ObGws999/P2vWrOHMmTM0bNgQT09PFEVh9+7dTJ061dGHIoTD/Prrr+h0Ojp06IBKpUKj0RAaGsr27dt58cUXqV+/Pu+//z6+vr6MGzeOwMBAhg0bxoQJE1CpVJw9e5br16+zcOFCfvjhBz7++GN0Ol1OAat7gVqVnZjg5aSjmpejo7GP2Wzm559/Jjw8nA0bNmC1WunRowdr1qyhT58+ODk5FXnstCxLTseWW6l3f4s8y4Kr16BKrTpcPpu3oNfNAitld0sxpKUWOr7WlX2lcJIQQoh7niSUCCGEEEIIIYQQ97hZs2Zx8eJFnJ2dcXFxwdXVFVdX15zvbTYbRqMRT09PR4daaEmZZg5eScJgtgJFTyT5rxvjnEo0EJOWyYZtOwCoUKECzz//PE888USpdK8QxctgMNC7d28SExOJjIzMeQ3NZjNDhgzhjz/+YPv27YSGhpZaTD6FuJHVa8QYeo24dYcRTx8/xr01507DyuEtCSVCCCGEEEIIIcQt7du3j+nTpxMeHk7v3r0BuHLlChaLhT179lC1alWmT5/O008/Td26dalduzYBAQHs2rXLsYGXU4MHD+bKlSsMGzaMpk2bEhMTg0ajYdKkSVSuXJnt27fz9NNP4+/vT1ZWFvfddx8jRozA3d2dHTt2sGLFCkcfghAOcf36dZ5//nnWrFnDAw88wPLly3Oujz777LN4eXlx7tw5vvjiC9555x1GjhzJ9evX+eabbwgPD6dXr17UqFGD69evM2vWLDIzM9m3bx8NGjQAuGeSScqbqKgoFi9ezIoVK4iNjaVJkybMnj2bYcOGERQUVCz7SMoyF3lbRVFIToinSq06eZ5LS0rEZrMRdyWGNV/OBaBx6/aF3kdyplkSSoQQQtzzVMrN/RyFEEIIIYQQQghxz/Hy8qJChQoEBwdjMBgwGo1kZGSQmZlJVlYWZrOZtLQ0YmJiylWSRKwhi8iYRBSl+BJJ8qMCFMVG5qm/eaR3j5wOJaJ8MZvN9O3bl71797Jr1y6aNWsGgM1mY8SIEXz//fds2LCBhx56qFTjsikKG89ct6uCW2nTqlX0rhWEWm4GCyGEEEIIIYQQ+TKbzcyYMQONRsMbb7yBXq8HoGbNmri7u3PhwgXq1KlDx44dmTlzJr/99htVqlQhODgYPz8/B0dfviUnJ7Nw4UI8PT1p0aIF9evXR61W07p1a6pWrcoPP/yAyWRi8+bNjB8/ntdee406derw8MMPOzp0IUqdyWRi3rx57Nq1i8GDBzN27Fg+++wzRo8ejVb7//Wq169fz1tvvcX27dvx9vYG4IcffuCFF15g7dq1tGiR3WHi/PnzVK9e3QFHIuwRGxvL8uXLCQ8PJyoqioCAAIYPH87IkSNp0qRJse/v7+spRCcbi3Sf5rf1PzDv5Qk8885HdB34aK7nHmkcgtmUBYCHtw9Dnn2Bno+PLtT4KiDE25X7gspJKxkhhBCihEiHEiGEEEIIIYQQ4h5Xp04dnn32WZ544ol8n09ISCAgIACdrvxUaIo1ZLHvcmKJJpLcoACo1LjUvZ/4DDOBbkVv/S4cw2azMWrUKH799Vc2b96ck0yiKAqTJk1ixYoVrFy5stSTSQDUKhUhXq6cSTKUyvlsLxUQ4uUqySRCCCGEEEIIIcQt6HQ6nn32WeLj43OSSR5++GFcXFxYsGABlSpV4ptvvmH58uWMHTuWnj17Ojjiu4e3tzcvvPBCrmXR0dH8+eefzJ49G5VKhc1mo3///ixcuJDLly/z/PPPOyhaIRxLr9fTvHlz6tWrR+/evfnjjz9477336NSpE/Xq1ctZLzIykqCgoJxkEoD09HR8fHwICQnJWSbJJGVPVlYWGzduZPHixWzZsgWNRkOfPn14++23efjhh0v0/k9ylrlI17YvnzvN/Ldeo+59zXggbEie56d9uwyzKYvLZ0+ze8MPZGYYC70PBUi5gw4qQgghxN1CSmYKIYQQQgghhBD3uN69exMdHU1WVhZWqxWLxYLVasVqtWKz2UhISMDJyQlXV1dHh2qXpExzdmeSUt6vAkTGJJKUKTcfypupU6eyfPlyli5dSrdu3XKWv/XWW3z22Wd89dVXDB061GHxhXi7lqlkEsg+30O8y8d7ghBCCCGEEEII4UhVqlShadOmABiNRnr06MGmTZto3rw5FStWZOTIkcTHx3Pp0iUHR3r3CwgIoHv37uzcuRMAFxcXIHtCvMViAbILjAhxL+rYsSO9e/cG4JNPPiElJYX58+djNP7/JP1+/fqxZcsWXnnlFX7++Wfef/99pkyZwpAhQ/Dx8ZHfnzJGURQOHjzIs88+S8WKFRk0aBCxsbHMmzePq1evsnbtWvr06VPixcQs1sKfF0lxsbz79AhcPTyY8ul3aDSaPOuEtm7H/R270PfJp5nyybes+eJjNi9bWOh9mYsQnxBCCHG3kQ4lQgghhBBCCCHEPW7SpElkZGTg5JR/Z43q1auzd+/ecpFQYrUpHLyShKPuW9kUOHQlia7VA9CopXNDWXTq1Cnef/99Zs+eTUBAAB9++CEffvgh8+bNy5U08tlnn/Hmm2/y7rvv8vTTTzswYnDXawl01RNnNJWJxBIVEOCqx10vlxaFEEIIIYQQQojCcHV1ZeLEibmWpaSkUKtWLby8vBwU1b3D3d2dIUOG8Oqrr5Kenk737t1ZvXo1V65cYdiwYQCopBuruEep1dl1qU0mE3q9ng8++IAJEybQp08fOnXqBECbNm148803Wbt2LZs2bUKv17N06VIefvhhR4Yu/iMmJoalS5cSHh7OyZMnCQ4O5qmnnmLkyJHUr1+/1OOxFfKGjSEtlXeeegxDaiqzlq/DN6jCbbepULU6IfUbsmfDOnoOH1Wi8QkhhBB3I5UiqcFCCCGEEEIIIYS4SxyLS+VUosHRYVDH141GAZ6ODkPk48UXX2Tu3LnUqFGDZ555hilTpjBt2jRmzZqVs86yZct4/PHHefHFF/nggw/KxESCxAwTuy4mODqMHA9U9cPXRe/oMIQQQgghhBBCiGJnUxTSsiwkZZlJzjSTnGXGYlWwKQpqlQqtRoW3kw5vZx0+Tjo8nLSoC3HtQFGUnGsNmZmZ9OzZk4CAAFavXl1ShyT+4/jx40yaNImUlBQyMjJ46aWX6Nu3L15eXrleHyHudU2bNqVy5cosWrQIf39/rl+/TlBQECaTibNnzzokOUHkz2g0EhERQXh4ONu3b0ev1zNgwABGjhxJ165d8+3wUVq2R8eRarLYta4pK5O3Rj/KuX+O8MbC1dRt2tzu/Uzp3x2zycSnm34rVHyeei3dQgIKtY0QQghxt5GEEiGEEEIIIYQQQtwVZMK9sEfdunU5deoUarUam81G//79+eGHH3ImCmzcuJGwsDBGjBjBggULytQEAkmYEkIIIYQQQgghSk66yUJ0spHoFCMWW/ZUGhXk2y305uVatYoQL1dCvF3zdPO02Ww5Vf//68cff2TNmjX8888/HDlypNiOQ9jv6tWreHp64ubmlu/ziqJgsVjQ6XSlHJkQJUNRFA4fPkxERATVqlVj9OjR+SYaWCwWtFotf/zxB61bt2bu3Ln89ddfREVFsWjRIho3buyA6MV/KYrC3r17CQ8P5/vvvyctLY327dszcuRIBg8eXGY6X+26GE9ihvm261mtVj6YMJo/d+9g6heLaNapa951LBYyDOm4e3nnWn76yF+89mhfOvTuz/PvzytUfH4uOjpV9S/UNkIIIcTdRnv7VYQQQgghhBBCCHEvsVqtqNXqMjWR3h7H49MKvMlf2lRkx9O+ip+jQynXirsi6KVLlzh16lT22DYbANu2bWPv3r106NCB3bt3M3jwYPr06cO3335b5n4H6vq4EZOagdFic8h5rgLcdBrq+3k4YO9CCCGEEEIIIUTJSMwwcTw+jVijKc+1pYI+f9+83GJTOJNk4HSSgUBXPQ38PXKKjFy+fJlKlSrlO2FbURRsNhu7d+8urkMRhVSxYsUCn7NarSxatIgPPviATz75hB49epRiZEIUH7PZzO7du1m3bh0//fQTly9fxtfXl549ezJo0CC8vb3zJL5ptdlTCps1a0b9+vWZOHEi9erVY+HChZJMUgZER0ezZMkSlixZwrlz56hevTqTJ09mxIgR1KxZ09Hh5eHtpCMpw3zba9rh78/k0I6tNO/cnfSUZH5b/0Ou5zv1HUim0cDTnZvTtkdfqtSqi7OLKxdOnWDnutW4unsyaPykQsWmArycJGlQCCGEkIQSIYQQQgghhBBC5HLw4EHMZjMdO3Z0dCh2SzdZiDWaHB1GDgWINZpIN1nyVKYUt1eYiqA334i6VUVQgK1bt+bdV3o6Dz30EL/++it9+vShbdu2rFy5MuemqSMpisLx48fZuXMnW7duZcuWLdS/vwVvLf0BR/QcVqmgRbAPGnXZSrQRQgghhBBCCCGKwmpTOJGQxqlEAzc+6Rb14/aN7eKM2R106/i6Ud/Pg44dOzJnzhwGDx6cp3DFwIED6d27N05OTkU9BFGCNBoNbdu2JTg4mJ49e9KnTx8+/vjjMjlZW4j/MhgM/PLLL0RERLBx40aSkpKoWrUqAwYMoFevXhw+fJh3330XV1dXvvnmm3zHOH36NP369ePy5cssXbqUxx57rJSPQtwsLS2NtWvXEh4ezm+//Ya7uzuDBw9m4cKFdOjQocBuWGWBt7POrr+v50/8A8Dhnds4vHNbnuc79R2I3tmFroOGcexAJL//sglTViY+AUG07xXGoHGTCKxcpVCxKYCPsySUCCGEECpFccTtZyGEEEIIIYQQQpRVQ4YMISkpiW3b8l6wL6uOxqZyJslQ6Jv+a7/+lJWfvE+V2nX5ZMPOnOU2m41t3y9j66olXLt4HicXV2o0CGXQ+EnUu7+FXWOrgFo+boQGehYyqnvXrSqC2uvGdv+tCArQs2dPtmzZAmRPCrBarTRp0oRHH32UuXPnUq1aNX799Vc8PBzbgePs2bO88sor/PrrryQlJaFSqbhxCe/hhx8mfG0E+y4nlmqXEhXQrrIvgW4yyUUIIYQQQgghRPmXlGnm4JUkDGZrie3DTafh3WeewJyazNq1awkODi6xfYmSoygKa9eu5cUXX+T69etMmTKF1157DTc3N0eHJkQu8fHxbNiwgYiICLZu3UpmZiahoaGEhYURFhZG06ZN2bJlC5MmTeLcuXNMmDCBN954A29v73zHO3fuHMuWLePVV19Fp5MJ945gs9nYuXMnixcv5scffyQjI4MuXbowcuRIBgwYUG7eh1Iyzfx6Id7RYRSoa3V/6VIihBDinicJJUIIIYQQQgghhMild+/eaDQafvrpJ0eHYheborDxzPWcThb2Srh2hQk9OqBSqQioVCVXQsni2TPZsPgbOvYdSP1mrTCmpbB19TLir8bwzoqfqN24qV370KpV9K4VhFolHR1u5b8VQYvjYtWNcW5UBFWrQKfTYbVacXd354knnmDMmDH4+fnRvn17XF1d2b17N/7+/sWw9zuzadMmevfune9zUVFRNG7cmFhDFpExiShK8fy8bkWtgraVJJlECCGEEEIIIcTdobQ+U6vI7vYpn6nvDgaDgffff585c+YQEBDAhx9+yJAhQ/J0nhGiNJ0/f56IiAgiIiLYs2cPiqLQtm1b+vfvT79+/ahVqxYAZ86cYdKkSWzatIkuXbowb948GjZs6ODoRUFOnTpFeHg4S5cu5dKlS9SpU4eRI0cyfPhwqlat6ujwCq2o93BKg9zDEUIIIbJJQokQQgghhBBCCCFy6dKlC0FBQaxcudLRodilqNWt5r4wjtTERGxWK6nJiTkJJVaLheHN69CsUzemfPptzvrXL1/kmW6t6fn4aEZPe9vu/Uh1q1srrYqgLSp6M3LIQLp06cL48eNxdnYmPj6ejh07YjAY2LdvH5UrVy6xGAprypQpfPTRRzmP1Wo1rVq1IjIyMmdZafzs3HUaWgT74OMs57AQQgghhBBCiPIv1pAlXT/FHTl37hwvvvgiERERdOrUiXnz5tG4cWNHhyXKiUOHDrFz506aNGlCu3btcHd3L9T2iqJw9OhR1q1bR0REBH///Td6vZ5u3boRFhZG3759CQoKylk/PT2dd999l48++ogKFSowd+5cBgwYIIlQZVBSUhKrV68mPDyc33//HW9vb4YOHcoTTzxBq1atyv1rVtQu8yVJuswLIYQQ/0/r6ACEEEIIIYQQQghRthiNRlxdXR0dht2SssyF3uafQ7+z/5dNfPjjVhbMmp7rOYvFjCkzEy+/3J0qvHz9UavV6J2dC7Wv5EyzJJQU4OaKoCXJaLay+1ICC1atzZm8kZaWRs+ePYmPj2fv3r1lKpkEoF69erke22w2nn/++VzLfJx1dKseUOLdXTTq8n2zUgghhBBCCCGEgOzCDJExpZtMAtmfsSNjEulU1V8KNtwFatSowbp169i6dSvPP/88TZs25ZlnnmHmzJn4+vqW+P5tikJaloWkLDPJmWaSs8xYrAo2RUGtUqHVqPB20uHtrMPHSYeHk1Yq75cBu3fv5oUXXuDSpUs0bNiQL7/8kjZt2vDll1/i4+ODoigFJgxYrVYiIyNzOpGcO3cOT09PevXqxauvvkqPHj3w8PDItY2iKKxatYqXXnqJhIQEXn31VV5++eVydd3/XmCxWNi6dSvh4eH89NNPmM1mHn74YVavXk3fvn1xLuS9iLIsxNuV00kGR4eRi0J2XEIIIYSQhBIhhBBCCCGEEEL8R3lLKEnONBdqIr3VamXBrOl0GzSManXr53neydmF2k3uZ1fE99Rt2pz6zVpiSEtl7Zef4ObpRfchw+2OTUX2ZIVqXnZvcs8ozYqgCqAosO9yIu0q++Klhf79+3Py5El27dpFnTp1SiEK+9hsNmbMmMG7777LqFGj+Pvvv/nzzz/x8/NjwIABedbXqFU0CvAk2N2Z4/FpxBpNRU4subFdgKueBv4e+Lro7/BohBBCCCGEEEKIssFqUzh4JanEi1oUxKbAoStJdK0eIIUb7hIPPvggR44c4bPPPmPmzJmsXLmSd955hzFjxqDRaIp9f+kmC9HJRqJTjFhs2SdyQdeAkjLMOcu1ahUhXq6EeLvirpdpYqXBarWyd+9eatWqRaVKlUhJSeHrr7+mRo0a7Nu3DycnJ9avX8+oUaM4fvw47dq1y5NMYrPZ2Lx5MxEREaxfv564uDgqVqxIv379CAsLo3Pnzuj1+V+7i4qKYsKECezZs4cBAwbw0UcfUb169VI4cmGvo0ePEh4ezvLly7l27RqNGjXinXfe4bHHHqNChQqODq9EuOu1BLrqiTOaykSXEhXZ18HlfVEIIYTIJn8RhRBCCCGEEEIIkYvRaMTNzc3RYdgtOctcqBsQW1ctIe7KZd5YtLrAdSbO+Yy5k8fx6UvP5SwLqlKNd1b8RIUq1ezelwKkFKGDyt3O0RVBN332Pvv27ePnn3/m/vvvL+UoCpaZmcmTTz7JqlWrmDNnDlOmTCE2NpYHHniAsWPHFniTGMDXRU/7Kn55JhcoigKKgkqtzrPNzZMOZHKBEEIIIYQQQoi72YmENAxmq0NjSDdbOZGQRqMAT4fGIYqPXq/nxRdfZNiwYbz66quMGzeOb7/9ls8++4y2bdsWyz4SM0wFFhEp6NrazcstNoUzSQZOJxkIlCIiJS4lJYVHHnmErVu38tlnn/HMM8+QkJDA5s2b+fbbb3Fyyu6efP/992MwGAgKCsp3HLVazfPPP49Op2PUqFGEhYXRsmVL1Plc47shISGBGTNm8M0331C3bl22bt1K9+7dS+Q4ReHFxcWxcuVKFi9ezF9//YW/vz/Dhg1j5MiRNG3atMAONXeTBv4e7LqY4OgwgOz3yQb+HrddTwghhLhXyN1hIYQQQgghhBBC5FLeOpRYrPanJaQlJbJq3ocMHj8JL1+/AtdzcXOnSu261LmvGY3bdCApPpZ1333O+8+NYtbydXj6FLztf5kLEd+9wNEVQS1WG016D6bPQ93o1KmTY4LIR3x8PGFhYfzxxx+sWbOGQYMGARAUFMTx48ftvqHortcSGuhJwwAPfv8riumz3uOVmbNw8vLBbFWwKQpqlQqdRoWXkw4fZx3ezjo89FrU98BNSyGEEEIIIYQQ957EDBOnEg2ODgOAU4kGgt2dZUL/XaZixYosXryYp59+mgkTJtCuXTuGDx/OnDlzqFixYs560dHRxMbG0qpVq9uOabUpnEhI41SigRtXbIp6Oe3GdnFGE7suJlDH1436fh7SLacEJCYm8vfff9OuXTvOnj2L2WymRo0aBAYGsmDBAqpUqcKVK1d45513eP755/HwyH9Cu81mY//+/QQGBt72uqDVauW7775j2rRpWCwWPvzwQ5577jl0Ol1JHKIoBJPJxKZNmwgPD2fTpk2oVCp69+7NG2+8QY8ePW5ZQOhu5Ouip46vW5n4m1zH103+FgshhBA3kYQSIYQQQgghhBBC5FLeEkpshchMWPHpHNy9vekxfFSB61gtFmY+OZSGLdswZsY7Ocsbt+nA5D6d+WnBVzw+ZXqJxHcvcHRFULVaTcVqIdTwC3VYDP91+vRpevbsSUpKCjt37qR169a5ni9KdTq1SsXJv//kt5/WsnHZonL1Oy2EEEIIIYQQt2NTFNKyLCRlmUnONJOcZcZyUxK9VqPC2yk7gd7HSYeHkyTR38uOx6fl6ezgKCqy42lfxf5iJaL8aNOmDQcOHGDRokW8+uqrRERE8PrrrzNx4kRUKhUPPfQQFy9e5J9//qFmzZoFjpOUaebglaSca2jFde7eGOdUooGYtExaBvvg4yxJB8Xpiy++YPr06Zw6dYpjx45x8uRJQkNDWblyJb/++iv9+/dHp9PRvn17Dh8+TNu2bVmwYAEPPPAAiqLkXAdUq9UFdi+52d69e5kwYQJ///03TzzxBO+99x4VKlQo6cMUt6AoCn/++SeLFy9m5cqVJCQk0KxZM+bOncujjz6Kv7+/o0N0qPp+HsSkZWI0Wx3yd1kFuOk01PeT7iRCCCHEzQrugyeEEEIIIYQQQoh7ksFgKFeTz+2dEHLl/Dm2f7+MXsNHkRR7ndjLl4i9fAmTKQur2Uzs5UukJSdx/PDvXDx9khZdHsy1fXD1GlSqUZuTfx4qkfjuBWWlIqhKpeJUooHEDJOjQ2Hv3r20bt0ajUbD77//nieZ5E5ERUVRu3btcvX7LIQQQgghhBC3km6ycDQ2lY1nrvPrhXj+vJZCdLKRxAwzqSYL6WYrqSYLiRlmopON/HkthV8vxLPxzHWOxqaSbrI4+hBEKUs3WYg1mspEMglkT+iPNZrkXLyLaTQaxowZw6lTp3jyySd59dVXCQ0N5bnnnuPMmTNYLBZGjRqFUkARmlhDFr9djMdYwgVZjGYrv12MJ9aQVaL7uVdYrdmv18mTJ6lbty69evXi+vXrREVFAdCsWTOcnZ2pV68ef/31FytXruTHH3+kSZMmfPLJJ6SnpxeqqExMTAzDhw+nQ4cO6HQ6fv/9dxYtWiTJJA509epVPvjgA0JDQ2nevDk//PADo0aN4tixYxw+fJgJEybc88kkABq1ipbBPjjqtolKBS2CfaRDkxBCCPEfklAihBBCCCGEEEKIHGazGYvFUq4moGs19l34T7x+DZvNxoJ3ZjC+W6ucf6ej/uTK+XOM79aKNV9+THJ8HAA2my3PGFaLOefmoL10dsZ3L7hREbQsuFER1JFWrlxJ165dCQ0NJTIykho1ahTr+EeOHKFx48bFOqYQQgghhBBCOEJihom9lxLYGh3HmSQDFtv/T8QuKFHg5uUWm8KZJANbo+PYeymhTBQYEKUjOtlo17WIDIOBVfM+4O0xwxjZqgED6wWz48fVt9zGYjYzsVcnBtYL5qcFX9kdk+p/cYm7m4+PD/PmzeOvv/7C39+fb7/9FkVRsFqt7N69mwULFuTZJtaQxb7LidiUku+oowA2BfZdTpSkkmKg0Wg4cOAA58+fp1u3brRo0QJPT08uXrwIZCecfPPNN4wbNw5/f3/MZjNeXl7UqlWL9PR00tPT7dpPVlYWs2fPpm7dumzdupUFCxbw+++/06pVq5I8PFGAjIwMVq1aRY8ePahcuTIzZsygUaNGbNmyhYsXLzJnzhwaNmzo6DDLHB9nHW0r+Zb6vQIV0LaSr3RmEkIIIfIhCSVCCCGEEEIIIYTIYTRm38wuTwkl3k46u248VK1Tl5c/X5DnX5XadfEPrsTLny+g68BHCa5eE4C9m37Ktf25f45wJfosIfUb2R2bCvBykpsTcGcVQdd+/SkD6wUzqU/nXMt/+HoerwztzZNtGvFI4xCefagdC999nZTEhNuO6ciKoIqi8M477zBs2DCGDh3K1q1b8fX1LfZ9REVF0aRJk2IdVwghhBBCCCFKk9WmcCwulV0XE4gzZieBFHWS9Y3t4owmdl1M4FhcKlZbWelbIUqCTVGITjHadc6kJSWy5suPuXzuNNXqNrBr/M3LFhJ/NabQcSlAdIoRWwEdKsTdJTQ0lNq1a6NW556iNWnSJGJi/v/8Sco0ExmTWOrddBQgMiaRpExzKe/57vPXX38xZMgQIDuhSFEU5s2bh1qtZuvWrXh5eREZGYnJZEKn05GSksLhw4fx9/e3q7PI5s2bCQ0NZfr06YwdO5ZTp04xatSoPOeWKFmKohAZGcnTTz9NxYoVefTRR0lNTeWrr77i2rVrrFq1iocffhitVuvoUMu0QDcn2lX2Ra2iVBJL1CpoV9mXQDenUtibEEIIUf7I/1yEEEIIIYQQQgiRo1wmlDjr7LrR6unjR6tuPfIs3xQ+HyDXc03admRXxPdkGNJo0q4TSbHX2bJ8EXpnZ3qPGGN3bApItav/uVERtLA3xROuXeHHb+bhnM85efafI4TUa0j7nv1wdnMj5uxptq9ZwR+//cpH67blu83NblQEDQ30LGRURWcymRg3bhyLFi3izTff5PXXX0elKv5bZjExMSQlJUmHEiGEEEIIIUS5lZRp5uCVJAzm7E6hxTXJ+sY4pxINxKRl0jLYRz6736XSsiy5utncik9gIPP3/I1PQCBnjkYxdXDea0g3S0mIZ82XHxM25llWzfug0LFZbAppJosUIrkHREVFER4enme5wWCgb9++HD58GJsCB68k4agcI5sCh64k0bV6ABp1WekvXP7Mnz8fDw8PfvnlFw4dOoS3tzcajYbXX3+dHj16EBMTw/jx47lw4QJ169Zlw4YNeHl5MW3atFuOe/bsWSZOnMimTZvo0qUL69atk64Xd+jff/9l3759hIaGEhoairOzMzab7ZbJORcuXGDp0qUsWbKE06dPU7VqVSZMmMCIESOoXbt2KUZ/9wh0c6JTVf9c/98rCe46DS3k/3tCCCHELUlCiRBCCCGEEEIIIXKUx4QSnxK48T71y0WsX/g1ezf/xF97dqLV6anfrCWPTnyZSjVqFWosb7lJUaiKoP8VPuct6jRphs1qJTU5MddzL382P8/6de5rzocTx3J451ba9wq75dg3KoI2DPBAXQJJHf+VnJzMwIED2bNnD0uXLmX48OEltq+oqCgA6VAihBBCCCGEKJdiDVnZlfpLeHK10Wzlt4vxtK0kFavvRklZ9ndc0Omd8AkItHv9ZR+9Q6WQmnTsO7BICSUAyZlmSSi5Bzg7O9O5c2euXbtGUlISycnJZGZmAvDnn39y8eJF0lx9SnQytT3SzVZOJKTRKKD0Cq/cTcxmM+3bt2ffvn306NGDb7/9Fr1ezxNPPIFGowFgzJgxVK1alR9//JHLly8zbdo0hgwZgl6vv+XYr7zyCkePHmXt2rUMGDCgRIrT3AsURWHLli289dZbnDhxgqZNmxIdHU3z5s354Ycf8k0mURQFo9FI37592bFjB25ubgwcOJCvv/6aBx54QLrDFAMfZx0PVPbhp/1/oK1QrUhFqfJzY5w6vm7U9/OQZDkhhBDiNiShRAghhBBCCCGEEDnKY0KJh5MWrVpld8XJ/3pr6Q95ljk5uzD4mckMfmbyHcWmVavw0Mvll8JUBL3ZP4d+Z/8vm/jwx60smDXdrm0CK1UBwJCWatf6pVUR9Pz58/Ts2ZNr166xbds2OnXqVKL7O3LkCN7e3lSpUqVE9yOEEEIIIYQQxS3WkMW+y4nF1pHkVhRAUWDf5UTaVZakkrtNcqa52Cam3uz0kb/YFbGGWcsjUFG0CaoqsrvwVPMq3thE2VO3bl127NiRa5nJZCI5ORmDwYBHYEX+uJjgoOhyO5VoINjdGV+XWyc43GsURSEqKop169axdetWdu/ejU6X+1qiTqfj7bffRqfT4ezsnLPczc2NvXv3cv36dYKCgnjwwQd58MEH7d632WzmmWeeITw8vFxdsy+LLl68yEcffUTXrl1Zt24dPj4+RERE8NRTTxEREUFYWBhWqzUnAQhApVLh5uZGaGgoI0aMYODAgbi7uzvwKO4+0dHRdO/enbNnz/Jr5AH0lWsSazQV+e/3je0CXPU08PeQ9zMhhBDCTjKjQQghhBBCCCGEEDluJJS4ubk5OBL7qVUqQrxcOZNkKJXJJvZSASFerqXS+aKsK0xF0BusVisLZk2n26BhVKtbv8D1FEUhLTkRq8XK1QvRLPvoHdQaDQ1btrF7XyVdEfTgwYP06dMHd3d39u/fT926dUtsXzdERUXRuHFjqVgohBBCCCGEKFeSMs3ZnUlKeb8KEBmTSKeq/vhIp9G7RnKWudjPJUVRWDBrOm179KVu0+bEXr5UtHGAlCJcLxF3B71eT2BgdkecvZcSSiTxqShUwPH4NNpX8XN0KA5nsVjYt28fERERREREcP78eby8vOjduzcJCQkEBQXlue7m4eGR8/2NxISZM2fi6+tLUFBQkeLQarV07tz5jo7lXvT333/z5ZdfEh0dTfv27Rk2bBi+vr706dOH/v37U7FiRQD69OlD69atiYyMJCwsrMAuJZ988kkpH8HdT1EUwsPDeeaZZ8jIyACggpc7Dar4kW6yEJ1sJDrFmFOoqqD3yZuXa9XZ94pCvF1xl0JfQgghRKHIX04hhBBCCCGEEELQqFEjLly4kFN9q3///nh7e/Pwww8za9YsB0d3eyHerpxOMjg6jFwUsuMSRasIunXVEuKuXOaNRatvPXZ8HGM63Jfz2K9CRSZ9+AWVa9S2az8lXRF03bp1PPbYYzRp0oT169cTEBBQMjv6jyNHjtC1a9dS2ZcQQgghhBBCFAerTeHglSQUB82qtilw6EoSXasHoFFLcv7dwGIt/pNp54+ruXDqBFM+/faOxzKXQHyifEk3WYg1mhwdRg4FiDWaSDdZ7snJ2BkZGWzbto2IiAjWr19PQkICwcHBhIWFERYWRqdOndDr7et2cOM6e5s29he9yY8Uiymcc+fO8eqrr7Jz5066d+9Ot27d+Pbbb9m5cycLFixg0qRJebY5ceIETz/9NJD/z1teg+IXHx/P2LFjiYiIyLX8Rncfd72W0EBPGgZ4kGaykJxpJinTTEqWGbNVwaYoqFUqdBoVXk46fJx1eDvr8NBrpcCXEEIIUUT33v/+hRBCCCGEEEIIkYenpyfp6ek5j8+ePQtAlSpVHBVSobjrtQS66okzmspMNb8AV/09eeM1P4WtCJqWlMiqeR8yePwkvHxvXRHR3cub1xeuwpyVRfSJYxzYtplMo/3JRSVVEVRRFD7++GOmTJnCoEGDCA8Px8XFpdj3k5/MzEz+/fdfJk+eXCr7E0IIIYQQQojicCIhDYPZ6tAY0s1WTiSk0SjA06FxiOJhK+bsJGN6Gss/fo9+o8bjX7HSHY9X3PGJ8ic62WhXEZYMg4GfFnzJ6SN/cebo36SnJPPsux/TZcDQXOtt+345u9f/QEz0GQypqfgGBtGwZRuGPPsigZXtu86r+l9coYH3xvtgUlISGzduJCIigp9//hmj0Ui9evV46qmnCAsLo3nz5vl2rRBlk16v57777mPatGk0btwYgB49enDfffdhsVgAsNlsOa/pzz//jE6no2XLlg6L+V4TGxtLo0aNiI+Pz/PcjYSSG9Sq7IQRLyddiRWEEkIIIUQ2mdUghBBCCCGEEEIIpk6dSlhYWK5larWa9957zzEBFUEDfw92XUxwdBhA9k3gBv4ejg6jzChsRdAVn87B3dubHsNH3XZdnV5Pk7YdAWjeuTuhrdszbVg/vHz9ad65u137K+6KoBaLhYkTJ/Lll18ydepU3n333VK98fzPP/9gs9lo0qRJqe1TCCGEEEIIIe5EYoaJU4llo/PoqUQDwe7O+LrYV4VelF3FXaX8p4VfYTGbadezH7GXLwGQcP0KAOmpKcRevoRPYBA6OzsYXLhwnhFvTiEgIIDAwEACAgLyfO/u7i7V8e9SNkUhOsVoVxGWtKRE1nz5Mf7BlahWtwH/HIzMd73oE8cIrFyVFl0exM3Li9jLl9i+Zjl/7NrORxHb8Q2qcNt9KUB0ipGGAR53XaV/m6KQlmXh3NVYjp2JJtVswWxT0AaE8OD4l+j/4gwq+XoTUjEQHycdHk7S7aC8qVSpEmPHjsXf3z9n2fnz5+nZsydBQUFA9n0Pi8WCVqtl8eLF9O7dmypVqmA2m9HpdI4K/Z7h4uJC7dq1iYuLQ6VSodyUXPnfhBIhhBBClB5JKBFCCCGEEEIIIQR9+vQhJCSE6OhoADQaDaNHj6ZevXoOjsx+vi566vi6lYkJKHV83WTiyU0KU3HzyvlzbP9+GU++OpOk2Os5y02mLKxmM7GXL+Hi7o6Ht0++29e7vwU+AUHs3vCj3QklxVkRNC0tjUceeYRffvmFb7/9lrFjxxbb2PY6cuQIKpWKhg0blvq+hRBCCCGEEKIojsen2VWlvzSoyI6nfZVbd8wUZZ9WU7wTweOvXCE9JZlJvR/I89yP38zjx2/m8eG6rYTUb2TXeNasLKKjozl48CCxsbEkJSXlWcfJyanAZJP8vpcElPIjLcuCxWbfu55PYCDz9/yNT0AgZ45GMXVwj3zXe+qNvMWBWnZ9mJcHPcyun9Yw4KkJdu3PYlNIM1nwcro7JtenZZn549xl4qxqNDo9iqLCqWJVKuaTPJAM/HktBQCtWkWIlysh3q4l2olaURT5vS0mKpUqJ5lk3759vPzyy+zfv59u3brxzTffMHHiRJydndFqtURFRXH48GE++ugjAEkmKSUeHh7s3buX8PBwRo3KXVBKEkqEEEIIx5GEEiGEEEIIIYQQQqBWq3n55ZcZP348kH3zZObMmQ6OqvDq+3kQk5aJ0Wx1yCQUFeCm01DfT7qT3KwwlfwSr1/DZrOx4J0ZLHhnRp7nx3drRa8RYxj12lsFjmE2ZWFMTyuR+G4lJiaG3r17c/bsWTZv3syDDz5YLOMWVlRUFLVr18bNzc0h+xdCCCGEEEKIwkg3WYg1mm67XobBwE8LvuT0kb84c/Rv0lOSefbdj+kyYGiedTcvW8jPKxZz/dJFPH18adujL49OfBlnV9fb7kcBYo0m0k2WEp1ALEqet5OOpAxzsV0j6vX4KFp2eyjXspSEBL5542U69x9Ci64PEVi5ql1jqYDWTRszbs+enGVms5mEhARiY2OJi4sjLi4u1/dWqxVXV1cSEhI4ceIECQkJmEwmsrKyMJlMmEwmVCoVnp6eeHp64u3tja+v7y2TUCQBxXGSssx2r6vTO+ETEFik/QRWqgyAIS21UNslZ5rLdUKJzWZjz+G/OJtuxrtSNaw2LRpd9nu6SqVCW0DywM3vFxabwpkkA6eTDAS66mng71FsRYQsFgsajSYnHlH8zp49S8OGDZk+fTpnzpzh448/5vz583z88cc4Ozvzzjvv0KdPH+rUqcOJEyf49NNP8fb2Zvbs2Y4O/a6nUqmIjIzE29ubt956i1mzZpGamioJJUIIIYQDydUPIYQQQgghhBBCADBixAgmT55MZmYmr776KhUqVHB0SIWmUatoGezDbxfjKcamE3ZTqaBFsA8atdwEvFlhKoJWrVOXlz9fkGf5yk/nkGFIZ9Rrb1GhSnUyjUZUKnByyT0ZaP8vm0hPSaZmo8Z271NXDBVLo6Ki6NWrF2q1mn379hEaGnrHYxbVkSNHaNzY/uMXQgghhBBCCEeKTjba1Z0kLSmRNV9+jH9wJarVbcA/ByPzXW/ph7OImP8lbR7qTa8RY7h85hRbli/k0pl/eX3BSrtiUv0vrtBAz0IdiyhbvJ11hUom2bxsIca0VBL/1zH18M5tJF6/CkCP4aOo0bAxNRrm/rwde/kSAFVq1aVVt/y7RuRHAXycc09o1+l0VKhQoVivydlsNqxWK2azOSfp5Ma/mJgYTCYTNpsN5aYLaRqNBq1Wi1arRaVSYTKZcHZ2JiAgAA8Pj7tq8ntmZiaff/45e/bswdXVlV69ejF8+HAgu2tEbGwsTk5OeHt7F/u+kzPNJdaZKS0pEZvNRtyVGNZ8OReAxq3b2729CkjKNFPNqwSCK0Emk4mdO3fy0/r12Pwr0+2REXi42wDQaIs2Re7G6xNnNLHrYgJ1fN2o7+dRpOu/ZrMZnU6HxWKRriSlYMSIEYwYMSLnscViYeXKlZw5cwaVSsWuXbto27Yt7du358CBA9x///28/vrrDoz43nHy5EkWLFjAhx9+yHPPPcfo0aO5du0aarXa0aEJIYQQ9yxJKBFCCCGEEEIIIQQArq6u9OvXj3Xr1vHiiy86Opwi83HW0baSL/suJ5ZqlxIV0LaSb57JAKJwFUE9ffzynYCxKXw+QM5z0SeOMfPJobTr2ZdKIbVQqdWcPRbF7g0/ElipCr0fH2NXbCq442qLW7ZsYciQIdSuXZuNGzcSHBx8R+PdCUVRiIqKYvLkyQ6LQQghhBBCCCHsZVMUolOMdn1e9AkMZP6ev/EJCOTM0SimDs772TEp9jobFn9Lp36DeP79eTnLK1avwYJZ0zm0Yystuty+m6QCRKcYaRjgUWxdLUXp8ynk5/31C78m7srlnMcHtm3mwLbNAHTsMxA3j+JNMPIuhWtIarUatVqNTqfD1Y4OPZCdhHJzkolOp+Ovv/6iefPmZGRkFNjt5Mb3Nz8uywkosbGxPPvss5w5c4YhQ4Zw8eJFvv76axISEpg4cSKxsbGEhYVx4MABNBoNarUaLy8vxowZw7vvvnvH+0/OKr7uOf81tlMzzKYsADy8fRg97W2atOtk9/YKkFKIDiqOlJaWxpYtW1i3bh2bN2/Gv0o1Xp43H//gyv8794pngvqN1+pUooGYtExaBvvYdR34RuJIamoqv//+O/Xq1aNqVfs6GYnbu9Hp5VbvMxaLBa1WS0JCAhcvXqRy5crs2LGD+Ph4YmJiGDRoEL/88ot0ey5Fr776KlWqVOGZZ54BwMXFhZCQEAdHJYQQQtzbJKFECCGEEEIIIYQQOVatWpVzg6U8C3Rzol1lXyJjElGUkqn0dzO1KjuZJNDNqYT3VD4VtiKoPfwqVKT1g704+vs+dkWswWK2EBBcmR6PPcnAcc/j4eNr1zj5VQQtjK+//prnnnuOnj17smLFCtzd3Ys8VnG4cuUKiYmJ0qFECCGEEEIIUS6kZVmw2Oz7xKjTO+ETEHjLdf79+w+sFgvtevbLtbx9r34smDWdfZt/siuhBMBiU0gzWe64CIFwHA8nLVq1yu5z7OsdBwu9j8DKVfjh5JVCb6dVq/DQl83rbzeSUG7WpEkTTpw4wZo1a4iNjSUuLo64uDjOnz/PoUOHiIuLIzExMc9Yer2+wMST/L4vzQSU/fv3s2vXLr7//ns6d+4MwNy5c5k7dy6jR48mMzMTLy8vpk6dyhtvvMG///5LUlISPj4+xbJ/i7XkrlhO+3YZZlMWl8+eZveGH8jMMBZ6DHMJxnenrl+/zvr164mIiGD79u2YTCaaNm3K63M+okannqBSlej1YKPZym8X4297PTgtLY2lS5eyd+9eBg0aRP/+/ctsglV5kpmZyYYNGwgPD6dhw4a8++67aDSaPOvZbDbUajVarZYdO3bw+++/M2XKFLy9vWnfvj0XLlygSpUqDjiCe1tkZCQREREsXboUJye5nyKEEEKUFWXz06kQQgghhBBCCCFKlE1RSMuykJRlJjnTTHKWGYtVwaYoqFUqtBoV3k46vJ11+Djp8HDSlruKnIFuTnSq6s/BK0kYzNYS24+7TkMLOyvS3UtuPsdiDVl3PN5bS3/I9djTx49xb82543GhaBVBbTYbL7/8Mh999BETJkzg448/zvfGZWmLiooCkIQSIYQQQgghRLmQVMwV8G9U5Nc7Oeda7uTsAsDZf44UarzkTLMklJRjapWKEC9XziQZSrWL7e2ogBAv13J1rU2tVlOhQgUmTJhQ4Dpms5mEhIScZJObE09ufH/hwoXbJqDYk3hy4/s7SUA5e/Ys/v7+dOrUCbPZjE6n48EHH+S7775j06ZNtG7dmuTkZJycnHB2dqZJkyZF2k9BbErJnZWhrdsBcH/HLrTs+hCT+3TB2dWNnsNH2T3GncR36NAhtFot9erVw8XFpcjj3Ozs2bOsW7eOiIgIIiMjUalUdOjQgTlz5tCvXz9cAyqWWsdqBVAU2Hc5kXaVcyeVKIrC8ePHeemll9ixYwdTp05l/vz5dncIEvlTFIUDBw4QHh7OqlWrSE5OplWrVjRo0CBPAtwNc+fOJSYmhm3btnHlyhUef/xxnnjiCQACA2+doCpKhqIovPzyyzRp0oRhw4Y5OhwhhBBC3EQSSoQQQgghhBBCiHtIuslCdLKR6BRjTnVGFfl38EjKMOcs16qzb8CHeLviXkarJ+bHx1lHt+oBnEhI41SiocBjLawb49TxdaO+nwcadfmZAFDSCjrHyqqiVAQ1Go08/vjjrFu3jk8//ZTnn3++hKIrvCNHjuDp6Um1atUcHYoQQgghhBBC3FZyprnYPqsDVAqpCcC/fx3KmVANcPxwdueJxOvX7B5LBSRlmqnm9f/LkpKS+OKLLzhz5gyLFi2SSvPlQIi3K6eTDI4OIxeF7LjuNjqdjgoVKlChQgW71rcnAeXixYscPny4UAkoNz9u3LgxLVu2zHf//v7+JCYmsmnTJvr06QPA+vXr+ffffzEYDFitVqxWK/PmzWPhwoXUrVuXV155ha5du+Z0PrgTpZVQVKFqdULqN2TPhnWFSigpSnyXLl3i008/ZefOnSQkJJCYmMhTTz3FnDlzUKvVZGVlER8fT3BwsF3vn2azmbfeeouIiAiOHTuGs7MzDz74IAsXLqR37974+/sD2e/Vv12ML/XEMQWIjEmkU1V/fJx1REVFMWHCBPbs2UP//v05ceIEISEhpRzV3eXy5cssXbqU8PBw/v33XypXrsz48eMZMWIE9erVu+W2Xbt2Zd68eUyePJkRI0ag00mCqKNt2LCBffv28fPPP9/xe6gQQgghilf5mQEihBBCCCGEEEKIIkvMMHE8Po1YoynPRI2CbrTdvNxiUziTZOB0koFAVz0N/D3wddGXXMDFSKNW0SjAk2B35wJ/Bva6sV1AOfsZlIainGOOVpSKoNevX6dv374cO3aMiIgI+vbtW3IBFkFUVBSNGzeWSU1CCCGEEEKIciE5y1ysnxlrNGxM7Sb3s+67L/ANrECjVu24fO403775ClqdDlNWpt1jKUDK/zqoXLlyhY8++oivvvqKjIwMABYuXCifvcoBd72WQFc9cUZTmbg+oSL7ulJJF2xRFKXMn5+FTUCxWCwkJCTkm3hy4/uLFy/yxx9/EBsbS2JiImPHjqVFixb5/iwGDRrEH3/8wahRo6hXrx4BAQHEx8ej0+nQaDQEBgYyY8YMQkJCsFqtzJ07l9GjR7NgwQK6du16xz9jrab0Xh9TViZmk6lQ22iLUEDn888/56effuKNN95g+PDhREZGMn78eD744AOmTp3KgQMHePzxx7l06RJ+fn7UqlWLtm3bMnr0aBo0aJBnvCNHjvD555/Tp08fZs6cyUMPPYSbm1uudaw2hYNXkijBhi+3ZFPg90vxbJr3Ll99+SV16tRh69atdO/e3TEB3QWMRiM//vgj4eHh/Prrrzg7OzNgwAA+//xzOnfubHeX6KZNm7Jo0aISjlbYy2Kx5CTlPfjgg44ORwghhBD/IQklQgghhBBCCCHEXcxqU3J154CiT+6/sV2c0cSuiwnlrjuHr4ue9lX88nTQUBQl+2eTzw3gmxMjymuXlpJWnOdYaStsRdATJ07Qs2dPMjMz+e2332jevHnJBVdER44coXPnzo4OQwghhBBCCCHsYrEW/yfIl+Z9x9zJ4/hi2gsAqDUa+jzxFMcP/U5M9NlCjZWabmTIkCGsW7cORVGwWq0AaDSaMj9ZX/y/Bv4e7LqY4OgwgOxrEQ38Pe54nJiYGGbPns2OHTs4deoUs2fPZsKECej1+pzuGRs2bGDBggVcuHCBihUrMnr0aAYOHJgdx/+SIbZv386OHTswGAw0bdqURx99FCcnpzuOryRotVqCgoIICgqya32LxUJmZsFJZK6urrz11lv07t2b/fv34+3tjdFoJC0tDVdXV9zd3XMVElm4cCFt27Zl7dq1dO3aNc97gPK/jAZ73xu8nXS5OkTfKavFQoYhHXcv71zLTx/5iwunTtKhd3+7x7KYzfywdgUzt2+kUaNGNGrUiNDQUEJDQ/HwKPj83bRpE4899hjDhw/HYrHQtm1b2rRpw++//w5AbGwslStXZubMmdSuXZutW7cSHR3N+fPnadCgQa4kHavVSsWKFYmNjb1lZ4kTCWkYzFa7j60kGCw2Mjz8+eCDD5gwYYJ0wigCm83G3r17CQ8PZ82aNaSlpdGxY0fmz5/PoEGD8PT0dHSI4g6Fh4dz4sQJli5dKv+HEkIIIcogmf0ghBBCCCGEEELcpZIyzRy8kpRzQ624bk7eGOdUooGYtExaBvvg41x+bpK567WEBnrSMMCD+FQDjzw5hrETJhJcszZmq4JNUVCrVOg0KrycdPg46/B21uGh1xaqk8W9oKTOsdJQ2IqgO3fuZMCAAVSqVIldu3ZRrVq1kg2wCDIzM/n333+ZOHGio0MRQgghhBBCCLvYSqCkvF9QRd5Z8RNXzp8jOT6OitVC8AkIZEyHpgRXr1GosS5cusSaNWvyLLdarWg0GvR6PXq9Hicnp3y/L67nijqOvVXc73a+Lnrq+LpxKtHg6FCo4+tWLB1v09PT8fDw4K233uKpp54iOTkZtVoNgFqtZtWqVbzxxhv06NGDsLAwTpw4wQsvvIDNZmPQoEGoVCo+//xzFi9eTEhICK6ursybN49z587x2muv4ezsfMcxOppWq8Xd3f2W63h5edG9e/ecbhJTp07FxcWFRo0a5VrParWi1WqpWrUqCQkJJCcn4+3tnWudq1evEhISQkBAQK5/gYGB+X7v5O5bqGtpm5ctxJiWSmLsdQAO79xG4vWrAPQYPgoUhac7N6dtj75UqVUXZxdXLpw6wc51q3F192TQ+El270ur1VK7SjDXAwL49ddf+eqrr7BarfTt25effvrplttdunQp53vITsC7cOECycnJXL58mYyMDNq1a0ft2rVp165dru1vnmSu0WgIDg6+ZZyJGaYy8XutVqvpNfIpHqjqJ8kkhXTu3DmWLFnCkiVLiI6OJiQkhBdffJHHH3+cGjUK9zdblF1Go5HXX3+dRx55hGbNmjk6HCGEEELkQxJKhBBCCCGEEEKIu1CsIYvImERKYF5GLkazld8uxtO2ki+BbmWzemFB1CoVV6LPsHPdat55aSJtqvo7OqRypbTOsZJSmIqg4eHhjBkzhs6dO7NmzRq8vLxKNrgiOn78OFarlSZNmjg6FCGEEEIIIYSwS0kWbgiuXiMngeTSmVMkxV2nc/8hhRrDnJWFRqPJ6Uxyg0ajYeDAgTg7O+Pk5ISTkxNarRadToeiKJhMJrKysjCZTDn/srKyMBgMJCUl5ftcft//d7+FpVary1SCS36PbyRBlLT6fh7EpGViNFsdUhBDBbjpNNT3u/PuJAB169Zl5syZ6HQ6XnzxxTw/yxUrVtC0aVNee+01AgMDATh48CAbNmzg4YcfRq1WM3PmTJ555hmmT5+OTqdjx44d9O/fn44dO9KtW7diibMs++OPP7DZbDRt2hSr1cry5cv5+uuvee+996hXrx5JSUl4enqi0WhykrPOnDlDu3bt0OvzJgW5uLjw0UcfERcXR2xsLHFxcVy+fJk///yTuLg4EhMTc7qYAFSrU5+563+1O971C78m7srlnMcHtm3mwLbNAHTsMxCfwCC6DhrGsQOR/P7LJkxZmfgEBNG+VxiDxk0isHIV+384KhUjhw7i+RGPApCVlcW///6b06mpoGS1qVOn8tprr/Hpp5/Ss2dPjhw5wuLFi6lQoQIeHh4kJiYSFxdHhw4dqFu3Lo8//jhjxowpMIybO5bk53h8Wq4O046kIjue9lX8HB1KmZeamsratWsJDw9n9+7deHh4MHjwYBYvXkz79u1L7e+CKD3z5s0jLi6OWbNmOToUIYQQQhRAEkqEEEIIIYQQQoi7TKwhi32XE0vlRpoCKArsu5xIu8rlL6nk5MmTANSvX9/BkZQvpXmOlRR7KoIqisIbb7zB22+/zZgxY/jyyy/LdJXBI0eOoFKp8lTRFEIIIYQQQoiySqsp+U6gNpuNpR/MwsnFhQcfebxQ2wZXCOStt97i8OHD7Ny5k+TkZCD78+KmTZswGPJWxnd1dcXf35+AgICcr5UqVcr1+Oavvr6+BU6etVqtBSae3O5xUZ9LS0sr1DjKHVaa0Gq1JZrgEhAQwJAhQ9CoVbQM9uG3i/EOKY6hUkGLYB806uI7529M6jebzXmuV1StWpV9+/blWnbhwgXatm2Lm5sbf//9N6mpqYwbNw6dTofBYKBLly74+fmxdetWOnXqVKavgRSH2NhYpk2bRnJyMn5+fmRlZTFx4kRGjx6NSqVi6tSptGzZknbt2mE2m3nvvfc4duwYX331Fa6urnnG8/Hx4bnnnitwfxaLhYSEBOLi4nKSTmwWM2qtfT/nr3ccvO06o157y66xbkerVuFxU1dfJycnGjdufNvtwsLCuHz5Ml988QUzZ84kNDSU1q1bYzQa0Wg0dOvWjR49eqDRaNiyZQuzZ8/G1dWVYcOG5TveY489xqeffkpAQECe59JNFmKNptvGlGEw8NOCLzl95C/OHP2b9JRknn33Y7oMGJprvc9emcSuiO/zbB8cUpPPtuy57X4UINZoIt1ksbsj8r3EarWyY8cOwsPD+fHHH8nMzKRbt24sW7aM/v375/s7Je4OCQkJzJ49m3HjxlGzZk1HhyOEEEKIAsj/YIUQQgghhBBCiLtIUqY5u2tEKe9XASJjEulU1R8f5/Jzs/nEiRNUqFABb29vR4dSbjjqHCsu9lYEzcrKYtSoUaxYsYL33nuPqVOn3rIiYlkQFRVFrVq1cHNzc3QoQgghhBBCCGEXbycdSRlmuz9jbl62EGNaKomx1wE4vHMbidevAtBj+CjcPDxZ8M4MzFlZVK/fEKvZzJ5NEZw58hfPzf6UgODKdsemAupWq8LQ114DshNT1qxZwyuvvIKHhwdHjhzBaDTmmiAeHx+f5+uFCxf4448/iIuLIyEhIU8ChlqtxtfXt8CEk/9+rVixIi4uLnYfR0m60a2gJBNc8lvXaDTaPc6gQYMYMiS7M42Ps462lXxLtUiGYrOhKApHN69hf9y1QiXKeHp60rJly9vuw2w2o9frc123+PDDD3n11Vdp27Yt7u7uGAwG+vXrx8SJE1Gr1VSrVg2NRsOaNWt4/vnncXNz459//iEhIYFz586RlZV11yeUdO3alRo1anDu3DkSExOpXr067dq1y3ne3d2dDz74gIkTJ+Lr60vTpk3Zvn07bdq0KdL+tFotQUFBBAUF5Sw7GpvKmSRDmbrOpgJCvFyL1EHKxcWFl156iZdeegmAo0ePMmnSpJxuuh07dsxZt1GjRsTGxvLmm28ybNiwPN1IUlJSWL16Ndu3b2f16tV07tw5176ik412dSdJS0pkzZcf4x9ciWp1G/DPwcgC19XpnRg/68Ncy1zd7e8qpPpfXKGBnnZvc7f7999/CQ8PZ+nSpVy+fJm6desyY8YMhg8fTpUqheiaI8otRVHo2bMn06dPd3QoQgghhLgFSSgRQgghhBBCCCHuElabwsErSQ6psghgU+DQlSS6Vg8o1mqLJenEiRPUq1fP0WGUG44+x4qDPRVBExIS6N+/PwcPHmTVqlUMHTq0wHXLkiNHjthVLVIIIYQQQgghygpvZ12hJlKvX/g1cVcu5zw+sG0zB7ZtBqBjn4G4eXgSUr8Rm5Z8x56NP6JSqanV+D7eWPQ9oa3bFTRsvhTIVTRDrVYzdOhQBg4ciMViAbK7kbi6uto9KdZqtZKUlJRv4snNXy9cuJDz2Gg05hnH1dXV7gSUgIAAfHx8CuyCcidUKhVarRatVltmq8sripJronqgmxPtKvtmF8tQbj8Z/U7YrFasVgur58zk1F+HCkx+MZvN+W5fp04d/v3339vux2KxoNfn7sJ66NAhdu7cSY8ePahVqxZHjhxh9+7djBw5ksDAQPz8/Hjttdf49NNP2bt3L76+vly9ehV3d/dbdp3Zvn07BoOh0B1ltNqyNz1Jr9dTt25d6tatm7Ps5nNl7ty5zJ07F8hO2jGbzbc8z22KQlqWhaQsM8mZZpKzzFisCjZFQa1SodWo8HbS4e2sw8dJh4eTlhBvV04n5e105EgK8PzjQ9HaLAQGBhIQEEBAQAAVKlTgySefLPC95MKFCxiNRurWrZuzzo8//siVK1eYMWNGrnVtNhuurq60bduWDRs2cOHCBapVq/b/MSgKR48exWazkZCQQNeuXZk+fTqvv/46Wq0Wm6IQnWK06/fXJzCQ+Xv+xicgkDNHo5g6uEeB62q0Gjr1HWjHqPlTgOgUIw0DPIqUkHO3SEpKYtWqVYSHh3PgwAG8vb159NFHGTlyJC1btizzRXtE8fLx8WHFihWODkMIIYQQt1H2PrEJIYQQQgghhBCiSE4kpGEwWx0aQ7rZyomENBoFlI8qbCdPnqR9+/aODqPcKAvn2J1QAW0r+d6yi86ZM2fo1asXCQkJ/Prrr7kqU5ZliqIQFRXF888/7+hQhBBCCCGEEMJuPk6F64Dw9Y6Dt12ny4ChdBlQPIUBvPP5/HgjgaIoNBoN/v7++Pv7213gwmg02pWAcvjwYeLj4wvsguLn52d3Aoq/v3+Z6YJyp/KbuBzo5kTHKn5sPR6N1tW9RJJtADyd9bQIDmLo0kW3XE9RlFydVW4knNzOjWPLL6Fk1KhRPP7440yZMgVXV1eysrLo378/H3zwAfPnz8fFxYUXXniB6tWrs2/fPlJTUxk9ejQJCQl4e3sXeI6/+OKLHDlyxM6fwP9Tq9V2J58UJlHldut27969UK9vQRPddTpdgR1b0k0WopONRKcYsdiyf/cK6pxxc0cmrVpFiJcrvs46kjLt79RUkhSbjfTrMdSvGUJcXBwxMTH8/fffxMbGUqFCBUaPHl3gtjExMcydOxdfX1+aN2/Opk2b2Lt3Lx9++CEPPPAA586dIzAwEHd395yf859//kmlSpXyvGeZzWaioqKA7OQTgLfffptFixZx8OBBXH38c37Wt6PTO+ETEGj3z8BqtZKVYSxUZ5KbWWwKaSYLXoX8+1beWSwWfv75Z8LDw1m/fj1Wq5WHH36Y77//nj59+uDs7OzoEIWDaDQaR4cghBBCCDtIQokQQgghhBBCCHEXSMwwcSqxbFSzO5VoINjdGV8X/e1XdiCr1cqpU6cYO3aso0MpF8rSOVYUalV2Mkmgm1OB60RGRtKvXz98fX35/fffqVWrVilGeGeuXr1KQkICTZo0cXQoQgghhBBCCGE3DyctWrXK7onBpUmrVuGhd/yUCldXV6pWrUrVqlXtWv9GF5T8Ek9u/v78+fM5yzIzM/OM4+bmVqgElJLqglJSvPQazCcOowRXRx8cAoqCqhjiv5FIUMfXjfp+HnZ18VWpVDg5OeHkVPA1i1uxWq3o9fpcyRBnz56ldevWOR01nJyceOCBB1i9enXOBH1XV1eGDx/O8OHDc7Z77LHHGDlyZIGTv/ft20dGRkae5Jf8vr/T59LT0+1eNysrK9/OKkajscSSoxIzTByPTyPWaMqTQFLQO9rNyy02hdOJ6dntdBUl+6uDqdRq+rS6j5EPfJnnucTExFtuGxoaSlhYGBs2bGD+/Pncd9997Nq1i0aNGgEwa9YsqlWrxpAhQ/Dy8mLp0qV89tlnzJw5M1d3EshO3Dt69GiefcTExHD06FHqtCqZAkFZGRk83rwOWRkZuHt5075XP4a/OB0XN7dCjZOcab5nEkqOHDlCeHg4y5cv5/r16zRu3Jj33nuPYcOGUaFCBUeHJ4QQQggh7OT4qx9CCCGEEEIIIYS4Y8fj0wqsfFfaVGTH076Kn6NDuaXo6GiysrLsrgh6rytL51hhues0tAj2uWVnktWrVzNy5EhatmzJunXr8PMr2+fvf92o2ti4cWMHRyKEEEIIIYQQ9lOrsiv0n0kylKnPmyogxMsVdRmY4F1YN3dBsZfBYLhtF5To6GgOHjxIfHw8iYmJBXZBsTcBJSAgwKEV6zUaDcMefQS1Wk1SpjknMcBqtaDRFH4qzY1rJgGuehr4e5R4oZWMjAzOnz+Pu7s7NpuNtLQ0rly5gpubG15eXjRt2pS3336bGjVqUKtWLY4dO8YXX3xBr169chJX/vrrL2rWrImnpydXr15l+vTp+Pv706dPnwL36+7ujru7e4keW1FZrdY8ySaQ3QGmoM4jRdqPTeFEQhqnEg3cGLXI71//i8umKKgouENKaVAUhczLZ9l4YFtOl5f4+HgOHTrE/v37eeSRR3j55ZfzdMO5wcPDI0+C0s1jN2rUiBUrVjB79mwCAgIIDg5m2rRpTJw4Mc9xq9Vqjh07lmec6tWr07VrV47Gpxf7dUqfgED6jXmGGg1CUWw2/tqzi59XhHP+5HHeWvIDGjs7U6mApEwz1byKMbgyJjY2lhUrVhAeHs7ff/9NQEAAw4YN44knnuC+++5zdHjCQWw2G2q1utjfc4UQQghROiShRAghhBBCCCGEKOfSTRZijabbrnfsQCRvjByU73PvrdpAnfua5Tw++echln44i3PHj+Lq7kHbh/swbPKrdlVjU4BYo4l0kwX3MlDJsyAnT54EoH79+g6OpOyz9xz7r7Vff8rKT96nSu26fLJhZ87y1x8fyD+H9udZ/772DzBj/oo7ivUGeyuCKorC7Nmzee2113jsscdYsGBBkSuCOtKRI0fw8PCgevXqjg5FCCGEEEIIIQolxNuV00llqyOmQnZc9wo3Nzfc3NzydAkoiMViKbALys1fz507l/O4oC4ot0o4+e8yb2/vYu2CotFoAPB10dO+ih/vfPAR17IUug0ehvV/qQIFTVq/eblWnZ0YFeLtWmrXwqKioujYsSMWiwWAiRMnMnnyZB577DEWL17M4sWLmTJlCr169cJms+Hs7EyzZs2YOnUq2v9NjF+1ahVHjx5Fp9ORlZVFbGws33zzTbntKqDRaHB1dc3pylISkjLNHLyShMFsBYovoSHnvHZQpxKrxcL1yxd5oW93zKasfNepWLFikSeJq1QqXnjhBV544QUgu9NIVlYWNWrUKHCbf/75J8+yxMREFi5cSPUuvYs9CXH4i6/lety+VxjB1Wuw4pPZ7P9lI+17hdk1jgKkZJmLOTrHy8rKYtOmTYSHh7N582ZUKhV9+vRh5syZ9OjRA53u3ujIIgp2433sxvuEJJYIIYQQ5UvZndUhhBBCCCGEEEIIu0QnGwtVka3n46OpFXpfrmUVqlX///FOHGPmk0OpVLMWT7zyJgnXrrJ+4ddcvRDN9O+W27UP1f/iCg30tDOq0nfixAnc3d2pVKmSo0Mp8wp7jgEkXLvCj9/Mw7mAm/h+FSry2Au5b9T6BgYVPcj/KUxFULPZzPjx41mwYAGvv/46b775Zrm9yRUVFUXjxo3LbfxCCCGEEEKIe5e7Xkugq544o6lMdClRkf2ZsiwXyXA0rVabk/BhD0VRMBqNdiWgHDx4kLi4OBITE/OMo9FoCtUFxd/f/5ZdUBRF4fXXX2fJkiX4+flRpUoVRo8eTe86FUnJNJGcZSE500yqyYIx08TV69fQqNRUr1oZT50GX1cnvJ11eOi1pd7NpnXr1hgMBsxmM1arlczMTDIzM3FyckKlUhEaGsrixYu5cOECKSkpODk50aBBAwIDA3PGGDBgAIGBgcTHx+Pj40OvXr1o2LBhqR5HeRJryCIyJhGlJN+oHHRdR6NRE3NgF0GBAVy+fBkfHx8eeughunfvTtu2bVGr1fj4+OQkYd2pG9djC5pwfv36dZKTk4Hsyel6vR61Wo3BYOCpp55i9R8n0bqV/HXn3k+MZdW8ORzZv8fuhBIAs7Us/DW7c4qicPjwYcLDw1m5ciWJiYk0b96cTz75hEceeaTcdXgWxe/atWscPnyYlStXUrt2bUJDQ7n//vsJCQmR69RCCCFEOSNXQIQQQgghhBBCiHLMpihEpxgLNeGiQbNWtHm4d4HPL/94Nm6eXry15Adc3T0ACKxUma9mvMTfe3dxX/sHbrsPBYhOMdIwwKPUb6jb68SJE9SrV09ubNxGUc4xgPA5b1GnSTNsViupyXkngbh6eNKp78DiCfJ/ClMRNCUlhcGDB7Nz504WL17MyJEjizWW0nbkyBE6derk6DCEEEIIIYQQokga+Huw62KCo8MAsq9pNPD3cHQYdxWVSpXTBcXezpoWi4XExMTbJqGcOXMm53FWVt7OCqmpqXh45P96qlQqBgwYQIUKFfj99985d+4cvr6+qFUqfFyc8HLSEeKd3a335ZdfZsuWLXz55Zd0qOqPzWYr1m4pRaHT6XK6AuR3jBUrVqRixYoFbt+qVStatWqVa5lUlM9frCGLfZcTy0TSW3FSbDasNiuzxjxGcswFBgwYQFhYGB06dMjpZFOS8jvXFEXh5MmTtGvXjmeeeYYBAwbkSgyz2WxsPx9P+v+6xJQkJ2cX3L19SE9JLtR2thLNOip5V65cYdmyZYSHh3P8+HGCg4MZM2YMI0eOpEGDBo4OT5Qhjz32GEajkSpVqjB//nxiY2Pp3Lkzffr0YdiwYfj6+jo6RCGEEELYSRJKhBBCCCGEEEKIciwty4LFVvgbVBnp6eidndH858agMT2NI5G76T1ybE4yCUCnfoNZ9N6bRP68wa6EEgCLTSHNZMHLqWy2uz958iT169d3dBhlXlHOsX8O/c7+Xzbx4Y9bWTBreoHrWS0WTFlZuLi5FTm+yh7OBLkVriLoxYsX6dWrF5cuXeKXX36hS5cuRd5/WZCZmcnJkyeZMGGCo0MRQgghhBBCiCLxddFTx9eNU4kGR4dCHV+3W3a7FKVDq9USGBiYq6PGrSiKgsFgyJVwkpCQUGAyyQ1NmzaladOmPPvsswwYMIDPPvuMRo0a4e3tjVqtxmazMXHiRDZv3sy8efPo0KEDgMOTSUqKJJPklZRpzu5M4uhAipnVYsFmtXJhzy8s/uJTmjZtWiZef5VKRadOndi7d2++z6vV6lIrYJSRnk5aUiKePoXrxFFWCyzdSkZGBhEREYSHh7Nt2zb0ej39+/dn7ty5dOvWrdi604i7x7Jly4iOjmbv3r0EBwcD0KFDB6Kjo/n222/JzMxkypQpDo5SCCGEEPaShBIhhBBCCCGEEKIcS8oyF3qbz1+bTKbRgFqjoX6zVox4aQa1QpsAcPHUCawWCzUbNcm1jU6vJ6R+Q6KPHyvUvpIzzWUyoURRFE6cOEGfPn0cHUqZV9hzzGq1smDWdLoNGka1ugUn7Fw9f45hTWthMZvw9g+g2+DHGPzMZLS6wp0vQW5OVPNytXv9P/74g969e+Ps7Mz+/fvviqSiEydOYLVaadKkye1XFkIIIYQQQogyqr6fBzFpmRjNVodM3FYBbjoN9f2kO0l5pFKpcHd3x93dnZCQkEJta7FY0Gq1dOjQgZUrV3Lx4kW8vb2Jj49n3LhxnDx5kpUrV9KyZctbjjN69GiuXbtGQEAA/v7+BX719vYuExP3xe1ZbQoHryRRzhtO5KEoCi5aNe1qVsCn8dOODqfQtJri/f0xZWViNVtwcXfPtXzNVx+jKApNO3Qu1Hi6Yo6vpCiKQmRkJIsXL+b7778nNTWVdu3a8fXXXzNkyBC8vLwcHaIowzZt2sSAAQMIDg4mOTkZb29vevfuTUxMDIGBgbz88stUqFCB4cOHS/crIYQQohyQhBIhhBBCCCGEEKIcS840owK7JlpodTpaP9iL+zt1wdPHl0tnTrF+4dfMGN6fd1b+RI0GoSTFxgLgExCUZ3vvgCBO/HHA7thUZFfwq1YG7ztdv36d5ORk6tWr5+hQyrzCnGMAW1ctIe7KZd5YtLrAdYKqVqNRq7ZUrVOfzAwjv/+ykbVffcKV82d58eNv7I6tsOfYTz/9xLBhw2jUqBHr168nKCjveV4eRUVFAdCoUSMHRyKEEEIIIYQQRadRq2gZ7MNvF+MdMnlbpYIWwT5o1DLh8V6wbNkyKleuTLt27VCr1Rw+fJiPP/6YLl26ULNmTS5evMiTTz6Joij88ssvVKpU6bZjBgYGEh8fz6lTp4iMjCQuLo7k5OQ862m1Wvz8/AgICLhl8klAQAChoaEyCdeBTiSkYTBbHR1Gsavr5059P49y+37n7aQjKcNs9/XKzcsWYkxLJTH2OgCHd24j8fpVAHoMH4UhJYUpAx6kfa8wKoXUBODvfb/x52+/0rRDZ1p0fcju2FRQJgss3ezChQssWbKEJUuWcObMGapVq8bEiRMZMWIEtWrVcnR4opyoV68e+/btA8Db2xuA8PBwnnzySV566SUuXLjAunXrGD58uPwdE0IIIcoBSSgRQgghhBBCCCHKseQs+2+c1bu/BfXub5HzuEWXh2jzUG9e6NeV5XPfY8b8FWRlZQLZHUn+S+/khCkz0+7YFCClCB1USsPJkycB7oruFCWtMOdYWlIiq+Z9yODxk/Dy9StwvWffmZvr8QP9BvHVjJfYvmY5fUY+RZ37mtm1v8KcY59++imTJ09mwIABLFmyBFdX+7ualHVHjhyhZs2auP+niqIQQgghhBBClDc+zjraVvJl3+XEUu1SogLaVvLFx7lsTwIWxSc6Opo333yT1NRU/P398fDwoGXLlrz88stkZWXRrl074uLiWLNmDenp6Vy9ehVPT0/c3NwKHPO9997Ls8xsNpOQkEB8fDxxcXEFfj116hRxcXHExcVhNv//tY5PP/2U5557DrVaXSI/B1GwxAwTpxINjg4jl8IUfclvu0BXPQ38PfB1yXvttzzxdtYV6uewfuHXxF25nPP4wLbNHNi2GYCOfQbi5ulJswe6ERW5m10R32Oz2qhQrTqPTX6VvqPGFer3T4Ey+bckPT2dtWvXEh4ezq5du3Bzc2PQoEF8++23dOrUSd5jRKE1b96cd999l6FDh9KvXz+2bt1KfHw848ePB6BFixasXLmS+Ph4/P39HRytEEIIIW5HEkqEEEIIIYQQQohyzGK9s+kVFauF0KLLQxzYtgWr1YqTkzMAZpMpz7qmrCz0zs6FGt98h/GVlBMnTqDVaqlZs6ajQynzCnOOrfh0Du7e3vQYPqrQ++n75NNsX7OcI/v32J1QArc/x6xWK5MnT+azzz5jypQpvP/++3fdDdIjR47QpEkTR4chhBBCCCGEEMUi0M2JdpV9iYxJRFGKNnm6MNSq7GSSQDenEt6TKEumTZvGuHHjuHr1KvHx8ajVapo1a4aHhwdnzpyhZcuWXLx4kSeeeAKDwYDVasVqtXLkyJFCdQjV6XRUqFCBChUq2LW+oiikpaXlSjg5ffo0tWvXRq1WY7PZsNlsKP9r46Pc1M5HpVLl/FOr1VIR/g4dj08rcgJHcVMBvs46fF30RKcYsdgUUBRsNhtqjSbf9W/ErVWrCPFyJcTbFXf93TFNzKeQHUC+3nHwtutMnPNZUcPJw7uMJJTYbDZ27dpFeHg4P/zwAwaDgS5duhAeHs6AAQOkOI24I7169WLNmjV8+OGHjB07lp49e7Jy5cqc88pgMJCcnCzJJEIIIUQ5cXd8UhBCCCGEEEIIIe5RNuXOb2n6VwzGYjaRlWHEJzAQgKS463nWS467jm9AUKnHVxJOnDhBrVq10OnKxs29ssze1/DK+XNs/34ZT746k6TY/z9/TKYsrGYzsZcv4eLujoe3T77b+1cMBiAtObnY4ktPT+fRRx9l8+bNfPXVV4wbN65QY5cHiqIQFRXFc8895+hQhBBCCCGEEKLYBLo50amqPwevJGEwW0tsP+46DS2CfcpkNXlRstRqNQEBAQQEBOR5rlatWvzwww95lqekpJT4BGyVSoWnpyeenp7UqFEjz/NqtTpPoQyr1UpmZiZZWVmYTCbMZjNmsxmr1ZqTcHJzoolWq0Wn06HX69Hr9TmPtdq8U4gyMjI4d+4c//zzD66urvj7+xMQEIC/vz+enp53bdJKuslCrDFvwZ2bnTn6NzvXfc+xg5HExVzCw9uH2k2aMWziywSH5C5ic/nsaRa99wYn/zyIVqfn/k5deeKVN2/Z4fdmCpCQaebKod1ErP2eIydPU7FGLe5v25FGLVrh6x+Ak4sLGpUKnUaFl5MOH2cd3s46PPRa1HfZ6+ThpEWrVmUn1pQxhrRUOrftzZDBgxk6dCghISGlHsPp06cJDw9n6dKlXLx4kVq1avHKK6/w+OOPU61atVKPR9w9FEUhKSmJuLg43Nzc6Nu3Lz169CA9PR1nZ2dcXFwA+Pfff5kzZw6zZ892cMRCCCGEsJcklAghhBBCCCGEEOVYcdwMvH7pInonZ5xd3ahSux4arZazx6Jo16Nvzjpmk4noE//QtkefUo+vJJw8eZL69es7Ooxywd7XMPH6NWw2GwvemcGCd2bkeX58t1b0GjGGUa+9le/21y9dBLD7Rvrt4rty5Qp9+vTh1KlTbNy4kR49ehRq3PLi2rVrxMfHS4cSIYQQQgghxF3Hx1lHt+oBnEhI41Siodg6BdwYp46vG/X9PNCoy+a1C1H2eHl5OTqEfGk0Gtzc3HBzc7NrfUVRSE1NzdUF5cbXpKQkkpOTSUlJIT4+nujoaGJjY0lJSckzjk6ny5Vgcruv/v7+5aa4S3Sy8bbvOeu++4KTfx2i7UO9qVa3PsnxcWxZvoiXBj7Ee6s2UrVOPQASrl1hxvD+uHp4MmzSK2Qajaxf9DUXT51g9veb0en1dsVktVj4+eDfnDt7lseHDCQsLIz69evftUk9t6JWZXddOZNkKBMdZG7mmplGrZo1eeutt3j11Vdp0aIFQ4cOZciQIVSpUqXE9pucnMz3339PeHg4kZGReHl5MXToUEaOHEmbNm3uyfNEFL9vvvmGJUuWcO7cObp37868efPw8fHBxye7iJSiKFy4cIH58+fzwAMPMHLkSAdHLIQQQgh7SUKJEEIIIYQQQghRjmk19t8ISklMyDNZ//zJfzi8cytNO3RGrVbj5uFJ4zYd2L3+RwaPn4zL/6ou/rZ+LZlGA20fLlxCia4Q8ZWmEydOMGLECEeHUS7Ye45VrVOXlz9fkGf5yk/nkGFIZ9Rrb1GhSnWM6Wno9Hp0eqecdRRFYe3XnwBwX/tOhYovv3Ps6NGj9OrVC5vNxt69e+/qZIuoqCgAGjdu7OBIhBBCCCGEEKL4adQqGgV4EuzuzPH4NGKNpiInltzYLsBVTwN/D3xd7JvELcTdRqVS4eXlhZeXFzVr1rz9BoDJZCIhISFPAsrNX+Pi4jh+/HjOY4vFkmccLy8vuxNQAgIC8PDwKPaJ8Fu2bGHs2LG88cYbjB49Ok/HF5uiEJ1ivO37TJ8nnmLSh1/kSghp26MvL/TtyrrvPmfiB58D8MM3n5GZYWTODz8TEFwZgFqN7+OtUY+wc933PDh0uF1xa7RaBowex6L3Z5bZIj6lKcTbldNJBkeHkcdDLe9j4Pffk56ezsaNG1m9ejXTpk1jypQptG3blqFDhzJ48GAqVqx4x/uyWCxs27aN8PBwIiIiMJvNPPjgg6xatYq+ffvmdIsQojicPHmSV155hXfffRdXV1deeuklNm7cSJcuXTh//jyVKlWievXqVK9enSlTpuR5bxVCCCFE2SYJJUIIIYQQQgghRDnm7aQjKcNs10SKuZPHoXd2pm7T5nj5+nP57Cm2fb8MvbMLw1+clrPesElTee3RfswYMYDuQ4aTcO0qGxZ9Q5N2nWjaobPdsakAL6eyV3UwLS2Ny5cvU69ePUeHUi7Ye455+vjRqlveLiCbwucD5Dx37EAkH095hvY9w6hYrTqmzEwObN/CyT8P0X3IcGo0tD8xIr9z7JdffmHw4MHUrFmTjRs3UqlSJbvHK4+OHDmCh4cH1atXd3QoQgghhBBCCFFifF30tK/iR7rJQnSykegUIxZb9ifVghJMbl6uVWdXsw/xdsVdL9MkhCgsvV5PxYoV7Z4Ef6MLyn8TTv6bhHL8+PGcx6mpqfnu90Z3E3sSUPz8/G7bBeWPP/4gJiaGp556im+++YZvv/2W+++/P+f5tCxLzvvLrdS7v0WeZcHVa1ClVh0unz2ds+z3rZto9kD3nGQSgCZtOxJcvQaRP6+3O6EEwIqKNJOlTF5zLW3uei2BrnrijKYy0aVERXbC4o2/Me7u7jzyyCM88sgjpKSksH79elavXs2UKVOYNGkSHTt2ZOjQoQwcOJDAwMBC7euff/4hPDycZcuWcfXqVRo2bMjbb7/NY489RnBwcAkcnRAwbdo0hg4dyjPPPAOA2Wxm1apVTJ48mWrVqqFSqZg+fTr9+vUjKCjIwdEKIYQQorDkSokQQgghhBBCCFGOeTvr7L5h1rLrQ+zZuI4Ni74lw5CWnQDQvSdDnn2BitVCctar0bAxbyxaxdIP32Hxe2/i7OZGl4GPMPyF1woVmwL4OJe9m5v//vsvAPXr13dwJOVDYc4xewRUqkz9Zq04uH0LyfFxqNQqKteozdNvvk/3QtxAh7zn2LfffsszzzzDQw89xKpVq/Dw8CjGyMumqKgoQkNDpeKbEEIIIYQQ4p7grtcSGuhJwwAP0kwWkjPNJGWaSckyY7Yq2BQFtUqFTqPCy0mHj7MOb2cdHnqtVPQXohTd3AWlVq1adm2TlZV12y4osbGx/PPPP8THxxMfH59vFxRvb+9bJp0cOnQIrVaLxWLh77//pnnz5owbN4533nkHHx8fkrLMRT5uRVFIToinSq06ACRcv0pKQjy1GuUtoFKrcVP+/G1HofeRnGmWhJL/aeDvwa6LCY4OA8i+TtnAP/9rkV5eXjz++OM8/vjjJCUlsW7dOlavXs2ECROYMGECnTt3ZujQoQwYMABfX998x4iPj2flypWEh4fzxx9/4Ofnx7Bh/8fefUdHUe9vHH92N5uEhJBG6C2CgdCR3nuQ3kGpioKiiCAqWECwwBXsIooFARuhhSZIEelNRWkmNOkdUkjPZnd+f3DlJ5eWhCSb8n6dc8+57s5855m4RM7sPPPpp8GDB+uBBx7I9Ek+wL9FR0crOjpaLVq0uP7avHnzZBiGFixYIKvVqvfee08ffvihOnbseNdiHwAAyHkolAAAAAAAkIv5puPLw46DHlfHQY+nadvg2vU1+YdlGY11nU8OLJSEh4dLEhNK0ig9n7Fbef2bRTf8c9FSZfT8BzPvac1/83G3yuFw6KWXXtLUqVP19NNP64MPPpCLS/647LV37141bdrU2TEAAAAAIFuZTdcKI95uVpX1dnYaAJnBzc1NJUqUSPOEBcMwFBMTc8cCyuXLl7V///7r/xwbG3vDGna7XZL06aef6osvvtCuXbtkKnHfbScf3c2m5YsVeeGcHhr5vCQp6uJFSZJPwM1P6/cNKKK4mCjZUpJldXVL0/omSVFJNn7v/ZdfAVcF+XnqUGS8s6MoyM9TfgVc77qdr6+vhgwZoiFDhujSpUtavHixQkNDNWzYMA0fPlxt27ZV37591a1bNxUoUECrVq3SnDlztGLFChmGoY4dO+qVV15Rx44d5ep69+MBmcHHx0eVK1fW4sWLFRAQoEuXLumXX37RX3/9df17lujoaL300ks6ePCgqlat6uTEAAAgvfLHN+sAAAAAAORRXm4ucjGblOrIzBkSmcPFbJKXa8679BAeHq5SpUqpYMGCzo6SK+T0z5iL3aaHBvbXwoUL9d5772nUqFH55ol8ycnJioiI0NNPP+3sKAAAAAAAANnKZDLJx8dHPj4+uv/++9O0T3Jyslq3bq2tW7fesI4k3XfffSpSpIgOJ9syVCY5/fdhffn6y6pYs7ZadOsjSUpJTpIkWW9x47/V7VqJJCUpKc2FEkNSzD1MUMlrIhNTFJXo3J+HSZKn1aJg//RPSg4ICNATTzyhJ554QufPn9fChQs1b948PfLIIzKbzXJxcVFKSopq1qypd955Rw8//LACAgIy/ySANOjatau2bdumiRMnqnHjxqpateoNpSZvb29FRkaqePHiTkwJAAAyyuzsAAAAAAAAIOPMJpMCvT2U026fN0kK9PaQOQfe2B8REaHg4GBnx8g1cvJnrKir1LZNG61YsUKLFi3S6NGj802ZRLpWjkpNTVX16tWdHQUAAAAAACDHc3NzU0xMzPV/Ll68uCZNmqTTp0/r4MGDKlmypFLt6a+TRF26qMlPDJKHl5ee//ALWSwWSZKrm7skyZaSctM+tuTka9u4u6frWLYM5Mtr7A5D+y9d1YaTV3Q58eafbXYymaS6JXxlMd/7Ncnk5OTrn09PT0/5+flJunY9e9OmTdqwYYMSEhLu+ThARrRp00abN2/WokWLNH36dBUqVEi///67DMPQsWPH9Oabb6pjx47y9/d3dlQAAJABOe8xoQAAAAAAIF0CfTx0OCre2TFuYOharpwoPDxcISEhzo6Rq+TUz9gz/XrrxNGj2rBhg+rVq+fsSNluz549kqRq1ao5OQkAAAAAAEDuUK9ePZUpU0bDhw9X+/btr5c//uEw0lfYiI+9qreG9Vf81at687sw+RUtdv093yJFJEnRly7ctF/UpYsq6O2b5ukkGc2X10Ql2bTrbJTibXZJytA0mcxiktSopJ983a0Z2j8pKUnLli3TnDlztHr1arm4uKhr1656++23FRISIhcXFx0/flzz589XaGio+vTpI09PT3Xu3Fl9+/bVgw8+KPd0FpKA9Lh69arc3d2vTyLx8PBQlSpVJEktWrRQ3759Vb9+fUVGRsrf318ffvihM+MCAIB7QKEEAAAAAIBcrqCri4p4uOpSQopTv0D7h0lSgIerCrrmvMsONptNR44c0ciRI50dJVfJaZ8xGYb279qm+OhI7dy5U+XKlXN2Iqew2+1q0qSJvLy8nB0FAAAAAAAgV/jqq6/u+H56Ji6nJCdpyvDBOnv8b702K1SlKwTd8L5/0eIq5OevI/v33rTvkb1/KDC4SpqPlZF8ec3F+GRtOxOpnNCpMZuulUmKeKavEGQYhnbs2KE5c+YoNDRU0dHRatCggaZPn66+ffvK19f3hu3LlSunF198US+++KIOHz58vVzSvXt3FSpUSF27dlXfvn3Vtm3b6zf9A5nlscceU8uWLdW1a1eVKFHihungb775plq0aKF58+apYcOGatasmQoUKODEtAAA4F6YDCMn/DUbAAAAAADci8jEFG04ecXZMa5rUcZffgVy3hdYERERCg4O1i+//KIWLVo4O06ukpM+Yw6HQ4vfmaQZ706Vj4+Ps+MAAAAAAAAgj9hw8rIiE2133c5ut2vaM49p96b1GvvJ16rdvPUtt5s5cZw2LJmvj1dtVuHiJSVJe7dv1qRH+2rYxP+o3UOD0pXPv4BVzcsUTtc+ecHF+GRtPR2ZIx52U9BqUd0SvumaTHLq1Cl98803mjNnjg4dOqTSpUtr4MCBGjRokCpWrJjuDOHh4QoNDVVoaKgiIiLk6+ur7t27q2/fvmrVqpVcXHLew56Qu0ybNk1jx46V1WpV9erV9fzzz6tVq1YKCAhwdjQAAJAFKJQAAAAAAJBH7L90VYci450dQ0F+nqoaUMjZMW4pLCxMPXr00Pnz51W0aFFnx8l1fjt1ScfjUmQ2m52WweFw6O9dmzXq4R48dQ8AAAAAAACZ6s8LMToWnXDX4sKsyRP049wvVadlWzVq3+Wm95t36SlJunzujJ7vHiLPQt7qOPAxJSUkaOmsT+VXtLimLlwpq2vaJ1yYJAX6eKhmUe90nFHuF5Vk08aTl+Vw4h1uJkmGrl37Dvb3ksV890kx8fHxWrx4sebMmaP169erQIEC6tmzpwYPHqyWLVtmyjVWwzC0b9++6+WSo0ePqnDhwurZs6f69u2rZs2ayWKx3PNxkL+kpqaqc+fOatOmjbp166YXX3xRYWFhatOmjUaPHq2GDRvKx8dHly9f1ssvv6znn39eQUFBd18YAADkWBRKAAAAAADII+wOQ+uOX1KCze6UJ7WZJHlaLWpdLiBNX6g5w+TJkzVt2jRFRkbeMJ4dd5ecnKyOnTqr59jXVbRUGckJPz97aqpSE+PVu1aQXCzOK7UAAAAAAAAgbzoek6Dd52Puut2EgT114Nftt31/UcTZ6///5OGDmv2fiYrYvUsuVlfVbt5ag8e+Jp/C6X/Sf+1i3irr7ZHu/XIrZ1/z/kdAAauqBBS661Ruh8OhzZs3a86cOVqwYIHi4uLUvHlzDR48WL169ZKXl1eWZTQMQ7t371ZoaKjmz5+vEydOqFixYurVq5f69u2rRo0aOfVBQcg9oqKi9NVXX6lYsWIaMGCAJOnPP//UM888o23btql379569tlntXDhQi1YsEAnT550cmIAAHCvKJQAAAAAAJCHOPNpbWaT1LxMYfm6W7P/4Gk0aNAgHTlyRNu2bXN2lFzF4XBo4MCBWrRokVb+sklX/UvL4TCytVTisNtlMkmtAovm6M8YAAAAAAAAcq+YJJt+PnHZ2TFuq3W5wvJ2yz/XxnLLVO6jR49q7ty5mjt3ro4fP6777rtPgwcP1sCBAxUYGJiNSa8xDEM7d+5UaGioFixYoDNnzqhUqVLq3bu3+vbtq3r16vHAJdxRYmKiDMOQh4eHbDabrNZrv3fWrl2rUaNG6dixY0pKStL8+fPVq1cvJ6cFAAD3ikIJAAAAAAB5zMX4ZG09HZmtT2wzSWpcyk9FPN2y8ajpV7duXVWvXl1fffWVs6PkKi+//LKmTJmi0NBQ9ezZU6NeeU1NBwyTizV7vrx22O0ym81qUto/x3/GAAAAAAAAkHs5DEMrjlxQqjOe2HMXLmaTOlUoKnM+KQJEJqZow8krzo5xXYsy/jdMKLl69aoWLFig2bNna8uWLfLy8lKfPn00ePBgNWnSJMcUNhwOh7Zu3arQ0FAtXLhQFy5cULly5dSnTx/17dtXtWrVuuesDodDKSkpcnd3z6TUyGnsdrtMJtP1KTdNmzaVxWLRhg0bnBsMAABkCubYAQAAAACQxxTxdFPjUn4ym64VPbKa2ZQ7yiSGYSgiIkKVKlVydpRcZebMmZoyZYreeecd9e7dWyNHjtSMaVNkPXskWz5jDrtdFkv+LpPwPBgAAAAAAIDsYTaZFOjtkS3XVdPDJCnQ2yPflEkk6a/LsTnm34NJ1/LY7XatWbNG/fv3V7FixTR06FB5eHjou+++0/nz5/Xll1+qadOmOaZMIklms1lNmzbV9OnTdebMGf38888KCQnRV199pdq1a6tixYp69dVXtW/fvgxfhzx06JBGjRqlbt266aOPPlJCQkImnwWczWKxyGw2y263a+/evdq6dasmTpzo7FgAACCTuDg7AAAAAAAAyHxFPN3UvExh7TobpXibPcuOU9BqUd0SvvJ1z55JFffizJkziouLU3BwsLOj5BorVqzQU089pWeeeUbPPfecXn/9dc2YMUNffvmluoe0UlSSLUs/Y4bDIU+rRQ1KF84Vn7GskpO+gAYAAAAAAMjrAn08dDgq3tkxbmDoWq78Ii4lVRcTUu66XWJ8vJZ+NUOH9/6hI/v+VFxMtJ6e/L5a9eh7w3Y9K5W47RrVGzXVa7NC73gcQ9LFhBTVbtBIe37bpUqVKmnChAkaMGCASpUqlaZzygksFotatWqlVq1aafr06Vq/fr1CQ0P1ySef6K233lJwcLD69u2rvn37puvBTDExMSpWrJjc3d01atQoubq6atiwYdenWRiGwTXOPMJisSgxMVEvvPCCWrRo4ew4AAAgk5gMHnEIAAAAAECeZXcYCr8Sq0OR8TLp2hdf9+qfdYL8PBXs7yWLOXd8EbR27VqFhIToyJEjKl++vLPj5Hi//vqrWrRooZCQEC1cuFAzZ87U008/rcmTJ+ull166vl1WfMbsqakyW8wq711A1Yr65prPWFY4c+aMfvrpJz322GM3vH7y5EmlpKSobNmyslrzb9kGAAAAAAAgK2w5dUWXElIy5VrXvTJJCvBwVZPS/s6Okm32XbyqI1Hxd/35Xzx9SsPb1FfhEiVVtFRZHdi17ZaFko3LFt2079H9e/Tj3C818IVX1e2xp+6ayWG369Sfu9S4QinVrVs3TxUkUlJStGbNGoWGhmrp0qWKjY1V9erVr5dL0no9ffHixRo6dKjWrVunWrVq3fDewYMHVaZMGRUoUCArTgHZzOFwXC8MAQCA3I9CCQAAAAAA+UBkYor+uhyriwkp93zTfxEPV1Uu7CW/Aq6ZFS9bfPTRR3rxxRcVHx8vi8Xi7Dg52t9//62GDRvqvvvu088//6wVK1booYce0rPPPqv33nvvll+WZsZn7J8voa6ePanO9WvK38Ptns8lt/vss8/07bffasuWLTIMQ6tWrdKYMWMUFRWlUqVKqVWrVnrppZfk6+vr7KgAAAAAAAB5RmRiijacvOLsGNe1KOOf667HZpTDMLTiyAWlOu5+hdGWkqy4mBj5BhTRkX17NLZ3+1sWSm5lxqtjtH7RPM385Vf5F7v9BJN/czGb1KlCUZnzUJnkfyUlJWnVqlUKDQ3V8uXL5e3trdOnT9+xPJCSkiJXV1d16dJFKSkpCg0Nlbe3tyQpIiJCn3zyibZs2aLTp0+rUqVKevnll9W+ffvsOiXcg9TUVLm4uDg7BgAAyGLURAEAAAAAyAf8Clx7gl1IYIAq+HrK5V8TH2731de/X4+PvaqEk0cUEhigJqVz55eXERERCgoKokxyF1euXFGHDh1UqFAhLVu2TNu2bdOAAQPUr18/vfvuu7d98t69fsaSExO0Ys7nuvr7Rj3Ssj5lkv/atGmTAgMDJUmLFi3S888/r7p162rGjBnq2LGjPv/8c73wwguSJJ4bAwAAAAAAkDn8CrgqyM/T2TEkXZsUnRuvx2ZUbHJqmsokkmR1dZNvQJF0H8OWkqwda1aqct2GaS6TSFKqw1BsSmq6j5ebuLu7q3v37po3b54uXryoH3/88a77uLpe+3yuWbNG3bp1U6FCha6/995772nHjh0aMWKEduzYoYYNG+q1117Tzp07s+wccO9SU1P12GOP6dSpU86OAgAAsgH1UQAAAAAA8pGCri6qVqSQqgR4KTYlVdFJNkUl2RSTbJPNbshhGDKbTLJaTPJ2s8rX3Sofd6t6dhokF4tFA9r+5OxTyLDw8HAFBwc7O0aOlpSUpK5du+rKlSvavn27Tpw4oe7du6tNmzb6+uuv0zTCPr2fMTeHTc8MHaLft23Rgvnz1aZNm2w409zjjz/+0Pjx4yVJ8+bNU7t27TRhwgT5+vqqR48euu+++/TBBx/o999/V+3atZ2cFgAAAAAAIO8I9vfSmdgkJdjs9zTxOaNMkjytFgX7eznh6M4TlWzL8mPs3rhe8Vdj1Kxz93TvG51kk7ebNQtS5Tyenp6qVavWHbex2+2yWCxatGiRrFarGjdufP2hRA6HQ9HR0SpXrpwee+wxSdLUqVNVvnx5LVy4UHXr1pXZbJbD4dDevXsVGRmpVq1aZfl54e5mzZqlWbNmacSIEc6OAgAAsgGFEgAAAAAA8iGz6drN/N5uVpX1vvv2Xbt00ZgxYxQTE3N9VH1uEx4ermbNmjk7Ro7lcDg0aNAg7d69W+vXr5fD4VD79u1VtWpVLViwQFZr+r4kTc9nrPJ95fTh21NUpUqVeziDvOnYsWM6fPiwDh06pF9//VWDBw+Wr6+vHA6HJKlHjx6aPHmy7Ha7k5MCAAAAAADkLRazSfVK+GrjyctyxmBYk0mqW8JXFvPt5v/mTdFJNpmkLC3xbFq+WFZXNzVs1yld+5kkRSXZ0nRNPb/5/PPP1aJFC5UtW/b6a2azWaNGjdKECRO0b98+VatWTWfOnJHVapW7u7tMJpNsNpu6dOmiCxcuKDExUadPn9awYcP0xhtvyMPDw4lnlH/Fx8dr4sSJ6t+//10LRQAAIG+4+2MlAQAAAABAvtetWzfZbLY0jbfPiaKionThwgUmlNzBCy+8oIULF+r7779X6dKlFRISoiJFiujHH3+Up6fnPa//TwHiVq9/+OGHlEluITY2VkFBQVq9erX69eun5OTk68Ues9kss9msxMREnThxQhUrVnRyWgAAAAAAgLzH192qRiX9lN2VDpOkRiX95OuePyZh/Ft0si1LyyQJcbHavfFnPdC8lTwLpa8ZYkiKyYYJKrmFYRiyWCwyDEO//PKLunXrJi8vLxn/bWCFhYXprbfe0qlTp1SrVi0FBARo6NChqlixooYNGyaTyaS33npLO3bs0DvvvKPdu3dr6dKl2rRpkzZs2ODck8vHPvjgA12+fFlvvPGGs6MAAIBswoQSAAAAAABwV6VLl1adOnUUFhamfv36OTtOukVEREgShZLb+Oijj/Tee+/po48+UrNmzdSsWTM5HA6tXr1afn5+GVrTMAxt2bJFrq6uqly5sry8vG65ndnM805ux9PTU999953OnTunM2fO6Ny5czdMiklKStK8efNUunTpXDs5CAAAAAAAIKcr4ummxqX8tO1MpAwjaydnSJLZdK1MUsTTLYuPlDOl2rP2J7xj9Y9KSU5S0049MrS/LYvz5RY2m01vv/22PD09ZRiGvL291aRJE5lM1+pXZ86cUZ8+ffTaa6/pww8/lKurq95//32dPHlSX331lXx8fGSz2fTTTz9p6NChatWqlRITE9WqVSvVr19f7777rjp06ODks8x/Ll++rLfffltPPfWUAgMDnR0HAABkEwolAAAAAAAgTbp3767JkycrMTFRBQoUcHacdAkPD5fJZFJQUJCzo+Q4YWFhGjVqlMaMGaPHHntMbdu21fnz57VlyxaVKlUqQ2uePXtWISEhslgsiouLU2pqqqZMmaKOHTvK29tbDoeDIkkamM1mVatWTdWqVdP58+fl7e19w5+96OhohYeHq3///k5MCQAAAAAAkPcV8XRT8zKFtetslOJt9iw7TkGrRXVL+ObLyST/cBhZW9jYtGKxPLwKqU7LNhnaP6vz5RZms1leXl566623dPnyZUnSggULNHDgQJUtW1ZLlixRsWLFNHbs2OsPyXnqqafUuHFj/frrr2rbtq2sVqsSEhKUkJAgSdevfSYmJkqS7Ha7LBaLE84u/3rzzTclSa+++qqTkwAAgOzEN/cAAAAAACBNunfvrvj4eK1bt87ZUdItIiJC5cqVy3VFmKy2fft29evXT71799Zbb72lPn36aM+ePVq5cqUqVaqUoTXPnz+vLl26qHnz5vrpp5/0559/qmXLlho6dKjef/99xcfHy2w2y+CL17uy2+16/fXX1a5dO4WEhOj+++9XrVq1NGjQIK1atUrFihXTp59+qtdee83ZUQEAAAAAAPI8X3er2pQLUJCfpyTJlEnr/rNOkJ+nWpcLyNdlEkkymzLrJ3uzqIsXdGDnNjUI6SCra8YmwGRlvtzEYrHo2Wef1cWLF3Xy5ElNmDBBM2bM0BNPPKHY2Fi5u7srJSVFmzdvvmG/qlWraufOndf/eezYsZo/f74++OADnT9/Xp999pm+++47lS1bVikpKdl9WvnasWPHNGPGDI0dO1aFCxd2dhwAAJCNKJQAAAAAAIA0CQ4OVsWKFRUWFubsKOkWHh6u4OBgZ8fIUQ4fPqzOnTurbt26+vrrrzV06FCtWbNGixcvVr169TK87tmzZ+VwODR69GgVLVpUXl5emjx5sqxWq8LCwvTFF19Ikkx88XpXzz33nFauXKkqVaqoc+fOSkpKkre3ty5duqSRI0fq448/lt1u52cJAAAAAACQTSxmk6oGFFKLMv4K8HCVlPFiyT/7BXi4qkUZf1UNKCSLmes8Lpas+xlsWblUDodDzTr3yPAa1izMl1uVKlVKEydO1NmzZ/XNN9/Iy8tL/fr1U6NGjTRlyhQtXLhQO3fu1NChQ5WQkKCWLVte37d///76z3/+o48//ljNmzfXvHnz5Ofnp4oVK/KAqGz26quvqnDhwho1apSzowAAgGzm4uwAAAAAAAAg9+jevbu++OILpaamysUl91xWCA8PV9euXZ0dI8e4ePGi2rdvr4CAAIWFhWn8+PH69ttv9d133ykkJOSe1j506JAOHjyo++67T2bztWeZxMTEqF69enI4HFqwYIH69eunIkWKZMap5FmGYWjWrFlatWqVmjRpIklq2bKlJkyYoI8//lg///yzJkyYoHr16ql+/fpOTgsAAAAAAJC/+BVwVZPS/opLSdWx6AQdi0lQquPaRF6TpFvN5v336y5mkwK9PRTo46GCrrnnOmt28HGzKirRdsuf4a2s/HaWEmKvKvLiBUnSb7+sVeSFc5Kk9gOGyNOr0PVtNy9fLL8ixVSlXqMMZTNJ8nbL3xNk7iYgIECGYahAgQKaPn26PvzwQz333HMqVKiQSpQoobFjx6px48aSpOjoaPn4ADO25wABAABJREFU+GjIkCEaMmSIJOnJJ5+Uw+FQnTp1JF27TsoDdbLeH3/8oe+//14zZ86Up6ens+MAAIBsZjIMI61//wYAAAAAAPncrl27VL9+ff3yyy9q0aKFs+OkSVJSkjw9PTVz5kw9/vjjzo7jdP88Ae7EiRPavn27FixYoLFjx+qjjz7SM888k6E17Xa7LBaLJOnq1auqVauWatasqalTpyoxMVHt27fXww8/rNGjR6t06dL64Ycf1Lt378w8rTwnIiJCISEhOnr0qMxmsywWi86dO6egoCDFxsZKkvr27StXV1d98803Tk4LAAAAAACQvzkMQ7EpqYpOsikqyaaYZJtsdkMOw5DZZJLVYpK3m1W+7lb5uFvl5eoiMzfJ39LxmATtPh+T5u2fbFVPl86evuV7n67bqSKlSkuSzvx9RCM7NFPnR57QI+Ney3C+2sW8VdbbI8P751dnzpyRl5eXChW6VvA5ffq05s6dq0GDBqlUqVKKjY3ViRMnVKtWLU2aNEmjRo2Shwc/5+wSEhKikydPav/+/bnqYWIAACBz8F9/AAAAAACQZnXq1FHJkiW1ZMmSXFMoOXz4sBwOh4KDg50dxensdrv69eun/fv3a+PGjdqwYYPGjh2r8ePHZ7hMMm7cOJ05c0YlSpRQr169VLduXc2YMUNDhw5VixYtFB0drT59+mjq1KmSrn2GTp48KYmny92JzWZT0aJFNXPmTI0YMUIOh0NhYWEqXLjw9W06deqkadOmOTElAAAAAAAAJMlsulYY8Xazqqy3s9Pkbr7pnADy2fpdadqu5H0VtCjibEYi3cDHnQklGVGyZMkb/jkxMVFbtmzRe++9pzZt2iglJUVbtmxRnz599PLLL9+0v91u17lz51SiRInrk7GROdauXau1a9dq8eLFlEkAAMin+BsAAAAAAABIM7PZrG7duiksLEzvv/9+rigDeHh4aOTIkapWrZqzoziVYRh69tlntXz5ci1btkxnz57V0KFD9cQTT2jSpEnpXi8qKkpNmzaVt7e3atWqpUWLFunKlSuqU6eO2rVrp7179+ro0aOSpNq1a0uSLly4oPj4eAUGBkpSrvj8OINhGKpWrZq6dOmit99+WxEREYqMjNSOHTs0fPhwSZLD4dCuXbtUrlw554YFAAAAAAAAMpGXm4tczCalOgxnR7mJi9kkL1dut8sM999/v1auXKnNmzdr3rx58vHx0ahRo1SnTh1J165//rs4YrFY1Lt3b508eVK9e/dW37591aBBA64x3yOHw6Fx48apYcOG6tatm7PjAAAAJzEZhpHz/vYNAAAAAAByrJ9//llt2rTR77//rgceeMDZce7KbrfLZDLl+6eWvfPOO3rhhRc0c+ZMBQcHKyQkRB07dlRoaKgsFkua1zEMQykpKRo6dKhSUlL0zTffyGq1au7cuXrzzTe1Z88eFShQ4Kb9HA6HJk+erNmzZ2v58uVMjEmDy5cva/bs2Vq2bJnsdrtGjx6tzp07y83NTREREZowYYLat2+vRx991NlRAQAAAAAAgEyz7+JVHYmKV066qc0kqYKvp6oVKeTsKPmSYRjavn27QkNDtWDBAp07d05lypRRnz591LdvX9WuXZtySQb88MMP6tevnzZt2qSmTZs6Ow4AAHASCiUAAAAAACBdbDabihYtqqefflpvvPGGs+MgDUJDQ/XQQw/p5ZdfVt++fdWsWTPVrl1bK1eulJubW7rXczgcat68uR588EG98sorkqSFCxdq9uzZqlmzpqpUqaKGDRuqXLlystlsWrt2rebPn6+wsDAtW7ZMzZs3z+xTzHdOnTql06dPq0qVKipUiC+xAQAAAAAAkHfEpaRqzbFLzo5xk5DAABVkQonT2e12bdmyRaGhoVq4cKEuXbqk++67T3379lXfvn1VvXp1yiVpkJKSokqVKqlq1apatmyZs+MAAAAnolACAAAAAADSbdCgQdq9e7f279/v7Ci4i02bNqlt27bq06ePJk2apMaNG6tEiRL65ZdfMlREMAxDkZGR6tatmypWrKh+/frpwoULeuSRR9S5c2fFxMQoMTFRnp6eCg0NlY+Pj/bs2aNFixZp2LBhKlWqVBacJQAAAAAAAIC8ZMupK7qUkJIjppSYJAV4uKpJaX9nR8H/SE1N1YYNGxQaGqrFixcrMjJSFStWvF4uqVy5srMj5lgfffSRRo8erb1796pKlSrOjgMAAJyIQgkAAAAAAEi3sLAw9ejRQ4cOHdL999/v7Di4jfDwcDVq1Ei1atXSnDlz1KpVK0nS1q1bVaRIkXStFR0dLR8fn+v/vGjRIk2bNk2+vr7atWuXxo8fr2effVYmk0lLlizRq6++qnfffVft2rXLzFMCAAAAAAAAkA9EJqZow8krzo5xXYsy/vIr4OrsGLgDm82mdevWKTQ0VGFhYbp69aqqVq16vVzCdxn/7+rVqypfvry6dOmir776ytlxAACAk1EoAQAAAAAA6ZaQkKDChQtr4sSJevHFF50dB7dw/vx5NWjQQAULFtTKlSvVrVs3nTt3Ttu2bVNgYGC61ho4cKC8vb312muvKSAg4PrrUVFRunTpkjp37qzFixdff4rZ33//rfr162vOnDnq0KFDpp5XfuVwOGQ2m50dAwAAAAAAAMg2+y9d1aHIeGfHUJCfp6oGpH/aM5wnOTlZq1evVmhoqJYtW6a4uDjVqlVLffv2VZ8+fdJ9jTwnchiGYpNTFZVsU3SSTdHJNqXaDTkMQ2aTSS4Wk3zcrPJxt8rXzSovNxeZTSZJ0vjx4/XOO+/o8OHDTBUHAABycXYAAAAAAACQ+3h4eKhdu3YKCwujUJIDxcXFqWPHjrLZbAoLC9Mjjzyiv//+W5s2bUrXF2U2m02DBg3S6tWrFRMTo9KlS2vEiBHy9PSUJPn6+ur48eOyWCzy8vK6vt+OHTtUrFgxlSxZMtPPLb/au3evbDab6tSpI9N/v/QDAAAAAAAA8rJgfy+diU1Sgs0uZzwx2STJ02pRsL/XXbdFzuLm5qYuXbqoS5cuSkxM1MqVKxUaGqpJkyZp3Lhxqlevnvr27avevXurdOnSzo6bLnEpqToWnaBjMQlKdVz7k2GSbvlnJCrRdv11F7NJgd4e8rTF67333tOzzz5LmQQAAEhiQgkAAAAAAMiguXPnavDgwTpz5oxKlCjh7DiSmOIgSampqeratas2b96sDRs26K233tLKlSu1Zs0aNW3aNF1rbdq0SVOnTtX48eO1fft2jRkzRrNmzdLDDz8sV1fX69tVqFBBfn5+atWqlSwWiz744AN9+OGHevzxxzP79PKtQYMG6dChQ9qxY4ezowAAAAAAAADZJirJpo0nL8vhhDvczCapeZnC8nW3Zv/BkSXi4uK0YsUKhYaGatWqVUpOTlbjxo3Vt29f9erVS8WLF3d2xNuKTEzRX5djdTEh5bYFkrv5Z78Du7Zp8IMtVSbAL3NDAgCAXIlCCQAAAAAAyJDIyEgVKVJEH3/8sYYPH+7ULA6HQ6tWrdL27dtVuXJlPfzwwzKZTDp06JBOnTqlatWqqUiRIk7NmF22bNmitm3basmSJVq8eLG++uorhYWFqXPnzuleKzY2Vps2bVLr1q3l7u6ukSNHavbs2QoNDVVISIgsFosk6cKFCxo8eLDi4+NVqFAhjRkzRq1atcrsU8vXatasqXr16unzzz93dhQAAAAAAAAgW12MT9bW05HZOqXEJKlxKT8V8XTLxqMiO129elVLly5VaGio1qxZo9TUVDVv3lx9+vRRz549c8x3CnaHofArsToUGZ/hIslNDEMymRTk56lgfy9ZzEzFBgAgP6NQAgAAAAAAMqxNmzYym81as2aNU3N8/fXXeuutt+RwOHT8+HF9+eWXOnbsmJYvXy43NzdVrFhREyZMUIUKFZyaMzs4HA6dO3dOX3/9tcaPH6+vv/5ajzzySKat37VrV/3xxx8KDQ1Vw4YNb3o/ISFBHh4emXY8SCkpKSpYsKDef/99Pf30086OAwAAAAAAAGS7i/HJ2nYmUoaRSTfU34HZJDUqSZkkP4mKilJYWJhCQ0P1888/S5Jatmypvn37qkePHvLzc84kj6gkm3adjVK8zZ5lx/C0WlSvhC+TeAAAyMcolAAAAAAAgAz75JNPNGrUKF26dEk+Pj5Oy1GpUiUNHTpUY8aM0b59+9SnTx8VK1ZMvXv3VqFChTR27Fh16NBBH374Yb4oOzgcDu3fv19btmzRU089lSlr2u326xNJHnjgAZnNZn3//fey2+2aMmWKnnjiCTVu3DhTjoUb7du3T9WrV9emTZvUtGlTZ8cBAAAAAAAAnCI7bq4vaLWoLjfX52uXLl3S4sWLFRoaqg0bNshisaht27Z66KGH1LVrV3l7e2dLjuwqUZkkmShRAQCQr1EoAQAAAAAAGXbmzBmVKlVK3377rfr37++0HIUKFdLBgwdVvHhxSZK7u7vCwsLUvn17SdLGjRv1+OOPa9u2bQoICHBaznvlcDhkNpvTtO2/CyCZJTU1VS4uLoqLi1PlypVVokQJ/fXXX2ratKl+/PHHTD0W/t+3336rgQMHKjo6Otu+rAQAAAAAAAByIrvDUPiVWB2KjJdJmXOj/T/rBPl5KtjfSxazKRNWRV5w/vx5LVy4UKGhodqyZYtcXV3Vvn179enTR126dFHBggWz5LgX45O19XRklk/j+TeTpMalKJUAAJAfpe0OBAAAAAAAgFsoWbKk6tWrp7CwMKdlOH/+vIoXL65du3ZJkvbv36+UlBRVr15ddrtdhmGoRIkSunDhQq4uk6xfv14vvPCC2rRpozlz5ig2NvaO22d2mUSSXFxclJqaqoIFC2rkyJHatWuXhg8fTpkki+3du1dly5alTAIAAAAAAIB8z2I2qWpAIbUo468AD1dJ126Ez4h/9gvwcFWLMv6qGlCIMgluUKxYMY0YMUKbN2/WqVOn9J///Efnz59X//79FRAQoF69emnBggVKSEjItGNGJdmuTSbJtBXTxpC07UykopJs2XxkAADgbBRKAAAAAADAPenWrZtWrVqlxMREpxzfx8dHnTt31quvvqpx48Zp1KhRqly5sr788ktZLBalpKRo0aJFKl++vFPyZYYtW7aoe/fuunr1qqxWq5555hn9+eefWXa8Ow20dXFx0aeffqoXX3xRH3zwgd5+++0sy4Fr9uzZoxo1ajg7BgAAAAAAAJBj+BVwVZPS/goJDFAFX0+5/KsIcrtKyL9fdzGbVMHXUyGBAWpS2l9+BVyzNC9yv1KlSmn06NHasWOHjh07pkmTJunYsWPq06ePihQpoocfflhLlixRUlLSLff/9ddf9eWXX97x+rvdYWjX2SjdYZMs5TCkX89Gye5wUgAAAOAUJuNOf0MBAAAAAAC4i4iICAUHB2vp0qXq0qWL0zK88sor2rdvn8aNG6fAwEA9+eSTqlmzppKTk/XXX3/pueee05NPPumUfPfiypUratq0qYYOHarRo0dLkjp16qR+/fqpTZs28vT0lKenp6RrRRCT6d6eoBcbG6vz58+rXLlyslqtN71vGIaWLl0qq9Wqjh073tOxkDbFixfX448/rjfeeMPZUQAAAAAAAIAcyWEYik1JVXSSTVFJNsUk22SzG3IYhswmk6wWk7zdrPJ1t8rH3SovVxeZ7/FaKiBJhw8f1vz58xUaGqp9+/apUKFC6tq1q/r27au2bdvK1fVaWalp06basmWLXn75Zb355pu3vJa//9JVHYqMz+5TuEmQn6eqBhRydgwAAJBNKJQAAAAAAIB7FhwcrAYNGujrr792dhRJks1m088//6xvvvlGZ8+e1SOPPKLBgwc7O1aG7N69W4MGDdI333yjWrVqSZJatWql1NRU/fnnn2rWrJkefPBBjRgx4p6Pdfr0aXXq1ElxcXHav3+/3N3d73lN3JuLFy+qaNGimj9/vnr37u3sOAAAAAAAAACA2wgPD1doaKhCQ0MVEREhX19fde/eXW3atFH//v2vTycZP368Xn/99Rv2jUxM0YaTV5wR+5ZalGFyDwAA+YXZ2QEAAAAAAEDu1717dy1fvlypqanZfuxt27Zp27Zt+vvvvxUXFyfDMGS1WrVz5049//zz+uWXX3JtmUSS7Ha7Ll26pD///FN///23xo0bp3379mnEiBH64YcfrpcNDh8+fE/H+fPPP1W/fn1FRkZqyZIllElyiL1790qSatSo4eQkAAAAAAAAAIA7CQ4O1sSJE/XXX39pz549Gj58uDZu3Kh+/frp38/9fuONNzRp0qQb9v3rcqxyyswck67lAQAA+YOLswMAAAAAAIDcr3v37poyZYo2b96sli1bZuuxH374YQUHB6tAgQLy8fFRkSJFVL58eU2aNElms1leXl7y8/OTn59ftua6V4ZhyGQyqW7duurSpYuee+451alTR7/99pu+++47dejQQZJUoUIFVatWTX/++afuv//+DB1r5cqV6tu3r4KCgrRixQoVL148M08F92Dv3r0qUKCAypcv7+woAAAAAAAAAIA0MJlMql69uqpXr64333xT1apV04EDB27YZuLEiTp79qxmzpypuJRUXUxIcVLamxmSLiakKC4lVQVducUUAIC8jv/aAwAAAACAe1anTh0NHz5c3t7e2Xrc+Ph4FSpUSAcPHtSDDz6oc+fO6fDhw1qzZo1cXFy0ePFibd26Vb6+vvr+++9lMuWU53vdnclkksPhkNls1hdffKGhQ4eqaNGi6tGjh/z9/SVdK534+vqqVq1a8vDwyNBxPv30U40YMUIdO3bUDz/8IE9Pz8w8DdyjPXv2qFq1arJYLM6OAgAAAAAAAABIp9OnT99QJrFYLHI4HDIMQ59//rleeuklxXr4yaRrRY7bObLvT/0SNl/7d23TpTOn5OXjq/tr1Fa/Z19UicBrDyRyOBzasGSBdq5dqWPh+xUXE60ipcqoSYeu6jLkSbm6pX0yuUnSsegEVStSKGMnDgAAcg0KJQAAAAAA4J6ZTCbNmDFDNpstW4/r6empzz77TNOnT1ePHj3Utm1bSdLSpUvVr18/9e/fX6dOnZLNZstVZZJ/mM3m66WSevXq6dy5c0pMTNSePXtUv359xcbG6vXXX1dcXJxCQkLStbbD4dCLL76od999VyNHjtR7771HaSEH2rt3r+rUqePsGAAAAAAAAACADDh79qxcXV3l6+ur+++/X0FBQSpfvrwCAwNVsmRJlSlbViuOXLhjmUSSwr74RBF//KpG7TqpbMVgRV++pFXffa0XerbTlHkrVCaokpITE/XJy6MVVKO2Qh4aJG+/wjr0528K/fgd7d2+RZPmLEjzdyWGpGMxCaoS4CVzLvx+BQAApJ3JMIy7/V0EAAAAAAAgR1u9erVeeOEFjRw5Uo8//rjmzp2radOmad++fc6Olin+KZUkJCRo2bJl6tevn6pVq6YCBQooMjJS69evV6lSpdK8XkJCggYMGKClS5fq/fff18iRI7MwPTLKZrOpYMGCevfddzVixAhnxwEAAAAAAAAAZMA/1/hvJSbJpp9PXL7rGhG7f1X5qjVkdXW9/trZ43/ruS6t1bBdRz07bbpsKSk6un+PKj1Q94Z953/ynkI/fkcTZs1TjUbN0pW9dbnC8nazpmsfAACQuzChBAAAAAAA5GoOh0Pt2rWTj4+PBgwYIG9vb+3fv1/ly///iHeTyZQrJ5T8w2w2y263y8XFRc2bN9eqVau0dOlS1apVS61bt05XmeTChQvq0qWL9u/fryVLlqhz585ZmBz34uDBg0pJSVH16tWdHQUAAAAAAAAAkEG3K5NIUlRy2ia//29JRJJKlLtPpSsE6fTRw5Ikq6vrLber36a9Qj9+R2eOHk53oSQ6yUahBACAPI5CCQAAAAAAyNXMZrNSU1NVv359LV++XMOHD9fGjRs1YcKE6+/nBRaLRSaTScWKFVPx4sUVEhKS7pLMX3/9pY4dOyopKUmbNm1S7dq1sygtMsOePXskiUIJAAAAAAAAAORR0Uk2mSQZGdjXMAxFX7ms0hWC7nyMyxclSV6+fula3yQpKsmmst4ZCAcAAHKNvHFHBQAAAAAAyNdcXFzkcDhUqVIlzZgxQ2PHjlXXrl2dHSvT/bsck94yyfr169WoUSMVLFhQO3fupEySC+zdu1dlypSRj4+Ps6MAAAAAAAAAALJAdLItQ2USSdq0fLEiL5xT4w5d7rjdkq9myKOglx5o1ipd6xuSYtI4QQUAAOReTCgBAAAAAACZzmazyWr9/xHoDocjyyeF/LN+cHCw3nrrrXQXLpwpPj5e7777rvbt26d69eqpZ8+euu+++265bUbOa/bs2Ro6dKhatmypBQsWyNubx4nlBnv37mU6CQAAAAAAAADkYan2jNVJTv99WF++/rIq1qytFt363Ha7RZ99pL3bNmvoa1PkWSj93w3YMpgPAADkHkwoAQAAAAAAmSo2NlZjxozRAw88oE8++UTbtm3L8jLJ/zKbzbmqUNK4cWOtX79eJpNJkydP1jfffHPD+4aRsS9sDMPQ+PHj9eijj+rRRx/Vjz/+SJkkF9mzZ49q1Kjh7BgAAAAAAAAAgCziyMD1/6hLFzX5iUHy8PLS8x9+IYvFcsvttq5cqh8+fFutez2sBx8enG35AABA7sKEEgAAAAAAkKmsVqu2b98ub29vRUdH64knnlDp0qVVsWJFPf300ypcuLB8fHyy7PgOh0N2u/2GCSk52SOPPKISJUpo0aJFKlCggD744ANt3bpVCQkJ8vDwkHRtKolhGOkqySQnJ2vIkCH6/vvv9Z///EcvvvhirirZ5HeXLl3SuXPnmFACAAAAAAAAAHmYOZ3X7eNjr+qtYf0Vf/Wq3vwuTH5Fi91yuz1bN+qjsc/qgeat9cTEt7MtHwAAyH2YUAIAAAAAADKVu7u7OnTooKSkJL3yyivat2+fxo4dq+DgYDVp0kS9evWSzWbLsuMvWLBAq1evzrL1M1N8fLxOnDihTp06qUCBApKuTRU5cuSI6tevr86dO+s///mPUlNT01UGuXLlitq2batFixZp/vz5Gjt2LGWSXGbv3r2SxIQSAAAAAAAAAMjDXCxpv3afkpykKcMH6+zxv/XyZ3NUukLQLbc7tGe3pj7zmMpXra4xH8yUxSXjzx23piMfAADInSiUAAAAAACATGO32yVJDz30kH777TdJ18oNCQkJ2rt3rypWrKiNGzdq69atWZbh/fff18KFC7Ns/cyUlJSkq1ev6uDBgzp48KB++eUXjRs3Tq1atdK4ceNUsmRJLVmyROvXr0/zmkeOHFHDhg0VHh6uX375Rb17987CM0BW2bt3rwoUKKAKFSo4OwoAAAAAAAAAIIv4uFmVlsqG3W7Xe6Of1KE/f9eYDz5XxVp1brnd6aOHNfmJgQooWVovfzZXbu4FMpzNJMnbLXdMgwcAABmX8eopAAAAAADA/7BYLJIkFxcX+fn5qXHjxrJYLIqNjVWxYsVUr1499evXT0FBt35q1r0yDEPh4eHq1q1blqyfWY4cOaIKFSrI399fTz75pJ577jn9+uuvOn36tJ566im9++67kqQ+ffooKChIq1evVkhIyF3XPXDggJo3by5/f3/t2LFD5cuXz+pTQRbZs2ePqlatev3PFAAAAAAAAAAg7/Fxt8pIw3Zz3p6kX9evUZ2WbRUXE62Nyxbd8H7zLj2VGBenNx5/WPFXY9T1seH6fePPN2xTrHTZ2xZRbsWQ5OtOoQQAgLyOQgkAAAAAAMg0O3bs0IQJExQXFyeLxaIjR45o9OjRKlOmjGrUqKFKlSpl6Q3y58+f19WrVxUcHJxlx7hXn3zyiT7++GO98MILGjJkiIYOHaq6deuqaNGievLJJ6+XbVJTU2W1WtWgQQP5+/unae2xY8eqSpUqCgsLk5+fX1aeBrLY3r179cADDzg7BgAAAAAAAAAgC/mmcQLI8fADkqTfflmr335Ze9P7zbv0VGx0lC6fOytJ+vbdyTdt06Jbn3QVSqRrhRcAAJC3USgBAAAAAACZpnDhwjKbzWrfvr0k6bXXXtO4ceNu2ObQoUMqXLhwlhQewsPDJSnHFkqSk5O1bt06xcbGasmSJUpKStJjjz2mmjVrKjk5WYZh6ODBg5Ikh8Oh5cuXa9WqVXrqqafuuK5hGLp48aIKFy6sRYsWyc3NLTtOB1nEZrPpwIEDevTRR50dBQAAAAAAAACQhbzcXORiNinVcec5Ja9/s+iO70tSkVKltSjibGZFk4vZJC9XbjEFACCv47/2AAAAAAAg01SoUEFz5sxR0aJFJUn16tVTamqqLBaL/vjjD/Xt21cXL15USEiIhg8frlatWmXq8cPDw2W1WnXfffdl6rqZxc3NTQ0bNpS3t7fsdrvmzJmj+Ph4vfjii3Jzc9O4cePUtGlT7dy5U76+vtqzZ4/effddNW3a9I7rmkwm7dy5U19//bVMJlM2nQ2yyqFDh5SSkqLq1as7OwoAAAAAAAAAIAuZTSYFenvoSFS87lwpyV4mSYHeHjLznQMAAHme2dkBAAAAAABA3vJPmeSLL77Qa6+9pqpVq+q9997TunXrdN999+nrr7+Wm5ubxowZk+nHjoiI0P333y8Xl5z7DA1/f39ZrVbNmjVL1atX15IlSzR69GiZzWYlJCRo/fr1KlGihOrWravPPvtMjz322B3XczgcCg8PV5cuXSiT5BF79uyRJAolAAAAAAAAAJAPBPp45KgyiSQZupYLAADkfTn37goAAAAAAJBrrVu3Tk8//bSGDx+uZs2aacaMGdq3b5/CwsLUuHFjdenSRWXKlNHWrVvVuHHjTDtueHi4goODM229rNCxY0eFhobKarXqyy+/1NNPP62ZM2eqcuXKCgwMVPny5dWsWbM0lUMcDocuXbqU488Z6bN3716VLl1avr6+zo4CAAAAAAAAAMhiBV1dVMTDVZcSUnJEscQkKcDDVQVdub0UAID8gAklAAAAAAAg04WFhSkkJERvv/22evbsqYULF8rT01PHjx+XJLm4uKhq1arauHFjph43PDxclSpVytQ1M5NhGHJxcdGxY8e0d+9eSdL69etVunRpWa1WTZ8+XQcOHEhTmcRutyshIeH6RBjkHXv37mU6CQAAAAAAAADkI5ULe+WIMol0bTpJ5cJezo4BAACyCYUSAAAAAACQ6eLi4lShQgW5u7vLZrPJ19dXzZo105QpU3T06FEtWbJEEREReuCBBzLtmFevXtXZs2dz/LSOwoULq2PHjrp48aJatmypIkWKaM+ePRo8eLAWLFignTt33nWN1NRUORwOFSxYMBsSI7vt2bNHNWrUcHYMAAAAAAAAAEA28SvgqiA/T2fHkCQF+XnKr4Crs2MAAIBsQqEEAAAAAABkuk6dOmnFihWKjIyU1WpVbGyszpw5oy5duqhGjRp6/PHH1aRJEzVu3DjTjhkRESFJObpQ8s/kER8fH4WEhOjKlSv69ttv5e7urlGjRumrr77SkCFD7riG3W6X2WyW1WrNjsjIZpcvX9bZs2eZUAIAAAAAAAAA+Uywv5c8rRbdfYZ51jBJKmi1KNif6SQAAOQnJsMwcsqkNAAAAAAAkEc4HA41bdpUVqtVtWrV0okTJ7R3715t3rxZKSkpunDhgu6//375+vpm2jHnzJmjRx55RHFxcfL0zBlP8bqdS5cu6fPPP1fv3r0VFBQkh8Mhs/nuz/34p0zyTzEFec/69evVunVrhYeHq1KlSs6OAwAAAAAAAADIRlFJNm08eVkOJ9zVaTZJzcsUlq87D7QCACA/YUIJAAAAAADIdGazWV988YXKlCmjAwcOyOFw6IsvvlDx4sVVtmxZ1atXL1PLJNK1CSVlypTJ8WUSSQoICNDYsWMVFBQkSWkqkzgcDlksFsokedzevXvl7u6uChUqODsKAAAAAAAAACCb+bpb1aikX7ZPKTFJalTSjzIJAAD5kIuzAwAAAAAAgLypcuXKmjt3ri5evChPT8+bih6GYWRqOSInTnSw2+364YcfNGDAgJvO18Ul7ZdlDMNIU+kEud+ePXtUtWrVdH0+AAAAAAAAAAB5RxFPNzUu5adtZyJlGFJWDysxm66VSYp4umXxkQAAQE7EnQgAAAAAACBLFSlSRJ6enjKMG7/yyOxJG+Hh4QoODs7UNe+FYRgaOXKkBg8erDfffFOGYdz0M0jrOkwlyT/27t2r6tWrOzsGAAAAAAAAAMCJini6qXmZwvKwWrL0OAWtFjUvU5gyCQAA+RiFEgAAAAAAkC2yshSRkpKio0eP5qhCybRp0zRjxgw98MADeuONN3TgwIEM/Qwok+QfqampOnDggGrUqOHsKAAAAAAAAAAAJ/N1t6pNuQAF+V2bAJ9Z3xb8s06Qn6dalwuQr7s1k1YGAAC5kYuzAwAAAAAAgPzB4XBIkszmzH++xZEjR2S321WpUqVMXzsj5s2bp7Fjx6pOnTravXu3FixYoGrVqjk7FnK4Q4cOKTk5mQklAAAAAAAAAABJksVsUtWAQipR0F1/XY7VxYQUmSSlfx66ru8X4OGqyoW95FfANXPDAgCAXIlCCQAAAAAAyBZnzpzRTz/9pKFDh2b62uHh4ZKUIyaUbNy4UYMHD1aNGjX022+/aebMmerRo4ezYyEX2Lt3ryRRKAEAAAAAAAAA3MCvgKualPZXXEqqjkUn6FhMglId12oltyuY/Pt1F7NJgd4eCvTxUEFXbhsFAAD/j78ZAAAAAACAbLFx40YNGzZMHTp0UMmSJTN17YiICPn5+SkgICBT102vv/76S926dVNgYKD27NmjN998U8OGDXNqJuQee/bsUalSpeTn5+fsKMhhHIah2ORURSXbFJ1kU3SyTal2Qw7DkNlkkovFJB83q3zcrfJ1s8rLzUVmk8nZsQEAAAAAAABksoKuLqpWpJCqBHgpNiVV0Uk2RSXZFJNsk+1f1wytFpO83azydb923dDLlWuGAADg1iiUAAAAAACAbNGxY0e5uLhoyZIlevrppzN17fDwcFWqVEkmJ34Zcu7cObVv316FChXSoUOHNHLkSL388st33Mdms8lisUiSzGZzdsREDrNq1Sp99tlnqlq1qn766Sfdd999Sk1NlYsLl+2gdD1tMCrRxtMGAQAAAAAAgHzCbLpWGPF2s6qst7PTAACA3Iw7FQAAAAAAQLbw9fVVy5YtFRYWlulrh4eHKzg4ONPXTavY2Fh17NhRCQkJOn/+vB566CG9//77dyy4REREqHr16po4caJsNls2pkVOsn//fi1btkxvv/22/vzzT23atEmenp5q0KCBLl265Ox4cJLIxBRtOXVFa45d0pGo+OtlEunWZZL/fT3VYehIVLzWHLukLaeuKDIxJUvzAgAAAAAAAAAAAMidKJQAAAAAAIBs0717d23YsEGRkZGZtqbD4VBERITTCiU2m019+vTRwYMHlZCQoJYtW2r27Nl3nDiyYcMGNWzYUGazWUOGDJGbm1s2JkZO0qFDB0mS3W6//lpKSooOHz4sq9XqrFhwErvD0P5LV7Xh5BVdSrhWArldgeRu/tnvUkKKNpy8ov2XrsruyOhqAAAAAAAAAAAAAPIiCiUAAAAAACDbdO3aVXa7XStWrMi0NU+fPq2EhARVqlQp09ZMK8Mw9NRTT2nt2rWyWq2qVq2aFi1aJFdX19vu88033ygkJER16tTR1q1bVa5cuewLjByncuXKKlGixA2vmUwmhYaGysfHxzmh4BRRSTatO35JhyLjJWW8SPK//lnnUGS81h2/pKgkJiIBAAAAAAAAAAAAuIZCCQAAAAAAyDYlSpRQgwYNFBYWlmlrhoeHS5JTJpS89dZb+vLLL+Xr66vixYvrxx9/lKen5y23NQxDEydO1KBBgzRw4ECtXLmSwgBkMpnUpUuX6xNtTCaTXn31VbVp08bJyZCdLsYna+PJy0qw2e++8T1IsNm18eRlXYxPztLjAAAAAAAAAAAAAMgdKJQAAAAAAIBs1b17d61evVoJCQmZsl5ERITc3d1VtmzZTFkvrebOnavx48erSJEicnd31+rVq+Xv73/LbZOTkzV48GBNmjRJkydP1pdffimr1ZqteZFzderUSQ6HQ5LUpEkTvfbaa05OhOx0MT5ZW09HymFk3lSS2zEkOQxp6+lISiUAAAAAAAAAAAAAKJQAAAAAAIDs1b17dyUmJmr16tWZsl54eLiCgoJksVgyZb20WLdunYYMGaKiRYsqNTVVq1evVpkyZW65bWRkpNq1a6f58+frhx9+0EsvvSSTyZRtWZHztWzZUiaTSW5ubgoNDc3WzzKcKyrJpm1nIrO8SPK/DEnbzkQqKsmWzUcGAAAAAAAAAAAAkJNQKAEAAAAAANnq/vvvV5UqVbRkyZJMWS8iIkLBwcGZslZa7N27V927d5efn59iY2P1448/qnLlyrfc9ujRo2rUqJH279+vn3/+WQ899FC25UTu4eHhodGjR+ubb75R8eLFnR0H2cTuMLTrbJSM7G6T/JfDkH49GyW7w0kBAAAAAAAAAAAAADidi7MDAAAAAACA/Kd79+765JNPZLPZZLVa72mt8PBwtWzZMpOS3dnp06fVvn17ubq6KioqSsuXL1eDBg1uue327dvVpUsX+fr6avv27br//vuzJSNyHodhKDY5VVHJNkUn2RSdbFOq3ZDDMGQ2meRiMWngixPk425VTJJNXm4uMjPFJs8LvxKreJvdqRnibHaFX4lV1YBCTs0BAAAAAAAAAAAAwDkolAAAAAAAgGzXvXt3vfnmm9q0aZNat26d4XUiIyN18eJFVapUKRPT3VpMTIw6dOig2NhYxcbG6rvvvtODDz54y20XLFigQYMGqU6dOlqyZIn8/f2zPB9ynriUVB2LTtCxmASl/ncKhEnSreZBRCXarr/uYjYp0NtDgT4eKujK5bu8KDIxRYci450dQ5J0KDJeJQq6y6+Aq7OjAAAAAAAAAAAAAMhmZmcHAAAAAAAA+U+tWrVUpkwZhYWF3dM6ERERkqTg4ODMiHVbKSkp6tmzpw4fPqzY2Fh9+OGH6tev303bGYahqVOnqk+fPurevbvWrl1LmSQfikxM0ZZTV7Tm2CUdiYq/XiaRbl0m+d/XUx2GjkTFa82xS9py6ooiE1OyNC+y31+XY5VTZtCYdC0PAAAAAAAAAAAAgPyHRxwCAAAAAIBsZzKZ1K1bNy1atEgfffSRzOaMPfMiPDxcJpNJQUFBmZzw/xmGoaFDh2rDhg2y2+165ZVXNHLkyJu2s9lsGjFihD7//HO9+uqrev3112Uy5ZRbxpEd7A5D4VdidSgy/npZ4HYFkrv5Z79LCSnacPKKgvw8FezvJYuZz1RuF5eSqosJaSsJ/X1gr0Knv6uI3b8qJTlJRUuXVdve/dVx0ONKTkzQ+sWh+vXn1TpxOEJJ8fEqXrac2vQZoLZ9BshisaTpGIakiwkpiktJZSIOAAAAAAAAAAAAkM8woQQAAAAAADhF9+7ddebMGf32228ZXiM8PFyBgYFyd3fPxGQ3mjBhgubOnXu9WPLGG2/ctM3Vq1fVqVMnzZo1S7NmzdIbb7xBmSSfiUqyad3xSzoUGS8p40WS//XPOoci47Xu+CVFJdkyaWU4y7HohDRNJ/lzywa99FAXxUReUa/hozTk5TdUu0UbXblwTpJ04dRJffXmqzJkqPMjwzT4xQkqUqqMvpj0kma8/Fy6Mpn+mwsAAAAAAAAAAABA/mIyDCOzvt8GAAAAAABIs9TUVBUrVkxDhw7VlClTMrRGp06dJEkrVqzIzGjXffHFFxo2bJhcXFzUuXNnzZ8/Xy4uNz7B/9SpU+rYsaNOnjypRYsWqXXr1lmSBTnXxfhkbTsTKcPIvCLJrZgkmUxSo5J+KuLploVHQlZxGIZWHLmgVMedPykJcbF65sEmqlirjp7/8ItbTnG6GnVF0Zcvq8z9FW94/ZOXR2v94lBNX71VxcsGpjmbi9mkThWKykwZDgAAAAAAAAAAAMg3mFACAAAAAACcwsXFRV26dFFYWFiG1wgPD1elSpUyMdX/W7VqlZ588km5urqqcePG+v77728qk+zevVv169fX1atXtW3bNsok+dDF+GRtPR0pRxaXSaRr6zsMaevpSF2MT87ioyErxCan3rVMIkmbV4Qp+vIl9Rs1TmazWUkJCXI4HDdsU8jX/6YyiSTVa9NeknT66OF0ZUt1GIpNSU3XPgAAAAAAAAAAAAByNwolAAAAAADAabp3766DBw8qPDw83fsmJibq2LFjCg4OzvRcu3fvVs+ePWW1WhUcHKylS5fK3d39hm1WrFihZs2aqVSpUtq5c6cqV66c6TmQs0Ul2a5NJsnm4xqStp2JVFSSLZuPjHsVlZy2f2d7t22WR0EvXblwTs882ET9H6iggXWCNHPiOKUkJ91x3+jLlyRJhXz90p0vms8UAAAAAAAAAAAAkK9QKAEAAAAAAE7Ttm1beXp6ZmhKyeHDh2UYRqYXSo4fP64HH3xQDodDJUuW1OrVq+Xt7X3DNh9//LG6du2qkJAQbdiwQUWLFs3UDMj57A5Du85GycjuNsl/OQzp17NRsqdh2gVyjugkm0xp2O7ciWOy21P19tOPqmaTFnrhoy/VqsdDWjNvrqa/NPq2+9lSUrRi7hcqUqqMKlSrma5sJomSEgAAAAAAAAAAAJDPUCgBAAAAAABO4+7urvbt22eoUPLPVJNKlSplWp6oqCi1a9dOMTEx8vb21tq1a28oi9jtdo0aNUojR47U6NGjtWDBAnl4eGTa8ZF7hF+JVbzNnu3TSf4tzmZX+JVYJyZAekUn29L0mUlKiFdyYqKad+2tx159Uw1COuixV99USN+B2rpyqc4e//uW+335xis6feSQHh//liwuLunKZkiKSeMEFQAAAAAAAAAAAAB5A4USAAAAAADgVN27d9dvv/2mU6dOpWu/8PBwFSlSRH5+fpmSIzk5WV26dNHff/8tV1dXrVmzRvfdd9/19+Pj49WjRw99/PHHmjFjht555x1ZLJZMOTZyl8jEFB2KjHd2DEnSoch4RSamODsG0ijVnrYKkqu7uySpScduN7zepFN3SdKhP3+/aZ8lX83QugXf6eFnX1Tt5q0zlM+WxnwAAAAAAAAAAAAA8gYKJQAAAAAAwKk6duwoq9WqpUuXpmu/iIgIBQcHZ0oGh8OhgQMHatu2bTKbzfrxxx9Vo0aN6++fP39ezZs3188//6zly5dr+PDhmXJc5E5/XY6Vydkh/suka3mQOziMtBU2/AKuTUby8S98w+ve/v6SpLirMTe8vn5xqL595y2FPDRIvYaPyvJ8AAAAAAAAAAAAAPIGCiUAAAAAAMCpvL291apVK4WFhSk1NVUbNmzQzp07b7ntBx98oNKlS6tdu3b6+eefZRiGNm/erMjIyHvKMG7cOC1YsECSNH/+fDVr1uz6e/v371f9+vV17tw5bdmyRR06dLinYyF3i0tJ1cWEFN3ttvv9O7epZ6USt/zfraZLSFL81Rg92qiaelYqoe0/rUhTHkPSxYQUxaWkpu9E4BRmU9qqSPdVqS5Jirx4/obXoy5ekCR5+/7/ZKZdP/+kT8c/r/ptO2johMnZkg8AAAAAAAAAAABA3uDi7AAAAAAAACB/S0xMVGBgoD777DP5+/vr6tWrql69uvbs2XPTtsnJyTp9+rROnz4tSdq0aZOaNWsmNzc3HT9+XMWKFUv38T/55BNNmzZNkvT555+ra9eu199bu3atevXqpcDAQK1YsUKlSpXK4FkirzgWnSCTdNdCyT86DHxMFarVvOG1YmXL3XLbeR9NU0pSYrozmf6bq1qRQuneF9nLxZK2wkaj9p0V9sV0/bzwB1Vr0OT66+sWfC+Li4uq1GskSTrw6w69/9xTqlyngUa9M11m8709P8iaxnwAAAAAAAAAAAAA8gYKJQAAAAAAwGnefPNNvfXWW0pKSpIkXb16VSaTSeXLl7/l9t27d9e4ceNueM1sNqtevXoKCAhI9/GXLVumZ555RpI0ZcoUPfbYY9ff++qrr/Tkk0+qbdu2Cg0NlZeXV7rXR97iMAwdi0lIc5lEkirXrq+GD3a663YnD0Vo9by56v3UaM37aFq6chmSjsUkqEqAFxMmcjgfN6uiEm13/QzdV7maWvV8SOsXzZPdnqoqdRtq/67t2v7TcvUY9oz8ihbTxTOn9Z+nHpFMUsN2HbXtf6balK0YrHIVK6c5m0mSt5s13ecEAAAAAAAAAAAAIPeiUAIAAAAAAJzGbrdfL5P8w8XFRZUr3/om6KCgIAUFBenQoUOSJJPJpIIFC+r777+XxWJJ17F37typXr16yTAMjRo1SmPHjpUkORwOvfrqq5oyZYqGDx+ujz76SC4uXEKBFJucqlRHeuok1yTGxcnV3V2WO3yOZk2eoHpt2iu4dv0MZUt1GIpNSaUQkMP5uFvTXEh6YuLbCiheUusXh2rXup9UuEQpPfrSJHUaPFSSdPH0SSXEXpUkffH6yzft3+fp59JVKDEk+brz+QEAAAAAAAAAAADyE+6GAAAAAAAATjNhwgSdP39en3322fXXbDabKlWqdNt9evfurSlTpsjhcMgwDM2aNUulSpVK13GPHj2qdu3aKTU1VQ8//LDeffddmUwmJSUl6ZFHHtH8+fP17rvvavTo0TIx8QH/FZVsS/c+018eraSEeJktFgXXrq9BL4xXhWo1bthm20/LdfCP3/Thjxt18cypDOeLTrJRKMnhfNPx78fFalWfEWPUZ8SYW75ftX4jLYo4m1nRJF0rvAAAAAAAAAAAAADIP8zODgAAAAAAAPIvk8mkTz75RI8++ugNrwcHB992n+7du8vhcEiSHnvsMfXs2fOux5k2bZr8/f31448/6vLly2rZsqWuXr2qVq1aac6cOTKbzbp8+bJat26tpUuXauHChXruuecok+AG0Uk2pfUT4WK1qkFIRw155XWNm/G1Hn72RZ08FK7xA7rr77/2Xd8uOSlRc6a+rk6Dh6pIqdIZzmaSFJWU/sILspeXm4tczDnz94qL2SQvV54/BAAAAAAAAAAAAOQnJsMwDGeHAAAAAAAA+ZvdbtfAgQP1ww8/SJLi4uLk6el5y20Nw1CBAgVktVp1/vz52273b+XLl9fff/8tSSpVqpTOnDmjmjVravPmzfL09NShQ4fUoUMHxcbGatmyZapfv37mnRzyjA0nLysyMeOljXMnjum5rq1VuU4Djf/ye0nSvI+mad2C7/XxT1tUwNNT+3du02uDe+n5Dz5Xwwc7pWt9/wJWNS9TOMP5kD32XbyqI1HxykkXZU2SKvh6qlqRQs6OAgAAAAAAAAAAACAbMaEEAAAAAAA4ncVi0dy5c1WzZk15enresSRiMpm0dOlSbd26NU1lkqioqOtlEkk6ffq0ChUqpHXr1snT01ObN29Ww4YN5erqqh07dlAmwW2l2u+tAlC8bKDqtmqn/Tu3yW636+LpU1o661P1GzVWBdLwWb4b2z3mQ/YI9PHIUWUSSTJ0LRcAAAAAAAAAAACA/MXF2QEAAAAAAAAkycXFRbt371ZKSoochqHY5FRFJdsUnWRTdLJNqXZDDsOQ2WSSW3BtOdysOh6TIF83q7zcXGQ2mW657i+//HLTazExMRo9erRCQkI0ZMgQNW7cWIsWLZKvr29WnyZyMUcmDPotXLyEUm0pSk5M0LyPp8mvaHFVqd9IF0+fkiRFX74oSYqJuqKLp0+pcImSMpvT9kyYzMiHrFfQ1UVFPFx1KSElRxRLTJICPFxV0JVLxQAAAAAAAAAAAEB+w7eEAAAAAAAgx4i32XUsJlnHYqKU6rh2q7VJuuVN11GJtuuvu5hNCvT2UKCPx003RS9evPiWx5o7d67mzp2rRx55RDNnzpSrq2vmnQjypNuVltLjwqmTcnVzl7uHpy6fPaPzJ47pqTYNbtrui0kvSZLm7gqXZyHvbMuH7FG5sJc2nLzi7BiSrv1+rVzYy9kxAAAAAAAAAAAAADgBhRIAAAAAAOB0kYkp+utyrC4mpNxUILndE/z//Xqqw9CRqHgdjopXEQ9XVS7sJb8C1woiS5cuvWlfi8Uiu92uCRMmaOLEiTJxIz7SwMWS9s9JTOQVefv53/Da8YgD+u2XNarVtKXMZrMeHvWirkZF3rDNqcMH9cOHU9Xt8acUVLO23Ap4pPmY1nTkQ/aLiYnR4cOHtXnzZlksFrV6+BEdiox3diwF+Xle/30JAAAAAAAAAAAAIH+hUAIAAAAAAJzG7jAUfiVWhyLj9c+t8LcrkNzNP/tdSkjRhpNXFOTnqWKWVMXFxV3fpnbt2kpOTtahQ4c0d+5c9evX717iI5/xcbPeMBnnTt4b/aRc3d1VsVYdefsV1umjh7R2/rdydS+gAWNekSQF165/036eXtemkVSoWlP127RPczaTJG83a5q3R9b7888/NX36dP311186ePCgIiP/vzzk7e2t4U89rb9OX5BLAU/JCaU2kyRPq0XB/kwnAQAAAAAAAAAAAPIrCiUAAAAAAMApopJs2nU2SvE2u6SMF0n+1z/rHIqM1xmrRd0eHiBrarKee+45DRkyRBcuXNDatWvVrFmzTDoi8gsfd2uaP6f1WrfT5hVhWv7150qMj1UhX3/Vb9tBfZ5+TsXLBmZ6NkOSrzuFkpxk/fr1+uqrr2753gcffKBHBg/Szj37NXXBSucUSkxS3RK+spiZbAMAAAAAAAAAAADkVybDMDLrfg0AAAAAAIA0uRifrG1nImUYmVckuRWTrt007Rt7QX06tJOXl5dWrlypoKCgLDwq8qqYJJt+PnHZ2TFuq3W5wkwpyUGSk5NVu3ZthYeHy+FwSJLMZrOqVasmPz8/bdu2Td98842ad+iiracjs/R34f8ySWpcyk9FPN2y8agAAAAAAAAAAAAAchqzswMAAAAAAID85WJ8sraejpQji8sk0rX1HYZ0wc1Prbp0144dOyiTIMO83FzkkkOnObiYTfJyZRhxTpKamqrg4ODrZRJJcjgcunr1qv7880+tXbtWvXv3VhFPNzUu5Sez6VrRI6uZTZRJAAAAAAAAAAAAAFxDoQQAAAAAAGSbqCTbtckk2Xxci4uL+r7wmiwFvbP5yMhLzCaTAr09suWm//QwSQr09pDZlNOS5V+7du1SrVq1tHLlSvXu3VuSZDKZ5ObmJrvdrq1bt6pp06bXty/i6abmZQrLw2rJ0lwFrRY1L1OYMgkAAAAAAAAAAAAASRRKAAAAAABANrE7DO06GyUju9skunYjt8OQfj0bJbvDCQGQZwT6eGR7IepuDF3LBedLTU3V66+/rkaNGsnX11d//PGH5s2bp5o1a8owDAUGBmr79u0KDg6+aV9fd6valAtQkJ+npMybVvLPOkF+nmpdLkC+7tZMWhkAAAAAAAAAAABAbkehBAAAAAAAZIvwK7GKt9mdejN+nM2u8CuxTkyA3K6gq4uKeLjmmCklJklFPFxV0NXF2VHyvSNHjqhp06aaNGmSXnnlFW3ZskVBQUGaN2+eDhw4oLp162rnzp0qUaLEbdewmE2qGlBILcr4K8DDVVLGiyX/7Bfg4aoWZfxVNaCQLOac8skFAAAAAAAAAAAAkBNQKAEAAAAAAFkuMjFFhyLjnR1DknQoMl6RiSnOjoFcrHJhrxwzpcTQtTxwHsMw9OWXX6pmzZq6dOmStmzZokmTJsnFxUVTp05V//799fDDD2vr1q0qVKhQmtb0K+CqJqX9FRIYoAq+nnL5VxHkdpWQf7/uYjapgq+nQgID1KS0v/wKuGb8BAEAAAAAAAAAAADkWSbDMHLK998AAAAAACCP2nLqii4lpOSIm/BNuvbE/ial/Z0dBbnY/ktXc0RJKsjPU1UD0lZSQOa7dOmShg4dqqVLl+rxxx/X+++/r4IFC8put2vUqFGaPn26Xn31Vb3++usymTI+HcRhGIpNSVV0kk1RSTbFJNtksxtyGIbMJpOsFpO83azydbfKx90qL1cXme/heAAAAAAAAAAAAADyBxdnBwAAAAAAAHlbXEqqLibceSLI/p3b9NrgXrd8b8q85QqqWVuS9OeWDdq6apkO7/1DZ44eln+xEvps/a505TEkXUxIUVxKqgq6cmkEGRPs76UzsUlKsNmdUpQySfK0WhTsz3QSZ1m5cqWGDBkiu92usLAwdevWTZKUmJio/v37a+nSpfrss8/0xBNP3POxzKZrhRFvN6vKet/zcgAAAAAAAAAAAAAgiUIJAAAAAADIYseiE2SS0nTTfYeBj6lCtZo3vFasbLnr/3/ziiXatmqZAitXlW+RohnOZPpvrmpFmOyAjLGYTapXwlcbT16WM+b/mkxS3RK+spiZQpHdEhIS9MILL2jGjBlq3769Zs2apWLFikmSrly5os6dO2vPnj1aunSpOnXq5OS0AAAAAAAAAAAAAHB7FEoAAAAAAECWcRiGjsUkpHmCQ+Xa9dXwwdvfgN1/9DgNf2OaXKxWTX5ikE4ejshQLkPSsZgEVQnwktnEDfnIGF93qxqV9NPW05HZOqXEJKlRST/5uluz8aiQpN9//139+/fXyZMn9cknn2j48OEy/fd3yLFjx/Tggw8qKipKv/zyi+rVq+fktAAAAAAAAAAAAABwZ2ZnBwAAAAAAAHlXbHKqUh3pu9U+MS5O9tTUW77nV7SYXKyZcxN9qsNQbMqtjwOkVRFPNzUu5Sez6VrRI6uZTVLjUn4q4umWDUfDP+x2uyZPnqwGDRrI09NTu3fv1lNPPXW9TPL777+rQYMGcjgc2rZtG2USAAAAAAAAAAAAALkChRIAAAAAAJBlopJt6dp++sujNaBOkB6qEagJg3rpyL49WZTsmuik9OUDbqWIp5ualyksD6slS49T0GpR8zKFKZNks2PHjql58+YaP368XnzxRW3fvl2VKlW6/v6qVavUvHlzlStXTtu2bVOFChWcmBYAAAAAAAAAAAAA0s7F2QEAAAAAAEDeFZ1kk0nS3WaUuFitahDSUQ80b6VCvn46deSQls36TOMHdNdbPyzVfZWrZXo2k6SoJJvKemf60siHfN2talMuQDv+PqNzNpNMkkzme3+Wyz9/foL8PBXs7yWLOTvmoECSDMPQ3Llz9cwzz8jf318bN25UkyZNbtjmq6++0hNPPKEOHTpo3rx58vDwcFJaAAAAAAAAAAAAAEg/JpQAAAAAAIAsE51su2uZRJIqPVBXL3z0hVr3fFh1W7VTj2HPaEroCskkfffelCzJZkiKSecEFeBOLGaTvpo8QdOGD1LhAlZJ1wohGfHPfgEermpRxl9VAwpRJslGV65cUe/evfXII4+oR48e2rNnzw1lEsMwNHHiRD3++OMaOnSoFi9eTJkEAAAAAAAAAAAAQK7DhBIAAAAAAJBlUu1pqZPcWvGygarbqp12rl0lu90ui8WSicmusd1DPuB/hYeHa86cOfrggw/UvFwRxaWk6lh0go7FJCjVce2zdruJPf9+3cVsUqC3hwJ9PFTQlct32W3NmjV65JFHlJycrAULFqhXr143vG+z2fTkk09q1qxZmjx5ssaNGyeTibIPAAAAAAAAAAAAgNyHb6QBAAAAAECWcRj3VtgoXLyEUm0pSk5MkEdBr0xK9f/uNR/wb6+++qpKly6tYcOGSZIKurqoWpFCqhLgpdiUVEUn2RSVZFNMsk02uyGHYchsMslqMcnbzSpfd6t83K3ycnWRmYJCtktMTNS4ceP00UcfqW3btpo9e7ZKlChxwzZxcXHq3bu31q1bp7lz52rgwIFOSgsAAAAAAAAAAAAA945CCQAAAAAAyDL3elP8hVMn5ermLncPz0xKdCNu2kdm+fXXX7V48WLNnj1bbm5uN7xnNl0rjHi7WVXW20kBcUd//PGHBgwYoKNHj+rDDz/UiBEjZDabb9jm/Pnz6tixow4fPqxVq1apTZs2TkoLAAAAAAAAAAAAAJnDfPdNAAAAAAAAMsbFkrbCRkzklZteOx5xQL/9skY1Gje76cbuzGJNYz7gbl5++WVVrlxZAwYMcHYUpIPdbtfUqVNVv359ubq66vfff9fIkSNv+p1z8OBBNWzYUOfOndOmTZsokwAAAAAAAAAAAADIE5hQAgAAAAAAsoyPm1VRiTYZd9nuvdFPytXdXRVr1ZG3X2GdPnpIa+d/K1f3Ahow5pXr2x0/+Jd+W79GknTu5DElxMVq4acfSJLKVqysuq1C0pzNJMnbzZrOMwJutn79eq1bt06LFy+WxWJxdhyk0YkTJzR48GBt2rRJL774oiZNmnTTdBlJ2rZtmzp37qxixYpp48aNKlOmjBPSAgAAAAAAAAAAAEDmMxmGcbd7OgAAAAAAADLkeEyCdp+Puet2P879UptXhOncieNKjI9VIV9/VWvYRH2efk7FywZe32794lB98vLoW67RolsfPfOfD9KVr3Yxb5X19kjXPsC/GYahBg0aSJJ27Nghk4mpNzmdYRj6/vvv9dRTT8nHx0dz585V8+bNb7ltWFiY+vXrp3r16mnJkiXy9fXN5rQAAAAAAAAAAAAAkHUolAAAAAAAgCwTk2TTzycuOzvGbbUuV5gpJbgnS5YsUffu3bVu3Tq1bt3a2XFwF1FRURo+fLhCQ0PVv39/TZ8+XT4+Prfcdvr06Ro5cqR69+6tOXPmyN3dPXvDAgAAAAAAAAAAAEAWo1ACAAAAAACyjMMwtOLIBaU6ct7lBxezSZ0qFJWZiRLIILvdrurVq6t48eJat26ds+PgLtavX6/BgwcrLi5On376qR566KFbbudwOPTSSy9p6tSpeu655zRt2jSZzeZsTgsAAAAAAAAAAAAAWY9vQgEAAAAAQJYxm0wK9PZQTqtsmCQFentQJsE9+e677/TXX39p8uTJzo6CO0hKStKYMWPUunVrBQUFae/evbctkyQnJ2vAgAGaNm2a3n//fb377ruUSQAAAAAAAAAAAADkWUwoAQAAAAAAWSouJVVrjl1ydoybhAQGqKCri7NjIJdKSUlRxYoVVatWLS1evNjZcXAb+/btU//+/XXw4EFNmTJFo0aNum1BJDo6Wj169NC2bdv07bffqlevXtmcFgAAAAAAAAAAAACyF3dNAAAAAACALFXQ1UVFPFx1KSFFOeGpFiZJAR6ulElwTz7//HOdPHlSP/74o7Oj4BYcDoc++OADvfTSS6pYsaJ+/fVXVa9e/bbbnzp1Sh06dNCZM2e0du1aNW3aNBvTAgAAAAAAAAAAAIBz3PpxfAAAAAAAAJmocmGvHFEmkSRD1/IAGRUfH68333xTAwcOVOXKlZ0dB//j9OnTatu2rcaMGaMRI0Zo165ddyyT7Nu3Tw0bNlRsbKy2bt1KmQQAAAAAAAAAAABAvkGhBAAAAAAAZDm/Aq4K8vN0dgxJUpCfp/wKuDo7BnKxDz/8UJGRkZo4caKzo+B/hIaGqlq1ajp48KDWrVund999V+7u7rfdfv369WrSpIkCAgK0fft2BQcHZ2NaAAAAAAAAAAAAAHAuCiUAAAAAACBbBPt7qYBZMgyHU45vklTQalGwP9NJkHGRkZGaOnWqnnzySZUrV87ZcfBfMTExGjhwoB566CGFhIRo3759at269R33+f777/Xggw+qQYMG2rRpk4oXL55NaQEAAAAAAAAAAAAgZ6BQAgAAAAAAssWVy5f04QsjZEtJccrxTSapbglfWcwmpxwfecPUqVOVmpqqV155xdlR8F8bN25U9erVtWzZMn3zzTeaN2+efH19b7u9YRiaOnWq+vfvr379+mnFihXy8qJoBgAAAAAAAAAAACD/oVACAAAAAACy3JkzZ9SsWTPt3bVd5V1syu5Kh0lSo5J+8nW3ZvORkZecO3dOH330kUaNGqWiRYs6O06+l5ycrLFjx6ply5YqV66c9u7dqwEDBshkuv1vGLvdrmeeeUZjx47V+PHj9fXXX8tq5fcCAAAAAAAAAAAAgPzJxdkBAAAAAABA3nb8+HG1bt1aqamp2rRpkypUqKCy8cnadjpSqQ67zGZLlh7fbLpWJini6Zalx0He98Ybb8jd3V3PP/+8s6PkewcOHNCAAQN04MAB/ec//9GYMWNksdz5d0liYqL69eunZcuWaebMmRo2bFg2pQUAAAAAAAAAAACAnIkJJQAAAAAAIMscPnxYzZo1k8lkul4mkaQinm5aP+tjXTp9KkuPX9BqUfMyhSmT4J4dPXpUX3zxhcaNGycfHx9nx8m3HA6HPvroI9WuXVspKSnauXOnXnzxxbuWSS5fvqzWrVtrzZo1Wrp0KWUSAAAAAAAAAAAAABCFEgAAAAAAkEUOHDigZs2aqWDBgtq0aZPKli17/b1ly5bp46lTVODsYQX5eUqSTJl03H/WCfLzVOtyAfJ1t2bSysjPXnvtNQUEBGjEiBHOjpJvnT17Vg8++KCeffZZPfHEE/rtt99Uq1atu+73999/q3Hjxjpy5Ih++eUXderUKRvSAgAAAAAAAAAAAEDOZzIMw3B2CAAAAAAAkLfs3r1bISEhKlWqlNauXauAgIDr7125ckVVqlRR3bp1tWzZMplMJkUmpuivy7G6mJAik6SMXKz4Z78iHq6qXNhLfgVcM+lskN/t27dPNWrU0IwZM/Tkk086O06+tGjRIg0bNkxubm6aPXu2QkJC0rTfb7/9po4dO6pQoUL66aefVL58+SxOCgAAAAAAAAAAAAC5B4USAAAAAACQqbZv36727durYsWK+umnn+Tr63vD+w8//LBWr16tAwcOqHjx4je8F5eSqmPRCToWk6BUx7VLFrcrmPz7dRezSYHeHgr08VBBV5dMPyfkb126dNFff/2l8PBwWa1MvMlOV69e1bPPPqvZs2erZ8+emjlzpvz9/dO076pVq9S7d29VrVpVy5cvv6HYBgAAAAAAAAAAAACQuMMCAAAAAABkmg0bNqhTp0564IEHtGLFChUqVOiG9xcuXKh58+bpu+++u6lMIkkFXV1UrUghVQnwUmxKqqKTbIpKsikm2Sab3ZDDMGQ2mWS1mOTtZpWvu1U+7lZ5ubrIbDJl12kiH9m2bZuWL1+u7777jjJJNtuyZYsGDhyoy5cva/bs2Ro0aJBMafxz/tVXX+mJJ55Qx44d9cMPP8jDwyOL0wIAAAAAAAAAAABA7sOEEgAAAAAAkCl++uknde/eXU2bNtWSJUtuuoH74sWLqlKlipo2bapFixal+cZwwFkMw1DLli0VFRWlP/74Q2az2dmR8oWUlBRNmjRJ//nPf9SwYUPNnTtX9913X5r2NQxDkyZN0qRJk/Tkk0/q448/losLz9QBAAAAAAAAAAAAgFvh21QAAAAAAHDPlixZoj59+ujBBx/U/Pnz5e7ufsP7hmHoqaeekiR99tlnlEmQK6xZs0YbN27U8uXLKZNkk4iICA0YMEB79uzRG2+8obFjx8pisaRpX5vNpieeeEJff/21pkyZorFjx/K7BgAAAAAAAAAAAADugAklAAAAAADgnvzwww8aOHCgevbsqW+//VZWq/WmbebNm6eHH35Y8+fPV+/evZ2QEkgfh8OhunXrqkCBAtq8eTPFhCxmGIY+/fRTPf/88ypTpoy+/fZb1alTJ837x8XFqXfv3lq3bp1mzZqlgQMHZmFaAAAAAAAAAAAAAMgbmFACAAAAAAAybNasWXr88cc1aNAgffXVV7ecJHD+/Hk9/fTT6tOnD2US5BoLFy7U7t27tWnTJsokWezChQt64403tHTpUj366KOaNm2aPDw80rz/+fPn1bFjRx0+fFirVq1SmzZtsjAtAAAAAAAAAAAAAOQdTCgBAAAAAAAZMn36dD3zzDMaPny4pk+fLrPZfNM2hmGoa9eu2rlzpw4cOKDChQs7ISmQPqmpqapSpYrKly+vlStXOjtOnnbs2DGVKFFCbm5uGdr/4MGDevDBB5WSkqKVK1eqRo0amZwQAAAAAAAAAAAAAPIuJpQAAAAAAIB0mzp1qsaOHavnnntO77zzzm0nOHz77bdavny5wsLCKJMg15g9e7YOHTqkefPmOTtKnhUfH6/ExESVLl1aLi4Zu0S5detWdenSRcWKFdPGjRtVpkyZTE4JAAAAAAAAAAAAAHkbE0oAAAAAAECaGYahSZMmadKkSRo/frwmTZp02zLJmTNnVKVKFXXu3FnffPNNNicFMiYpKUn333+/GjduTKEki+zfv19lypSRh4dHhsskixcvVv/+/VW/fn2FhYXJ19c3k1MCAAAAAAAAAAAAQN5ndnYAAAAAAACQOxiGobFjx2rSpEmaMmWKXn/99duWSQzD0NChQ+Xh4aEPP/wwm5MCGTdjxgydO3dOb7zxhrOj5Dk2m00//PCDKlSoIE9PzwyXST7++GP16tVLXbp00erVqymTAAAAAAAAAAAAAEAGZexbWwAAAAAAkK84HA6NHDlSn3zyiT788EONHDnyjtvPmjVLq1at0ooVK+Tn55dNKYF7c/XqVU2ePFlDhgzR/fff7+w4ecrhw4e1ePFivfDCCzKZTLcto92Jw+HQuHHjNG3aNI0ZM0ZTp06V2czzcgAAAAAAAAAAAAAgoyiUAAAAAACAO7Lb7Ro6dKhmz56tL774Qo8//vgdtz958qRGjx6tRx99VB07dsymlMC9e++99xQXF6cJEyY4O0qeYRiGvvjiC129elVjx47N8DrJycl65JFHFBoaqg8++EDPPvtsJqYEAAAAAAAAAAAAgPyJR/gBAAAAAIDbstlsGjBggObOnatvvvnmrmUSwzD02GOPydvbW++//342pQTu3aVLl/Tuu+9qxIgRKlWqlLPj5AkXL15Uz5495eHhoeeff/6e1po3b57CwsI0f/58yiQAAAAAAAAAAAAAkEmYUAIAAAAAAG4pOTlZffv21cqVKzV//nz16NHjrvvMnDlT69at0+rVq+Xt7Z0NKYHMMWXKFJlMJo0bN87ZUfKEFStWaNSoUZo9e7YaN26c5v0Mw5DJZLrp9cGDB6tRo0a6//77MzMmAAAAAAAAAAAAAORrJsMwDGeHAAAAAAAAOUtCQoJ69OihjRs3atGiRerQocNd9zl27JiqVaum/v37a+bMmdmQEsgcp06d0v3336+XX35ZEyZMcHacXC0+Pl5jxozR8uXLtW3bNpUpU+aWBZF/2Gw2HT9+XElJSapWrdptt7td0QQAAAAAAAAAAAAAkHEUSgAAAAAAwA1iY2PVuXNn/fbbb1q2bJlatWp1130cDodatWql48ePa9++ffLy8sqGpEDmePzxx7Vs2TIdPXqUz+49+PXXX9W/f395eXlp06ZN8vDwuGMJ5OTJk3rooYeUmJioAwcOaNiwYZo+fXo2JgYAAAAAAAAAAACA/M3s7AAAAAAAACDniI6OVkhIiP744w+tWbMmTWUSSfrkk0+0ceNGzZo1ixvykascPHhQX3/9tV5++WU+uxmUmpqqN998Uw0bNlTLli3166+/ytPT845lkt27d+uBBx7QAw88oE8++UQ//PCDZsyYoS1btmRjcgAAAAAAAAAAAADI35hQAgAAAAAAJEmXL19WSEiITpw4oTVr1qh27dpp2u/w4cOqUaOGhgwZwnQB5Dp9+vTRjh07dOjQIbm7uzs7Tq5z9OhRDRw4UDt37tQPP/yg3r1737FIIkknTpzQgAED1KxZM7311luSpMTERHXt2lXTp0+Xv7+//P39syM+AAAAAAAAAAAAAORrTCgBAAAAAAA6d+6cmjdvrjNnzmjDhg1pLpPY7XY9+uijKl68uN5+++0sTglkrt27d2vBggWaOHEiZZJ0MgxDs2bNUs2aNXX+/HkdOXJEffr0uWuZRJKKFy+u7t27a8CAAddf+/rrr7Vx40Y99NBDqly5siZOnKgzZ85k5SkAAAAAAAAAAAAAQL7HhBIAAAAAAPK5kydPqnXr1kpMTNTPP/+sihUrpnnf9957T88//7w2btyopk2bZmFKIPM9+OCDOnHihPbt2ycXFxdnx8k1Ll++rGHDhiksLEyPPvqoZsyYke5CTkpKilxdXSVJ33//vR599FG9//77qlevnvbs2aMRI0bom2++Ua9evbLiFAAAAAAAAAAAAAAAolACAAAAAEC+dvToUbVu3Vomk0nr169XYGBgmveNiIhQzZo19dRTT+m9997LwpRA5tu4caNatGihBQsWUFpIh59++kmPPvqobDabPv/8c/Xo0SNN++3bt092u12VK1e+XiT5x4YNG+Tr66saNWpcf61evXoqX768fvjhh0zNDwAAAAAAAAAAAAD4fxRKAAAAAADIpyIiItS6dWsVLFhQP//8s0qVKpXmfVNTU9W4cWNFR0frzz//VIECBbIwKZC5DMNQ48aNlZKSol9//VUmk8nZkXK8hIQEjR07VtOnT1e7du309ddfq3jx4mnat0ePHjp06JDOnDmjkiVL6ttvv1XNmjVlt9tlsVhu2NbhcCgmJkZ9+vRR37599fjjj2fF6QAAAAAAAAAAAAAAJJmdHQAAAAAAAGS/PXv2qFmzZvLz89OmTZvSVSaRpHfeeUe//fab5syZQ5kEuc66deu0fft2TZ48mTJJGuzevVu1a9fWl19+qY8//lirVq1KU5kkPj5ejRo1UlxcnObMmaPNmzfL29tbzz33nCTdVCaRJLPZrE8//VQnTpxQ3bp1M/1cAAAAAAD/x96dx9lY//8ff55zZl/MTvad7MvMscXHTlG0iRApiRQligotirKVJKVEIWmVrWyREEP2ney72c12tuv3h6/5mWwzzMwxPO6327l9PnOd9/V+v67TzJgz835eLwAAAAAAgP+PDiUAAAAAANxh1q9fr3vvvVdlypTR77//rrCwsGydv337dkVGRurFF1/U+++/n0tVArnDMAw5HA79/PPP6tChA4GSa3A6nfrggw80bNgwVatWTTNnzlSlSpWydK7L5dKoUaP0999/67PPPssIoKxfv17t2rXTn3/+qfLly2e8/na7XQsWLNDChQv1/fffa+HChapfv36uXRsAAAAAAAAAAAAAQPJwdwEAAAAAACDvrFq1Sm3btlW1atW0cOFCBQUFZet8u92uJ598UuXKldNbb72VS1UCucdkMsnT05MwyXUcOnRITzzxhFavXq3BgwfrzTfflJeXV5bPN5vNqlmzpuLi4lSoUKGM44GBgXI6nfL19c30+icmJmrTpk06cuSItmzZohIlSuTo9QAAAAAAAAAAAAAALkegBAAAAACAO8TSpUvVrl071a9fX3PnzlVAQEC25xg1apQ2b96stWvXysfHJxeqBPIGYZIrMwxDM2bMUN++fRUaGqqVK1eqUaNGNzRXmzZt1KZNm4x5TSaTLBaLgoODLwuzhYWF6ZVXXpG3t7c8PPiVJQAAAAAAAAAAAADkBbO7CwAAAAAAALlv/vz5uv/++9W0aVPNnz//hsIkmzdv1ttvv63BgwfLarXmQpUA3Ck2NlYdO3ZUt27d9NBDD2nLli03HCa5lMvlygjwpKSkKDExUcnJyZKkw4cPa/To0Tpz5oz8/f0JkwAAAAAAAAAAAABAHiJQAgAAAADAbe7777/XQw89pLZt2+rnn3+Wr69vtuew2Wzq3r27KleurGHDhuVClUDucLlc7i4hX1i6dKmqVaumpUuX6rvvvtP06dMv6yJyo8zm//8ryMTERJnNZhUuXFjR0dGqVKmSdu3apYIFC+bIWgAAAAAAAAAAAACArCNQAgAAAADAbezrr79Wp06d9Nhjj+m7776Tl5fXDc1z9uxZOZ1OTZs27YbnANzh0jADLpeWlqaXXnpJLVu2VOXKlbVt2zY99thjubZeQkKCKlWqpEWLFqlRo0bq37+/pk6dmmvrAQAAAAAAAAAAAACuzmQYhuHuIgAAAAAAQM777LPP1Lt3b/Xs2VOTJ0+WxWK54bnsdrvMZvNNzQHklV27dunPP//Un3/+qbp166pixYqqUaOG7rrrLneXdkvZsmWLunTpov3792vUqFHq169fjgVwDMOQyWS67Pj333+vjh07ymKxaNy4cXrhhRdyZD0AAAAAAAAAAAAAQPYRKAEAAAAA4DY0fvx4DRgwQC+88II+/PBDujTgjhETE6MGDRrI19dXhQsX1pYtWxQWFqbIyEi1b99e9957r3x9fa8aeLgTuFwujRs3Tq+//rruvvtuzZw5U1WrVs2x+detW6eCBQuqePHi8vDwyPTcqVOnVKRIES1btkxNmzbNsTUBAAAAAAAAAAAAANlHoAQAAAAAgNvMu+++qzfeeEODBw/We++9d8dumsed6amnntLp06f1zTffKDQ0VA6HQ1988YVmzpyppKQk9evXT0899ZS7y3SbI0eOqHv37lq5cqVefvlljRgxQt7e3jk2/48//qguXbrowQcf1KxZs64YZktNTZWvr2+OrQkAAAAAAAAAAAAAuDHcnhQAAAAAgNuEYRh6/fXX9cYbb+idd965qTAJ959AfpSWlqajR4+qUaNGCg0NldPplIeHh3r37q1FixapWbNm6tmzp6ZOneruUt3i22+/VfXq1XXgwAEtW7ZMo0ePztEwyYQJE9ShQwc9+OCDmj59+lU7IxEmAQAAAAAAAAAAAIBbA4ESAAAAAABuA4Zh6KWXXtJ7772nsWPH6o033shymCQ2NlZLlizRnj17dPbsWUmiqwnyHcMw5OPjI6vVql9++UVpaWmyWCyy2Wyy2+0KCAjQuHHj1L17dy1atMjd5eap+Ph4de7cWZ07d1bbtm21detWNW3aNMfmd7lcGjRokPr376+XX35Zs2bNytGgCgAAAAAAAAAAAAAgdxAoAQAAAAAgn3O5XOrdu7c++ugjTZo0SQMGDMjyuR9//LHatGmjZ599VlWqVNGDDz6oDz/8UEePHs3FioGcdzEE1bp1a+3Zs0cdO3ZUbGysvLy85OnpKZfLJUlq1aqVdu3apdjYWHeWm2f++OMPVa9eXQsXLtTMmTM1c+ZMBQcH59j86enp6tKli8aOHauPPvpIo0ePvmpnEgAAAAAAAAAAAADArYW/7gIAAAAAkI85HA51795dX3zxhaZNm6Y+ffpk+dw9e/Zo8ODBev755/X3339r+/btOnTokN577z298cYbio6OlnSh8wOQXzRu3FjLli3T4cOHVaJECb366quKi4uTJB05ckS//PKLypYtq9DQUDdXmrvS09M1aNAgNW/eXGXLltXWrVvVuXPnHF0jPj5erVu31s8//6zvv/9e/fr1y9H5AQAAAAAAAAAAAAC5y2SwKwQAAAAAgHzJZrOpc+fOmjt3rmbOnKnHHnssW+f37dtX8fHxmjlzpmw2m7y8vPTOO+9owYIFSkxMVNWqVTVnzpxcqh7IeYZhyDAMmc1m7du3T3PmzNHUqVN16NAhWa1WnThxQhEREZo7d66KFSvm7nJzzfbt29WlSxft2rVL7733ngYMGJDjXUOOHj2q++67TydOnNCvv/6qhg0b5uj8AAAAAAAAAAAAAIDcR4cSAAAAAADyobS0ND388MOaN2+efvzxx2yHSSQpLCxM6enpkiSLxSLpQseBJk2aaMaMGVq0aJE+/vhjSXQpwa3N5XJJkkwmU0Zwonz58ho4cKBWrFihRYsWqWXLlvr444/1448/3rZhEpfLpQ8//FBRUVFyOp2Kjo7WwIEDczxMsnXrVtWrV0/nz5/XmjVrCJMAAAAAAAAAAAAAQD5FhxIAAAAAAPKZ5ORktW/fXmvWrNEvv/yiVq1a3dA8n376qZ5//nnNmTNHrVq10qpVq3T//ffrjz/+UOPGjdW5c2eZzWbNmDEjh68AyDmrVq3S7Nmz1b9/f1WoUMHd5bjNsWPH9OSTT2rZsmV68cUXNXLkSPn4+OT4OsuWLdPDDz+ssmXLasGCBSpcuHCOrwEAAAAAAAAAAAAAyBse7i4AAAAAAABkXUJCgtq2bastW7bot99+0//+978bnqtPnz46ePCgnnjiCXl5eSkwMFBvvvmmGjduLEmqUqWKtm/frrS0tFzZmA7khOeff17btm3TrFmz9NRTT6l///4qUaJEpjF2u12S5Onp6Y4Sc92cOXPUu3dv+fr6asmSJWrRokWurDNz5kz16NFDzZo10/fff6/AwMBcWQcAAAAAAAAAAAAAkDfM7i4AAAAAAABkTWxsrFq0aKEdO3Zo6dKlNxQmOXv2rLZs2aItW7YoLS1N77zzjrZu3arPPvtMixYt0rBhwyRJTqdTCxcu1F133UWYBLesdevWyTAM/fbbbxo9erR++OEH1axZU2+++aZOnjyZMe6PP/7QBx98oNutUW9CQoK6deumjh07qkWLFtq2bVuuhEkMw9CoUaPUtWtXde3aVfPmzSNMAgAAAAAAAAAAAAC3AQIlAAAAAADkA6dPn1aTJk106NAh/fHHH6pbt26259i2bZu6du2qhg0bqlu3bpo5c6a8vb1Vrlw5dezYUZUrV5Yk7du3T8OGDdPBgwc1fvz4nL4UIMekpqaqadOmKlq0qHr27KmdO3dq6NChmjRpkmrXrq3x48fr0KFDeuaZZ2Sz2WQymdxdco5ZtWqVatSooV9++UVff/21vvvuO4WGhub4Ok6nU88//7yGDBmiYcOG6csvv7xtO70AAAAAAAAAAAAAwJ3GZNxut2YEAAAAAOA2c+zYMbVo0UKJiYlaunRpRvAjuypWrKgWLVqoW7du+uabb7R06VJt2LBBFotFhmHIz89PkvTnn3/q66+/1tNPP6369evn5KUAOcput2vPnj2qWrVqpuNxcXH66KOPNGHCBKWnp8vX11fnzp1zU5U5y2azafjw4Xr//ffVsGFDff311ypVqlSurJWSkqLOnTtr/vz5+vTTT/XMM8/kyjoAAAAAAAAAAAAAAPcgUAIAAAAAwC3s4MGDat68uZxOp5YtW6Zy5crd0DyffvqpvvjiC0VHR8tsNstut6t169YqUqSI9u3bp6CgIL388stq3bq1JCkpKUmBgYE5eSlAntu1a5eqVq2qyZMn3xZhiF27dqlLly7atm2b3nnnHQ0aNEgWiyVX1jp37pweeOABbd26VXPmzFHbtm1zZR0AAAAAAAAAAAAAgPuY3V0AAAAAAAC4sr179+p///ufzGaz/vzzzxsOk0hSYmKiAgIClJiYKEn68ssv9ddff6lGjRp67LHHFB4ervHjx+vEiROSRJgEt7Tk5GS5XK7rjps7d648PT3zfZjEMAxNnDhRtWvXVmpqqtatW6fBgwfnWpjkwIEDatCggQ4cOKAVK1YQJgEAAAAAAAAAAACA25SHuwsAAAAAAACX2759u1q0aKHQ0FAtXbpURYoUuan5ypUrp+PHj2v8+PEKDAzU4MGD9fnnn+upp56SJC1cuFAdO3bUoUOHbnotIDe5XC698MILatOmjZo2baqwsLArjnM4HJKkb775Ji/Ly3GGYWjLli3q16+f+vbtq/fff19+fn65tl50dLTuv/9+BQUFae3atSpbtmyurQUAAAAAAAAAAAAAcC8CJQAAAAAA3GL++ecftWrVSsWLF9fixYsVERFx03O2bdtWK1as0O+//64GDRqoYsWKioqKyni+Tp06qlChQkYHE+BW9fbbb2vatGmaNWuWmjZtqhdffFF169ZVcHBwpnEul0uDBw92T5HZZBiGJMlkMl32nMlkUs2aNbVjxw5VqlQpV+tYsGCBHnvsMVWvXl3z5s1TeHh4rq4HAAAAAAAAAAAAAHAvs7sLAAAAAAAA/9/atWvVrFkzlS1bVsuXL7+pMInL5cr4/z4+Pvr444+1YMECjRkzRuHh4Tpw4ICkC5vZP/30UyUmJuree++96WsAcovNZtMff/yhjz/+WMuXL1diYqLatGmjXr16acWKFUpKSpIknTp1Ss8++6xOnDjh5oqvbd26dTp16pRcLldGmORiuOS/cjtM8sUXX6h9+/Zq2bKlli1bRpgEAAAAAAAAAAAAAO4ABEoAAAAAALhF/PHHH2rZsqWqV6+uJUuWKCQk5KbmmzJlivbu3Ztpg3pISIhMJpMqV66sxx9/XM8++6zat2+vKVOmaNq0aTd5BUDuio2NVZMmTRQSEqIGDRpo9erV+v3337V79261bt1a/fv3V3R0tN544w2tX79eRYoUcXfJV7R7925Vq1ZNPXr0UJMmTdS8eXNt3bpV0pW7lOQmwzA0fPhwPfPMM3r22Wf1448/ys/PL09rAAAAAAAAAAAAAAC4h8m42m0PAQAAAABAnvntt9/00EMPqVGjRvrll19uekN3v379NHHiRDVo0EBDhw5Vo0aNLptz9OjRmjNnjurUqaPWrVurXbt2N7UmkBfi4+Pl4eGhgIAAOZ1OWSwWSdIPP/ygV199VadPn1ZKSop+//13tWzZ0s3VXm7Xrl169NFH1bZtW/Xp00fnz59Xly5dJEkffPBBnnYJstvt6tWrl6ZNm6ZRo0bplVdeyfNACwAAAAAAAAAAAADAfQiUAAAAAADgZikpKapUqZJq1KihOXPmyMfH56bmu7hhvW/fvvr555/1559/atCgQXrmmWdUsmTJTGMNw2ADOfI1h8MhDw+PjI+tVqsiIiK0cOFCN1Z1dd9//73GjBmjBQsWKDg4WB4eHlq7dq3uuece3XfffRo5cqSqV6+e61+bSUlJ6tChg5YvX66pU6eqa9euubYWAAAAAAAAAAAAAODWZHZ3AQAAAAAA3Ok8PT31999/68cff7zpMIkknT59WnXr1lXLli21ZMkSffTRRxozZow6deqkJUuWKDU1VZK0Zs0aTZo0SU6n86bXBNzlYpjE6XRq8+bN2rhxo4YNG+bmqq5ux44dOnPmjMLDwzNqj4+PV7Vq1XTq1CnNmzdPTqczV8MkJ0+eVOPGjbV27VotWrSIMAkAAAAAAAAAAAAA3KEIlAAAAAAAkMuu1xzU09NTd911lzw9PXNkvYYNG+qll15SuXLlJEm9e/fW4cOH5eXlpXbt2un999/XP//8o8cff1xnz56VxWLJkXUBd7JYLEpOTtagQYNUr149d5dzGZfLJUl64IEHdPbsWb333nuKjY3V3r179cILL+jJJ59UxYoVNXfu3Fz9mty1a5fq16+vM2fOaNWqVWrevHmurQUAAAAAAAAAAAAAuLWZjOvtagEAAAAAADfFMIxc7TZwLS6XSy6XK6MTwscff6zBgwfLMAwVK1ZMe/fudUtdQG5xuVwym91/D5W//vpLo0eP1pgxY1S+fPmM4ykpKZo+fbpeeOEFlS9fXgcOHFCPHj302Wefaffu3WrQoIE2btyo0qVL50pN7dq1U5EiRbRo0SIVL148x9cAAAAAAAAAAAAAAOQfHu4uAAAAAACA29WkSZO0YcMGnTx5Uq1bt9YjjzyS5xu4zWazzGazHA6HPDw89MILL8jf3189e/bUzz//nKe1ADnBbrfLYrHIZDJdMah1K4RJvvrqKw0ZMkRnzpyRv7+/pk2bJi8vL0mSn5+f+vTpo0aNGun48eMqU6ZMRuBk+fLlCg4OVlBQUI7X9OOPP6pLly6qX7++fv75ZwUHB+f4GgAAAAAAAAAAAACA/MX9f2EHAAAAAOA29Prrr+utt95S4cKFVaNGDb3yyit68skntWjRIrfUc7FDycmTJzVo0CD1799fVapUcUstwM3o0KGDRo4c6e4yrurQoUP6+++/9dxzz2nhwoX6/vvvNXXq1IznLzYLrlq1qlq3bp0RJrHb7dq8ebNatGihkJCQHK1pwoQJ6tChgx566CH99ttvhEkAAAAAAAAAAAAAAJLoUAIAAAAAQI5bv369fvzxR82dO1f16tWTJDVv3lytW7eW0+mU3W5Xu3bt3FKb0+lUr169bukN+cDVrFq1SnPnztXjjz9+xe4kt4JixYqpXbt2ql69uooXL66hQ4fq1VdfVYMGDVS9evXL6j5w4IB27typDz74QEeOHNG8efNy7NpcLpdeeeUVjR07VgMHDtT7779/S3RwAQAAAAAAAAAAAADcGkzGxdsiAgAAAACAHLF48WK9+OKL+uuvv+Tv7y9PT08dOHAgYxN8qVKlNHnyZIWFheVaDYZhXHVTusvlYlM58h3DMNSoUSMlJydr48aNt8zncHJysg4cOKCqVatesSan06mmTZtKkhYsWKDAwMBMz+/Zs0cjRoyQr6+vPv/88xyrKz09Xd27d9ecOXP04Ycfql+/fjk2NwAAuHEuw1BSukNx6XbFp9kVn26Xw2nIZRgym0zysJgU7O2pYB9PhXh7KtDbQ+ZbNEgLAAAAAAAAAMj/bo2/vAMAAAAAcBvx8fHR7t27tWfPHnl7e8tsNuu7775T8eLFNXjwYP34449at25drq1vGIZ++eUXuVwuXek+ErfKRnwgOxYuXKjVq1frvffeu2U+hxcuXKjw8HA9/fTTOnTo0BXHWCwWTZkyRZs2bdLYsWMzjickJMjlcqlixYoaO3ZsjoZJ4uLi1Lp1a/3yyy/6/vvvCZMAAHALOG9zaNuZRM3ff1rLDp/TP6cSdDA+RbGpdiXaHDpvdyrR5lBsql0H41P0z6kELTt8TvP3n9a2M4k6b3O4+xIAAAAAAAAAALchOpQAAAAAAJADEhMT5evrK7PZLIvFop49e+rrr79Wly5ddO7cOS1evFhLly5Vo0aN9MADD6hixYoaM2ZMrnQL+fLLL9WzZ0+tWbNG9evXz9G5AXdwuVyqXbu2ChQooJUrV161+05eWrFihQYOHKi6devqm2++0TPPPKM333zzsg4kF02ZMkV9+/bV77//rhMnTmjmzJl68803VadOnRyt68iRI2rTpo1OnjypX3/9Vffcc0+Ozg8AALInNtWmneeSdCbFJpOkG/mj3MXzCvp5qXJ4oEJ9vXK2SAAAAAAAAADAHcvD3QUAAAAAAJDfPf/889q7d69SUlLUo0cP9ejRQ6NGjVLlypW1Zs0aFShQQJs3b1alSpWUmpqquLg4+fv7S8r5biFHjhzRSy+9pB49ehAmwW3ju+++05YtW/TXX3/dEmESSfL29ta9996rN954Q40aNVKXLl3UoEEDPfTQQ1f8un7mmWc0f/58NW/eXJI0YsSIHA+TbNmyRW3atJGXl5dWr16tu+++O0fnBwAAWed0GdoVk6S9scm6+NPLjd7h7eJ5Z1NsWnEkRhVC/VUpLFAW863xcxEAAAAAAAAAIP+iQwkAAAAAADehWbNmSkhIUJ8+fTR37lwdO3ZMixcvVkREhCTJbrdndC2RpMOHD+vBBx/UwIED1aVLlxytxTAMtWrVSrt379b27dsVFBSUo/MD7mC321WpUiXdfffdmj9/vrvLyeB0OnX+/PmMr7NOnTppw4YNmjt3rqpUqXLZ+KVLl+rJJ59UsWLF9PXXX6tChQo5Ws+yZcv00EMPqXz58lqwYIHuuuuuHJ0fAABkXVyaXetPxCnZ7sy1Nfw9LapTJEQhPp65tgYAAAAAAAAA4PaXs7dBBQAAAADgDjJ27FilpqZq5cqV6tmzp2bNmqWUlBQlJCTI6byweczT01MWi0WnT5/WH3/8oVatWqlEiRI5HiaRpM8++0xLly7Vl19+SZgEt42pU6fqwIEDevfdd91dSiYWi0VBQUFyOBySpNmzZys5OVkjR45UTExMprEnTpzQm2++qZYtW+rvv//O8TDJjBkzdN9996lBgwZasWIFYRIAANzoTHK6Vh45p5RcDJNIUordqZVHzulMcnqurgMAAAAAAAAAuL0RKAEAAAAA4AadOXNGgYGB8vS8cFfgXbt2KTExUb169VKrVq00ePBgXWwMeubMGX311Vdq3ry55s6dm+O1/Pvvvxo4cKCeffZZtWrVKsfnB9whNTVVb7/9th5//HHVqFHD3eVckYeHR0ao5Ntvv9WsWbP0448/yuVyac+ePVq4cKGKFCmiH374QV999VWOrm0YhkaNGqUnnnhCXbt21bx58xQYGJijawAAgKw7k5yu1cdi5TIkI5fXMiS5DGn1sVhCJQAAAAAAAACAG0agBAAAAACAbHK5XJIudCiIj4/XhAkT9NNPP6lZs2Zq3bq1+vTpo3r16mnp0qUaP368JKlatWoaOXKkJk2alCv1PPXUUwoPD9fo0aNzfH7AXSZOnKgzZ87o7bffdncp1+Th4SGXy6UmTZro5Zdf1vDhw/Xiiy+qRo0aWrVqlSTleNcQp9Opvn37asiQIRo+fLi+/PLLjHAbAADIe3Fpdq05HpvrQZL/MiStOR6ruDR7Hq8MAAAAAAAAALgdmIyLt0oFAAAAAADX5HK5ZDb//3szxMfHq1evXkpOTlZCQoJKliypGTNmyGQySZLuu+8+BQQE6Pvvv8/VuiZMmKD+/ftr+fLlatq0aa6uBeSVhIQElSlTRh06dNDkyZPdXY6kCx1BDMPI9H3g0udMJpNOnz6twoULq0CBAho/frx69OiR43WkpKTo8ccf14IFCzR58mT17Nkzx9cAAABZ53QZWnrorFLszjwPlFwU4GlR81IRsphNbqoAAAAAAAAAAJAf0aEEAAAAAIAsOH36tF5++WVt3rw541hwcLC++eYbLViwQHfffbeKFi0qk8mki/duqFChggoUKKDcvJfDvn37NHjwYD3//POESXBbGTNmjFJSUjR06FB3lyJJiomJUffu3XXy5Ek5nc7LnjeZTPrzzz9VokQJNWzYUAcOHMiVMMnZs2fVrFkzLV26VL/++ithEgAAbgG7YpKU7MYwiSSdtzu1KybJjRUAAAAAAAAAAPIjAiUAAAAAAFzHyZMn1aRJE3300UcaOnSo9u/fn/Gcp6enJMnpdOrEiROy2WxyOBxatWqVZs+erUaNGmV0LMlpTqdTPXr0UJEiRTRq1KhcWQNwh9OnT2v8+PF64YUXVLRoUXeXo8WLF6tatWpasGCB9u3bJ4vFcsVxfn5+Gjt2rP7880+FhYXleB0HDhxQgwYNdPDgQa1cuVJt2rTJ8TUAAED2xKbatDc22d1lSJL2xiYrNtXm7jIAAAAAAAAAAPkIgRIAAAAAAK7BZrPp008/VaVKlbR06VKtWbNGL774og4ePChJMpsvvLXu3bu3Zs2apXr16umBBx5Qp06d9MILL+jJJ5/Mtdo+/PBDrVmzRl999ZX8/f1zbR0gr7333nuyWCx69dVX3VpHamqq+vfvr9atW6tq1aratm2bmjRpctXxUVFRev7553OllujoaNWvX18mk0lr165VVFRUrqwDAACyZ+e5JOVOfDz7TLpQDwAAAAAAAAAAWWUyDMOdHbgBAAAAALilGYahefPmKTExUV27dtW+ffsUGRmpVq1aady4cSpRokTG2A0bNmjatGkKCQmR1WpVu3btcq2u3bt3q2bNmnruuec0bty4XFsHyGuHDx9WhQoVNGzYML3++utuq2PTpk3q2rWrDhw4oA8++EDPP/98RoAsry1YsECPPfaYatSooV9//VXh4eFuqQMAAGR23ubQ4oNnrztu+7o1Gt790Ss+N3L2PFWoGSlJctjt+umzCfrjl+8Ve/qUQgvdpeaPdNJDzzwvi4dHlutqVTpCAV5ZHw8AAAAAAAAAuHMRKAEAAAAA4DqcTqcsFkvGx1u2bFH9+vX18MMP6/3331fRokUlScnJyXnSKcThcOiee+5RfHy8Nm/eLF9f31xfE8grPXr00MKFC3XgwAEFBATk+fpOp1NjxozR0KFDVaVKFc2YMUNVqlTJ8zoumjJlinr37q127dpp5syZ8vPzc1stAAAgs21nErU/LlnX+0PbxUBJmyeeVrlqNTM9V6tRExUICZMkjX3pWa39bb6aPdJJZavW0N7N/2jFL3PUokMX9XlndJZqMkkqF+KvagULZP+CAAAAAAAAAAB3HG5PBAAAAADAdVwMkxiGIZfLpRo1amjZsmVq3LixvL29NWLECP3www9auHChpk2bpoIFC8pkMuVaPWPGjNGGDRu0evVqwiS4rezcuVNff/21PvzwQ7eESQ4fPqxu3bpp1apVeuWVV/TWW2/J29s7z9Z/6623VKhQIfXu3VuGYWj48OF655139Nxzz2nChAmZgm0AAMC9XIahgwkp1w2TXKpyZF3Vv/f+Kz63f9tmrVk0T48+96Ie7/eKJKl1p24qEBKiedM+131de6hUxcrXXcOQdDAhRVUiAmXOxfckAAAAAAAAAIDbA4ESAAAAAACyyGQyyWKxyOl0qn79+vr999/Vpk0bbdy4UVu3btXs2bNVqFChXK1h+/btGj58uAYOHKh69erl6lpAXhs6dKiKFy+uXr165em6hmFo5syZ6tu3r4KDg/XHH3+ocePGVxzrMgwlpTsUl25XfJpd8el2OZyGXIYhs8kkD4tJwd6eCvbxVIi3pwK9PbK0mfPo0aN66623ZBiGfHx8tGLFCk2fPl2jRo3SK6+8kqshNQAAkH1J6Q45XNmJk1yQev68vHx8ZPHI/Ce6nRvWSZIatnkw0/F72jyoX7/6TKsX/pqlQIkkOVyGkmwOBXl7Zrs+AAAAAAAAAMCdhUAJAAAAAADZZLFY5HK51LRpUz3wwAP6+eef9dtvv6lVq1a5uq7dblf37t1Vrlw5vfXWW7m6FpDXoqOj9dNPP2natGl52hUkLi5Offr00XfffaeuXbtq4sSJCgoKumzceZtDB+NTdDAhJWPzqEm64l3J41LtGcc9zCaVDvJT6WA/BXhd/VdxX375pcxms5xOp5566imZzWbNmDFDXbp0ufmLBAAAOS4u3Z7tcya+9pLSUpJltlhUKbKuug0aqnLVakiSHDabJMnLxyfTOd7/15Hw3x1bs7VWfJqdQAkAAAAAAAAA4LoIlAAAAAAAcIPeeOMN/fDDD9fsZpCTRo0apS1btujvv/+Wz382mgH53WuvvabKlSura9euebbm8uXL1b17d50/f16zZ89Wx44dLxsTm2rTznNJOpNiuyxAcrV7kl963OEytD8uWfviklXQz0uVwwMV6uuVabzD4dDkyZPldDovnG8Y8vDwUNWqVW/q+gAAQO6JT7NfNVz6Xx6enqrXqq1qN26mAiGhOrp/r36dOllDuz6kd7+dqzKVq6lI6bKSpN3/RKtQsRIZ5+76v84lsadPZbk2k6S4NLtKXp6RBQAAAAAAAAAgEwIlAAAAAABcxbp161S3bt2rPl+xYkWtWbNG9erVy/VaNm/erLfffltDhgxRVFRUrq8H5KXly5dr6dKl+umnn2SxWHJ9vbS0NL3++usaN26cmjVrpunTp6tYsWKZxjhdhnbFJGlvbLJM/3csKxtGr+TieWdTbFpxJEYVQv1VKSxQFvOFmRcuXKjTp09nOsdms6lVq1bas2ePgoODb3BlAACQW+LT7Vn+2eDu2lbdXdua8bG1WWvVb32/BrRvrpnjRmroF7NUu3EzRRQppq8/eFvePr4qU6W69m39R7M+HCWLh4ds6WlZrs2QlHADHVQAAAAAAAAAAHcek2EYN/q3cAAAAAAAbluTJ09Wnz599MMPP+iRRx5xay02m01W64UNaNHR0fLy8rrOGUD+YRhGRijr77//lslkus4ZN2fbtm3q0qWL9uzZo5EjR+rFF1+U2WzONCYuza71J+KUbHfmWh3+nhbVKRKiEB9P1a1bV+vXr5ckeXh4yOFwyGQyqXbt2lq4cKEKFiyYa3UAAIArS0xM1MKFC9WsWbMr/lu89OBZJdocN7XGuAF9tG7JIs3afEAWi0VH9u3R2Jee1bH9eyVJnl7eemLg6/rxswkKiSiosb8szfLcBbw81KJ0xE3VBwAAAAAAAAC4/dGhBAAAAACA/xg3bpxefvll9evXTw8//LC7y9E777yjnTt3EibBbWnu3Llav369li5dmqthEpfLpQ8//FBDhgxRxYoVFR0drerVq1827kxyutYcj1Vu34Ilxe7UyiPnVDvMLyNMUqRIEbVt21YtW7ZU06ZNFR4enrtFAACAq1q8eLEef/xxmc1mNW/eXE888YQefPBBBQYGSpJcOfDDQnjhInLYbUpPTZFfQKBKlK+oD+f9oaP79yo5MV7FylaQl4+Ppo16U5Wt9bM1d07UBwAAAAAAAAC4/REoAQAAAADg/xiGoXfffVdDhw7VkCFD9O677+Z6t4Tr2bBhg0aOHKlhw4apZs2abq0FyGlOp1Ovv/66mjdvrubNm+faOkePHtWTTz6p5cuXa8CAAXr33Xfl4+Nz2bgzyelafSxWebH90pBkGNLGcyma+t2PqletkipVqpQHKwMAgKwoXLiwpAuh1OXLl2vJkiXy9LzQWezZZ5/VXfe0vuk1Th89Ii9vH/n4+WccM5lMKlG+YsbHG1cuk8vlUvX6jbI1t9nN72MAAAAAAAAAAPkDgRIAAAAAAHQhTPL6669r5MiReuedd/TGG2+4uySlp6ere/fuqlGjhoYMGeLucoAcN3PmTO3cuVNfffVVrq0xe/Zs9enTR/7+/lq6dOlVgytxafYLnUlyrZIrMySF1Kyvu0rQjQQAAHdKSkrSoUOHMh7btm3LeM7pdEqS7Ha7/vrrL+3bt0+z19+b5bkTYmMUFBqW6dih3Tu04Y/FqtWoqcxm8xXPS09L1eyPPlBIRCE1avtgtq7H00KgBAAAAAAAAABwfQRKAAAAAAB3PMMw9OKLL2rChAkaO3asBgwY4O6SJEnDhw/Xvn379M8//8jT09Pd5QA5ymazafjw4XrooYdUp06dHJ8/Pj5ezz//vGbOnKmOHTvq008/VUhIyBXHOl2G1p+Ik5HXaZL/4zKk6BNxal4qQhYzmz8BAMgNiYmJOnz4cKbQyKWP2NjYjLFeXl4qWbKkTCaTjP/8gFClShUVLFhQP3wzXU0f7iiT2XLdtce91FtePj6qWCtKQaHhOnZgr5bMmSEvH191ffn1jHFjXnxWoQULqVjZCko9n6TlP83W6aNH9NpnX8s3ICDL12qSFOTN+wcAAAAAAAAAwPURKAEAAAAA3NGcTqf69OmjKVOmaNKkSerTp4+7S5Ik/f333xo9erRGjBihqlWrurscIMd9/vnnOnLkiBYsWJDjc69cuVLdunVTfHy8ZsyYoc6dO8tkunpQY1dMkpLtzhyvIzvO253aFZOkqhEF3FoHAAD5VWJi4hWDIhdDJJcGRry9vVWyZEmVKlVKUVFRevTRR1WqVKmMh6enpzZu3KiOHTsqISEh0zoxMTEqU6aMKpYoKtNVOov8V53mrbVq/s+a99XnSk1OUoGQMNVt2UaP9R2gwiVLZ4wrV7W6lv/0nZZ8N0NePj6qFFlHL475RKUrZe/9gCEpxIdACQAAAAAAAADg+kzGf2+tBAAAAADAHcLhcOjJJ5/Ut99+q6lTp6p79+5uq+XAgQNau3atHn/8cdlsNtWqVUtBQUFavXq1PDy4HwRuL+fPn1fZsmV13333adq0aTk2b3p6uoYNG6bRo0frf//7n6ZPn66SJUte85zYVJtWHInJsRpuVpMSYQr19XJ3GQAA3HKuFhi5+IiLi8sYe2lg5EqPQoUKyfx/YZDk5GT9888/Wr9+vaKjoxUdHa1///1XkuTh4SGHw6EaNWpo0KBBaty4sYoWLSqTyaSENLuWHT7nltciK5qXCqdLCQAAAAAAAADgutiRAgAAAAC4I9lsNnXu3Flz587Vt99+q8cee8yt9YwfP16ffPKJJk2apLvvvluHDh3Spk2bCJPgtvTRRx8pLi5Ob775Zo7NuWPHDnXt2lU7duzQqFGj9PLLL8tisVz3vJ3nkmTShTt5u5tJF+ppWDzM3aUAAJDnbjQwYrVa1aFDh6sGRi5ls9m0detW/fLLLxnhkZ07d8rlcsnX11e1atXSAw88IKvVKqvVqvT0dCUmJuqee+65bK5Abw95mE1yuG6FnyIy8zCbFOjF+wgAAAAAAAAAwPXx22QAAAAAwB0nNTVVjz76qJYuXaqffvpJDzzwgLtL0v79+yVJ69at09q1a9W+fXtVrFjRzVUBOS82NlajR49W7969VapUqZuez+VyaeLEiXrllVdUtmxZrVu3TrVq1crSuedtDp1JsWVp7L87tuq7iWO1+59o2dLTVKh4SbXs0EVtu/WUJP04eYKi/1is00cOKTU5WWGFiyiycXM90ru/gkKzFhAxJJ1Jsem8zaEANoECAG4zCQkJOnz4cJYDIxfDIXXq1MlyYORSTqdTu3fvzgiOREdHa8uWLbLZbLJYLKpWrZoaNGig/v37y2q1qkqVKtkKc5tNJpUO8tP+uORbIph6kUlS6SA/mU0md5cCAAAAAAAAAMgHTIZh3Eq/5wYAAAAAIFedP39e7du319q1azV37ly1bNnS3SVJksqWLat///0307FGjRrpxx9/VEREhJuqAnLeq6++qk8++UQHDhxQoUKFbmquEydO6Mknn9SSJUvUr18/jRo1Sr6+vlk+f9uZxCxtAt381wqN7POkSleuqnvuaycfP3+dOnpIhsulboOGSpI+eKGngkLDVLRMOfn4++v4gX1a+v0sFQgL19ifl8jHzy9LNZkklQvxV7WCBbJ8HQAA3AoSEhKu2WEkPj4+Y+ylgZErPQoWLHjdwMilDMPQoUOHMoVHNm7cqPPnz0uSKlasmNF1xGq1qmbNmtn6meFqztscWnzw7E3Pk9NalY4gnAoAAAAAAAAAyBICJQAAAACAO0ZCQoLatGmjrVu3asGCBfrf//7n7pIkXeiw4OPjI7vdnnHMbDbL5XJpwYIFatOmjRurA3LOiRMnVLZsWb388ssaMWLETc31ww8/6Nlnn5W3t7emTZumVq1aZet8l2Fo/v7Tcriu/auxlPNJeuHehqpYK0oDP5qSrc2ta39foDH9n9FLYyepYdsHs3yeh9mk+8sV4s7iAIBbijsDI/916tSpTOGRDRs26Ny5c5KkEiVKZAqPREZGKigo6GYv/6r+Ohqjsym2W6JLiUlShJ+XGhbPWnc0AAAAAAAAAAC4PREAAAAA4I4QExOj1q1b68CBA1q2bJnq1KmTY3O7DENJ6Q7FpdsVn2ZXfLpdDqchl2HIbDLJw2JSsLengn08FeLtqUBvj0wbxU+dOpUpTCJJtWrV0scff6z69evnWJ2Au73zzjvy9fXVwIEDb3iOxMRE9evXT9OnT9cjjzyizz77TGFh2d80mZTuuG6YRJJWzf9Z8efOqvOLg2U2m5WWkiIvH58sbYItWLS4JCk5KTFbtTlchpJsDgV5e2brPAAAbsaNBkbq1q2rjh075mhg5L91bdiwQdHR0Vq/fr2io6N17NgxSVJ4eLisVquee+65jADJzXZAy67K4YFacSQmT9e8GkMX6gEAAAAAAAAAIKsIlAAAAAAAbnunT59WixYtdOrUKf3xxx+qWbNmjsx73ubQwfgUHUxIydiYbpKueHfiuFR7xnEPs0mlg/xUOthPAV4e2rFjR8a4woULa8yYMerUqVOObcIDbgUHDhzQF198oXfffVfBwcE3NMdff/2lJ554QjExMZo2bZq6desm0w128YhLt19/kKSta1bJLyBQMadP6v2+PXTi0L/y8fPT/9o9qh5D3pSXt0/GWMMwlBQfK6fDqZOHD2rG2HdltlhUpU72g2HxaXYCJQCAHBUfH6/Dhw9nKTDi4+OTEQ6pV69ergZGLpWamqpNmzZl6j6yd+9eSVJgYKAiIyP1+OOPZ4RHSpYsecM/C+SUUF8vVQj1197YZLfWIUkVQv0V6uvl7jIAAAAAAAAAAPmIyTCMW6ELNwAAAAAAueLYsWNq3ry5kpKStGzZMlWqVOmm54xNtWnnuSSdSbFdNUByPRfPK+jnpROb1+nxBx9Q//79NWLECPn5+d10jcCtpkuXLvrjjz+0f//+bH+O22w2vfXWWxo1apTq16+vb775RqVLl76pejafTtDB+JTrfv0OaN9Cp44clCQ1f+RxVanTQDvWr9HCGVN1T5v2GjDu04yxcWfPqGejmhkfh91VWN1fHa577muXrdpMkkoH+6lmoaBsnQcAuLPFx8dfs8NIQkJCxthLAyNXehQsWDDXgxp2u107duzI6DoSHR2t7du3y+l0ysvLSzVr1pTValWdOnVktVpVsWLFWzZw7XQZWnrorFLszht6b3CzTJL8PS1qXipCFrN7AzYAAAAAAAAAgPyFDiUAAAAAgNvWwYMH1bx5czmdTv35558qV67cTc3ndBnaFZOkvbHJurhN60Y3jF0872yKTR4VamnzyThVDg9kAxhuS1u3btW3336rSZMmZTtMsnv3bnXt2lVbtmzRO++8o1dffVUWi+Wma4pPt2fp6zctJVnpqalq1ambnn5jhCSpXqs2ctjtWvzdN+rUb5CKlCojSQoICtawqbNlT0/XwV3btW7JQqWlZP9u5YakhCx2UAEA3DluNDBSv359Pf7443keGLmUy+XSvn37MnUe2bRpk9LS0mQ2m1WlShVZrVb17t1bVqtV1apVk5dX/um0YTGbVKdIiFYeOSd33MbNZJKsRUJ4LwEAAAAAAAAAyDYCJQAAAACA29LevXvVvHlzeXt7a8WKFSpRosRNzReXZtf6E3FKtjsl3XiQ5L8uzrMvLlknzqepTpEQhfh45tDswK3h9ddfV5kyZfT0009n+RzDMPTpp59q4MCBKlGihP7++29FRkbmWE0OZ9a+ir18fCRJDds+mOl4w/sf0uLvvtHezRszAiWeXl6q0eB/kqSopi1VrV5Dvd65vYJCwxXVtGW26rNnsT4AwO0jPwdGLmUYho4ePZopPLJx48aM+suVKyer1aoOHTrIarWqVq1a8vf3d0utOSnEx1MNioZq9bHYPO1SYpLUoGgo7yEAAAAAAAAAADeEQAkAAAAA4Lazfft2tWjRQqGhoVq6dKmKFClyU/OdSU7XmuOxuX634RS7UyuPnFODoqEq6O+du4sBuWjlypV67bXX9NJLL+muu+7S/PnzNXPmTHl6Zm2j46lTp/TUU09p0aJFeu655zR69Ohsdza5HlcWv6BDIwrp6L49Cg4Lz3Q8KCxMknQ+MeFKp0mS7q5tVUhEIf0576dsB0qyWh8AIP/ITmDE19c3IxzSoEEDde7cOVNgJCIiwm2Bkf86d+5cpvBIdHS0Tp8+LUkqUqSIrFarBg0aJKvVqqioKIWGhrq54txT0N9b9xQLzXjvkNv/mptN4r0DAAAAAAAAAOCmECgBAAAAANxWNm7cqFatWqlEiRJavHixIiIibmq+M8npeXaXYUOSYUirj8XqnmJsDEP+FR0drTVr1mjNmjXy9/dX6dKl1bFjxyyd+8svv+iZZ56RxWLRggUL1KZNm1yp0ZzFTbhlqlTXljV/KvbMKRUtUy7jeNyZCxtlg0KuvSnWbktXyvmkXKsPAHBrMAzjuoGRxMTEjPH5KTByqaSkJG3cuDFTeOTQoUOSpJCQEFmtVvXs2VNWq1VWq/Wmg935UUF/bzUuEZ6pu2FuCPC0yEp3QwAAAAAAAADATSJQAgAAAAC4baxZs0b33XefKlWqpEWLFikkJOSm5otLs1+4u3AO1ZdVhqQ1x2PVuEQ4G8SQL9ntdnl4eMjhcCg5OVkHDx5U06ZN9dFHH6lWrVpXPOf8+fN68cUX9eWXX6p9+/aaMmXKTQfCrsXDkrVNug3ue0A/T5moZT98q2r1GmYcX/r9LFk8PFSlTgOlpaTIZJK8fTN3UVn7+wKdT4hX2arVs12fZxbrAwDkjZsJjNxzzz3q0qVLvgiMXCo9PV1btmzJCI6sX79eu3fvlmEY8vPzU+3atfXQQw+pTp06slqtKlOmzC1/TXklxMdTLUpFaFdMkvbGJsuknOlWcnGeCqH+qhQWKIuZ1xsAAAAAAAAAcHMIlAAAAAAAbgvLly9Xu3btFBkZqfnz5yswMPCm5nO6DK0/EScjr9Mk/8dlSNEn4tS8VAQbxZDv2Gy2yzaUrlq1SgMHDtSyZcsuG7927Vo98cQTOnXqlL744gs99dRTub4hNdjbU3Gp9utu7ixTuZqaPdJJy3+cLafToSrW+tq+fq3W/jZPD/d6QaGF7tLBXdv1Vo+OuqdNOxUtXU4ms1kHtm/Rn/N+UsGixXX/Ez2zVZtJUpA3YTIAyEt3YmDkUk6nUzt37szUeWTr1q2y2+3y9PRU9erV1bhxYw0cOFBWq1WVKlWShwd/YroWi9mkqhEFVCTARzvPJelMiu2GgyUXz4vw81Ll8ECF+nrlbLEAAAAAAAAAgDsWv+0HAAAAAOR7ixYt0sMPP6z//e9/+vnnn+Xn53f9k65jV0ySku3OHKjuxp23O7UrJklVIwq4tQ4gu+x2u1wuV6ZjTZo00TfffHPZuBEjRmjEiBGqU6eOfvvtN5UrVy5Pagz28czyhs5n33xfEYWLavlP32n90t8UXqSYegx5S/d3f0aSFHZXYdVr1Vbb/l6tFb98L4fdoYgixXRflx56pHc/BYaEZqs2Q6I7EQDkMMMwFBcXlykgcvjw4asGRvz8/DLCIQ0bNlTXrl0zBUbCw8PzVWDkUoZh6N9//83oOhIdHa1//vlHKSkpMplMqlSpkqxWq3r06CGr1arq1avLx8fH3WXnW6G+XmpYPEznbQ4djE/RwYQUOVwXfgq5WsDk0uMeZpNKB/mpdLCfArz4sx4AAAAAAAAAIGeZDMNd91oFAAAAAODm/fTTT+rUqZPuu+8+zZkzR97e3jc9Z2yqTSuOxORAdTmjSYkw7kKMfGXgwIEaO3asJMnDw0MjR47UgAEDZDabM8bs27dPXbt21caNGzVs2DC99tpreXqn84Q0u5YdPpdn62VX81LhdCkBgGy4UmDkv4+kpKSM8ZcGRq70yM+Bkf86ceJEps4jGzZsUGxsrCSpVKlSslqtGY/IyMib7vSHa3MZhpJsDsWn2RWXZldCul12pyGXYchsMsnTYlKQt6dCfDwV7OOpQC8PmW+Tz0UAAAAAAAAAwK2HWxkBAAAAAPKtWbNmqVu3bnr00Uf1zTffyNMzZzZf7zyXdNW7Bec1ky7U07B4mLtLwR3GZRhKSncoLt2u+DS74tPtclyy2dHDYlKw94WNjiHengr0/v+bHbdv3y5JKlq0qH799VfVrl07Y17DMDRlyhS99NJLKlKkiFavXq26devm+fX5e5plNgy5bsENmh5mkwK5AzkAZHIzgZFGjRrpiSeeuG0DI5eKjY3Vhg0bMgVITpw4IUkqVKiQrFar+vfvL6vVqqioKEVERLi54juP2XQhMBLk7amSQe6uBgAAAAAAAABwp+Mv0wAAAACAfOmLL75Qr1691L17d33xxReyWCw5Mu95m0NnUmzXHLN93RoN7/7oFZ8bOXueKtSMVHpqipb/9J2il/2uw/t2Ky05WYVLllKLx7qq5WNds1yvIelMik3nbQ4FsMEceeC8zaGD8Sk6mJAih+tCrOpqAau4VHvGcQ+zSaWD/FQ62E/333+/nE6nfvnlF/n7+2eMP3PmjHr27Kl58+apV69eGjt2rAICAnL9mi6VlJSk6dOna+LEiarbvqPa93hWuoU2FJsklQ7y407kAO44BEayLzk5WZs2bcoUHtm/f78kqUCBAoqKitITTzyhOnXqyGq1qlixYrf9awIAAAAAAAAAALLHZBjGrXDDVQAAAAAAsmzChAnq37+/nnvuOX388ccym805Nve2M4naH5d8ze4kFwMlbZ54WuWq1cz0XK1GTVQgJExH9u7WgPbNVa1+Q9W4p7H8/AO1efUKrVuySE3ad9AL73+U5ZpMksqF+KtawQI3dE1AVsSm2rTzXJLOpNhuuEPPxfMK+nmpcnigQn29Mp6bP3++nn76aRmGoS+++ELt2rXLocqzZt++fZo4caK++uorpaSk6OGHH9ZzLw5QbFjJPK0jK1qVjiBABuC2YxiGYmNjMwVEDh8+fM3ASOnSpTOFRC59hIWF3VHhCJvNpm3btmUKj+zYsUMul0s+Pj6qVauWrFZrxqN8+fI5+jMyAAAAAAAAAAC4PREoAQAAAADkK6NGjdKQIUM0cOBAffDBBzm6kdBlGJq//3RGV4aruRgoGfjh56p/7/1XHJMYF6P4c+dUonzFTMc/ee0lLf/pO038fbUKlyyd5do8zCbdX64QXQuQ45wuQ7tikrQ3NvmGgyT/dXGeCqH+KuFr1isDB+qzzz5T27Zt9eWXX6pQoUI5sMr1uVwu/f777/r444+1aNEihYeHq1evXurTp4+KFSsmSfrraIzOpthy5LpvlklShJ+XGhYPc3cpAJBtVwqM/Pdx/vz5jPH+/v5XDYvciYGRS7lcLu3Zs0fR0dFav369oqOjtWXLFqWnp8tisahatWqZwiNVqlSRp6enu8sGAAAAAAAAAAD5ELc6BAAAAADkC4ZhaPjw4XrnnXc0fPhwDR8+PMc3GSalO64bJvmv1PPn5eXjI4tH5rfYBULCVCDk8k3hdVrcp+U/fadjB/ZlK1DicBlKsjkU5M1mQeScuDS71p+IU7LdKSlnwiSXzrM35rxWnzimP6P/0aeffqpnn302TzYHJyYmatq0aZo4caL27dun2rVr66uvvlKnTp3k4+OTaWzl8ECtOBKT6zVlhaEL9QDArehmAiONGzdW9+7dCYxcgWEYOnz4cKbOIxs3bszo1lKhQgVZrVZ17txZVqtVNWvWlJ+fn5urBgAAAAAAAAAAtwsCJQAAAACAW55hGBo0aJDGjh2rUaNG6dVXX82VdeLS7dkaP/G1l5SWkiyzxaJKkXXVbdBQlatW45rnxJ87K0kqEBKa7fri0+wESpBjziSna83xWOVq71qTSWF3FdG7s37RPcVyf+Pwnj17NHHiRE2bNk2pqal69NFHNW3aNNWvX/+qa4f6eqlCqL/2xibnam1ZUSHUX6G+Xu4uA8Ad6kYCI6VLl1bJkiUJjGTDmTNnMnUe2bBhg86evfDzYfHixWW1WvXaa6/JarUqMjJSwcHB7i0YAAAAAAAAAADc1kyGkavbBgAAAAAAuCkul0vPP/+8Pv30U02YMEEvvPBCrq21+XSCDsanXLdLw+5/ojVv2ueq3biZCoSE6uj+vfp16mSlp6bq3W/nqkzlalc8z26zaeDDrWRLS9PE3/66rKvJtZgklQ72U81CQVm/IOAqziSna/Wx2BzrSJIVJkn3FAtVQX/vHJ3X5XLpt99+04QJE/T7778rIiJCzz77rHr37q2iRYtmaQ6ny9DSQ2eVYnfm6WtykUmSv6dFzUtFyGJm8zWA3GEYhmJiYq4YFDl8+PBVAyOXhkQufYSGhhIYuY6EhARt3LgxU/eRI0eOSJLCwsJktVpltVpVp04dRUVF6a677nJzxQAAAAAAAAAA4E5DoAQAAAAAcMtyOp3q2bOnpk+frilTpujpp5/O1fVWHDmn2NTsdSm56OThgxrQvrkqR9XT0C9mXXHMp0MHaen3M/XaZ98osnHzbK8R5uupxiXCb6g+4KK4NLtWHjknlxt+I2Q2SY1LhCvE5+Y77SQkJGjatGmaOHGi9u/fr8jISPXr10+PPfaYfHx8sj3f7fK6ALhzXSswcvGRnPz/uzERGMlZqamp2rx5c6bwyJ49eyRJAQEBioyMzAiQWK1WlSpVitcXAAAAAAAAAAC4XdZvhQoAAAAAQB6y2+164okn9MMPP2jGjBnq3Llzrq/pcN74TvLCJUvL2qy11i1ZJKfTKYvFkun5X76cpKXfz9Tj/V+5oTCJJNlvoj5AutCJY/2JOLnr9iIuQ4o+EXdTnTh27dqliRMnavr06UpPT1eHDh309ddfq169eje1MTfEx1MNioa6pXNLg6KhhEkAXFd2AyMBAQEZ4ZCmTZsSGMlBDodDO3bsyBQe2bZtmxwOh7y8vFSjRg21aNFCQ4YMkdVqVcWKFS/72RAAAAAAAAAAAOBWQKAEAAAAAHDLSUtLU8eOHbVo0SJ9//33euihh/JkXddN7rIPL1xEDrtN6akp8gsIzDi+/KfvNGPMu2rVqZse7fOi2+oDdsUkKdnudGsN5+1O7YpJUtWIAlk+x+l0atGiRZowYYKWLFmiQoUK6eWXX9azzz6rIkWK5FhtBf29dU+xUK05HivDUK4HS8ymC2GSgv7eubwSgPzgRgIjFzuMNGvWTCVLliQwkgtcLpf279+fKTyyadMmpaamymw2q3LlyrJarXrmmWdktVpVvXp1eXl5ubtsAAAAAAAAAACALCFQAgAAAAC4paSkpOjBBx/UqlWrNHfuXN133315trb5Jjddnj56RF7ePvLx8884tn7Zb/p06EDVbdlGzwx7z6314c4Wm2rT3tjk6w/MA3tjk1UkwEehvtfecBsfH6+pU6fqk08+0b///qs6derom2++UYcOHeTtnTshjIL+3mpcIlzrT8TlavgmwNMia5EQOpMAdxDDMHTu3LlrBkZSUlIyxv83MPLfDiMhISEERnKYYRg6fvx4RnBk/fr12rBhgxISEiRJZcuWldVq1SOPPCKr1apatWopICDAzVUDAAAAAAAAAADcOAIlAAAAAIBbRlJSku6//35t3LhRCxcuVNOmTfN0fQ9L1jZlJsTGKCg0LNOxQ7t3aMMfi1WrUVOZzWZJ0o7ovzV+wHOqHFVPL46ZmHH8RnlmsT7gSnaeS5JJud91IytMulBPw+JhV3x+586d+vjjj/X111/Lbrfrscce06xZs1S3bt08qS/Ex1MtSkVoV0yS9sYm59jrdnGeCqH+qhQWKIuZr2ngdnIzgZHmzZsTGHGDmJiYTJ1HoqOjderUKUlS4cKFZbVaNXDgQNWpU0dRUVEKDQ11c8UAAAAAAAAAAAA5y2QYxq2wjwAAAAAAcIeLi4vTvffeq927d2vRokVq0KBBntew+XSCDsanXHfj+PDuHeTl46OKtaIUFBquYwf2asmcGbJ4eGrk7HkqVra8zhw/ppcfbCGH3aburwyTb0BgpjlKVqykUhUrZ7k2k6TSwX6qWSgo+xeGO955m0OLD5697rjt69ZoePdHr/jcyNnzVKFmpCRp2BOPaEf02svG1GzYREO/mJXlulqVjlCA14X7nTidTi1YsEATJkzQsmXLdNddd6l379569tlnddddd2V5zpwWm2rTznNJOpNiu+FgycXzCvp5qXJ44HU7swC4NWU3MBIYGHhZSITAiPucP39eGzduzBQeOXjwoCQpODhYVqs106No0aJurhgAAAAAAAAAACD30aEEAAAAAOB2Z8+eVatWrXTkyBEtX75ckZGRbqkj2MczS5vF6zRvrVXzf9a8rz5XanKSCoSEqW7LNnqs7wAVLllaknTm2BGlJCVKkqa8/dplczzWd0C2AiWGLnRNAG7EwfiUbIUh2jzxtMpVq5np2F0lS2X6OOyuwuoyIPPndmjBQlmuyfR/dRXzdGrq1Kn65JNPdPDgQdWrV08zZ87Uo48+Ki8v9wcvQn291LB4mM7bHDoYn6KDCSlyuC68kld7TS897mE2qXSQn0oH+2WEZwDcmm4kMHKxw0iLFi1UsmRJAiO3iPT0dG3dujVTeGTXrl1yuVzy9fVV7dq19eCDD2aER8qWLct/KwAAAAAAAAAAcEfir9gAAAAAALc6ceKEWrRoodjYWK1cuVJVq1Z1Wy0h3lkLbLTt1lNtu/W85piqdRvox90ncqKsDMEESnADXIahgwnX77xzqcqRdVX/3vuvOcYvsIAat3vkhusyJO08FaMGDWsoPS1NnTp10nfffSer1XrDc+amAC8PVStYQFUiApVkcyg+za64NLsS0u2yOw25DENmk0meFpOCvD0V4uOpYB9PBXp5yMwmZUBpaWn6559/tH79eqWkpKh9+/aqUqVKntZgGIbOnj17zcBIampqxvj/Bkb+22EkODiYEMItwOl0ateuXZnCI1u3bpXNZpOHh4eqV6+uhg0b6qWXXpLValXlypXl4cGfRgAAAAAAAAAAACQCJQAAAAAANzp8+LCaN2+u9PR0/fnnn6pQoYJb6wn09pCH2ZTRfeBW4mE2KZDuBrgBSemOG/qcTj1/Xl4+PrJcY9Ot0+GQLT1dvv7+N1Sbp7ePho54T907dlChQlnvbuJOZtOFwEiQt6dKBrm7GuDWYBiGTpw4oV27dsnHx0f33HNPpqCF0+nUpEmTNGXKFBUrVkyGYWjBggV69tln1a1bN7lcLpnN5hyp40YDIy1btiQwkg8YhqGDBw9mCo9s3LhRycnJMplMuvvuu2W1WtW9e3dZrVbVqFFDPj4+7i4bAAAAAAAAAADglmUyDOPW2yUDAAAAALjt7d+/X82bN5fFYtGyZctUunRpd5ckSdp2JlH745Kz1c0ht5kklQvxV7WCBdxdCvKhQwkp+udUQpbGbl+3RsO7PyofP3+lpSTLbLGoUmRddRs0VOWq1cgYN+yJR7Rn8wZJJjnsNgWHR6hFhy7q8NxL8vDMXiedyLuCVDLIL1vnAMhblwZG7Ha7GjRooKCgC4mq2NhYTZo0SbNnz9bOnTtVvnx5bd68Wb6+vhlBkd9++00dOnTQlClT1KlTJyUnJ2vkyJH6+uuvtWHDBhUsWDDLdWQnMFKgQIHLQiIERvKXkydPZgqPbNiwQTExMZKkkiVLymq1ZjwiIyNVoAA/KwEAAAAAAAAAAGQHgRIAAAAAQJ7buXOnWrRoocDAQC1btkzFihVzd0kZztscWnzwrLvLuEzM2iV6otNj3GUb2bb5dIIOxqdkKSS1+59ozZv2uWo3bqYCIaE6un+vfp06WempqXr327kqU7maJOmT1wcoonBRlahQSWmpKfr79/mKXr5YDe57QC+P/yzLtZkklQ72U81CtPoAblVOp1PTp0/XJ598op07d8pisejvv/9W1apVJV0IlMycOVPh4eGKiYnRe++9p507dyo4ODhjjo8++khjxozR0aNHlZaWJh8fHyUmJio4OFhffvmlevTocdm6iYmJmjx58nUDIxc7jFwtMIL8Iz4+Xhs2bMgIj6xfv17Hjx+XJBUsWDBTeCQqKirLQSQAAAAAAAAAAABcHYESAAAAAECe2rx5s1q2bKnChQtryZIlKlSokLtLusxfR2N0NsV2a3QpMQydOrBHL7RroYIFC+qll15S7969uQM3smzFkXOKTbXf8PknDx/UgPbNVTmqnoZ+Meuq4z4dOkhLv5+pkbPnqULNyCzPH+brqcYlwm+4PgC5y+Vyac6cOUpJSVGxYsX04IMP6s8//1RUVNRlYzdu3Kh69epp//79KlmyZMbx2bNnq1u3bjp69GjGv/vTp09Xjx491KdPH33yySeXzZWSkqLChQsTGLlNpaSkaNOmTZm6j+zbt0/ShaBQZGRkRnikTp06Kl68ON1kAAAAAAAAAAAAcoGHuwsAAAAAANw51q1bp3vvvVflypXTb7/9prCwMHeXdEWVwwO14kiMu8u4wGRSp2b3qOXu3frggw/0xhtvaOTIkerbt6/69++viIgId1eIW5zDeXPRqMIlS8varLXWLVkkp9Mpi8VyxXHtejyrpd/P1Na1q7IVKLHfZH0AcpfZbFanTp0kXehWkpaWprNnr9zJq2DBgnK5XDpz5kymQMkDDzygMmXKqFOnTmrbtq0OHTqk/fv3q3LlyoqLi1NycrL8/f0zzeXn56eEhITcuzDkGbvdru3bt2v9+vUZ4ZEdO3bI6XTK29tbtWrV0r333quhQ4fKarWqQoUKMpvN7i4bAAAAAAAAAADgjsBfZQAAAAAAeeLPP/9UixYtVKVKFS1duvSWDZNIUqivlyqE+l9/YB6oEOqvUF8vlS9fXlOmTNHBgwf11FNP6cMPP1TJkiXVv39/HTlyxN1l4hbmyoHmtOGFi8hhtyk9NeWaYyQpKT4+W3PnRH0Acp/L5ZLFYpGvr69OnDhxxTHh4eHy9/fX0aNHMx339/fXokWLVK5cOf388886evSo3nnnHRUvXlyGYchuv/EuSri1uFwu7d69W99884369eun+vXrq0CBAqpdu7b69u2rDRs2qE6dOpo0aZL++ecfJSUlae3atZowYYKeeOIJ3X333YRJAAAAAAAAAAAA8hAdSgAAAAAAuW7x4sV68MEHVb9+ff3666+X3YX8VlQpLFDHk9KUYnfKHdvdTZL8PS2qFBaY6XjRokU1duxYvfbaa5o4caImTJigSZMmqWvXrnr11Vd19913u6Fa3MrMJtNNz3H66BF5efvIx+/qX7unj14INgWFZi8slhP1Ach9xv+FvwoWLKgjR45csWORr6+vIiIi9O+//152funSpTVlypRMx+Li4lSpUiUFBwfnWt3IPYZh6MiRIxldR6Kjo7Vx40YlJiZKksqXLy+r1aqOHTvKarWqVq1a8vPzc3PVAAAAAAAAAAAAuBSBEgAAAABArvr111/VoUMHtWjRQj/88IN8fX3dXVKWWMwm1SkSopVHzskdDRRMJslaJEQW85U324eFhWn48OF6+eWX9fnnn2vs2LGaPn26Hn74YQ0ZMkSRkZF5XDFuVR6WrAc2EmJjLguEHNq9Qxv+WKxajZrKbDYr5XySPL285OnlnTHGMAz9MPlDSVLNho2zVZ9nNuoDcHMMw9Dp06d16NChyx5eXl769ddfr3muJJUqVUoHDx6UzWa74r/pxYsXv2KgxOVyKS0tLSNQMHr0aB0/flwtW7bMmN9EwOyWdvbs2UzhkejoaJ05c0aSVKxYMVmtVg0ePFhWq1WRkZEKCQlxc8UAAAAAAAAAAAC4HgIlAAAAAIBc891336lr165q3769Zs2aJS8vL3eXlC0hPp5qUDRUq4/F5mmXEpOkBkVDFeLjed2xAQEBGjBggPr27atvvvlG77//vqKiotSyZUsNGTJETZo0YYPuHS7Y21NxqfYsfQ6Pe6m3vHx8VLFWlIJCw3XswF4tmTNDXj6+6vry65Kkf3ds0/iBz6lhmwdVuGQp2dLStG7pIu3+J1otH+uqMlWqZ7k2k6Qg7+t/ngPImmsFRg4dOqTDhw8rLS0tY3xwcLBKlSqlUqVKZbnDVbly5bR//37Z7fYrBkrKly+vo0ePyjAM2e12SZKXl5e2bdumefPmyWw2a9++fdq6dasGDBig++67T5L4tyobDMPQxo0btWvXLlWqVElRUVE5vkZiYqI2btyYKTxy+PBhSVJoaKisVqt69eqlOnXqKCoqSoULF87xGgAAAAAAAAAAAJD7CJQAAAAAAHLF9OnT9dRTT6lz58766quv5OGRP9+CFvT31j3FQrXmeKwMQ7keLDGbLoRJCvp7X3/wJby9vdWzZ0/16NFDP/zwg0aOHKlmzZqpbt26GjJkiB544AGZzeZcqhq3smAfzyx/3tZp3lqr5v+seV99rtTkJBUICVPdlm30WN8BKlyytCQpomgxVYqsq/VLFyn+3FmZzCYVK1Nez775vlp27Jqt2gwpS8EpABdkNzASEhKiUqVKqWTJkrrvvvsywiMXjwUHB2d57Yv/hlSpUkWrV69WcnKy/P395XA45O3trR07dmjdunXasWOH/v77b9WsWVM+Pj4aNmyY2rZtq+DgYJ08eVI7d+5UmTJl9Nprr6lt27Y5/RLd1g4fPqw33nhDS5YskSSVKFFC6enpat68ucaNGyeXy3VD/9anpaVpy5Ytio6O1vr16xUdHa09e/bIMAz5+/srMjJSjz76qKxWq6xWq0qXLk0ACAAAAAAAAAAA4DZhMgwjL2+yCgAAAAC4A3z66ad67rnn9Mwzz2jy5Mm3RZAhLs2u9SfilGx35toaAZ4WWYuE5MgGe8Mw9Ntvv2nkyJFatWqVqlSposGDB6tTp075NtyDG5OQZteyw+fcXcZVNS8VTpcS4P+4XK7rBkbS09Mzxl8MjFzpUbJkSQUFBeVYbf/++69Wr16tX375RT///LMqVKggSerXr5+ee+45vfrqq/rss88UGRmpGjVqKCwsTDVq1FCjRo1ytI7b3fHjx/XHH39o+/btqlixojp06KCAgABJ0unTpzV+/Hi1a9dOVqtVycnJmjlzpl588UUdPXpUd91113Xndzgc2rlzZ6bOI1u3bpXD4ZCnp6dq1qyZERyxWq26++67ZbFYcvuyAQAAAAAAAAAA4CYESgAAAAAAOWrs2LEaOHCg+vfvr/Hjx99Wd7B2ugztiknS3thkmZQz3UouzlMh1F+VwgJlMef867V69WqNHDlSCxYsUKlSpTRo0CD16NFDvr6+Ob4Wbi0ul0sTPv5Y4Q3vk19AoLvLuYyH2aT7yxWS+Tb6PgFcy60cGLme6dOnq1+/fqpVq5YiIyNVqFAh3X333apfv74iIiLyrI7blWEYeuedd/Tdd9/JYrGoWrVq2rZtmzw9PbVq1Sr5+flJkuLi4hQSEpJx3l9//aUmTZpo3759Kl269BXnXrt2rebMmaPo6Ght2rRJKSkpMplMqly5cqbwSPXq1eXtnb0OaQAAAAAAAAAAAMjfCJQAAAAAAG7Yjz/+qEmTJum7775TWFiYRowYoWHDhum1117TiBEjbqswyaViU23aeS5JZ1JsNxwsuXheQT8vVQ4PVKivV84WeQVbtmzRqFGjNGfOHEVEROill15Snz59VKBAgVxfG3nv2LFjevLJJ7Vs2TJ9NPsXFa9ZJ0dCUDnFJKlciL+qFeTzD7eP/BwYgfs98MAD6tq1qx566CF5eXlp9+7dslqtGj9+vHr27Jlp7PHjx7VixQpNmTJFHTp0UN++fa84p81m02effaYPP/wwU3ikdu3aGZ1PAAAAAAAAAAAAcOciUAIAAAAAdwCXYSgp3aG4dLvi0+yKT7fL4TTkMgyZTSZ5WEwK9vZUsI+nQrw9FejtkaWOAVFRUdq4caOqV6+uZs2a6cMPP9SIESP0+uuv58FVud95m0MH41N0MCFFDteFt9dXC5hcetzDbFLpID+VDvZTgJdHHlX7/+3fv1+jR4/WtGnT5Ovrq759+6p///4qWLDgdc81DEMmk0kul0tmszkPqsWNmDNnjnr37i1fX19Nnz5d9f7XRIsPnnV3WZdpVTrCLV8DwI3KbmAkNDQ0U0CEwAiuJTk5Wf7+/pIuBEG8vLxktVp133336e233874t3fHjh0aMGCAdu7cqdDQUPn6+qpbt2567rnnrjivw+GQhwffawEAAAAAAAAAAHA5AiUAAAAAcBvLzcDDvn37VKFChQvnmkwyDEMjR47U4MGDc/w6bnUuw1CSzaH4NLvi0uxKSLfLfklgx9NiUpC3p0J8LoR2Ar2yFtjJbSdOnNC4ceM0efJkFS5cWLt375bFYrni2EsDJHFxcfrwww+1fft2ffDBBypbtmxelo1rSEhI0AsvvKBvvvlGHTp00OTJkxUaGipJWrjjoFJMnjJf5b9xXjJJivDzUsPiYe4uBcjE5XLp1KlT1wyM2Gy2jPGXBkau1GGEDlC4EU6nUxaLRXv27FHbtm01ePBg9ezZM+O43W5Xenq6AgICFBsbqxkzZuidd97R3Llz1aBBA3eXDwAAAAAAAAAAgHyEQAkAAAAA3IZiU23aeS5JZ1JsVw2QXM/F8wr6ealyeKBCfb0yPf/WW2/pnXfekdPpvDDeZFLDhg31+++/y9fX92YvAXkoNjZWe/fuVVRU1DXvYJ6enq5hw4bp1KlTmj9/vkwmk1577TUNGDAgD6vF1aSlpalGjRo6efKkPvnkE3Xt2lUmk0lnzpxR165ddfDUWY38bv4t01mmSYmwy76vALmNwAjykxdffFF//fWXNmzYcMXOYBe7hkmSn5+fpk2bpscee8wdpQIAAAAAAAAAACCfos89AAAAANxGnC5Du2KStDc2WRf7X9zoXQQunnc2xaYVR2JUIdRflcICZTFf6EYybdq0jDCJdGFT46pVqzRo0CBNnDjxZi4DeSw0NFT16tW76vMJCQlaunSpPvroI4WFhWncuHFKTk6Wl5eXWrRoIUmaPXu2vvrqK/Xs2VMdOnTIq9JxCS8vL7366qtq1qyZSpUqpZMnT+r555/XL7/8IpfLpQoVKsgce0oKL+LuUlUh1J8wCXLFzQRGHnjgAQIjyFOXBkL+a+XKlZozZ47mzp0rSVcMA5pMJrlcLk2dOlVpaWkqV65crtYLAAAAAAAAAACA2w8dSgAAAADgNhGXZtf6E3FKtjuvP/gG+XtaVKdIiHZuXK+GDRtKkiwWi5xOp7y8vNSyZUsNHjw44znkf6dPn9bDDz+smjVrymq16sknn1R0dLR69uypzp0769VXX5UkPfroo9q4caNiYmIUGBiowYMH64UXXnBz9XcewzC0ZcsWDRs2TPPnz5dhGCpTpoymTJmiZs2ayekytPTQWaXYnTccNrsZJl34PtK8VIQs5itvogauxeVy6eTJk5eFRK4WGAkLC7tmh5HAwEA3Xg3uJIZh6NChQ4qOjlZ0dLTi4uL0xRdfXHFsSkqKmjdvrnvuuUejR4/OFDpJTk7WvHnz5Ovrq/T0dP31119avXq1nnzyST3//PNXDagAAAAAAAAAAAAAV0KHEgAAAAC4DZxJTtea47HK7VsGpNidWnnknBb9dOFu2X5+fnr00Uf10EMPqWXLlvL398/dApCnXC6XfvrpJ61du1bt27fXk08+KUmaPHmyChUqpKZNm0qS5s2bp3///VdjxozRI488okmTJmnkyJFas2aNPv/8czZs5wKn0ymLxXLF42fOnNG8efMUGhqqzz77TI8++mjG8xazSXWKhGjlkXO5/v3iSkwmyVokhDAJrupKgZFLH0eOHLlqYKRdu3YERnDLOHXqVEZ4JDo6Whs2bNC5c+ckSSVKlFC9evXkcDjk4XH5r+jHjx8vX19fvf322zKZTDp9+rROnTqlcuXKyd/fX4cPH9YXX3whk8mkqKgoDR06VK1btyZMAgAAAAAAAAAAgGyjQwkAAAAA5HNnktO1+lhsHncbMGQc3Kn2LZpccSMkbh/x8fH69ttvNW7cOJ05c0YPP/ywNm/erKefflrPP/+8JKlfv36aOXOmOnbsqEmTJmWcu3//fpUrV85dpd82Tp48qTfeeEOenp4qW7as+vfvLy8vr2ueM3v2bLVv316+vr5XfN4d3zdMku4pFqqC/t55uCpuNTcTGKHDCG5VCQkJ2rBhQ6YAydGjRyVJERERslqtmR4FCxa86lyHDh1S+fLlVatWLZUoUUKrV6/W6dOn1axZM33xxRcqVaqUzp8/L39/fwIkAAAAAAAAAAAAuGkESgAAAAAgH4tLs2vlkXNyueGdndkkNS4RrhAfz7xfHHnu/PnzWrx4sXr16qXk5GQ1atRIixcvVmJiov766y+dOHFCX331lVJSUjR69Gi1aNHC3SXfFhYvXqzOnTvrf//7n/z8/LRs2TJVqlRJH3/8sapUqXLFcwzDyNIm40s7G+X2txCzSWpQlDDJnSC7gZHw8PCMcAiBEeQHqamp2rRpU6bwyN69eyVJgYGBioyMVJ06dTLCIyVKlMhW8OPUqVMqWrSo2rVrp4oVK6pVq1aqV6+e/Pz8cuuSAAAAAAAAAAAAcAcjUAIAAAAA+ZTTZWjpobNKsTvzuDvJ/xfgaVHzUhGymLlD9u3M5XLJbDZrz5496tq1q0qWLKkjR45o7ty5Kly4cMa4xMREPfPMMzIMQ3PmzHFjxbePvn376vTp0/rhhx8kScePH1ejRo3UuHFjDR06VGXKlMlygORK4tLsWn8iTsl2Z06WnUmAp0XWIiGEz24TTqfzuoERu92eMf5iYORqHUYCAgLceDXAtdntdu3YsSMjOLJ+/Xpt375dTqdT3t7eqlmzZqbOIxUrVpTZbHZ32QAAAAAAAAAAAECWebi7AAAAAADAjdkVk5Srm8Cz4rzdqV0xSaoaUcCtdSB3XQwrjBs3ThaLRQMHDlS9evUuG1egQAF16tRJzzzzjLZv366qVavmdan53qXhkISEBG3ZskWNGzeWdGEjf9GiRTVy5EiNGDFCP/30kwYOHHjDYRJJCvHxVItSEdoVk6S9sckyKWe6lVycp0KovyqFBRI6y0duJjBSq1YtAiPIt1wul/bt25ep88imTZuUlpYms9msqlWrymq1qk+fPrJarapataq8vLzcXTYAAAAAAAAAAABwUwiUAAAAAEA+FJtq097YZHeXIUnaG5usIgE+CvVlU+Xt6mJgoW7duoqIiFDt2rUVFxen33//XW3btlVgYGBGEMLT01Pnz59X8eLF3Vx1/vPll19q1apVCgoKUrdu3RQZGamgoCDt3r1b0oXNzhaLRR07dtS8efP0+++/q3379ipfvvxNrWsxm1Q1ooCKBPho57kknUmx3XCw5OJ5EX5eqhweyPeFWxCBEeBCeO/YsWMZXUeio6O1ceNGJSQkSJLKlSsnq9WqDh06yGq1qlatWvL393dz1QAAAAAAAAAAAEDOMxmGkRM3ngQAAAAA5KG/jsbobIotRzoJ3CyTLmweb1g8zN2lIA/99ddf6tWrl/r06aNevXrJbDYrNjZWbdq0UalSpTRz5kz5+Pi4u8x8Yffu3erevbvOnj2rhx9+WIsXL1ZaWprmzZunbdu26fHHH9f27dtVsWJFpaeny9vbW5s3b1aDBg20cOFCNWnSJFNnk5t13ubQwfgUHUxIkcN14bvM1QImlx73MJtUOshPpYP9FODFPUzcJbuBkYiIiEwBEQIjuB2dO3cuU+eR6OhonT59WpJUtGhRWa3WjEdUVJRCQkLcXDEAAAAAAAAAAACQNwiUAAAAAEA+c97m0OKDZ91dxmValY5gE/kd5quvvtLw4cPl6ekpq9WqlStXymw2a8mSJapcuXKmsU6nUzabTb6+vm6q9tZ06NAhvfDCCypcuLDGjh2rwMBAOZ1OeXp6asGCBapVq5Y6duwowzD0559/SlJGeOTuu+/W448/ruHDh+dKbS7DUJLNofg0u+LS7EpIt8vuNOQyDJlNJnlaTAry9lSIj6eCfTwV6OUhcw6FWnB1TqdTJ06cuGZgxOFwZIy/NDDy30fJkiXpuoDbTlJSkjZu3JgpPHLo0CFJUkhIiKxWq+rUqZMRIClcuLB7CwYAAAAAAAAAAADciEAJAAAAAOQz284kan9c8nW7k2xft0bDuz96xedGzp6nCjUjMz6222z6depkrZj7vc4ePya/wECVrVpDvd96X2F3FbluTSZJ5UL8Va1ggWxcCW4XP/74o7Zs2aKqVauqSpUqqlKlyhU7ZnTp0kWnTp3SkCFD1Lx58xzrqJGfORwOff/992rSpEnGpuaTJ0+qR48eGj9+vMqXL6/ff/9dXbp00ZAhQ/Tqq69Kko4cOaJWrVpp3LhxatOmjTsvATmMwAiQdenp6dqyZUum8MiuXbtkGIb8/f1Vu3btTN1HypQpw789AAAAAAAAAAAAwCUIlAAAAABAPuIyDM3ff1oO1/Xfyl0MlLR54mmVq1Yz03O1GjVRgZAwSZLDbte7z3bVnk0b1KJDF5WsWEnJCQnau3WTHus7QCXKV8xSbR5mk+4vV4gOBbgiwzD0008/6b333tM///yjqKgovfbaa2rfvr3MZrO7y7vQjSPdobh0u+LT7IpPt8txSTcOD4tJwd4XOnGEeHsq0DvnunE4HA55eFzo7jNr1iz1799fHh4e8vDwUN26ddWhQwcZhqGuXbvqoYceUps2bfTjjz/q8OHDmjdvnkqVKpUjdSBvEBgBbozT6dTOnTszhUe2bt0qu90uT09P1ahRI1N4pFKlSrJYLO4uGwAAAAAAAAAAALilebi7AAAAAABA1iWlO7IUJrlU5ci6qn/v/Vd9fv70z7Uz+m+NmPmLylevdcO1OVyGkmwOBXl73vAcuH2ZTCY98sgjevjhh7VkyRKNHDlSDz/8sCpVqqRXX31VnTt3lqdn3n/unLc5dDA+RQcTUjK+tkzSFTsAxaXaM457mE0qHeQnxZ1W4rkzqlGjhgICAuRyua4akDl+/LgKFSqUER656OLHSUlJmj9/vl5++WV17txZp06d0rvvvqupU6dqwYIFcjgcWrhwoT7//HOVKFFCf/31l4KCgnLolUBOcTqdOn78eKaQyOHDh68aGClYsGBGQCQqKipTYKREiRIERnBHMgxD//77r6Kjo7V+/XpFR0frn3/+UUpKikwmkypVqiSr1aoePXrIarWqRo0a8vb2dnfZAAAAAAAAAAAAQL5DhxIAAAAAyEcOJaTon1MJWRp7sUPJwA8/V82GTeTl4yPLfzayu1wuPdskSndHWvXy+M/kdDjksNvk7et3Q/VF3hWkkkE3di7uPGvXrtXIkSM1b948lShRQgMHDtTTTz8tP7/c/xyKTbVp57kknUmxXTVAcj0up1Nmi0UHtv6jRdM+08cfjFSVKlWuONYwDFWsWFGdO3fW8OHDZbpKdxObzSYvL6+MYMqECRP0wQcfaPPmzQoPD79Qe2ysQkNDb6Bi5IQrBUYufRw9evSqgZH/PgiMABecOHEiU+eRDRs2KDY2VpJUunTpTJ1HateurcDAQDdXDAAAAAAAAAAAANweCJQAAAAAQD6y+XSCDsanZGnz+8VAiY+fv9JSkmW2WFQpsq66DRqqctVqSJKO7N2tl9o10+Mvvqqzx49pxS/fy2G3qUSFSnrqtbdVrd49Wa7NJKl0sJ9qFqJjArJn27Ztev/99zV79myFhoaqf//+6tu3r4KDg3N8LafL0K6YJO2NTb7hIMllDEOGYWj7yiV6o1d3mU26LDDicDi0Y8cO7dy5U+3atZOvr+9VO5lIygiUvPXWW1q1apXmzZsnX1/fnKgW15GTgZGSJUvmSUAKyE9iY2O1YcOGTAGSEydOSJIKFSqUKTxitVozwnQAAAAAAAAAAAAAch6BEgAAAADIR1YcOafYVHuWxu7+J1rzpn2u2o2bqUBIqI7u36tfp05Wemqq3v12rspUrqZ1SxbpgxeeVmBwiAKCQvTwsy9Ikn767GOdPXFM7/+wUKUqVs5yfWG+nmpcgo2fuDH//vuvxowZo6lTp8rLy0vPPfecXnrpJRUqVChH5o9Ls2v9iTgl2505Mt9/GS6XArw9VadIiEJ8PC973uVyKSQkRFFRUVq2bNlV53E4HDKZTJo8ebI+/PBDvfbaa+rRo0eu1HwncjgcOnHiRJYDI4UKFcoIhxAYAbInOTlZmzZtyhQe2b9/vyQpKChIUVFRmcIjxYoVu2oHJwAAAAAAAAAAAAA5j0AJAAAAAOQjSw+eVaLNcf2BV3Hy8EENaN9claPqaegXs7Ri7g/6+NV+8vD00ieLVyu8cFFJ0tkTx/R863vU4N4H1H/0xCzPX8DLQy1KR9xwfYAknTp1SuPHj9enn34qm82mp556SoMGDVLp0qUvG3v69GkVLFjwuhuQzySna83xWBlGDnUluQazSWpQNFQF/b0zHTcMQ3379tWnn36quXPnqk2bNvLw8Mg05tSpUxo9erTWr1+vffv26dNPP9VDDz2UyxXfXhwOx3U7jDid/z9UdDEwcqVHiRIlCIwAWWSz2bRt27ZM4ZEdO3bI5XLJx8dHtWrVUp06dTLCI+XKlbtmpyYAAAAAAAAAAAAAuY9ACQAAAADkI4v/PaPzN9ldYdyAPlq3ZJFmbT6g9UsWacyLvVS17j16a/r3mcYN795BZ44f1adL/87y3AGeFrUqU/Cm6gMuiouL06RJk/Thhx8qLi5Ojz/+uAYPHqwqVapIkjZv3qyoqCi9/vrreuutt646z5nkdK0+FpvrQZIMhiGTyaR7imUOlbhcLh04cEAVKlRQRESEDh06JF9f38vCMO+9957MZrMGDx6cVxXnKwRGAPdzuVzas2ePoqOjtX79ekVHR2vLli1KT0+XxWJRtWrVMnUeqVKlijw9L+/cBAAAAAAAAAAAAMC9PK4/BAAAAABwqzBfpwtDVoQXLiKH3ab01BSFFCwkSQoKC79sXFBYmA7u2p6tuXft2qneLeopNDQ0Ww8vL6+bvq78yGazacaMGdqwYYOeeeYZ1apVS+fPn9fWrVvl6empkJAQhYWFKTg4+LodOG5HISEhev311/XSSy/piy++0JgxYzRjxgy1a9dOQ4YM0bhx4+R0OvX222+rTp06atu27WVzxKXZL3QmycvCTSYZktYcj1XjEuEK8bmwidpsNqt8+fJq0aKFli9frvfff/+KQZjBgwff0Xftv5nASN26dQmMADnMMAwdPnw4U+eRjRs3KikpSZJUsWJFWa1WdenSRVarVTVr1pSvr6+bqwYAAAAAAAAAAACQFXQoAQAAAIB8ZMWRc4pNtd/UHKP7PaN/Vi7TzE37lZ6SoifrV1H5GrU1YsbPmca90fUhxZ89q4m//5XluVNjzmj7vNmKjY294uP8+fNXPM/f3z/bIZTQ0NArdnfIT+bNm6dOnTrJz89P7777rnr16qXVq1erZcuWSktLk7+/v5KTkxUWFqb3339fTz31lIz/635xJ7LZbJo1a5bef/997d69O+O4yWRSQECANm3apLJly2Ycd7oMLT10Vil2Z94GSi4R4GlR81IRspgv/Dez2+36/fff1b59e0nS6dOnFR5+eaDrdpbdwMhdd92VERApWbIkgREgl50+fTpTeGTDhg06e/asJKl48eKZOo9ERkYqODjYvQUDAAAAAAAAAAAAuGF0KAEAAACAfCTY21NxqfYsbY5PiI1RUGhYpmOHdu/Qhj8Wq1ajpjKbzfINCFCt/zXTxhVLdezffSpWprwk6diBfdqzaYNadeya5dpMkqqULaUuI0dedYzNZlNcXNxVAyeXPg4fPpzx/+Pj4684n7e39w0FUQIDA90WynC5XDKbzZo7d65mzJihp556Srt371ZISIgkKSkpSbVq1dJbb72lFi1aKCUlRampqfL29pakOzZMIkleXl568skn1a1bN7Vq1UrLli2TdOHu+cnJyWrfvr3Wr1+fETDYFZOkZLvzWlPmuvN2p3bFJKlqRAFJkqenp9q2bavnn39eHh4eSk1NdWt9ucHhcOjYsWNXDYwcO3bsqoGRevXqXRYYodMBkHsSEhK0cePGTAGSI0eOSJLCw8NltVrVp0+fjABJoUKF3FwxAAAAAAAAAAAAgJxEoAQAAAAA8pFgH88sd1oY91Jvefn4qGKtKAWFhuvYgb1aMmeGvHx81fXl1zPGdXlpiLat/Utvdn9MbZ54SpK08JupCggK1sPP9stybYakEB/Pa47x8vJSoUKFsr0h1el0Kj4+PktBlF27dmX62OVyXTafh4fHDQVRgoKCZDabs1X7pQzDkNls1vr16/X555+ra9euCgkJ0dq1axUQECBJio+PV0xMjHbt2qXatWvLy8tLYWFh15n5znLy5EmtXLky0zGXy6UdO3aoVatW+uuvvxSbatPe2GQ3VZjZ3thkFQnwUaivl6QLoaCPPvrIzVXduJsJjNSvX5/ACOAmqamp2rx5c6bwyJ49eyRJAQEBioyM1GOPPaY6derIarWqZMmSd3SIEQAAAAAAAAAAALgTECgBAAAAgHwkxPvagY1L1WneWqvm/6x5X32u1OQkFQgJU92WbfRY3wEqXLJ0xrji5SronW9+1Ddj39WPkz+SyWRW1Xr3qNugoQorVDhb9QVfJ1ByoywWi8LCwrIdrHC5XEpKSspSEOXff//Vhg0bFBsbq5iYGNnt9svmM5lMCgkJuW7wpFKlSoqKirri+WfPntWIESNUsWJFPf7445o8ebI8PDzk4+OTMc7X11cfffSRxowZo3LlymnYsGFq3LixDMNgc6+k5cuXy+FwXPG5NWvW6Pz589oZly6TlOUAVm4ySdp5LkkNi+ePYBCBESD/czgc2rFjR0ZwZP369dq+fbscDoe8vLxUs2ZNtWjRQkOGDJHValXFihVlsVjcXTYAAAAAAAAAAACAPGYyDONW2FsBAAAAAMgCl2Fo/v7TcrhuvbdyHmaT7i9XSObbIPBgGIZSUlKyFET57yMlJUVPPvmkvvrqqyvO3alTJ5UrV04jRoyQJE2aNElz587VjBkzFBERoZ07dyopKUnlypVTYmKiBg8erHXr1mn27NmqV69eXr4MtyzDMLRjxw6ZzWZ5eXnJ09Mz438DAgLkMHto8cGz7i7zMq1KRyjAy/339rDb7ZcFRg4fPnzVwEjhwoUzhUT+Gxi5NAwFIO+5XC7t378/U+eRTZs2KTU1VWazWVWqVJHVas14VKtWTV5eXu4uGwAAAAAAAAAAAMAtgEAJAAAAAOQz284kan9c8i3ReeEik6RyIf6qVrCAu0txu7S0NNlsNgUGBl7WTeTEiRNq0qSJ9u/fr4oVKyooKEhnz56V3W5XnTp1NHr0aJUuXTrTOSkpKapevbp69eqlV1555bL1EhMTtWTJksu6pPj5+d2x3Uyy8jWyfd0aDe/+6BWfGzl7nirUjNSZY0fVp0Xdq87RokNn9XlnTJZqysuvkSsFRv7bYcTlcmWMJzAC5B+GYej48eMZXUeio6O1YcMGJSQkSJLKli2bKTxSu3Zt+fv7u7lqAAAAAAAAAAAAALcq998WEwAAAACQLaWD/bQvLtndZWRi6EJdkHx8fK66AT8iIkLffvutDh8+rLNnzyo9PV1Tp05VQkKC/v33X6WkpGQa73K55OfnJ19fX8XGxsrlcslsNmcas2vXLj366OXBCC8vr8tCJll5FChQIF8HUVyGoYMJKVkOXLV54mmVq1Yz07G7SpaSJBUIDVO/Dz6+7JzNq/7Qn/N+Uo17Gme5LkPSwYQUVYkIvOkuPjcTGLnnnnsIjAD5SExMTKbOI9HR0Tp16pQkqUiRIrJarRo0aJCsVquioqIUGhrq5ooBAAAAAAAAAAAA5CcESgAAAAAgnwnw8lBBPy+dTbHdEl1KTJIi/LwU4MVbzOvx9PRUZGSkIiMjM45t3rxZNptNn376qfz9/XX48GEVK1ZMFotFZrNZ+/fv17Fjx1ShQoXLwiSSVKdOHcXExCg2Nva6jz179mT62Ol0XjafxWJRSEhItoMowcHBslgsufr6SdKUKVP07bff6v3335fVar3s+aR0hxyurH9lVI6sq/r33n/F53z8/NS43SOXHf/j5+/kFxCoqKYts164JIfLUJLNoSBvz2uOy25gpEiRIipVqpRKlixJYATIx86fP6+NGzdmCo8cPHhQkhQSEqKoqCg99dRTqlOnjqxWq4oUKeLmigEAAAAAAAAAAADkd+z2AQAAAIB8qHJ4oFYciXF3GZIudF6oHB7o7jLyHcMwZDKZdODAgYwwRkxMjN544w1VrlxZVatWVXJyst577z0VLVpU999/5dCDyWTKCHVkd/2kpKQsBVEOHz6sTZs2KTY2VjExMbLZbFecMzg4+Jqhk7CwsMuOhYSEyNPz2gGLSy1fvlx//PGH6tatq6eeekojR45URERExvNx6fZsvQ6SlHr+vLx8fGTxuP6vSeLOnNaOdWvUuP2j8vLOflAjPs0uP7N09OjRqwZGjh8/fsXASKlSpdSwYcNMgZHixYsTGAHyofT0dG3dujVTeGTXrl0Znalq166tBx98UFarVVarVWXLls3X3aMAAAAAAAAAAAAA3JoIlAAAAABAPhTq66UKof7aG5vs7lJUIdRfob5e7i4j37m4MXj48OGSlBEKKFWqlBYsWKDPPvtMwcHBatOmjQYOHKjw8PAcX79AgQIqUKCASpUqleXzDMNQampqloIop0+f1q5duzI+Tk6+8udrYGBgljuhHDp0KKOOadOmac6cOXrvvffUu3dveXh4KD7NLpOU5e49E197SWkpyTJbLKoUWVfdBg1VuWo1rjr+r4Vz5XK51OiBh7P8ml3kdDg0fvIUffzagKsGRho1akRgBLjNOJ1O7dq1K1N4ZMuWLbLb7fLw8FCNGjXUqFEjDRgwQFarVZUqVZJHFgJuAAAAAAAAAAAAAHCzTIZhZHWPBQAAAADgFuJ0GVp66KxS7M4sb57PSSZJ/p4WNS8VIYuZu6bj+tLT0xUXF5elMMqlj4SEhOvOHRQUpF27dmnF4XPyDrl++Gb3P9GaN+1z1W7cTAVCQnV0/179OnWy0lNT9e63c1WmcrUrnvfKI/cq9sxpfb5yo8xmc7Zfg6TTJ2Tb8w+BEeA2ZRiGDh48mBEcWb9+vf755x8lJyfLZDLp7rvvzug6YrVaVaNGDb4HAAAAAAAAAAAAAHAbAiUAAAAAkI/Fpdm18sg5udzwzs5skhqXCFeIj2feL447isPhUHx8vGJjY9WwYUOdPXs24zmTySTDMBQSEiK73a53vv1VJcrffUPrnDx8UAPaN1flqHoa+sWsy54/cfCAXrivke7v3uv/sXff0VHV+f/HX1NSSCGk07sgHamSTBClCAKJCoiCSrF9XcCCsqvu6u5vi64LNkCx7EYUXLEATiKgKIiQBEkAKQEUlZLQIY2QMpnJ3N8frLNmAQmQZBJ4Ps7hrHvnc+993ZDknAmfV96a9OSfLuoe9X2tGtQq8qLOBVD7HD58uMLkkY0bNyonJ0fS6YlTvyyP9OjRQ/Xr1/dyYgAAAAAAAAAAAAD4L6u3AwAAAAAALl6ov49imoQp9UBujU4pMUmKaRJGmQQ1wmq1KiIiQhERESopKfEcr1+/viIjI/XTTz/JarVqypQpateuvUov8ouhUYtW6n3DjdrwxQqVl5fLYrFUeH1t8hJJUv+Rt170s7j5vR6oQm7DUKHDpTyHU/mlTuU7nHKVG3Ibhswmk6wWkxr4+aiBv49C/XwU7GeV2cREqYuVl5enjRs3ViiQHDx4UJIUFRWl3r17a9q0aZ4CSWQk5TEAAAAAAAAAAAAAtRuFEgAAAACo46IC/RTbNExpB3NlGKr2YonZdLpMEhXoV813As7UtGlTOZ1OFRUV6ciRI7rqqqv0zjvv6LbbbpO/v7++3HtcpWWui75+RKPGcjnL5CgpVkBQcIXX1i37RI1btVGbzl0v+vps5kdVOFXm0t78Yu0tKJbrPyOqTDr79/+8EqfnuNVsUquQALVqEKAgX34s+GuKi4v17bffViiP/PDDD5JOl9l69eqlO++801MeadasmUx8fQMAAAAAAAAAAACoY/iXYwAAAAC4DEQF+um65hFKP5SnImd5td0nyMei3o1DmUyCGrdr1y7NnTtX2dnZcjgcGjNmjKZNm6Zrr722wiZuq+XSNnQfzc6Sr5+//AMCKxzfvXWzjuzfq9sfmnFJ1/e5xHy4suWWlGnniUIdKy47o0ByrjLhL4+73IZ+zCvSD3lFigrwVceIYIXV862+wHWE0+nU9u3bK5RHduzYofLycvn7+6t79+4aNmyYnnnmGfXu3VtXXXWVzGazt2MDAAAAAAAAAAAAwCWjUAIAAAAAl4lQfx8NahmpXTmF2p1bdM7fVn+hfr5Ou7BAdQgPlsXMhnjUjPLycq1YsUKzZ8/WF198oejoaD322GN64IEH1Lhx47Oe08DPp8JEhnMpyM1RSFh4hWP7vtuhjV+t1DVx15+xWXzdp0slSXEjbrno5zFJCvGjjIULV+42Knxvly7++/vP5x0vLtOarJwr7nu72+3W7t27PcWR9PR0bdmyRQ6HQxaLRZ07d1afPn00ZcoU9e7dW507d5aPD1+3AAAAAAAAAAAAAC5PFEoAAAAA4DJiMZvUObK+Ggf5n/O32FfWz+dF8lvsUcPy8/OVmJioV199VXv27FGfPn20YMECjRkzRn5+fr96bgN/n0p9vr/46P/J199f7a/ppZCwCB34abe++HChfP3r6c7Hfl9hbXl5udJWJKldt55q2LzlRT+XITHdBxcsr9RZYfpUVRQFf3md3blFOlhYqj6X4fQpwzCUlZVVYfLIpk2bdPLkSUlSu3bt1Lt3b91xxx3q3bu3unfvroCAAC+nBgAAAAAAAAAAAICaQ6EEAAAAAC5DYfV8ZWsWrlNlLu3NL9begmK53Ke3D5+rYPLL41azSa1CAtSqQYCCfHnriJqxc+dOzZkzR++++66cTqduu+02/fvf/1bfvn0rdf7evXv11foNatDzuvOu7TPwRq37dKmS335TJUWFqh8arr6Db9JtU6arUYtWFdZuS1un/BPHNeqBhy7quX6pwWW2YR/V61iRQ2kHc2VUVYvkHIqd5fo664RimoQpKvDXS1u12bFjxyqURzIyMnT8+HFJUtOmTdW7d2898cQT6t27t3r16qUGDRp4NzAAAAAAAAAAAAAAeJnJMKr7n6QBAAAAAN7mNgwVlrmUX+pUXqlTBQ6nnOWG3IYhs8kkH4tJIX4+CvX3UQN/HwX7WmU2mbwdG1eA8vJyffrpp5ozZ45WrVqlhg0b6v/+7//0wAMPqGHDhr96rtvt1qZNm2S325WUlKTt27fLv149vbdpt2S21NATVJ7VbNKIttF8baFSjhU5lHogt8omklSGSVJs07pRKjl58qQ2bdpUoTyyf/9+SVJ4eLh69+5d4c/5vp8AAAAAAAAAAAAAwJWIQgkAAAAAAKhxeXl5+te//qVXX31V+/bt07XXXqtp06Zp9OjR8vX1Ped5paWl+uqrr2S325WcnKxDhw4pLCxMw4cPV3x8vG688UbtKzH0Y15RjW7EPx+TpLahgeoSVd/bUVAH5JU69XXWCbm98ElsNknXNY9QaC2aplNaWqotW7ZUKI98//33MgxDgYGB6tmzp/r06eMpj7Rs2VImilsAAAAAAAAAAAAAcF4USgAAAAAAQI3JzMzUnDlztHDhQrlcLo0dO1bTpk1T7969z3lOTk6Oli9fLrvdrs8//1ynTp1S69atlZCQoISEBMXGxspqtXrWnypzaeXe4zXxOBdkSKtIBflaz78QV7Ryt6Ev9x1XsbPca6WoIB+LBraMlMVc86UMl8ulnTt3ViiPbNu2TS6XS76+vurWrVuFySNXX321LJbaN5EIAAAAAAAAAAAAAOoCCiUAAAAAAKBalZeXKzk5WbNnz9ZXX32lRo0a6cEHH9T999+v6Ojos57z008/KSkpSXa7XSkpKSovL1efPn08JZKOHTv+6gSClOwcHS8uqxVTSkySIgN8ZWsW7u0oqAMyj5/U7twib8dQu7BAdY6s3ok6hmHoxx9/rFAe+fbbb1VcXCyz2ayOHTtWKI906dJFfn5+1ZoJAAAAAAAAAAAAAK4kFEoAAAAAAEC1yM3N1b/+9S+9+uqr2r9/v2JiYjRt2jTdeuut8vX1rbDW7XYrIyPDUyLZsWOH/Pz8NHDgQCUkJGjkyJFq1KhR5e9dUqY1WTlV/UgXbUDzcIXV8z3/QlzR6tLn7Z49exQREaH69StfOjl48KAyMjKUnp6ujIwMbdy4Ufn5+ZKk1q1bVyiP9OjRQ0FBQVXxGAAAAAAAAAAAAACAc6BQAgAAAAAAqtS2bds0Z84cvffeeyovL9cdd9yhadOmqWfPnhXWlZaWatWqVbLb7UpOTtaRI0cUFhamESNGKCEhQUOGDLmkDeVX0qQHXB7qwmQdwzA0d+5cPfroo/rNb36j2bNnn/X8nJwcbdy4scL0kcOHD0uSGjVqVKE80qtXL4WHM8EHAAAAAAAAAAAAAGqa1dsBAAAAAABA3edyuZSUlKTZs2fr66+/VpMmTfT73/9e9913n6KiojzrTpw4oWXLlslut2vlypUqKipS27ZtNX78eMXHxysmJkZWa9X8uKJDeLAOFpaq2FnulQ36JkmBPhZ1CA/2wt1R15wqc+lYcVml1+/ZsU0fzH1B323OUJmjVNHNWmjwmPEafve9njXfbc7Qgll/1Z6d2xUQFKyYoSM17tEnVS8w8LzXNyQdKy7TqTKXgnxPf00WFxfrvvvu07///W9J0tdff306+6lT2rx5c4XyyJ49eyRJDRo0UK9evTRx4kT16dNHvXv3VpMmTSr9nAAAAAAAAAAAAACA6sOEEgAAAAAAcNFOnDihf/7zn3rttdeUnZ0tm82madOm6ZZbbpGPj48k6ccff5TdbpfdbldqaqoMw1Dfvn2VkJCg+Ph4dejQQSaTqVry5ZU69XXWCbm98NMPs0m6rnmEQv19av7mqHO2HzupH/OKKlV+2pKyRs89OFGtOnZW7LB4+QcE6kj2Phlut+6e8bQkae+uTD11e7yatGmrwbfdqZwjh5WU+Lo6943RH956r1KZTJLahgaqS1R97dmzR/Hx8dq1a5fcbvfp100mdejQQd99953cbrfq1aunHj16VJg+0rZt22r7+gYAAAAAAAAAAAAAXBomlAAAAAAAgAu2ZcsWzZkzR//+979lGIbGjRunadOm6ZprrpHb7VZ6erqnRLJr1y75+/tr0KBBeuONNzRixAg1bNiwRnKG+vsopkmYUg/k1uiUEpOkmCZhlElQKW7D0N6C4kp9jhafKtScJx5WzwED9fgrb8lsNp913Xsv/V2B9UP053cXKyDo9JScqCZNNe/pGdqSskbdbQPOey9D0t6CYm1avlT333+fnE5nxdcNQ+3atdP06dPVu3dvdezYscomDAEAAAAAAAAAAAAAqt/Z/8UZAAAAAADgf7hcLn300Ufq37+/rrnmGq1cuVLPPPOMDhw4oFdffVUHDhzQfffdp8aNG6tfv3765z//qb59+2rp0qU6ceKEkpOTde+999ZYmeRnUYF+im0aJrPpdNGjuplNUmzTMEUF+tXA3XA5KHS45KrkGJ11ny5V/onjGvfIEzKbzSotLvZMDPlZ8alCbUtbq/7xt3rKJJJ0XcIY+QcEKu2z5Epnc7kNrfhqjadM8r8FloEDB+qee+5R165dKZMAAAAAAAAAAAAAQB1DoQQAAAAAAPyq48eP69lnn1WrVq102223yWQy6aOPPlJ6eroaNmyo++67TxEREYqPj9fXX3+tu+66S+vWrdORI0f09ttv6+abb1ZgYKBXnyEq0E/XNY9QgI+lWu8T5GPRdc0jKJPgguQ5nOdf9B/b0tYpIChYOUcPa9pQm8b3aKu7erXTG396QmWOUklS1u5dKne51KZztwrn+vj6qlWHTtq7M/OC8v1j9qs6dOiQFixYoLvuukvR0dGe17Zu3XpB1wIAAAAAAAAAAAAA1B782kAAAAAAAHBWmzdv1pw5c/T+++/LZDJp/Pjxio+P1/fff69XXnlFY8eOlWEY6tevn5555hklJCTo6quv9nbscwr199GglpHalVOo3blFMkmq3EyIX/fzddqFBapDeLAs5pqYg4LLSX6ps9Kfj4f371V5uUvPT5mkgaPu0PjpT2lHepqWL0xU0ckCTX9xnvKOHZMkhUZGn3F+g8ho7dq0odLZTJLySp3q3qiR7rzzTt15550yDEO7d+/W6tWr1adPn0pfCwAAAAAAAAAAAABQu1AoAQAAAAAAHk6nU0uXLtXs2bOVmpqq5s2ba/LkybJarfriiy/0r3/9S/Xq1dPgwYP11ltvafjw4RWmFdR2FrNJnSPrq3GQv3aeKNSx4rKLLpb8fF5kgK86RgQrrJ5v1YbFFSPf4az052BpcZEcJSUacvvduucPf5UkXTvkJrmcTq38YIFuf2iGHP+ZVOLje+bnpK+fn8pKSyudzZBU8D8TVEwmk9q3b6/27dtX+joAAAAAAAAAAAAAgNqHQgkAAAAAANCxY8f01ltvad68eTp48KA6d+6sG264Qdu3b9e8efMUGRmpkSNH6u9//7sGDx6sgIAAb0f+VYZhyGQ696SQsHq+sjUL16kyl/bmF2tvQbFc7tNb+s9VMPnlcavZpFYhAWrVIEBBvvx4BZfGVV75SpOvv78kyTb85grHbSNu0coPFmj3lk3y868nSXKWlZ1xfpnD4blGZTkvIB8AAAAAAAAAAAAAoO5gxwMAAAAAAFewTZs2afbs2Vq0aJEkqVGjRvLz81NmZqbat2+vSZMmKSEhQX379pXFYvFy2l/3yxLJL8skv1YuCfK1qktUfXWKDFZhmUv5pU7llTpV4HDKWW7IbRgym0zysZgU4uejUH8fNfD3UbCvVeZfKawAF8JtVL6wERYZrewfvleD8IgKx0PCwyVJp04WqGHzFpKkvONHzzg///hRhUVe2FShC8kHAAAAAAAAAAAAAKg7KJQAAAAAAHCFcTqdWrx4sZ5//nlt2bJFfn5+KvvPJIOmTZtqypQpio+PV/v27b2c9MIUFRXp+PHjSktLU8+ePdWgQQM1bNhQJpPpvBNLzKbThZEQPx+1CKnB0IB0QeWk1p26amvaWuUeO6Imrdt6jucdO10eCQkNU7OrrpbFatVPmVsVOyzes8ZZVqa9u3YoZtjIassHAAAAAAAAAAAAAKg7KJQAAAAAAHCFOHTokJ5++ml98MEHKioqkiT5+vrqxhtv1M0336wRI0YoMjLSyykv3t13363s7GwdOXJEhw8f1qBBgzR69GiNGjVKoaGh3o4HnJPVUvnCRsywkVr61lyt+vh9dbnW5jn+5Uf/lsVqVac+MQoMrq+u/eK0NmmJxjz4qOoFBUmSvk76WKXFRYoZemGFEp8LyAcAAAAAAAAAAAAAqDsolAAAAAAAcBkrKirSa6+9ptdff1179uyRJNWrV0+33nqrJk6cqEGDBqlevXpeTnnp/vKXv+j777/XggUL1KNHDy1dulRjxoxRdna2tm/frscff1zNmjU776QSoCbl5uYqLS1N2S6rotp3kclsPu85rTt20Q2jbtfqxYtUXu5Sp979lJm+Xus/S9at909TWHRDSdK4R36np+5I0NN336rBt92pnCOHlfz2G+oWe52uibu+0hlNkkL8fC72EQEAAAAAAAAAAAAAtZjJMAzD2yEAAAAAAEDVOXr0qJYuXao33nhDW7dulWEY8vHxkc1m0+9+9zsNHjxY5kpsXK8rCgoKNHDgQE2fPl3jxo2Ty+WS1WrVrbfeKofDoc2bN2vixIl67rnnvB0VVzDDMJSVlaWUlBSlpKRo3bp12rFjhyTplkn3a/xv/1jpspPL6dSSN2Zr9ZIPlHf8qCIaN9WwcRM1YsJ9Fdbt2rRBC2b9TXt3Zso/MFAxQ0fqzulPeSaWVFbPhiFqERJwQecAAAAAAAAAAAAAAGo/CiUAAAAAAPwPt2Go0OFSnsOp/FKn8h1OucoNuQ1DZpNJVotJDfx81MDfR6F+Pgr2s8rsxakXhmFo165dSkpK0kcffaTNmzd7Xrvqqqs0ffp03XfffbJYLF7LWJ3Ky8s1ZMgQ3XrrrZoyZYrneLdu3fTqq68qLy9Pd955p5YtWyabzebFpLiSlJeXa8eOHRUKJAcOHJAkdejQQTabTXFxcbLZbApt1ESr9+d4OfG5DWwZwZQSAAAAAAAAAAAAALgMWb0dAAAAAACA2uJUmUt784u1t6BYLvfp379gknS238SQV+L0HLeaTWoVEqBWDQIU5Fszb7VdLpfS0tKUlJQku92uH3/8URaLRW63W35+frrjjjs0Y8YMdezYsUbyeJPJZFJ0dLT+9re/qW/fvoqMjNSsWbN07Ngx2Ww2GYahiIgIfffddxRKUG1KS0uVkZHhKY+kpaWpoKBAVqtVvXr10u233664uDjFxMQoIiKiwrluw5DVbPJ836lNrGaTgmvo+xoAAAAAAAAAAAAAoGbxr8EAAAAAgCtebkmZdp4o1LHisjMKJOfa3v3L4y63oR/zivRDXpGiAnzVMSJYYfV8qzznqVOntHLlSiUlJenTTz9VTk6OQkJC5Ot7+l7NmzfXtGnTNGnSJDVo0KDK719bmc1mzZ49W1OnTlWfPn3UsGFDBQQEaNmyZZJOT4ro3r278vLyvJwUl5Pc3FylpaV5CiQbN25UWVmZgoODFRMTo8cff1xxcXHq3bu3AgICfvVaZtPpUtqPeUXn/J7jDSZJrUICvDqBCQAAAAAAAAAAAABQfUyGYdSmf6cGAAAAAKDGlLsN7cop1O7conNOIrlQP1+nXVigOoQHy2K+tI3Yhw8fVnJyspKSkvTll1/K4XCoXbt2ioyM1M6dO5WXl6chQ4Zo2rRpGjZsmCwWSxU8Rd1iGIZMJpPy8/N15MgRHT58WFdddZWaNm0qSdqxY4f69eunZcuWKS4uzstpUVft379fKSkpnj+ZmZmSpEaNGikuLk42m01xcXHq0qXLRX0dnipzaeXe41Ud+5INaRVZY5OXAAAAAAAAAAAAAAA1i0IJAAAAAOCKlFfqVPqhPBU5y6vtHoE+FvVpHKpQf59Kn2MYhnbu3Cm73S673a709HSZzWbZbDZ169ZNe/fu1WeffSY/Pz9NnDhRU6dO1dVXX11tz1Bb5eTkKDQ0VGaz+VfXrV27Vs8884yaNm2qhQsX1lA61HVut1uZmZkVCiTZ2dmSpA4dOshms3kKJC1btpSpiiZ4pGTn6HhxWa2YUmKSFBngK1uzcG9HAQAAAAAAAAAAAABUEwolAAAAAIArzrEih9IO5sowqmYqybmYJJlMUkyTMEUF+p1zncPh0PLly7Vu3TolJSXpp59+UmBgoIYOHaphw4bJ4XAoMTFRmzZtUtu2bTV16lRNnDhRISEh1Zi+9srJydE111yjCRMm6LHHHlODBg08r/08reRny5Yt09q1a/Xcc8+dt3yCK1dpaakyMjI85ZHU1FQVFBTIarWqV69envJITEyMIiIiqi1HbkmZ1mTlVNv1L9SA5uEKq+fr7RgAAAAAAAAAAAAAgGpCoQQAAAAAcEU5VuRQ6oHcGp0AYJIU27RiqaSwsFArV67UJ598og8++EBOp1PR0dG6+eablZCQoHbt2untt9/Wm2++qePHj2vo0KGaNm2ahg4desUXIyZMmKDPP/9cLpdLTZs21csvv6wBAwacc31paan8/f1rLiBqvdzcXKWlpXkKJBkZGSorK1NwcLBiYmI8BZLevXsrICCgRrNlHj+p3blFNXrPs2kXFqjOkfW9HQMAAAAAAAAAAAAAUI2s3g4AAAAAAEBNySt1np5MUsP3NSSlHcxVx3qGvlqeLLvdrlWrVqmsrEwRERFyOp0ymUx69NFHZbPZNHv2bC1ZskT16tXTxIkTNWXKFLVv376GU9dOP/zwgw4ePKhZs2YpLi5Ojz76qAYPHqyHHnpITz75pGd6hNPp1KZNm9SrVy/5+Z17OgyuDPv37/eUR1JSUpSZmSlJatSokeLi4jR27FjZbDZ17dpVFovFq1k7hAfrYGGpip3lNf69SjpdgAv0sahDeLAX7g4AAAAAAAAAAAAAqElMKAEAAAAAXBHK3Ya+3Hfca5u03eXlOpK1TzNuvVHX9u2jhIQElZWV6Xe/+51njY+Pj5xOp9q1a6epU6dqwoQJql+fCQG/dODAAX3yySeKi4tTt27dJEn//ve/9eijjyo0NFQvv/yyhg4dqlmzZunTTz/VqlWrvF4QQM1yu93KzMysUCDJzs6WJHXo0EE2m83zp1WrVjKZTF5OfKa8Uqe+zjohtxe+WZlN0nXNIxTq71PzNwcAAAAAAAAAAAAA1CgKJQAAAACAK0Lm8ZPanVvk1QyGYah5gFW9m0dpzZo1GjhwoNxud4U1Tz/9tP70pz/JbDZ7KWXtV1xcrICAgArHjh49qunTp+uDDz7Q6NGjtXjxYr3xxhuaPHmyl1KippSWliojI8NTHklNTVVBQYGsVqt69erlKY/ExsZ6JtjUBceKHEo9ULMTlUySYpuGKSqQqT4AAAAAAAAAAAAAcCWgUAIAAAAAuOzllpRpTVaOt2N4RBcd04C+veRyuSocN5vNiouL05o1a7wTrBYzDKNSkyQ++ugjjR07VrfddpsWLVpUA8lQ0/Ly8pSamuopkGRkZKisrEzBwcGKiYnxFEj69OlzRvGorjlW5FDawVwZhqq9WGI2STFNKJMAAAAAAAAAAAAAwJXE6u0AAAAAAABUt50nCmVS9W/IrgyTpP0lp6eSmM3mChNK3G63vv76axUVFSkwMNBLCWsft9utxYsXKy4uTg0bNvzVtcePH5fVatUbb7xRQ+lQ3bKysrRu3TpPgSQzM1OS1KhRI8XFxWns2LGy2Wzq2rWrLBaLl9NWrahAP13XPELph/JU5CyvtvsE+VjUu3GoQv19qu0eAAAAAAAAAAAAAIDah0IJAAAAAOCydqrMpWPFZZVau2fHNn0w9wV9tzlDZY5SRTdrocFjxmv43feesbboZIGmDrXpZG6OHn/5TfUbOqJS9zAk+Uc0VF5RiYJ8rSotLVVBQYHy8/NVUFCgevXqUSb5H5MmTdKCBQt0++23a/r06erWrZt8fM7c+F5YWKjk5GS9+OKLCgkJ8UJSXCq3263MzExPeSQlJUXZ2dmSpA4dOshms2nGjBmy2Wxq1apVpabW1HWh/j4a1DJSu3IKtTu3qMrKcT9fp11YoDqEB8tivvw/lgAAAAAAAAAAAACAiiiUAAAAAAAua3vziyu1AXtLyho99+BEterYWaMffET+AYE6kr1POUcPn3X9otkzVVZaclGZTP/J1SWqvvz9/eXv76/o6OiLutbl7ttvv9U333yjv/71r5o/f75uuukm/fGPf9SYMWMUFRXlWWcYhoKDg/Xaa6+pVatWXkyMC1FaWqqNGzd6JpCkpqaqoKBAVqtVvXr18kwfiYmJUWRkpLfjeo3FbFLnyPpqHOSvnScKday47KKLJT+fFxngq44RwQqr51u1YQEAAAAAAAAAAAAAdQaFEgAAAADAZcttGNpbUHzeTdfFpwo154mH1XPAQD3+ylsym82/uj5r93f6fNG7GvObR7Vo9swLzmVI2ltQrE6RwTJfARMWLsX+/fvVs2dP3XvvvXrqqaf0u9/9TtOmTdPy5cv1+9//Xr169ZKvr68+//xzHTp0SJMnT/Z2ZPyKvLw8paWleQokGRkZKisrU3BwsGJiYvT444/LZrOpT58+CggI8HbcWiesnq9szcJ1qsylvfnF2ltQLJf79He4cxVMfnncajapVUiAWjUIUJAvPxYEAAAAAAAAAAAAgCsd/3IMAAAAALhsFTpcns3Wv2bdp0uVf+K4xj3yhMxms0qLi+Xr73/OYknis8+oz6Bh6tCz70Vnc7kNFZa5FOLnc9HXuBIMHjxY0dHRnmkkzz//vMaPH69x48Zp+PDh+sMf/qDY2FiNGzdOf/vb37ycFv8rKytLKSkpngJJZmamJKlRo0aKi4vzTCDp0qWLrFZ+TFVZQb5WdYmqr06RwSoscym/1Km8UqcKHE45yw25DUNmk0k+FpNC/HwU6u+jBv4+Cva1UmIDAAAAAAAAAAAAAHjwL/UAAAAAgMtWnsNZqXXb0tYpIChYOUcP6/kpk3Ro3x75BwSof/xoTXryT/L18/esTfssWd9/u1GvLPtaxw5mX1K+/FLnFVMocRuGCh0u5Tmcyi91Kt/hlOsXG9+tFpMa+J3e9B7q56Ngv9Mb3wMDA9WvXz9JUnl5uSSpa9euyszM1J///Gf9/ve/9xx78MEHvfZ8kNxut3bs2OEpj6SkpCg7+/TXSIcOHWSz2TRjxgzZbDa1atVKJooNl8xsOl0YCfHzUYsQb6cBAAAAAAAAAAAAANQ1FEoAAAAAAJet/FKnTJLON6Pk8P69Ki936fkpkzRw1B0aP/0p7UhP0/KFiSo6WaDpL86TJDlKS/TOP/6sERPuU1TTZpdUKDFJyit1XvabwE+VubQ3v1h7C4o902LO9XeSV+L0HLeaTWoVEqBWDQIU5Hv6xxcWi0WS5HK5ZLVa9cwzz6h+/fr67W9/q8WLF1f/w6CC0tJSbdy40VMgSUtLU35+vqxWq3r27OmZPhITE6PIyEhvxwUAAAAAAAAAAAAAAP+DQgkAAAAA4LKVU1Ry3jKJJJUWF8lRUqIht9+te/7wV0nStUNuksvp1MoPFuj2h2aoccvWWvrmXJU7Xbr1gYcuOZshqaCSE1TqotySMu08UahjxWVnFEjO9Xfyy+Mut6Ef84r0Q16RogJ81TEiWGH1fCVJVqtVhmHo0KFDevrpp/W73/1OzZo1q6Ynwc/y8vKUlpbmKZBkZGSorKxMQUFBiomJ0WOPPSabzaY+ffooICDA23EBAAAAAAAAAAAAAMB5UCgBAAAAAFxW9u/fr6SkJCUlJWn4w0+p+VVXn/ccX39/SZJt+M0VjttG3KKVHyzQ7i2bZLX6yJ44T/c9/azqBQZWSVZneWXqLnVLudvQrpxC7c4tkuk/xy72KX8+73hxmdZk5ahdWKA6hAfLYjbJZDLJ5XJpypQp+stf/lIFyfG/srKylJKSopSUFK1bt06ZmZmSpEaNGslms2nWrFmy2Wzq0qWLrFZ+xAQAAAAAAAAAAAAAQF3Dv/YDAAAAAOo0wzD07bffym63KykpSVu2bJGPj4+uv/56NW7cpFLXCIuMVvYP36tBeESF4yHh4ZKkUycLtGjOTIVFN1KnvjE6diBbkpR/4pgkqSAvR8cOZCuicROZzeZKZ3cbl1ehJK/UqfRDeSpylku6+CLJ//r5Ortzi3SwsFR9Gocq1N9HLVq00LPPPltFd7myud1u7dixw1MeSUlJUXb26c/zq6++WnFxcZoxY4ZsNptatWolk8l0nisCAAAAAAAAAAAAAIDajkIJAAAAgGrnNgwVOlzKcziVX+pUvsMpV7kht2HIbDLJajGpgZ+PGvj7KNTPR8F+VpnZrIxfUVZWpjVr1nhKJAcOHFBISIiGDx+uJ554QkOHDlVISIi+3HtcJ8tc571e605dtTVtrXKPHVGT1m09x/OOHZUkhYSG6cShgzqyf69+M+jaM85/6/89KUl6N32XAuuHVPo5LqfP82NFDqUdzFV1d2SKneX6OuuEYpqEKSrQ74IKPPiv0tJSbdy40VMgSUtLU35+vqxWq3r27KmxY8fKZrMpJiZGkZGR3o4LAAAAAAAAAAAAAACqAYUSAAAAANXmVJlLe/OLtbegWC736V3mJp19akFeidNz3Go2qVVIgFo1CFCQL29bcFpeXp5WrFghu92uFStWqLCwUC1atNCtt96q+Ph49e/fXz4+PhXOsVoqV9iIGTZSS9+aq1Ufv68u19o8x7/86N+yWK3q1CdGEY2b6GReboXzsn/4Xu+/8g/dfO9v1K57T/nVC7igZ/KpZL7a7liRQ6kHcqtsIsmvMSQZhpR6IFexTU+XSnB+eXl5SktL8xRIMjIyVFZWpqCgIMXExOixxx6TzWZTnz59FBBwYZ/HAAAAAAAAAAAAAACgbmJnFgAAAIAql1tSpp0nCnWsuOyMAsm5Npz/8rjLbejHvCL9kFekqABfdYwIVlg93+oLjFpr3759SkpKkt1u19q1a+VyudSzZ0/NmDFD8fHx6tq1q0y/MuWjgZ9PhbLSubTu2EU3jLpdqxcvUnm5S51691Nm+nqt/yxZt94/TWHRDRUW3fCM8wKDT08jadu5u/oOGnZBz2aSFOLnc951tV1eqfP0ZJIavq8hKe1grq5rHqFQ/7r/caxqWVlZSklJ8RRIMjMzJUkNGzZUXFycZs6cqbi4OHXp0kVWKz8eAgAAAAAAAAAAAADgSsSOAQAAAABVptxtaFdOoXbnFunnLf4Xu8n85/OOF5dpTVaO2oUFqkN4sCzmy2OiA87OMAxt2rTJUyLZtm2bfHx8dMMNN2j27NkaOXKkmjZtWunrNfD3qfTn4AN/el6RjZpo9ZIPlP7lZ4po3FSTnvx/GjHhvot7mPMwpDpfhCh3G0o/lCejptsk/+E2pIxDeRrYMvKK/t7gdru1Y8cOT3kkJSVF2dnZkqSrr75aNptNM2bMkM1mU6tWrX61hAUAAAAAAAAAAAAAAK4cJsPw1rYPAAAAAJeTvFKn0g/lqchZXm33CPSxqE/j0Dq/CR8VORwOffXVV7Lb7UpOTtbBgwfVoEEDDR8+XAkJCbrxxhtVv379i7p2XolDX2XlVnHiqjOwZUSdnlKSefykducWeTuG2oUFqnPkxX2O1EWlpaXauHGjZwJJamqq8vPzZbVa1bNnT9lsNsXFxSkmJkaRkZHejgsAAAAAAAAAAAAAAGopCiUAAAAALtmxIofSDubKMC5+IkllmCSZTFJMkzBFBfpV451Q3QoKCjyTFDIyMlRWVqamTZuqf//+io2NVceOHWW1XvxQzX379umdd97Ru+8u0J8/XK56QcFVmL5qWM0mjWgbLXMdnRaRW3J6elBtMaB5uMLq+Xo7RrXIy8tTWlqap0CSnp6usrIyBQUFKSYmxlMg6dOnjwICArwdFwAAAAAAAAAAAAAA1BEUSgAAAABckmNFDqUeyK3WIsn/MkmKbUqpBBWVlJRoyZIlevvtt7Vq1SoFBQVp7NixGvvQb3XKL7hGP0fPxySpbWigukTV3akaKdk5Ol5cVis+riZJkQG+sjUL93aUKpGVleUpj6SkpCgzM1OGYahhw4aKi4vzFEi6dOlyScUrAAAAAAAAAAAAAABwZaNQAgAAAOCi5ZU69XXWCbm98K7CbJKuax6hUH+fmr85apWffvpJM2fO1KJFi1RQUKD+/ftr8uTJGj16tAIDA3WqzKWVe497O+YZhrSKVJBv3SwD8DGtOm63Wzt27PCUR9atW6fs7GxJ0tVXXy2bzeYpkLRq1UqmOjrRBgAAAAAAAAAAAAAA1D51a5cFAAAAgFqj3G0o/VCevFVRdxtSxqE8DWwZKYuZDdZXKrfbrePHj2vZsmWaOnWqJk6cqLZt21ZYE+RrVVSAb62bplHXig+/tDe/WCapUh/PPTu26YO5L+i7zRkqc5QqulkLDR4zXsPvvlfHDmTrwUF9z3nuoDHj9OBfZlUqk+k/uWr71BeHw6GMjAxPgSQ1NVX5+fmyWq3q2bOnbrvtNtlsNsXGxioyMtLbcQEAAAAAAAAAAAAAwGWs7u5eAQAAAOBVu3IKVeQs92qGU85y7copVOfI2r2BHNXHbDbr2muv1b59+2SxWM65rmNEsNZk5dRgsnMzdDpPXeU2DO0tKK5UmWRLyho99+BEterYWaMffET+AYE6kr1POUcPS5Lqh4XroX/MOfO8dV9pbfISdYu9rtK5DEl7C4rVKTJY5lo0xSMvL09paWmeAklGRoYcDoeCgoIUExOj6dOny2azqW/fvgoICPB2XAAAAAAAAAAAAAAAcAUxGYa3fp8wAAAAgLoqt6Ss1mzOl6QBzcMVVs/X2zFQy2UeP6nduUXejqF2YYF1ugRVUOrUqv0nzruu+FShpg21qf01vfT4K2/JbDZX+h5/mnSbftq+Vf9K3SpfP/8LyjewZYRC/Hwu6JyqlJWV5SmPpKSkKDMzU4ZhqGHDhoqLi5PNZpPNZlPXrl1ltfJ7PgAAAAAAAAAAAAAAgPewcwEAAADABdt5olAmqVITCqqbSafz2JqFezvKZc3tdisjI0N2u1179uzRokWLzrm2vLxcTqdTbrdb/v7+FYoERUVFys3N1cmTJ+Xr66vWrVufMVnE5XJp/fr12rt3r0wmk3r06KFOnTrJMAyZLmHyRIfwYB0sLFWxs9wrn7smSYE+FnUIr7vTSSQpz+Gs1Lp1ny5V/onjGvfIEzKbzSotLpbv/3w+nPX6x45qx4Y0XZcw+oLLJJKUX+qssUKJ2+3Wjh07KhRIsrKyJElXX321bDabHnvsMcXFxalVq1aX9PkLAAAAAAAAAAAAAABQ1SiUAAAAALggp8pcOlZcVun1e3Zs0wdzX9B3mzNU5ihVdLMWGjxmvIbffa+k0xuyv7vAPnwAALeySURBVPhwoVYueldHsvbJr16AWnfsotEPPqKre/Q+7/UNSceKy3SqzKUgX97iVKWSkhKtXr1adrtdycnJOnLkiMLDwzVlypSzrjcMQ0uWLNHLL7+sb7/9VlarVV988YV69+7tud6bb76pBQsWaNu2bfLz89OePXsUHR3tuYbD4dCrr76q+fPnKzg4WKWlpQoNDdXvf/97XX/99ZdUKrGYTerTOFRfZ52QN2Z1mkxS78ahspjrdqkgv9RZqULZtrR1CggKVs7Rw3p+yiQd2rdH/gEB6h8/WpOe/NM5yyIpy+1yu92KG3nrBWczScordapFyAWfWikOh0MZGRme8khqaqry8/NltVrVs2dPjRkzRjabTbGxsYqMjKyeEAAAAAAAAAAAAAAAAFXEZBje2EYDAAAAoK7afuykfswrqtSEhy0pa/TcgxPVqmNnxQ6Ll39AoI5k75PhduvuGU9Lkub//f8pef4b6h8/Sh169lVxYYFWfrBQJw4f1N/+bddVXa85731MktqGBqpLVP1LezjoxIkTWrZsmex2uz7//HMVFxerbdu2SkhIUHx8vGJiYmS1nr24YxiGPvzwQx08eFChoaGaOnWq1q5dq549e0o6XShZsmSJLBaLCgsL9cQTT+i7776rsPF+3bp1uuGGG5SYmKi77rpLJ0+e1FNPPaWVK1fq+++/r5IJD8eKHEo9kFujU0pMkmKbhikq0K8G71o91mSdUG7J+aeUTE8YpCNZeyVJA0fdoU59YrQjPU3LFyYq9qYETX9x3lnP++2ooco9dlRvfr3pvNNMzia8no+uax5xweedTV5entLS0jwFkoyMDDkcDgUFBSkmJkY2m002m019+vRRYGBgldwTAAAAAAAAAAAAAACgpvDrewEAAABUmtswtLeguFIb8YtPFWrOEw+r54CBevyVt866Mbzc5dLni95RvxtH6OF/zPEc7zd0pH4z6FqtTV5SqUKJIWlvQbE6RQbLXAWFgyvNDz/8oKSkJNntdqWmpsowDPXt21dPP/204uPj1aFDh0oVOUwmk8aOHStJ2rNnj0pLS/XL32FQr149jR8/XpK0Zs2aM143DEPp6elq2LCh7rrrLpWWlqp+/fr685//rNdee01ffvmlBg8efMnPGxXop9imYUo7mCvDOP+kjUtlNkkxTS6PMokkucor9xErLS6So6REQ26/W/f84a+SpGuH3CSX06mVHyzQ7Q/NUOOWrSucc2jvT/ppxzaNmHD/RZVJJMlZyXxnk52drXXr1nkKJJmZmTIMQw0bNlRcXJz+8Y9/yGazqWvXrucsVgEAAAAAAAAAAAAAANQV7H4AAAAAUGmFDpdc7spt1l736VLlnziucY88IbPZrNLiYvn6+1fYJO5yOVVWWqqQ8IrTBELCImQ2m+Xr71/pbC63ocIyl0L8fCp9zpXK7XZrw4YNnhLJrl275O/vr0GDBumNN97QiBEj1LBhw0u6h9VqlWEYKi8vP+vrZrNZbre7wusmk0nR0dE6fvy4cnJyFB4eLklavXq1JGnr1q1VUiiRTpdKrmseofRDeSpynj1jVQiwmtW5ga+sjiIdPZUvl8slp9Mpp9Pp+e///d/a/tobqzcoKCzyvM/+89evbfjNFY7bRtyilR8s0O4tm84olKxNXiJJ6j/y1ov+mLsrOYjV7XZr586dFQokWVlZkqSrr75aNptNjz32mGw2m1q3bl0l03EAAAAAAAAAAAAAAABqEwolAAAAACotz+Gs9NptaesUEBSsnKOH9fyUSTq0b4/8AwLUP360Jj35J/n6+cvPv56u6tZDaz75UO2v6aUOPfuoqPCkPn7tZQXWD9Hg2+68oHz5pc4zCiVr1qzR73//e3Xt2lXz5s27oOtdTkpKSvTll18qKSlJycnJOnr0qCIiIjRixAg9++yzGjx4sAIDA6vsfj9PbzhXocRqtcrtdsvtdlc4PnDgQHXo0EF33HGHxowZo9zcXH322WeKjo5Wbm7uOe+3cuVKHTp06IJLEm5Dan3tdWp7bZwMtyGzxXLJz17ucslkNsv+z9f0wdwX5CxzXPI1f8liscjHx0c+Pj6yWq1n/d/zvVavXr0LPq9hw4Zq1qyZyiIjVVyJDk5YZLSyf/heDf63MPafotCpkwVnnLNu2Sdq3KqN2nTuetEfn3NNKXI4HNq4caOnQJKamqr8/HxZrVb17NlTY8aMkc1mU2xsrCIjz1+YAQAAAAAAAAAAAAAAqOsolAAAAACotPxSp0ySKvP7/w/v36vycpeenzJJA0fdofHTn9KO9DQtX5ioopMFmv7i6XLHw/+Yoxcf/T+9MmOq59zoZi30t3/b1bBZi0pnM0nKK3WqRcjp/5+RkaEnnnjCM93C4ajaTf3V7efpHpcyUSInJ0fffPONNmzYoK1bt8rpdCoqKkpdu3bV7bffrqZNm8rtdmvHjh3asmVLpe8THBys+fPn/2p+H5/TxZ5zFUp8fHzOOsGkUaNGeu+99/SXv/xF8+bNU0REhMaNG6c5c+bI/1cm1jz77LP6+uuvJf23cPFrJYlf/nfm9m1quuYL9UsYq+Ydu8hdXn5RxRLD7ZbJbJarIEelWT9oYJerdOO//nnJ5Y9fHrNarV6flLEm64SKS85fLmvdqau2pq1V7rEjatK6red43rGjkqSQ0LAK63dv3awj+/fq9odmXFI+H8vpj09+fr7S0tI8BZKMjAw5HA4FBQUpJiZG06dPl81mU58+faq0TAUAAAAAAAAAAAAAAFBXUCgBAAAAUGn5DmelyiSSVFpcJEdJiYbcfrfu+cNfJUnXDrlJLqdTKz9YoNsfmqHGLVurXmCQml3VXu2691TXfnHKO3FMS9+aq+enTtZf31uq+qHhlbqfIanA4dT69ev1zDPP6Msvv5TlF6WAgoICpaamVqqIcaHFjeq61qUwmUwyjDP/to4dO6avvvpKKSkpF11yqFev3nnv//OEkv+dQPLL1w3DOOvrHTt21Pvvv+/5/yUlJfq///s/vfjii+e83+effy6z2XzJhYtTZS7tzS/W3oJiudynP37nKlH98rjVbFKr0GC1ahCgoPaNpJjuF52htmvg56O8kvN/L4gZNlJL35qrVR+/ry7X2jzHv/zo37JYrerUJ6bC+nWfLpUkxY245aKzGW63tqxP1bQRTyszM1OGYahhw4aKi4vTP/7xD9lsNnXt2tXz+QkAAAAAAAAAAAAAAHAlYwcFAAAAgEpzlVe2TiL5/meahG34zRWO20bcopUfLNDuLZsU3bS5/t+kserUp5/uffpvnjVd+8Xp0ZHXy/6vebrr8T9U+p6lTpcGxPx3k/ovp1/8+OOPstlsZzvtDD9PgrjQosUv1/j7+ys4OPiSplFU5jWz2azvv/9eP/zwg5o3b66hQ4eqSZMmMpvN2r17t3x9fRUZGVnjEy5+nlByrkKJn5/fOXMcOXJEkZGRslgsOnTokJ5++mm1b99e11133Tnv5+fnd+mhJQX5WtUlqr46RQarsMyl/FKn8kqdKnA45Sw35DYMmU0m+VhMCvHzUai/jxr4+yjY1yqzlyeH1JQG/j6VKpa17thFN4y6XasXL1J5uUudevdTZvp6rf8sWbfeP01h0Q09a8vLy5W2IkntuvVUw+YtLz6cyaQNX69W37599dhjj8lms6l169Zen+oCAAAAAAAAAAAAAABQG1EoAQAAAFBp7rNMvDiXsMhoZf/wvRqER1Q4HhJ+euLIqZMF2rnxG2X98J0mPvHHCmsat2ytJq2v0nebMy4on8lk1osvvqjZs2dr3759MpvNnkJD8+bN9dlnn523oFFThYtLUVxcrC+++EJffPGF/Pz8NHbsWE2aNEnl5eUVprJ06NChxrMVFhbq+++/16lTpyRJ6enpKi8vV8OGDdW5c2ft3btXGzZs0N69e+VyuTR//nxFRkaqT58+6t27t8rLyzVv3jwZhiGLxaLdu3dry5Ytmjt3rqekUhPMptOFkRA/H7UIqbHb1gmhfpX/e3jgT88rslETrV7ygdK//EwRjZtq0pP/TyMm3Fdh3ba0dco/cVyjHnjokrKZTCbNe2mWQi4gIwAAAAAAAAAAAAAAwJWKQgkAAACASruQCQytO3XV1rS1yj12RE1at/Uczzt2VJIUEhqm/BPHJZ19ikW5y1lhwkhl8z366KN65JFH9Nlnn+nPf/6zvvnmm9Ovmc1eKVhUlWPHjik5OVnJyckqLS3V+PHj9cILL8jX19ez5pdlkuqyb98+vffee/r9739/1tc3bNigIUOGyGq1Kjg4WH/+859lMpk0efJkzZ49WykpKXr00UdVr149denSRQsXLpTVatWjjz6q3r17y2w2q2nTpkpOTlZxcbHat2+vBQsWqEePHtX+bKicYD+rrGaTXO7zF8ysPj66bepjum3qY7+67pq4AVr83aFLzmY1mxTsy486AAAAAAAAAAAAAAAAKoNdFgAAAAAqzWqpfKEkZthILX1rrlZ9/L66XGvzHP/yo3/LYrWqU58Y5R0/JklKWWbXNXHXe9bs2bFNh/b+pEG33XlB+Xz+k89kMmnYsGEaOnSo1q1bp7/85S9q0KDBBV2rNvjuu+9kt9uVlJSkgwcPasKECXrzzTcVFRUlwzBqbJJKSUmJlixZorffflurVq1SSEjIOQslgwYNOmtB6Gd33XWX7rrrrnO+bjKZdN999+m++ypOsKjJ58WvM5tMCnScUp6lnsxms7fjeJgktQoJuKDiGwAAAAAAAAAAAAAAwJWMQgkAAACASmvg56O8EqfOP5dAat2xi24YdbtWL16k8nKXOvXup8z09Vr/WbJuvX+awqIbKiy6obrF9NeaTz5USVGhusVep7xjR7Xivbfl6++vEXffW+lsJkkhfj4Vj5lM6t+/v7744osLe1AvKS8v1/r16z0lkqysLI0dO1bz5s1Tly5dJMlTqqjucoVhGMrIyFBiYqIWLVqkgoIC9e/fX/Pnz9eoUaOq9d5nQ5mk9ti7d6/mv/S8bvntn70dpQJDUqsGAd6OAQAAAAAAAAAAAAAAUGeYDMOozF4wAAAAANC+gmJtPlJQ6fUup1NL3pit1Us+UN7xo4po3FTDxk3UiAn/nT7hKC1RUuLrSllu17EDWbL6+KpDzz664+HfqlWHzheUr2fDELUIqVsbyouKivTFF1/Ibrfr008/1YkTJ3TjjTfqiSeekM1mk9Vas78H4OjRo1q4cKESExO1c+dONW3aVBMmTNDEiRPVtm3bGs0C79ixY4eWL1+u/fv3a+jQoRowYICCgoJUXl4ui8WiBx54QD/++KP+3/wPdby4rFIFs+pmkhQZ4Ctbs3BvRwEAAAAAAAAAAAAAAKgzKJQAAAAAqLSCUqdW7T/h7RjnNLBlxBlTSmqjI0eO6NNPP5XdbteXX36p0tJS9enTR88884xuuOEG1atXr0bzOJ1OrVixQomJiVq2bJnMZrNuvvlmTZ48WYMGDZLFYqnRPPCOkydPavr06frqq6/UokULNW3aVGvXrtU111yjpUuXSpL279+vkSNH6s9//rOKDbP8ru4pk9ns5eSnDWgerrB6vt6OAQAAAAAAAAAAAAAAUGfU7K+6BQAAAFCnBftZZTWb5HLXvl661WxSsG/tfItjGIZ27dqlpKQk2e12bdiwQSaTSbGxsfrrX/+qO+64Q40bN76kezgcDn3yySfq37+/GjVqVKlzdu7cqbffflvvvvuujh07ph49euill17SuHHjFBYWdkl5UPdYrVbt3r1b7733nq699lpJ0urVqzV48GBlZGSod+/eCg0N1c6dO5WWlqbt27frlv97WOHtu8pkMnk1e7uwQMokAAAAAAAAAAAAAAAAF6h27rYCAAAAUCuZTSYFOApVYAmoNVMJJMkkqVVIgMxe3tT+Sy6XS2lpaZ4SyY8//qiAgADdeOONevvttzV8+HBFRERc8n327NmjJ598UsuWLVPz5s313HPPKSEh4ZzrCwoKtGjRIr399tvasGGDwsPDdeedd2rSpEnq1q3bJedB3RUQEKDk5GSFhIRIksrLyz0TcwoKCiRJZWVlat++vWbNmqWFCxdq7Mgb9eW+4zrlcHrle4JJUqCPRR3Cg2v83gAAAAAAAAAAAAAAAHUdhRIAAAAA52UYhj7//HPNnDlTO3/co1dXpnk7UgWGpFYNArwdQ6dOndLKlStlt9u1bNky5eTkqGHDhho5cqRefvllDRw4UP7+/lV2P8Mw9Nprr8npdOqrr77SNddco1OnTv3qOY8++qjeeecdDR06VB9//LFGjBghPz+/KsuEuu3nMonL5ZLVatWSJUsUGRnpmVjj5+en9u3by+l0KjY2VhazSX0ah+qrfcfkdpfLbLbUaF6TSerdOFQWc+0pkwEAAAAAAAAAAAAAANQVJsMwDG+HAAAAAFA7lZWV6f3339esWbOUmZmpnj17asaMGWrcb6BOlDhVG95MmCRFBvjK1izcK/c/fPiwkpOTZbfbtWrVKjkcDnXq1Enx8fFKSEhQ7969Za6myQ1btmzRddddp2+//VatW7fW7t27FRQUpIYNG571nuXl5Tp48KCsVqsaN25cLZlw+XC73RoyZIiaN2+uxMREud1umc1mzZs3T7/73e+0evVq9erVS5KUuTdbu4oNWSzW0y2PGmCSFNs0TFGBFKIAAAAAAAAAAAAAAAAuBoUSAAAAAGcoKCjQm2++qVdeeUUHDx7UTTfdpBkzZui6666TyWRSbkmZ1mTleDumx4Dm4Qqr51sj9zIMQzt27FBSUpLsdrvS09NlNpsVFxfnKZG0adOmyu6Xnp6uxMREOZ1ODR48WLfccotnosjzzz+v9PR0Pfzww3ryySe1f/9+NW7cWC1atNCbb76p0NDQKsuBy5NhGDKdowDyz3/+U3/729+0efNmhYSEeEpKJ0+eVLdu3dSjRw+9/PLLatSokWbOnKmvN27R/z37sgyp2stmZpMU04QyCQAAAAAAAAAAAAAAwKWwejsAAAAAgNojOztbr7zyit58802Vlpbqzjvv1GOPPaZOnTpVWBdWz1ftwgK1O7fIS0n/q11YYLWXSVwul1JSUjwlkj179igwMFBDhw7V1KlTddNNNyk8vGonpOzevVtPP/201qxZo+HDh0uS7rnnHqWmpmrmzJny9/eXv7+/1q9fr8jISF1//fW66667lJmZqUceeUS//e1vNWvWLIWEhFRpLtRdbrdbO3fuVEpKilJSUlRWVqYPP/zwrGsPHjyof/zjH3riiSfOKCbVr19fr7/+up588kmNHj1ahw8fltVq1euvv67eLSKUfihPRc7yanuOIB+LejcOVai/T7XdAwAAAAAAAAAAAAAA4EpAoQQAAACAtm7dqlmzZmnRokUKDAzUlClTNG3aNDVu3Pic53QID9bBwlIVO8urfRrB2ZgkBfpY1CE8uFquX1hYqM8//1xJSUlatmyZcnNz1ahRI88Ukuuvv17+/v7Vcm/p9Ib+/Px8ffnll+rSpYskaeTIkbrzzjv11FNPqVGjRhowYIB++9vfatGiRfrmm2/Uvn17tW/fXkePHtV7772n1NRU3XTTTdWWEbWbw+HQxo0bPQWS1NRU5eXlyWq1qkePHhowYIDcbrdn8sgvvfDCC+rataseeOABuVwuZWRkKC8vT7GxsQoJCdGNN96oLl266Ouvv1ZkZKT69+8vX9/Txa5BLSO1K6dQu3OLZFLVTCv5+TrtwgLVITxYFvPZp6oAAAAAAAAAAAAAAACg8kyGYXhj7xcAAAAALzMMQ6tWrdLMmTO1cuVKNWvWTI8++qjuvfdeBQdXrqSRV+rU11kn5PbCuwqzSbqueUSVTik4dOiQkpKSlJSUpFWrVqmsrExdunTxlEh69ux51s331aG0tFRbtmzRtddeK+n039e+ffvUpUsXpaenq2PHjjp27Jhuu+02FRQUaNmyZZ4C0J49ezRs2DC9+OKLnukmuPzl5+crLS3NUyBJT0+Xw+FQUFCQ+vXrJ5vNJpvNpr59+yowMPCc19m5c6c6d+6sXr16yc/PT5s3b1ZJSYnuuecePffcc4qIiKhUntySMu08UahjxWUXXSz5+byoAF91jAiu9mlEAAAAAAAAAAAAAAAAVxImlAAAAABXGKfTqQ8//FCzZs3Sli1b1L17d7333nsaM2aMfHwurJwR6u+jmCZhSj2QW6NTSkySYpqEXXKZxDAMZWZmym63KykpSRkZGbJYLOrfv7+ef/55xcfHq3Xr1lUT+gL5+/t7yiQul0tWq1Wff/652rdvryZNmkiSoqKiNHHiRN1///3asmWLp1CSk5OjH3/8UY0aNfJKdtSM7OxsT3kkJSVF27dvl2EYio6OVlxcnJ5//nnFxcWpa9euslor//Y/MDBQvr6+uvrqq9WzZ08lJibqqquuuuB8YfV8ZWsWrlNlLu3NL9begmK5/tM+O1fB5JfHrWaTWoUEqFWDAAX58uMLAAAAAAAAAAAAAACAqsaEEgAAAOAKUVhYqLfeeksvv/yysrOzdeONN+rxxx/XwIEDZTKZLunax4ocSjuYK8O4uCkEF8JsOl0miQr0u6jznU6nUlJSPCWSvXv3KigoSMOGDVN8fLxuuukmhYWFVXHqqjFixAi1atVKc+bMqXB8wIABOnLkiO6//3517txZM2fOVPv27fXKK6/IYrF4KS2qktvt1s6dOysUSPbv3y9Jat++vWf6SFxcnFq3bn3JX9PVwW0YKixzKb/UqbxSpwocTjnLDbkNQ2aTST4Wk0L8fBTq76MG/j4K9rXKXAufAwAAAAAAAAAAAAAA4HJBoQQAAAC4zB06dEizZ8/W66+/rqKiIt1xxx16/PHH1bVr1yq9T16pU+mH8lTkLK/S6/5SkI9FvRuHXvBkkpMnT+rzzz+X3W7X8uXLlZeXpyZNmig+Pl7x8fG6/vrr5ed3cQWVmrJ+/XqNGDFC33zzjWdahNvtltls1t69ezV//nytXr1aP/30kxISEvT00097Jpag7nE4HNq4caOnPJKamqq8vDxZrVb16NHDUyCJjY1VVFSUt+MCAAAAAAAAAAAAAACgDqJQAgAAAFymduzYoVmzZum9996Tv7+/HnjgAT300ENq1qxZtd2z3G1oV06hducWyaSqmVby83XahQWqQ3iwLObKTSw4cOCAkpOTZbfb9dVXX6msrExdu3ZVQkKCEhIS1KNHj1o1xSEvL08hISEym80VjpeXl8tisejOO+9UeXm53n//fUmnJ63k5+crMjLSs/bo0aOKjo6u0dyoGvn5+UpLS/MUSNLT0+VwOBQUFKR+/fp5CiR9+/ZVYGCgt+MCAAAAAAAAAAAAAADgMkChBAAAALiMGIahNWvWaObMmVqxYoWaNGmiRx55RPfdd59CQkJqLEduSZl2nijUseKyiy6W/HxeVICvOkYEK6ye76+uNwxD27Ztk91uV1JSkjZt2iSLxaLrrrtOCQkJio+PV8uWLS8iSfUpKSnRkiVL9Pbbb2vXrl3Kzs4+o1AiST/99JPGjh2refPmyWQy6dVXX9UHH3ygF198Uffdd58sFosMw6hVBRn8uuzsbE95JCUlRdu3b5dhGIqOjlZcXJynQNKtWzdZrVZvxwUAAAAAAAAAAAAAAMBliF0pAAAAwGXA5XJp8eLFmjlzpjZt2qQuXbronXfe0e233y5f318vYlSHsHq+sjUL16kyl/bmF2tvQbFc7tO1knMVTH553Go2qVVIgFo1CFCQ77nftjidTq1du9ZTItm/f7+Cg4M1bNgwTZ8+XcOGDVNoaGhVP94lMQxDGRkZSkxM1KJFi1RQUKD+/fvr2WefldvtPmuh5P3339fmzZs1evRoHTp0SCNHjtTy5cs1YMAAzxrKJLWX2+3Wzp07KxRI9u/fL0lq3769bDabHn30UdlsNrVp04a/SwAAAAAAAAAAAAAAANQICiUAAABAHXbq1CklJibqpZde0r59+zRw4EB99tlnGjJkSK3YlB7ka1WXqPrqFBmswjKX8kudyit1qsDhlLPckNswZDaZ5GMxKcTPR6H+Pmrg76NgX6vM58hfUFCgzz77THa7XcuXL1dBQYGaNm2q+Ph4JSQkaMCAAV4p0ZzP0aNHtXDhQiUmJmrnzp1q2rSppk6dqokTJ6pt27a/em67du3UqVMnPfnkkxo3blwNJcbFcjgc2rRpk9atW6eUlBSlpqYqLy9PVqtVPXr00KhRo2Sz2RQbG6uoqChvxwUAAAAAAAAAAAAAAMAVymQYxtl+OTAAAACAWuzIkSOaO3euXnvtNZ08eVK33XabHn/8cfXo0cPb0apFdna2kpKSZLfbtWbNGjmdTnXv3l0JCQmKj4/XNddcUysKNP/L6XRqxYoVSkxM1LJly2Q2m3XzzTdr8uTJGjRokCwWS6WuYxhGrXw+nJafn6+0tDTP9JH09HQ5HA4FBQWpX79+stlsstls6tu3rwIDA70dFwAAAAAAAAAAAAAAAJBEoQQAAACoU7777ju98MILevfdd+Xj46P77rtPjzzyiFq0aOHtaFXKMAxt3bpVdrtddrtd3377raxWqwYMGKCEhASNHDmyVj/zzp079fbbb+vdd9/VsWPH1KNHD02aNEnjxo1TWFiYt+PhEh04cMAzfSQlJUXbt2+XYRiKjo5WXFycp0DSrVs3Wa0MBgUAAAAAAAAAAAAAAEDtRKEEAAAAqOUMw1BKSopmzpyp5ORkNWzYUA8//LAeeOABhYaGejtelSkrK9PXX3+tpKQkJSUlKSsrS/Xr19dNN92khIQEDR06VA0aNPB2zHMqKCjQokWL9Pbbb2vDhg0KDw/XnXfeqUmTJqlbt27ejoeL5Ha7tWvXrgoFkv3790uS2rdv7ymP2Gw2tWnThkkyAAAAAAAAAAAAAAAAqDP4VakAAABALVVeXq6lS5dq1qxZ2rBhgzp06KB//etfGj9+vPz8/Lwdr0rk5+drxYoVSkpK0vLly3Xy5Ek1b95c8fHxSkhIUP/+/eXr6+vtmOfkdru1Zs0aJSYmavHixSorK9PQoUP18ccfa8SIEZfN39OVxOFwaNOmTZ4CSWpqqvLy8mSxWNSzZ0+NGjVKNptNsbGxioqK8nZcAAAAAAAAAAAAAAAA4KIxoQQAAACoZYqLizV//ny9+OKL+umnn3TddddpxowZGjZsmMxms7fjXbL9+/d7ppCsWbNGLpdLPXr08JRIunXrVuunPOzbt0/vvPOO5s+fr3379qldu3aaNGmS7r77bjVu3Njb8XAB8vPzlZaW5pk+kp6eLofDocDAQMXExHimj/Tt21eBgYHejgsAAAAAAAAAAAAAAABUGQolAAAAQC1x/PhxzZ07V6+++qry8vI0evRoPf744+rdu7e3o10SwzD07bffym63y263a+vWrfLx8dH111+v+Ph4xcfHq1mzZt6OeV4lJSVasmSJ3n77ba1atUpBQUEaO3asJk2apJiYmFpfgsFpBw4cUEpKimcCyfbt22UYhqKjoxUXF+cpkHTr1k1WK0M9AQAAAAAAAAAAAAAAcPmiUAIAAAB42Q8//KAXX3xR8+fPl9ls1j333KNHHnlErVu39na0i1ZWVqY1a9bIbrcrKSlJBw4cUEhIiIYPH674+HgNHTpUISEh3o55XoZhKCMjQ4mJiVq0aJEKCgrUv39/TZ48WaNGjVJQUJC3I+JXuN1u7dq1q0KBZP/+/ZKkdu3aVSiQtGnThlIQAAAAAAAAAAAAAAAArigUSgAAAAAvWb9+vWbOnKlPPvlEkZGRmjZtmh588EGFh4d7O9pFycvL04oVK2S327VixQoVFhaqRYsWSkhIUHx8vPr37y8fHx9vx6yUo0ePauHChUpMTNTOnTvVtGlTTZgwQRMnTlTbtm29HQ/n4HA4tGnTJk+BJDU1VXl5ebJYLOrRo4enQBIbG6uoqChvxwUAAAAAAAAAAAAAAAC8ikIJAAAAUIPcbreSkpI0c+ZMpaWlqV27dnr88cd11113yd/f39vxLojbMPTd3iylbd6iAzn58q0fqnpBwQoKDlZgQD01CA5S49AGalDPR6F+Pgr2s8pciydAOJ1OrVixQomJiVq2bJnMZrNuvvlmTZ48WYMGDZLFYvF2RPyP/Px8rV+/3jN9JD09XQ6HQ4GBgYqJifFMH+nbt68CAwO9HRcAAAAAAAAAAAAAAACoVSiUAAAAADWgpKRECxYs0AsvvKDdu3crNjZWM2bM0MiRI2U2m70dr9IMw9A3m7doS9YRhbS8Sv4BgTIMQ+7yclms1jPWmyT9/IbDajapVUiAWjUIUJDvmWu9ZefOnXr77bf17rvv6tixY+rRo4cmTZqkcePGKSwszNvx8AsHDhzwTB9JSUnR9u3bZRiGoqOjPdNHbDabunXrJutZPh8BAAAAAAAAAAAAAAAA/BeFEgAAAKAa5eTk6LXXXtOcOXN04sQJ3XLLLXr88cfVr18/b0erNIfDoa+++kpfbdiokLaddHWva1Xucp21QHI+PxdMogJ81TEiWGH1fKs8b2UUFBRo0aJFevvtt7VhwwaFh4frzjvv1KRJk9StWzevZEJFbrdbu3btqlAg2b9/vySpXbt2FQokbdq0kakWT78BAAAAAAAAAAAAAAAAaiMKJQAAAEA12LNnj1566SUlJibK7XZr0qRJevTRR3XVVVd5O1ql5Obmavny5bLb7Vq1erWGT3pQCfc8KJMkUxVMVPm5WNIuLFAdwoNlMVd/GcDtdmvNmjVKTEzU4sWLVVZWpqFDh2ry5MkaMWKE/Pz8qj0Dzs3hcGjTpk2eAklqaqry8vJksVjUo0cP2Ww2xcXFKTY2VlFRUd6OCwAAAAAAAAAAAAAAANR5FEoAAACAKpSRkaGZM2dq8eLFCg0N1dSpUzVlyhRFRkZ6O9p57dmzR0lJSbLb7Vq3bp3Ky8s1YsztGv/bP8o3qL5UTRMgAn0s6tM4VKH+PtVy/X379umdd97R/PnztW/fPrVr106TJk3S3XffrcaNG1fLPXF++fn5Wr9+vadAkp6eLofDocDAQPXr188zgaRv374KDAz0dlwAAAAAAAAAAAAAAADgskOhBAAAALhEbrdby5cv18yZM7V27Vq1adNGjz32mCZMmKCAgABvxzsnt9utjRs3ekokmZmZ8vX11cCBA5WQkKC4oSO022GWYZyeJlJdTDrdVYlpEqaowKqZElJSUqIlS5bo7bff1qpVqxQUFKSxY8dq0qRJiomJkamayjE4twMHDiglJcVTINm+fbsMw1B0dLRn+ojNZlO3bt1ktVq9HRcAAAAAAAAAAAAAAAC47FEoAQAAAC6Sw+HQwoUL9cILL2jXrl3q27evZsyYoZtvvlkWi8Xb8c6qtLRUq1evVlJSkpKSknT48GGFhYVp+PDhSkhI0JAhQxQcHKxjRQ6lHsit1iLJ/zJJim3666USh8MhP7+zv24YhjIyMpSYmKhFixapoKBA/fv31+TJkzV69GimXNQgt9utXbt2VSiQ7N+/X5LUrl27CgWSNm3aUPABAAAAAAAAAAAAAAAAvIBCCQAAAHCB8vLy9Prrr2v27Nk6cuSI4uPjNWPGDMXGxtbKjfE5OTlatmyZkpKS9Nlnn6moqEitW7dWQkKCEhISFBsbW2EiRF6pU19nnZDbC+8UzCbpuuYRCvX3OeO1ZcuWadSoUVq6dKmGDRvmOX706FEtXLhQiYmJ2rlzp5o2baoJEyZo4sSJatu2bU3Gv2I5HA5t2rTJUyBJTU1Vbm6uLBaLevTo4SmQxMbGKioqyttxAQAAAAAAAAAAAAAAAIhCCQAAAFBp+/fv10svvaR//vOfcrlcuvvuu/XEE0+odevW3o52hp9++kl2u112u10pKSlyu93q06ePp0TSsWPHs5Zfyt2Gvtx3XMXO8hqdTvJLQT4WDWwZKYv5v/lSUlI0cOBAlZWV6aabbtInn3yiFStWKDExUcuWLZPZbNYtt9yiSZMmadCgQbV2QszlIj8/X+vXr/dMH0lPT5fD4VBgYKD69evnmT7St29fJsMAAAAAAAAAAAAAAAAAtRSFEgAAAOA8Nm/erJkzZ+qjjz5SgwYN9Oyzz2r8+PG1aqO82+1WRkaGp0Syc+dO+fn5adCgQYqPj9fIkSPVqFGj814n8/hJ7c4tqoHEv65dWKA6R9aXJG3btk2xsbEqLi6W2+2WJIWHhysnJ0c9evTQ5MmTdccddygsLMybkS9rBw4c8EwfWbdunbZv3y7DMBQdHe2ZPmKz2dStW7cK024AAAAAAAAAAAAAAAAA1F4USgAAAICzMAxDn3/+uWbOnKn169dr/PjxeuSRR8452cMbSkpKtGrVKiUlJSk5OVlHjhxReHi4RowYofj4eA0ZMkRBQUGVvl5uSZnWZOVUY+ILM6B5uPIPH1CfPn2Um5urX751iY2N1auvvqpu3bp5MeHlye12a9euXRUKJPv375cktWvXrkKBpE2bNrXm6wEAAAAAAAAAAAAAAADAhaFQAgAAAPxCWVmZ3n//fSUmJqpNmzaaMGGCbDabLBaLt6NJkk6cOKFly5bJbrfr888/V3Fxsdq2bauEhAQlJCSoX79+Fz0hIiU7R8eLy1Qb3iCYJNW3SAndr1JR0ZkTU9q0aaMffviBMkMVcDgc2rRpk6dAkpqaqtzcXFksFvXo0UM2m83zJyoqyttxAQAAAAAAAAAAAAAAAFQRCiUAAACApIKCAn300Uc6evSoBg4cqL59+3peq6rSgtvtltlsvuDzfvjhB9ntdiUlJSk1NVWGYahv376eEsnVV199yRlPlbm0cu/xSq3ds2ObPpj7gr7bnKEyR6mim7XQ4DHjNfzueyVJz9w1Sjsy1p9xXnfbAD39z39fUK7H4m/QgT0/yuVynfHajh071LFjxwu6HqT8/HytX7/eM30kPT1dDodDgYGB6tevn2cCSd++fRUYGOjtuAAAAAAAAAAAAAAAAACqycX96mIAAADgMnHo0CHt2rVLrVu31r333iu32y2TyVQlJZKVK1fqww8/VFhYmCZPnqyrr766Uue53W5t2LDBUyLZtWuX/P39NWjQIL3xxhsaMWKEGjZseMn5fmlvfrFM0nmnk2xJWaPnHpyoVh07a/SDj8g/IFBHsvcp5+jhCuvCGzbS+OlPVTgWFhV9QZlMkpLWbVCXqPoqLCzUoUOHdPjwYR06dEjFxcVq3br1BV3vSnXgwAHP9JGUlBRt27ZNhmEoOjpaNptNf//73xUXF6du3bpd9HQbAAAAAAAAAAAAAAAAAHUPE0oAAABwRdq6dau2bt2q22+/XWazuUo30huGofvvv19r1qzRgAEDlJeXp7S0NM2cOVPjx48/6zlut1vLli2T3W5XcnKyjh07poiICI0cOVLx8fEaPHhwtU2LcBuGPv3xqFzuX39rUHyqUNOG2tT+ml56/JW3zjlt5Zm7Rulkfq5eTv7qkrNZzSaNaBstcxVNibncud1u7dq1q0KBZN++fZKkdu3ayWazeSaQtGnTpsqm7wAAAAAAAAAAAAAAAACoe/j1swAAALhiGIahVatWaebMmapXr54++eSTS75mWVmZfH19Kxx755139NVXX2n+/Pmy2WySpD/+8Y964okn1L59e/Xq1UuGYVTYzG82mzV9+nSZzWZNmDBB8fHx6tevnywWyyVnPJ9Ch+u8ZRJJWvfpUuWfOK5xjzwhs9ms0uJi+fr7n7NYUu5yqczhUL1LKMK43IYOF5aqUbA/pZKzcDgc2rRpk6c8kpqaqtzcXFksFvXo0UO33HKLp0QSFRXl7bgAAAAAAAAAAAAAAAAAahEKJQAAALjsOZ1Offjhh5o1a5a2bNmi7t27a9WqVWeUOirrwIEDeuedd/Tqq69q3LhxmjVrlqTT0yHMZrN2796t4OBg2Ww2nTp1SkFBQbr99tv1l7/8RUuWLFGvXr3OuK/b7VZqaqpXNv3nOZyVWrctbZ0CgoKVc/Swnp8ySYf27ZF/QID6x4/WpCf/JF8/f8/aw/v2aNw1beVylqlBRKQGjRmvMb95VFYfnwvOt+FwvqxHTWoVEqBWDQIU5Hvlvo3Jz8/X+vXrPQWS9PR0lZaWKjAwUP369dNDDz2kuLg49e3bt9om2gAAAAAAAAAAAAAAAAC4PFy5O7EAAABw2SssLNRbb72ll19+WdnZ2brxxhv15Zdf6oYbbrioIokkHTlyRC+99JI2b96sVq1aKTk5WX/6058UFBTkmdTRunVr7d69W3l5eQoNDZUkffLJJ2rQoIG+/fZb7du3Ty1btqxwXbPZ7LUJEvmlTpkknW9GyeH9e1Ve7tLzUyZp4Kg7NH76U9qRnqblCxNVdLJA01+cJ0mKbt5CnfvGqHm7DiotKdY3n3+qj+e9rEP7ftJjL71xURldbkM/5hXph7wiRQX4qmNEsMLq+Z7/xDruwIEDnvJISkqKtm3bJsMwFBUVpbi4OD333HOKi4tTt27dZLXy9g4AAAAAAAAAAAAAAABA5ZkMwzjfvjEAAACgTjl06JBmz56t119/XUVFRRo3bpwee+wxde3atdLXKC4u1uLFi7Vjxw7de++9atu2rSTp1KlT+uSTT9S6dWsFBQWpe/fuWr9+vfr27es5NycnR3379lV4eLiuv/56paamyjAMXXXVVdq+fbtmz56tmJiYKn/ui7Um64RyS84/peQ3g/vpaPZ+Dbn9bj3wp797jr/xx99p5QcLNOezFDVu2fqs5857eoa+/Og9PbcoWe2697ykvD+XX9qFBapDeLAs5osrB9U2brdbu3btqlAg2bdvnySpXbt2stlsnj9t27a96FIUAAAAAAAAAAAAAAAAAEhMKAEAAMBlZMeOHZo1a5bee+89+fv764EHHtDDDz+spk2bXtB11q1bp6efflr79u1TVlaWZwO/JAUFBenOO+/0rG3Tpo2WLVvmKZS43W6Fh4crOTlZixYt0tq1a9WvXz89+eSTOnz4sLp3764mTZpU3UNXAVd55Trmvv7+kiTb8JsrHLeNuEUrP1ig3Vs2nbNQEj/pAX350Xvatn7dJRdKfk67O7dIBwtL1adxqEL9fS7pmt7gcDi0adMmT3kkNTVVubm5slgs6tGjh2655RbZbDbFxsYqOjra23EBAAAAAAAAAAAAAAAAXGYolAAAAKBOMwxDa9as0cyZM7VixQo1adJEzz77rO677z6FhIRc1DXdbrdiYmL07rvvavDgwVq9erWGDBkiX1/fCmvMZrNGjhyp5ORk/eEPf5Cvr6/MZrMkqUOHDvp//+//VbjuqlWrFB0dLf//FDNqC3clhxaGRUYr+4fv1SA8osLxkPBwSdKpkwXnPDeiUWNJUmF+/sWFPIdiZ7m+zjqhmCZhigr0q9JrV7WCggKlpaV5CiTp6ekqLS1VYGCg+vXrp4ceekg2m019+/ZVUFCQt+MCAAAAAAAAAAAAAAAAuMxRKAEAAECd5HK5tHjxYs2cOVObNm1Sly5d9M477+j222+vUPy4GNdee6369OmjevXqadSoUfrkk080Y8YMNWrUyLPm5+LIqFGjNHv2bP3000/q0KHDGddyOBzy8/NTdna2/vrXv+q2226rddMmzCZTpda17tRVW9PWKvfYETVp3dZzPO/YUUlSSGjYOc89mp11ek1Y+CUkPZMhyTCk1AO5im1au0olBw8e1Lp16zwFkm3btskwDEVFRSkuLk7PPfecbDabunfvLquVt2YAAAAAAAAAAAAAAAAAaha7lgAAAFCnnDp1SomJiXrppZe0b98+DRw4UJ999pmGDBkiUyWLEefj5/ffUsIdd9yhv//97/rxxx8rFEp+1qtXL4WHh2vVqlVnFEq2bNmilStXKjMzU6tXr1b37t31yCOPVEnGqmS1VO7jFjNspJa+NVerPn5fXa61eY5/+dG/ZbFa1alPjIpPFcrH11c+vv/9GBqGoY9ff1mS1N12XZVm99xDUtrBXF3XPEKh/j7Vco9f43a79d1331UokOzbt0+S1K5dO9lsNj388MOy2Wxq27ZtlX2uAgAAAAAAAAAAAAAAAMDFolACAACAOuHIkSOaO3euXnvtNZ08eVJjx47V4sWL1aNHj2q9b5cuXRQREaE1a9aoX79+Z0yS8PPz05AhQ5ScnKx7771Xhw8fltvtVps2bRQdHa0DBw7IarXqrbfe0rBhw6o168Vq4OejvBKnjPOsa92xi24YdbtWL16k8nKXOvXup8z09Vr/WbJuvX+awqIbKnNDml56/Dey3XSzGrVoqbLSUm34coW+25yhwbfdqdadulbbc7gNKeNQnga2jJTFXL2FDYfDoU2bNnnKI6mpqcrNzZXFYlGPHj10yy23yGazKTY2ttZNpAEAAAAAAAAAAAAAAAAASTIZhnG+fWMAAACA13z33Xd64YUX9O6778rX11f33XefHn74YbVo0aLa7+1yuWS1WjVp0iTt3r1bycnJCgsLq7DG6XRq9uzZmjFjhlq3bq3s7GzNnDlTDz30ULXnqyr7Coq1+UhBpda6nE4teWO2Vi/5QHnHjyqicVMNGzdRIybcJ0k6eiBLC2b9TT9t36L8E8dlMpvUtPVVGjRmvAaPvbNGJnO0CwtU58j6VXrNgoICpaWleQok6enpKi0tVWBgoPr16yebzSabzaa+ffsqKCioSu8NAAAAAAAAAAAAAAAAANWBQgkAAABqHcMwlJKSopkzZyo5OVkNGzbUww8/rAceeEChoaFVcg+Xy6W0tDRdddVVio6OltlsPmON2+2W2WzWV199pWHDhmnDhg3q1q2biouLFRAQoG+++UZ33HGH9u/fr+uvv14jRozQqFGj1Lx58yrJWFMKSp1atf+Et2NUqQHNwxVWz/eM419++aXeeOMNzZ8/X4GBgec8/+DBg1q3bp2nQLJt2zYZhqGoqCjFxcV5CiTdunWTj49PdT4KAAAAAAAAAAAAAAAAAFQLCiUAAACoNcrLy7V06VLNmjVLGzZsUMeOHfX4449r3Lhx8vPzu+Trnzp1SitXrpTdbteyZcuUk5OjWbNm6ZFHHpHFYvnVc4OCgnTLLbcoPz9fhmEoMTFRxcXF2rJli4YMGaKAgIBLzuctxSUl+nx/rgzTmaWausgkKTLAV7Zm4RWOv/baa5o2bZrcbrdWrFihoUOHSjpdHPruu+8qFEj27dsnSbrqqqsqFEjatm1bI1NWAAAAAAAAAAAAAAAAAKC6Wb0dAAAAACguLtb8+fP14osv6qefftJ1112nTz/9VMOGDTvr5JALcfjwYSUnJ8tut2vVqlVyOBzq1KmTHnjgAcXHx6t3797nvEd5ebkWLFjgKY989dVXiomJ0ZQpUxQVFSVJatmy5SXl86asrCzNmzdPb731luLvn6YRE+6vkfvu2bFNH8x9Qd9tzlCZo1TRzVpo8JjxGn73vZKkLSlrlLoiST9s+1YHf/pB4Q0b6/XV6ZW+viHpWHGZTpW5FORrldPp1MMPP6x58+ZJkqxWqxYtWqRt27YpJSVFqampys3NlcViUY8ePXTLLbfIZrMpNjZW0dHR1fEhAAAAAAAAAAAAAAAAAACvo1ACAAAArzl+/Ljmzp2rV199VXl5eRo9erTef/999e7d+6KvaRiGduzYoaSkJNntdqWnp8tsNisuLk7PPfec4uPj1aZNm0pdy+12a8+ePbr66qv12muvqXPnzhedq7YwDENr1qzRnDlzZLfbFRQUpMmTJ+veSXfqe3f1339Lyho99+BEterYWaMffET+AYE6kr1POUcPe9as+/QTpa1IUquOnRUadXGFDpOkvfnFaupTrvj4eKWmpnpec7lceueddxQYGKh+/frpoYceks1mU9++fRUUFHSpjwgAAAAAAAAAAAAAAAAAdYLJMAzD2yEAAABwZfnhhx/04osvav78+TKbzbrnnnv0yCOPqHXr1hd1PZfLpZSUFNntdiUlJWnPnj0KDAzU0KFDlZCQoJtuuknh4eFV/BR1S1FRkRYuXKi5c+cqMzNTHTt21NSpU3XXXXd5ShQp2Tk6Xlym6nqDUHyqUNOG2tT+ml56/JW3zjkZJvfoEdUPC5fVx0fPPnC3sn747oImlPzMajbp7j4dVJCff8ZrPj4+ys3NpUACAAAAAAAAAAAAAAAA4IrFhBIAAADUmPXr12vmzJn65JNPFBkZqd///vd68MEHL6rsUVhYqM8//1xJSUlatmyZcnNz1ahRI8XHxyshIUHXX3+9/P39q+Ep6paffvpJr776qhITE1VYWKj4+Hi98soruv7662UymSqs7RgRrDVZOdWWZd2nS5V/4rjGPfKEzGazSouL5evvf0axJCy6YZXcz+U2NOqOO7VqebKys7PldrtlsVhUXl4up9Op7du3q1+/flVyLwAAAAAAAAAAAAAAAACoayiUAAAAoFq53W4lJSVp5syZSktLU/v27fXGG2/orrvuuuDCx6FDh5SUlCS73a7Vq1errKxMXbp00YMPPqiEhAT17NnznFMvriRut1tffPGF5syZo+XLlys0NFQPPPCAHnzwQbVs2fKc54XV81W7sEDtzi2qllzb0tYpIChYOUcP6/kpk3Ro3x75BwSof/xoTXryT/L1q/oC0DPPPa9/vTZHxcXF2rBhg1JSUrRmzRpt3bpVLperyu8HAAAAAAAAAAAAAAAAAHWFyTAMw9shAAAAcPkpKSnRggUL9MILL2j37t2y2WyaMWOGRowYUenSh2EYyszMlN1ul91u18aNG2WxWNS/f3/Fx8crPj5erVu3ruYnqTtOnjyp+fPn69VXX9Xu3bvVvXt3TZs2TXfccYfq1atXqWuUuw19ue+4ip3lquo3CtMTBulI1l5J0sBRd6hTnxjtSE/T8oWJir0pQdNfnHfGOc8+cLeyfvhOr69Ov+D7mSS1ahCg7tEhlxodAAAAAAAAAAAAAAAAAC47TCgBAABAlcrJydFrr72mOXPm6MSJE7r11lv1zjvv6Nprr63U+U6nUykpKbLb7UpKStLevXsVFBSkYcOG6eGHH9ZNN92ksLCwan6KuuW7777T3Llz9c4776ikpESjRo3Sv/71L8XGxspkMl3QtSxmk/o0DtXXWSdU1dXz0uIiOUpKNOT2u3XPH/4qSbp2yE1yOZ1a+cEC3f7QDDVuWXUFIUNSgcNZZdcDAAAAAAAAAAAAAAAAgMsJhRIAAABUiT179uill15SYmKi3G63Jk2apOnTp6tt27bnPffkyZP67LPPlJSUpOXLlysvL09NmjRRfHy8EhISNGDAAPn5+dXAU9Qd5eXlWr58uebMmaMvvvhCUVFRevTRR/XAAw+oSZMml3TtUH8fxTQJU+qB3CqdUuLr7y9Jsg2/ucJx24hbtPKDBdq9ZVOVFkokyVnOQEYAAAAAAAAAAAAAAAAAOBsKJQAAALgkGRkZmjlzphYvXqywsDD99re/1W9+8xtFRkb+6nkHDhxQUlKSkpKStHr1ajmdTnXt2lVTp05VQkKCevToccHTNa4Eubm5SkxM1Guvvaa9e/eqT58+WrBggcaMGVOlpZuoQD/FNg1T2sFcGYaqpFgSFhmt7B++V4PwiArHQ8LDJUmnThZUwV0qclf1mBUAAAAAAAAAAAAAAAAAuExQKAEAAMAFc7vdWr58uWbOnKm1a9eqTZs2mjt3riZMmKCAgICznmMYhrZt2ya73a6kpCRt2rRJFotF1113nWbNmqX4+Hi1bNmyZh+kDtm2bZvmzp2rhQsXqry8XGPHjtWiRYvUp0+fartnVKCfrmseofRDeSpyll/y9Vp36qqtaWuVe+yImrT+7+SavGNHJUkhoWGXfI//ZaaUBAAAAAAAAAAAAAAAAABnRaEEAAAAleZwOLRw4UK98MIL2rVrl6699lotXrxYCQkJslgsZ6x3Op1au3atp0Syf/9+BQcHa9iwYZo+fbqGDRum0NBQLzxJ3eByufTJJ59ozpw5Wrt2rRo3bqynnnpK999/v6KiomokQ6i/jwa1jNSunELtzi2SSRc/rSRm2EgtfWuuVn38vrpca/Mc//Kjf8titapTn5gqyfxLPhYKJQAAAAAAAAAAAAAAAABwNhRKAAAAcF55eXl6/fXXNXv2bB09elTx8fF66623FBMTI9P/TIAoKCjQZ599JrvdruXLl6ugoEBNmzZVQkKC4uPjNWDAAPn6+nrpSeqG48eP66233tK8efN04MABxcXF6cMPP9TNN98sHx+fGs9jMZvUObK+Ggf5a+eJQh0rLruoYknrjl10w6jbtXrxIpWXu9Spdz9lpq/X+s+Sdev90xQW3VCStO/7ndq4eqUk6XDWXhWfKtTH816WJLVo31G9bxhSqfuZJIX41fzHCwAAAAAAAAAAAAAAAADqApNhGBf7C4YBAABwmdu/f79eeukl/fOf/5TL5dLdd9+txx57TO3bt6+wLisrS8nJybLb7VqzZo2cTqe6d+/uKZFcc801ZxRPcKaNGzdqzpw5WrRokcxms8aPH6+pU6eqe/fu3o5Wwakyl/bmF2tvQbFc7gt7O+FyOrXkjdlaveQD5R0/qojGTTVs3ESNmHCfZ83qJR/o1acePev5A26+TdP+/nKl79ezYYhahARcUEYAAAAAAAAAAAAAAAAAuBJQKAEAAMAZNm/erJkzZ+qjjz5SSEiIfvOb32jq1KmKjo6WJBmGoS1btigpKUl2u13ffvutrFarBgwYoISEBI0cOVItWrTw8lPUDWVlZfr44481Z84cffPNN2rRooWmTJmie+65R2FhYd6Od05ut1upaWlas2mrOg291dtxzmlgywimlAAAAAAAAAAAAAAAAADAWVi9HQAAAAC1g2EY+vzzzzVz5kytXr1aLVu21EsvvaTJkycrMDBQZWVl+uKLL5SUlKSkpCRlZWWpfv36uummm/Tb3/5WQ4cOVYMGDbz9GHXGoUOH9MYbb+iNN97Q0aNHNXDgQH3yyScaMWKELBaLt+OdVXl5uVJSUvTRRx9pyZIlOnz4sJo1a64XBo6QxcfX2/HOYDWbFOzLWx4AAAAAAAAAAAAAAAAAOBt2VwEAAFzhysrK9P7772vWrFnKzMxUr1699MEHH+jWW2/VqVOnPAWS5cuX6+TJk2revLni4+OVkJCg/v37y9e39hUJaivDMLR+/XrNmTNHH3/8sfz8/DRhwgRNmTJFHTt29Ha8s3K5XFq7dq0+/vhjLVmyREePHlWzZs10++23a/To0br22mu148Qp/ZhXpNo0+tAkqVVIgMwmk7ejAAAAAAAAAAAAAAAAAECtRKEEAADgClVQUKA333xTr7zyig4ePKjhw4dr7ty5atGihZKTkzV06FB9/fXXcrlc6tGjh6ZPn66EhAR169ZNJjbpX5DS0lK9//77mjt3rjZv3qy2bdtq1qxZmjhxokJCQrwd7wwul0tr1qzxlEiOHz+uFi1a6M4779SYMWPUu3dvmc1mz/pWDQL0Q16RFxOfydDpXAAAAAAAAAAAAAAAAACAs6NQAgAAcIXJzs7WK6+8ojfffFMOh0Pjx4/XsGHDlJmZqYcfflhbt26Vj4+Prr/+er388suKj49Xs2bNvB27TsrKytK8efP01ltvKScnR8OGDdPy5ct14403Vihk1AZOp1NfffWVPvroIy1dulQ5OTlq1aqVJk2apNGjR6tXr17nLBIF+VoVFeCr48VltWJKiUlSZICvgnx5uwMAAAAAAAAAAAAAAAAA52IyDKM27PkCAABANdu6datmzZqlRYsWKTAwUEOHDpW/v79WrVqlAwcOKCQkRMOHD1d8fLyGDh1aKydn1AWGYWjNmjWaM2eO7Ha7goKCNHnyZE2ZMkVt27b1drwKysrKtGrVKn388cf65JNPlJubqzZt2mjMmDEaM2aMrrnmmkpPo8ktKdOarJxqTlx5A5qHK6yer7djAAAAAAAAAAAAAAAAAECtRaEEAADgMmYYhlatWqWZM2dq5cqVCg8PV7NmzfTjjz/q1KlTatGihRISEpSQkKC4uDj5+Ph4O3KdVVRUpIULF2ru3LnKzMxUx44dNXXqVN11110KCgrydjwPh8OhL7/8Uh999JHsdrvy8/PVrl07jRkzRqNHj1a3bt0qXSL5X5nHT2p3blEVJ75w7cIC1TmyvrdjAAAAAAAAAAAAAAAAAECtRqEEAADgMuR0OvXhhx/q2Wef1c6dOxUUFKTi4mK53W717NnTUyLp0qXLRZcHcNpPP/2k1157TYmJiTp58qTi4+M1bdo0XX/99bXmY1taWqqVK1fq448/VlJSkgoKCnT11Vd7JpF07ty5SrKWuw19ue+4ip3l8sabDJOkQB+LBraMlMVcOz72AAAAAAAAAAAAAAAAAFBbUSgBAAC4jJw8eVJ//OMfPeUGSbJYLBo4cKBuvvlmjRw5Uk2bNvVyyrrP7Xbriy++0Jw5c7R8+XKFhobq3nvv1YMPPqiWLVt6O54kqaSkRJ9//rk++ugjJScnq7CwUJ06dfJMIunUqVO13Dev1Kmvs07I7YV3GWaTdF3zCIX6M2kHAAAAAAAAAAAAAAAAAM6HQgkAAEAd53A49PHHH2vWrFnaunWrDMOQr6+vBg8erAkTJujGG29U/fr1vR3zsnDy5P9n776jo6zz9o9fM5OeQEgIoIBAIPQiSJMqEFoSyCBkLNjbIhpQSnYfH7e4z+66qwlYEkTELipuhjKBhN6bICIiSJOOlAAJkJ7MzP37w595lkfQAEmGkPfrnD1H7rnv7/f6TnKGs+fMxeeiPvroI6WkpGjfvn3q2LGjxo0bp/vvv1/+/v6ejqf8/HwtWrRIdrtdCxcuVG5urtq3b19aImndunWl5MjMK9KG41mVOqXEJKlXw1DVDfStxF0BAAAAAAAAAAAAAAAAoOqiUAIAAFAFZWVlKSMjQx9//LFWrVolp9Mpk8mkO+64Q7///e919913y9ubKQ3lZc+ePUpJSdFHH32kgoICjRo1SuPGjVOvXr1kMpk8mi0vL08ZGRlKTU1Venq68vPz1bFjR8XFxSkuLk4tW7b0SK7MvCJt/DFLhqEKL5aYTVLPBpRJAAAAAAAAAAAAAAAAAOBqUCgBAACoIg4ePKi0tDTNnz9f69atk9vtliTVrFlTTz75pP70pz+pVq1ang15E3G5XMrIyFBycrKWLVumunXrasyYMRozZowaNGjg0Wy5ublKT09XamqqMjIyVFBQoDvuuEM2m02jRo1S8+bNPZrvZ9mFJdpyIlt5Ja4K2yPI26Ku9UMU4keBCgAAAAAAAAAAAAAAAACuBoUSAACAG5Tb7dbWrVuVlpYmh8OhnTt3ymKxKDAwUBcvXlSrVq303//937r33nvl4+Pj6bg3jezsbL333nt66623dOjQIXXr1k3jxo2TzWaTr6/nJmBcvHhRCxcuVGpqqhYvXqzCwkJ17dq1dBJJ06ZNPZbt17jchnafy9G+rDyZVD7TSn5ep0VooFrXriGL2bNTYgAAAAAAAAAAAAAAAACgKqJQAgAAcAMpLCzUypUrlZaWprS0NJ08eVIhISFq1qyZjh49qszMTA0cOFCTJ0/W4MGDZTLxRfrysmPHDqWkpGjWrFlyuVy69957FR8fr27dunks04ULF7RgwQKlpqZqyZIlKioqUvfu3UsnkTRp0sRj2a5WVkGxvj+bo8z84msulvz8XN0AH7UJq6FQf4pUAAAAAAAAAAAAAAAAAHCtKJQAAAB42Llz55Seni6Hw6ElS5YoLy9PTZs21cCBA5Wfn6/09HRdvHhR9957ryZPnqxOnTp5OvJNw+l0av78+UpOTtbatWtVv359jR07Vk899ZTq1avnkUznz5+Xw+GQ3W7X0qVLVVxcrJ49eyouLk6jRo1So0aNPJKrvOQWO3XofL4OXciX0/3T/xW5UsHkP697mU0KDw5QeK0ABfl4VVJaAAAAAAAAAAAAAAAAALh5USgBAADwgAMHDsjhcMjhcGj9+vVyu93q3r27YmNj1b59ezkcDn3yySfy8fHRU089peeff77KFwluJGfOnNHMmTM1ffp0HT9+XH369NG4ceM0YsQIeXt7V3qerKwsORwOpaamavny5XI6nerVq5dsNptGjhyphg0bVnqmiuY2DOUUO3W+sETZhSW6UFSiEpcht2HIbDLJ22JSsK+3Qvy8VcvPWzV8vGRmIg8AAAAAAAAAAAAAAAAAlBsKJQAAAJXA7Xbrq6++Ki2RfP/99/L19dXAgQMVGxurYcOG6cCBA0pMTNSCBQt06623avz48RozZoxCQkI8Hf+msXXrVqWkpGj27NkymUx64IEHFB8fr44dO1Z6lrNnz2r+/Pmy2+1asWKFXC6X+vTpU1oiqV+/fqVnAgAAAAAAAAAAAAAAAABUHxRKAAAAKkhBQYFWrFihtLQ0LViwQKdOnVLt2rU1bNgwWa1WDRo0SP7+/po3b56SkpK0efNmtWnTRpMnT9bo0aPl6+vr6SPcFIqLi2W325WcnKwvv/xSjRs31rPPPqvHH39ctWvXrtQsZ86c0bx585SamqpVq1bJMAzdddddiouL08iRI3XLLbdUah4AAAAAAAAAAAAAAAAAQPXl5ekAAAAAN5OzZ88qPT1dDodDS5YsUX5+viIiIvTAAw/IarWqR48e8vLyUn5+vj788ENNnTpVBw4cUL9+/bRw4UJFRUXJbDZ7+hg3hZMnT+rtt9/WjBkzdPr0aUVGRmr+/PkaNmyYLBZLpeU4ffq05s6dK7vdrtWrV0uS+vfvr2nTpmnEiBGqV69epWUBAAAAAAAAAAAAAAAAAOBnTCgBAAC4Tvv375fD4VBaWpo2bNggwzDUvXt3Wa1WWa1WtWrVSiaTSdJPEypSUlI0bdo0ZWdny2azafLkyerSpYuHT3FzMAxDmzZtUnJysux2u3x9ffXwww8rPj5ebdq0qbQcJ0+e1Ny5c5Wamqq1a9fKbDYrMjJScXFxGjFihOrUqVNpWQAAAAAAAAAAAAAAAAAAuBwKJQAAAFfJ7XZr8+bNpSWS3bt3y8/PT4MGDVJsbKyGDRumW2655ZJn9u/fr6lTp+rDDz+U2WzWE088oQkTJig8PNxDp7i5FBYW6vPPP1dKSoq2bdumiIgIxcfH69FHH1VwcHClZPjxxx9LSyTr16+XxWLRwIEDZbPZZLVaVbt27UrJAQAAAAAAAAAAAAAAAABAWVAoAQAAKIOCggItX75cDodDCxYsUGZmpsLCwjR8+HDFxsZq0KBBCgwM/MVzmzZtUmJioubPn686depo/PjxevrppykXlJOjR49q+vTpmjlzps6dO6eoqCiNGzdOQ4YMkdlsrvD9jx07pjlz5shut2vDhg3y9vbW4MGDFRcXJ6vVqpCQkArPAAAAAAAAAAAAAAAAAADAtaBQAgAAcAWZmZlKT0+Xw+HQ0qVLVVBQoBYtWshqtSo2NlY9evSQxWL5xXNut1tpaWlKTEzUxo0b1bJlS02aNEkPPfSQ/Pz8PHCSm4thGFq9erVSUlI0f/58BQUF6fHHH9ezzz6riIiICt//yJEjmjNnjlJTU/Xll1/Kx8dHQ4YMkc1m0/Dhw1WrVq0KzwAAAAAAAAAAAAAAAAAAwPWiUAIAAPAf9u7dq7S0NDkcDm3cuFGS1KNHj9ISSatWra74bEFBgT755BNNmTJF+/btU+/evZWQkKBhw4ZVyrSMm11eXp5mzZqllJQU7dy5U23atFF8fLweeughBQUFVejehw4dkt1ul91u15YtW+Tr66uhQ4eWlkhq1qxZofsDAAAAAAAAAAAAAAAAAFDeKJQAAIBqzeVy6csvvywtkezdu1f+/v4aNGiQrFarYmJiVK9evV9d49y5c3rrrbeUnJyss2fPauTIkZo8ebLuvPPOSjrFze3gwYOaNm2a3n//fV28eFGxsbEaN26c+vfvL5PJVGH7HjhwQHa7Xampqfr666/l5+en6OhoxcXFadiwYapRo0aF7Q0AAAAAAAAAAAAAAAAAQEWjUAIAAKqd/Px8LVu2TA6HQwsXLtSZM2dUp04dDR8+XFarVQMHDlRAQMBvrnPw4EG99tprev/99+V2u/XYY49p4sSJioiIqIRT3NzcbreWLVum5ORkZWRkKCQkRE8++aTGjh2rJk2aVNi++/fvV2pqqux2u7755hv5+/srJiZGNptN0dHRFT4JBQAAAAAAAAAAAAAAAACAykKhBAAAVAunT5/WwoUL5XA4tGzZMhUWFqpVq1aKjY2V1WpV9+7dZbFYyrTWV199pcTERM2ZM0ehoaGKj4/XM888ozp16lTwKW5+Fy9e1EcffaSUlBTt27dPHTt21Lhx43T//ffL39+/Qvbcs2dP6SSSHTt2KDAwUMOGDVNcXJyioqIUGBhYIfsCAAAAAAAAAAAAAAAAAOBJFEoAAMBNyTAM7d27Vw6HQw6HQ19++aUkqVevXqUlkhYtWpR5PbfbrYyMDCUmJmrt2rWKiIjQxIkT9cgjj5Rpmgl+3Z49e5SSkqKPPvpIBQUFGjVqlMaNG6devXrJZDKV+37ff/996SSSnTt3KigoSMOHD5fNZtOQIUP4mQIAAAAAAAAAAAAAAAAAbnoUSgAAwE3D5XJp06ZNpSWS/fv3KyAgQIMHD5bValVMTMxVTxEpKirSrFmzNGXKFO3evVt33nmnEhISZLVayzzRBJfncrmUkZGh5ORkLVu2THXr1tWYMWM0ZswYNWjQoFz3MgxDO3fuLJ1Esnv3btWsWVOxsbGKi4vTkCFD5OfnV657AgAAAAAAAAAAAAAAAABwI6NQAgAAqrS8vDwtW7ZMDodDCxcu1NmzZ1WvXj0NHz5cVqtVkZGR8vf3v+p1s7Oz9fbbb+vNN9/U6dOnFRsbq4SEBPXq1asCTlG9ZGdn67333tNbb72lQ4cOqVu3bho3bpxsNpt8fX3LbR/DMLRjx47SSSR79+5VcHCwrFarbDabBg0aVK77AQAAAAAAAAAAAAAAAABQlVAoAQAAVc6pU6e0YMECpaWlafny5SosLFTr1q1ltVpltVrVrVs3mc3ma1r7yJEjeu211/Tuu+/K6XTqkUce0cSJE9WyZctyPkX189133yk5OVmzZs2Sy+XSvffeq/j4eHXr1q3c9jAMQ998843sdrvsdrv279+vkJAQjRgxQnFxcYqMjKREAgAAAAAAAAAAAAAAAACAKJQAAIAqwDAM7d69Ww6HQ2lpadq8ebNMJpN69+6t2NhYxcbGqnnz5te1x7Zt25SYmKjU1FQFBwfrmWeeUXx8vOrVq1dOp6ienE6n5s+fr5SUFK1Zs0b169fX2LFj9dRTT5Xbe2sYhr7++uvSSSQHDx5UaGio7r77btlsNvXv318+Pj7lshcAAAAAAAAAAAAAAAAAADcLCiUAAOCG5HQ6tXHjxtISyQ8//KDAwEANGTJEsbGxiomJUVhY2HXtYRiGlixZosTERK1cuVLh4eGaOHGiHnvsMQUGBpbTSaqnM2fOaObMmZo+fbqOHz+uPn36KD4+Xnfffbe8vb2ve33DMPTVV1+VlkgOHz6ssLCw0hJJv379ymUfAAAAAAAAAAAAAAAAAABuVhRKAADADSMvL09ff/21FixYoA8++EDnzp3TLbfcUjqFJDIyUn5+fte9T3FxsT7//HMlJSVp586d6tKlixISEjRy5Eh5eXmVw0mqr61btyolJUWzZ8+WyWTSAw88oPj4eHXs2PG613a73dq8ebPsdrvsdruOHj2qunXrauTIkYqLi9Ndd93Fzw8AAAAAAAAAAAAAAAAAgDKiUAIAADzq1KlTOnDggJo2bapbb7219PqhQ4eUlZWlTp06yWw2l8teFy5c0DvvvKM33nhDP/74o2JiYpSQkKC+ffvKZDKVyx7VUXFxsex2u5KTk/Xll1+qcePGeuaZZ/TEE0+odu3a17W22+3Wpk2blJqaqjlz5uj48eOqV6+eRo0aJZvNpj59+shisZTTSQAAAAAAAAAAAAAAAAAAqD4olAAAgEplGIZ27dqlFStWqEaNGho5cqRq1qwpSeVWHPm/jh07pjfeeEPvvPOOioqK9OCDD2rSpElq06ZNhexXXZw8eVJvv/22ZsyYodOnTysyMlLjxo3TsGHDrqvk4XK5tGHDBtntds2ZM0cnTpxQ/fr1NWrUKMXFxalXr16USAAAAAAAAAAAAAAAAAAAuE4USgAAQIVzOp1av369HA6HvvvuO91zzz169NFHZbFYKrQY8O233yopKUmzZ89WYGCgxo4dq/Hjx18yCQXSnj179Prrr6t27dr6xz/+8av3GoahTZs2KTk5WXa7Xb6+vnr44YcVHx9/XQUdl8uldevWKTU1VXPnztWpU6fUoEEDxcXFyWazqUePHhVWOAIAAAAAAAAAAAAAAAAAoDry8nQAAABwc8rJydGSJUuUlpam9PR0tW7dWn/+85/12muvye12V1g5wDAMLV++XElJSVq6dKkaNWqkxMREPfHEE6pRo0aF7FlV5eXlafz48friiy80cOBAtWvXTrm5uQoKCrriM+PGjdO0adMUERGhpKQkPfroowoODr6m/Z1Op9asWSO73a65c+cqMzNTjRo10ujRoxUXF6fu3btTIgEAAAAAAAAAAAAAAAAAoIJQKAEAAOXmxIkTSktLk8Ph0MqVK+V0OvXcc8/p22+/VcOGDfXzYLSKKAmUlJTo3//+t5KSkrR9+3Z16tRJn332meLi4uTt7V3u+90MFi9erMOHD2v16tXq0qXLb95fUlKiRx55RDExMRoyZMg1/RxLSkq0evVq2e12zZs3T2fOnFGTJk308MMPy2azqWvXrjKZTNdyHAAAAAAAAAAAAAAAAAAAcBUolAAAgGtmGIZ27twph8Mhh8OhrVu3ymKxaNCgQVq0aJH69OlzSZmjIooCOTk5mjlzpl5//XUdO3ZMQ4cO1fLlyzVgwACKCVfw84SY1NRUtWvXTl26dNG8efO0fft29ezZU3369FFAQMAvnvP29lbXrl2ver+SkhKtXLlSqampmj9/vs6dO6emTZvqsccek81mU+fOnflZAQAAAAAAAAAAAAAAAABQyUzGz/9UOAAAQBmUlJRo/fr1cjgcSktL06FDhxQUFKSoqCjdc889iomJkb+/f4XnOHHihN588029/fbbysvL0+jRozV58mS1b9++wveuSr744gvNnz9fLVq0ULdu3RQTEyPppyJOz5499fvf/15LlizRli1b1L59ey1ZskQxMTH6y1/+ojZt2lzzvsXFxVq+fLnsdrvmz5+v7OxsRUREyGazKS4uTp06daJEAgAAAAAAAAAAAAAAAACAB1EoAQAAv+nixYtavHix0tLSlJGRoezsbDVo0ECxsbGyWq3q16+ffH19r2nts2fPKjk5WSNGjFCnTp1+8/5du3YpKSlJn376qfz9/TVmzBiNHz9eDRs2vKb9b1bLli3TCy+8oKysLI0cOVI7duzQ8uXLlZGRocGDB8tsNqtr167Ky8tT69at9dprr6lRo0bauHGjxo8fr549e+rNN9+8qj2Lioq0bNkypaamyuFw6MKFC2rRooVsNptsNps6dOhAiQQAAAAAAAAAAAAAAAAAgBuEl6cDAACAG9Px48eVlpamtLQ0rVy5UiUlJerQoYPi4+NltVp1xx13XFc54Pvvv9d///d/Ky0tTYMHD9ajjz76m888//zzeuONN9SgQQO9/PLLeuqppxQcHHzNGW5mH374ofr166c//OEPqlOnjiTp7rvv1rRp0zR06FBJ0iOPPKLx48erT58+atSokSSpZ8+eGjBggL755hsdOnRI4eHhv7pPYWGhlixZIrvdrrS0NF28eFGtW7fWc889p7i4OLVr144SCQAAAAAAAAAAAAAAAAAANyAKJQAAQJJkGIZ27Nghh8OhtLQ0ff3117JYLLrrrruUlJSk2NhYNWnS5Lr3KSgo0J/+9CdNnTpV999/v7777ju1bdv2khyXKyCUlJQoOjpanTt31r333isfH5/rznIzi4+PV+3atVWnTh05nU55eXmpd+/eeu+990rvGTBggMLCwiRJOTk5qlGjhiSpadOmmjNnjho0aHDZtQ3DUG5ursaMGaMFCxYoNzdX7dq108SJE2Wz2dSmTZuKPyAAAAAAAAAAAAAAAAAAALguFEoAAKjGSkpKtHbt2tISyZEjR1SzZk1FRUVp4sSJioqKUkhISLnu6e/vr7y8PHXv3l0zZsxQUFCQdu3aJbfbrVatWsnb2/uypRJvb28NGjSIaRdl1KNHj9L/NpvNkqQ1a9ZoyJAhpdfbtGmjJ554Qu+//75iYmIUGxsrwzC0c+dOde7c+YrvtclkUo0aNeTn56c//OEPiouLU6tWrSr2QAAAAAAAAAAAAAAAAAAAoFyZDMMwPB0CAABUngsXLmjx4sVyOBzKyMjQhQsX1LBhQ1mtVsXGxqpfv37lOv1j+vTpCggI0L333is/Pz9J0qpVq/TXv/5VoaGhys7O1smTJ+V2u+Xv768ZM2bozjvvLLf9q7P/LOacPHlSd911l6ZMmaLhw4eX3uNyuRQXF6c1a9bIarVqz549OnHihD777DP16tWrTGsDAAAAAAAAAAAAAAAAAICqh0IJAADVwNGjR7VgwQI5HA6tXr1aJSUl6tixY2mJpFOnTuVaDjAMQ8uXL9eLL76orVu3KiIiQkuWLFF4eLikn0oMY8aM0aZNmzRy5Ejdd999OnDggN577z3t379fn376qTp16lRueaqzn4sf06dP15QpU7R3715ZLJZLXsvOztbatWu1cuVK1a1bVxMmTFBAQICHkwMAAAAAAAAAAAAAAAAAgIpEoQQAgJuQYRjavn270tLS5HA49M0338jLy0v9+vWT1WrV8OHD1bhx4wrb3+l0atq0afrhhx80evRo9evXT9OmTdPjjz8us9ksSdqwYYOys7M1cODA0sklFy9eVEREhF544QU9//zzTMAoBy6XSxaLRV27dtW9996ryZMnS5L27NkjX1/f0pIPAAAAAAAAAAAAAAAAAACoXrw8HQAAAJSP4uJirVmzRmlpaUpLS9PRo0dVs2ZNRUdH6/e//72ioqIUHBxcKVm8vLwUExMjHx8fNWrUSDabTTNmzFBMTIxuvfVWSVLPnj0vKYy4XC7VrFlTrVq10rfffiuTyVQ6QQNX5nQ6NX/+fKWkpOjll19W9+7dSyeQSJLFYtGGDRtkMpkUFxenWbNmKTExUd9//70WLlxIoQQAAAAAAAAAAAAAAAAAgGqKQgkAAFXY+fPntWjRIqWlpSkjI0MXL15Uo0aNFBsbK6vVqr59+8rHx8cj2SIiIkr/+y9/+YtatmypjRs3atSoUZL0i6KIxWLRzp07dfToUQ0fPvyy9+B/nTlzRjNnztT06dN1/Phx9enTR5IuKZP8bNasWdq6das6d+4sk8mkCRMmKCEhwWO/GwAAAAAAAAAAAAAAAAAAwPNMhmEYng4BAADK7siRI0pLS5PD4dCaNWvkdDp1xx13lJZIbr/99huqiOF2u2U2mxUZGSlvb299+umnql27dunrx48fV40aNbR79269+uqrysvL02effXbJPfhfW7duVUpKimbPni2TyaQHHnhA8fHx6tix4xWfSUlJ0eeff66//vWvGjhwYOWFBQAAAAAAAAAAAAAAAAAANywKJQAA3OAMw9A333wjh8Mhh8Ohb7/9Vt7e3urfv7+sVquGDx+u2267zdMxr8jlcslisWj9+vW66667tHTpUkVGRpa+/te//lX//ve/dfToUcXFxemf//ynbrnlFg8mvvEUFxfLbrcrOTlZX375pRo3bqxnnnlGTzzxxGWLN4ZhXFIq+r9/BgAAAAAAAAAAAAAAAAAAoFACAMANqLi4WKtXr5bD4VBaWpqOHz+uWrVqKTo6WlarVUOGDFFwcLCnY5bZz4WGDh066I477tCLL76oVatWqXHjxmrZsqUWL16sBx98UEFBQZ6OekM5efKk3n77bc2YMUOnT59WZGSkxo0bp2HDhslisVxyb2ZmpubNm6dly5bp888/l7e3t4dSAwAAAAAAAAAAAAAAAACAqoBCCQAAN4js7GxlZGQoLS1NixYtUk5Ojho3biyr1Sqr1ao+ffrcsCUBt9utvLw8BQYGymw2X/Z1s9mslJQUjR8/Xt7e3qpdu7beffddRUdHeyDxjcswDG3atEnJycmy2+3y9fXVww8/rPj4eLVp0+aSe0+dOqW5c+fKbrdrzZo1MplM6t+/v6ZNm6bmzZszlQQAAAAAAAAAAAAAAAAAAFwRhRIAADzo8OHDpVNI1q5dK6fTqc6dO5eWSNq3b39DlwIKCgr0ySefaMqUKerZs6c++OCDy9534cIFxcfHa/bs2brzzjuVkJCg2NjYSk57YyssLNTs2bOVnJysbdu2KSIiQvHx8Xr00UcvmUZz4sQJzZ07V6mpqVq3bp0sFosiIyMVFxenESNGKCwszIOnAAAAAAAAAAAAAAAAAAAAVYWXpwMAAFCdGIahr7/+urREsmPHDvn4+GjAgAF68803NXz4cDVs2NDTMX/TuXPn9NZbbyk5OVlnz57VyJEj9fTTT1/xfsMwVL9+fS1ZskQDBgyoxKQ3vqNHj2r69OmaOXOmzp07p6ioKGVkZGjIkCGl016OHz+uOXPmyG63a8OGDbJYLBo0aJDeffddWa1W1a5d28OnAAAAAAAAAAAAAAAAAAAAVQ0TSgAAqGBFRUVatWpVaYnkxIkTCgkJUUxMjGJjYzVkyBDVrFnT0zHL5ODBg5o6daref/99SdJjjz2mCRMmKCIiwsPJqhbDMLRmzRolJydr/vz5CgoK0uOPP65nn3229L08evSo5syZo9TUVG3atEne3t4aPHiwbDabYmNjFRIS4uFTAAAAAAAAAAAAAAAAAACAqoxCCQAAFSArK0sZGRlyOBxavHixcnNzFR4eLqvVqtjYWPXu3Vve3t6ejllmW7ZsUVJSkubMmaPQ0FDFx8fr2WefVVhYmKejVSl5eXmaNWuWUlJStHPnTrVp00bx8fF66KGHFBQUpMOHD8tut8tut2vz5s3y8fHR0KFDFRcXp+HDh6tWrVqePgIAAAAAAAAAAAAAAAAAALhJUCgBAKCcHDx4UGlpaXI4HFq3bp1cLpe6du1aWiJp166dTCaTp2OWmdvtVkZGhhITE7V27VpFRERo0qRJevjhhxUQEODpeFXKwYMHNW3aNL3//vu6ePGiYmNjNW7cOPXv31+HDh2S3W5Xamqqtm7dKl9fX0VFRclms2nYsGFVZnoNAAAAAAAAAAAAAAAAAACoWiiUAABwjdxut7Zu3VpaItm5c6d8fHwUGRkpq9Wq4cOHq379+p6OedWKioo0a9YsTZkyRbt379add96phIQEWa1WWSwWT8erMtxut5YtW6bk5GRlZGQoJCRETz75pMaOHSun01laItm2bZv8/f0VHR2tuLg4xcTEqEaNGp6ODwAAAAAAAAAAAAAAAAAAbnIUSgAAuAqFhYVauXKl0tLSlJaWppMnTyo0NFQxMTGyWq0aPHhwlS0DZGdna/r06UpOTtbp06cVGxurhIQE9erVy9PRqpSLFy/qo48+UkpKivbt26fbb79d48aNU9euXbVgwQLZ7XZt375dAQEBiomJkc1mU1RUlIKCgjwdHQAAAAAAAAAAAAAAAAAAVCMUSgAA+A3nzp1Tenq6HA6HlixZory8PDVt2lRWq1VWq1W9evWSl5eXp2NesyNHjui1117Tu+++K6fTqUceeUQTJ05Uy5YtPR2tStmzZ49SUlL00UcfqaCgQKNGjdLw4cN18OBB2e12fffddwoMDNSwYcNKSyQBAQGejg0AAAAAAAAAAAAAAAAAAKopCiUAAFzGgQMH5HA45HA4tH79erndbnXv3l2xsbGyWq1q06aNTCaTp2Nel23btikxMVGpqakKDg7WM888o/j4eNWrV8/T0aoMl8uljIwMJScna9myZapbt65Gjhwpf39/LV26VLt27VKNGjU0fPhwxcXFaejQofL39/d0bAAAAAAAAAAAAAAAAAAAAAolAABIktvt1ldffVVaIvn+++/l6+urgQMHymq1atiwYbr11ls9HfO6GYahxYsXKykpSStXrlR4eLgmTpyoxx57TIGBgZ6OV2VkZ2frvffe01tvvaVDhw6pXbt2atasmXbv3q19+/apZs2aio2Nlc1m0+DBg+Xn5+fpyAAAAAAAAAAAAAAAAAAAAJegUAIAqLYKCgq0YsUKpaWlacGCBTp16pRq166tYcOGyWq1atCgQQoKCvJ0zHJRXFyszz//XElJSdq5c6e6du2qhIQEjRw5UhaLxdPxqozvvvtOycnJmjVrlpxOp1q2bKkLFy7o2LFjCg4O1ogRIxQXF6dBgwbJ19fX03EBAAAAAAAAAAAAAAAAAACuiEIJAKBaOXv2rNLT0+VwOLRkyRLl5+crIiJCVqtVVqtVPXr0kJeXl6djlpsLFy5oxowZeuONN3TixAkNGzZMkydPVt++fWUymTwdr0pwOp2aP3++UlJStGbNGgUFBcnHx0dZWVkKCQnRiBEjZLPZFBkZKR8fH0/HBQAAAAAAAAAAAAAAAAAAKBMKJQCAm97+/fvlcDiUlpamDRs2yDAM3XnnnYqNjZXValWrVq1uunLFsWPH9MYbb+idd95RUVGRHnzwQU2aNElt2rTxdLQq48yZM3rnnXf05ptvKjMzU76+vioqKlJoaKhGjhypuLg4DRgwQN7e3p6OCgAAAAAAAAAAAAAAAAAAcNUolAAAbjput1ubN28uLZHs3r1bfn5+GjRokGJjYzVs2DDdcsstno5ZIb799lslJSVp9uzZCgoK0tixYzVu3Djdeuutno5WZXz11Vd66aWXtGTJErndbhmGoVq1aumee+6RzWbTXXfdRYkEAAAAAAAAAAAAAAAAAABUeRRKAAA3hYKCAi1fvlwOh0MLFixQZmamwsLCNHz4cMXGxmrQoEEKDAz0dMwKYRiGli9frsTERC1btkyNGjXShAkT9MQTT6hGjRqejlclFBYW6l//+pfeeecdnTx5UpIUGBioe+65Rw8++KD69u0rLy8vD6cEAAAAAAAAAAAAAAAAAAAoP3wzEgBQZWVmZio9PV0Oh0NLly5VQUGBWrRooUceeUSxsbHq0aOHLBaLp2NWmJKSEv373/9WUlKStm/frk6dOumzzz6TzWaj/FAGbrdbaWlp+uc//6mtW7fK7XbLx8dHUVFRmjRpkvr163dT//4AAAAAAAAAAAAAAAAAAIDqjW+bAgCqlL179yotLU0Oh0MbN26UJPXo0UMvvfSSrFarWrZs6eGEFS8nJ0czZ87U66+/rmPHjmno0KFasWKF+vfvL5PJ5Ol4NzSXy6V169YpJSVF6enpKiwslMlkUrt27ZSQkKDRo0dTIgEAAAAAAAAAAAAAAAAAANWCyTAMw9MhAAC4EpfLpS+//LK0RLJ37175+/tr0KBBslqtGjZsmOrWrevpmJXixIkTeuONNzRjxgzl5eVp9OjRmjx5stq3b+/paDc0p9OpdevW6fPPP9cXX3yhixcvSpJq1aqlhx9+WC+99JJCQkI8nBIAAAAAAAAAAAAAAAAAAKByUSgBANxw8vPztWzZMjkcDi1cuFBnzpxRnTp1NHz4cFmtVg0cOFABAQGejllpdu7cqSlTpujTTz+Vv7+/xowZo/Hjx6thw4aejlYhDMO47kkrTqdTq1evlt1uV2pqqrKysmQ2m+V2u9WjRw+9+OKLioqKktlsLqfUAAAAAAAAAAAAAAAAAAAAVQuFEgDADeH06dNauHChHA6Hli1bpsLCQrVq1UqxsbGyWq3q3r27LBaLp2NWGsMwtHr1aiUmJmrRokVq2LChnn/+eT311FOqWbOmp+NViAsXLujAgQO64447run5kpISrVq1SqmpqZo7d66ysrIUEBCggoICBQQE6Mknn1R8fLwiIiLKOTkAAAAAAAAAAAAAAAAAAEDV4+XpAACA6skwDO3du1cOh0MOh0NffvmlTCaTevbsqb/97W+KjY1VixYtPB2z0jmdTtntdiUlJenrr79Whw4d9PHHH+vee++Vj4+Pp+NViO+++04TJkzQhg0b1LBhQ3Xs2FF/+tOf1KFDh998tri4WCtWrJDdbtf8+fOVlZWlsLCw0skjTZo0UXx8vB566CEFBQVV9FEAAAAAAAAAAAAAAAAAAACqDAolAIBK43K5tGnTptISyf79+xUQEKDBgwfr/fffV0xMjOrUqePpmB6Rm5ur999/X6+99poOHz6sgQMHasmSJRo0aJBMJpOn45Urt9tdWviQpGnTpslisWj//v367rvv9PLLL+uJJ57QggULdMstt8gwjEveA8MwtH//fr388styOBw6f/68GjdurIiICO3evVtZWVmKjY3VuHHj1L9//5vu/QMAAAAAAAAAAAAAAAAAACgPFEoAoIK4DUM5RU5lF5XofGGJzheVyOky5DYMmU0meVlMquXrrVp+3grx9VYNXy+Zb8Ivvufl5WnZsmVyOBxauHChzp49q3r16mn48OGaOnWqIiMj5e/v7+mYHnPq1CklJydr+vTpunjxou677z7NnTtXnTp18nS0cnX69Gl99NFHWr58udq3b6+BAwcqKipKu3bt0qJFi/TnP/9ZDRs2VMOGDdW+fXt17txZn332mSZOnHjZQojb7damTZsUFRWl48ePa/369crJydHYsWM1duxYNWnSpPIPCQAAAAAAAAAAAAAAAAAAUIWYDMMwPB0CAG4mucVOHTqfr0MX8uV0//QRa5J0uQ/b/7zuZTYpPDhA4bUCFORTtft+p06d0oIFC5SWlqbly5ersLBQbdq0UWxsrKxWq7p163bJhIrqaM+ePUpKStInn3wiHx8f/e53v9Nzzz2nRo0aeTpauSoqKtIrr7yiGTNmqFmzZoqMjNSuXbvkcDi0bNkytWrVSrfccov27t2r5s2by+VyyWKxaPTo0crNzdVrr72mZs2aXXbtqKgoLV68WLfffrvGjRun0aNHV+tyEgAAAAAAAAAAAAAAAAAAwNWo2t9YBoAbSFZBsb4/m6PM/OJfFEiu1Nz7z+tOt6EfsvO0PztPdQN81CashkL9fSoucDkyDEO7d++Ww+FQWlqaNm/eLJPJpN69e+vvf/+7YmNj1bx5c0/H9DjDMLR+/XolJiZqwYIFuvXWW/U///M/GjNmjGrVquXpeBXCx8dHYWFh+vDDDzVw4MDSaSMNGzbUpk2b1Lp1a9WpU0ebNm1S8+bN5XQ6ZbFYNGzYML3yyivas2ePmjVrJsMwLplU4nQ69eijj+rFF19Ur169LjvFBAAAAAAAAAAAAAAAAAAAAFfGhBIAuE4ut6Hd53K0LyvvipNIrtbP67QIDVTr2jVkMd94X5Z3Op3auHFjaYnkhx9+UGBgoIYMGaLY2FjFxMQoLCzM0zFvCC6XS/PmzVNiYqK2bNmitm3bavLkybr//vvl6+vr6XgV7uLFi6pZs2bpn3NycjR48GD94x//UNeuXXX//ffL5XJp0aJFKikpkbe3tzIzM9WxY0dNmTJF999//y/W/L8FEwAAAAAAAAAAAAAAAAAAAFwdJpQAwHXILizRlhPZyitxSSqfMsl/rrMvK08/5hSqW/0Qhfh5l9Pq1y43N1dLly6Vw+FQenq6zp07p1tuuUWxsbF6/fXXFRkZKT8/P0/HvGHk5+frgw8+0NSpU3Xw4EH169dP6enpioqKqlZliJ/LJMePH9cLL7yghQsXqn79+vr+++/VrVs3xcbG6rnnnlNubq6CgoJkGIbq1q0rwzCUl5cnSXK73TKbzaVrVqf3DwAAAAAAAAAAAAAAAAAAoCJQKAGAa5SZV6SNP2apouc85Ze4tOboWfVsEKq6gZU/zeLkyZNasGCBHA6HVqxYoaKiIrVt21ZjxoxRbGysunbteskX/SFlZmZq2rRpmjZtmrKzs2Wz2fTFF1+oS5cuno7mUadOnVJhYaFee+01FRcX669//at27NihJ554Qrfddpv+/ve/649//KOCgoK0evVqGYah0NBQSeJ3DAAAAAAAAAAAAAAAAAAAoJyZDKOivwoNADefzLwibTieVW4TScrCJKlXw4ovlRiGoV27diktLU0Oh0NbtmyR2WxWnz59ZLVaFRsbq2bNmlVohqpq//79mjJlij766COZzWY9+eSTev755xUeHu7paDekefPm6S9/+YuSk5N15swZPffcc7r99tt1991367333lOTJk00e/ZsT8cEAAAAAAAAAAAAAAAAAAC4KTGhBACuUnZhyU+TSSp5X0PSxh+zdFejMIX4eZfr2k6nU+vXr5fD4VBaWpoOHjyowMBADR06VPHx8YqOjlbt2rXLdc+bycaNG5WUlKT58+erbt26+uMf/6ixY8eWTteobgzDkMlkuuLrLpdLFotFJpNJP/zwg2rVqqU+ffqoXr16mjlzpt5++20NGjRIzz//fOWFBgAAAAAAAAAAAAAAAAAAqGaYUAIAV8HlNrT88Bnll7gqvVDysyBviyKb1JHFfOUv7JdFTk6OlixZorS0NKWnpysrK0u33nqrYmNjZbVa1b9/f/n5+ZVT6puP2+1WWlqaEhMTtXHjRrVs2VKTJ0/Wgw8+WC3ft6ysLDkcDn3zzTd68803r3jfz2WTH374QS+99JLcbrdmzpypwMBASVJxcbF8fHwqKzYAAAAAAAAAAAAAAAAAAEC1xYQSALgKu8/lKK/E5dEMuSUu7T6Xo3Z1av7itePHj+vhhx/Wiy++qMjIyF+8fuLECaWlpcnhcGjlypUqLi5W+/bt9cwzzyg2NladO3eW2WyujGNUWQUFBfr44481ZcoU7d+/X3369FFaWppiYmKq3Xt39uxZzZ8/X3a7XStWrJDL5VLv3r2Vk5OjGjVq/OL+Dz/8UDt37tTXX3+t7du3q0ePHkpMTCwtk0iiTAIAAAAAAAAAAAAAAAAAAFBJKJQAQBllFRRrX1aep2NIkvZl5al+kJ9C/f/3y/cHDx7UXXfdpePHjys4OFiRkZEyDEM7d+6Uw+GQw+HQ1q1bZbFY1LdvX7366qsaPny4mjZt6sGTVB1nz57VW2+9pZSUFJ09e1YjR47UJ598ou7du3s6WqU6c+aM5s2bJ7vdrpUrV8owDPXt21evv/66Ro4cqVtvvfWKz/bs2VPLly/XoEGD9OGHH6px48aVmBwAAAAAAAAAAAAAAAAAAAD/yWQYhuHpEABQFaw/dk5n8ot1I3xomiTVCfBR79tqS5J2796tfv366dy5c3K5XPLx8dFTTz2ljIwMHTp0SEFBQYqKipLValVUVJRCQ0M9e4Aq5ODBg5o6daref/99SdJjjz2miRMnqlmzZhW2p9swlFPkVHZRic4Xluh8UYmcLkNuw5DZZJKXxaRavt6q5eetEF9v1fD1ktlkqrA8p0+f1ty5c2W327V69WpJUr9+/WSz2XT33XerXr16l9xvGIZMFZgHAAAAAAAAAAAAAAAAAAAA149CCQCUQW6xU0sPnfF0jF8YHF5HP3y/U/3799fFixfldrtLX6tdu7buueceWa1W9evXT76+vh5MWvVs2bJFiYmJmjt3rkJDQzVu3Dg988wzCgsLq7A9c4udOnQ+X4cu5Mvp/umvZ5N02RLTf173MpsUHhyg8FoBCvIpn+FjJ0+eLC2RrF27ViaTSQMGDFBcXJzuvvtu1alT5xfPFBYWavbs2UpOTlZaWpoaNGhQLlkAAAAAAAAAAAAAAAAAAABQ/srnW6cAcJM7dD7/il/s/087N2/UXx6Ju+xr/5y9QC06dpYkud1uLfv3LC2d/bFOHT0sX/8ANW3TXnFjn1erO7qWKZNJ0uoduzXizi5yuVyXvGaxWDRy5Ei99dZbZVoLP3G73UpPT1dSUpLWrl2riIgITZs2TY888oj8/f0rbN+sgmJ9fzZHmfnFv/g9u9Lv3H9ed7oN/ZCdp/3Zeaob4KM2YTUU6u9z1Tl+/PFHzZ07V6mpqVq/fr0sFosiIyP1zjvvyGq1XrFMc/ToUU2fPl0zZ87UuXPnFBUVpeLiYiaVAAAAAAAAAAAAAAAAAAAA3MCYUAIAv8FtGFr4w+nSiRG/5udCSfRDTyiifcdLXuvUp59qhtSWJH34r79qwYcz1Dd2lFp37q78nAta+sUsnT35o/7xmUPNO3QqUzbD6dRjPdspNydHP3+ce3l5yel0KiwsTJmZmXyhvwwKCwv16aefasqUKdq9e7d69OihhIQExcbGymKxVNi+Lreh3edytC8rr0yFpbL4eZ0WoYFqXbuGLOZf//kfO3ZMc+bMkd1u14YNG+Tt7a1BgwYpLi5OVqtVoaGhl33OMAytWbNGycnJmj9/voKCgvT444/r2WefVURERDmcBAAAAAAAAAAAAAAAAAAAABWJCSUA8BtyipxlKpP8pzadu6vH0GGXfc3ldGrJ7I/UY8gwPfdqcun1HkOH65mBd2rtgrllLpSYvLx0LPOs/OTW/v37tWvXLu3atUs7d+4UfcHflp2drenTp+vNN99UZmamrFarZs6cqV69elX83oUl2nIiW3klP02XKa+f1s/r7MvK0485hepWP0Qhft6X3HPkyBHNmTNHqamp+vLLL+Xj46PBgwfro48+0vDhwxUSEnLF9fPy8jRr1iylpKRo586datOmjVJSUvTQQw8pKCionE4BAAAAAAAAAAAAAAAAAACAikahBAB+Q3ZRyTU9V5CbKx8/P1m8Lv2odTpLVFxYqODaYZdcDw4Nk9lslo+f31Xtc76wRI2DA9SuXTu1a9fumrJWN4cPH9Zrr72m9957T06nU4888ogmTpyoli1bVsr+mXlF2vhjliq685Nf4tKao2fVs0Go8jJPyG63y263a8uWLfL19dWQIUP0ySefaPjw4QoODv7VtQ4ePKhp06bp/fff18WLFxUbG6s33nhD/fv3ZwoOAAAAAAAAAAAAAAAAAABAFUShBAB+w/nCEpl0dRMkUv57ggrz82S2WNS6c3c9nPAnRbS/XZLk6+ev5rffodXz/62Wnbqodeduysu5KPtbryuwZrAG3fNgmfcx6adJF41/vQuA/2/btm1KTExUamqqgoODNXHiRMXHx6tu3bqVliEzr0gbjmeV20SSX2NIcrvdWnM4U39/6hHt++YrRUVF6dNPP9WwYcNUs2ZNSVJ+fr4ef/xxPf300+rWrVvp8263W8uWLVNycrIyMjIUEhKi3/3udxo7dqyaNGlSCScAAAAAAAAAAAAAAAAAAABARTEZRkX/++gAULWtPnpWWQVlm1KyZ9tXWvDhO7rjrgGqGRKqYz/sU9r7b6uooED/+Nyhpm3aS5JOHjmkqROe1sHvvyt9tt5tjfXijE/UoGnEVeWr7e+tuxqF/faN1ZRhGFq8eLESExO1atUqhYeHa+LEiXrssccUGBhYqVmyC0u05uhZuSv5b1632y2TDN1ZN0gNatf6xWujRo3S/Pnz1b9/f61cuVIXL17URx99pJSUFO3bt0+33367xo0bp9GjR8vf379ywwMAAAAAAAAAAAAAAAAAAKBCUCgBgN+w/NAZXSx2XvPzJ48c0kRrpNp0uVN/evczSdL5s2f0ceLf5B8YpA49+ij7bKbmzUyRr5+//v7pPNUMqV3m9Wv6eGlgeJ1rznezKi4u1meffaYpU6Zo586d6tq1qxISEjRy5EhZLJZKz+NyG1p++IzyS1yVMp3kcoK8LYpsUkcWs6n02h/+8Ae9+uqrpX++//77tWDBAhUUFGjUqFEaN26cevXqJZPJdLklAQAAAAAAAAAAAAAAAAAAUEV5eToAANzo3NfZu7u1cbi6DhiizcsWyeVySYahvz52r9p266En//SP0vs69OijCcP7y/HedD00+Y+Vlu9mc+HCBc2YMUNvvPGGTpw4oWHDhmnatGnq06ePR0sRu8/lKK/E5bH9JSm3xKXd53LUrk5NSdJ77713SZlEkubNm6eEhASNGTNGDRo08ERMAAAAAAAAAAAAAAAAAAAAVAIKJQDwG8zlUEIIu7W+nCXFKirI14Gd3+ro/j169L/+csk99Zs0VYOmzbVn21eVnu9mcOzYMb3++uuaOXOmioqK9OCDD2rSpElq06aNp6Mpq6BY+7LyPB1DkrQvK0/1g/y0bukiPfXUU7943WQyafLkyapZs6YH0gEAAAAAAAAAAAAAAAAAAKCymD0dAABudF6W6y9snD52VD6+fvILCNT5s2ckSW63+xf3uZwlP00xuQre5ZCvKvv222/10EMPqWnTpnr//fcVHx+vw4cP67333rshyiSS9P3ZHN0oPyWTfspjs9lkGIZMJpO8vLzk7e0ts9msgoICzZo1y9MxAQAAAAAAAAAAAAAAAAAAUMGYUAIAv6GWr7eyC0pklOHeC1nnFBxa+5Jrh/fs0tZVS9WpT3+ZzWbVb9JMkrQ+3aFOffqX3ndw1w6dOHRAA+95sMzZTJKCfb3LfP/NwjAMLV++XImJiVq2bJkaN26spKQkPf7446pRo4an410it9ipzPziMt9/cNcOfZEyRXu2faXiokLVu62xBtkeUMzDT5beU1JcrLT339ZqR6rO/HhcATVqqFm72/X0X19R7Vvq/+r6hqTM/GJ9+NlsnTp6WG63WxcuXND58+dL/9eiRYtrPS4AAAAAAAAAAAAAAAAAAACqCAolAPAbavl5l6lMIklTJzwtHz8/tezURcGhYTp+YJ+W/XuWfPz89eCkFyVJzdp10O09+2r1/H+rIC9Ht/e6S9mZp7Xo0w/k4+enYf9RHPgthqQQv+pTKCkpKdEXX3yhpKQkffvtt+rUqZM+++wz2Ww2eXndmH+lHTqfL5NUpt+h7etX659jH1V4m3aKG/u8/AICderYYZ07fbL0HmdJiV5++iHt/WarBtoeUOOWrZV34YL27fhGeTk5qn3Lb+9jktS+70CNrlvzWo8FAAAAAAAAAAAAAAAAAACAKs5kGEZZvycNANXShcISrThytkz3pn/8rtYtnKeTRw6rIC9HNUNqq32P3rrn2Ym6tXF46X1FhQVKe/9trc9wKPP4UXl5+6h15266/7nfK7x1u6vKF9kk7KafUnLx4kXNnDlTr7/+uo4fP66hQ4cqISFB/fv3l8lk8nS8K3Ibhhb+cFpO92//VZufm6NxQ3urZacumvzGTJnN5sveN//dafr8jVf190/nq3mHTteczcts0rCIejLfwO8fAAAAAAAAAAAAAAAAAAAAKg6FEgD4DVdTCqhsN3sp4Mcff9Sbb76pGTNmKD8/X6NHj9akSZPUvn17T0crk6spIy2Z/bHeeem/9Eb6GjVs1lyF+fny8fO7pFjidrs1pl8XtercVZNemyGX0ylnSbF8/QOuKV91KCMBAAAAAAAAAAAAAAAAAADg8i7/z58DAEqZTSaFBwfoRqtsmCSFBwfclGWSnTt36tFHH1V4eLjefvtt/e53v9OhQ4f04YcfVpkyiSRlF5WU+d4dG9cpIKiGzp0+qXFDe+uBOyL0UJcWmvHSf6m4qFCSdPyHfcrKPKXGLdto+p8SNLpThEZ3itCE2Eh99+WGq853vrDs+QAAAAAAAAAAAAAAAAAAAHBzoVACAGUQXitAN9p8EkM/5bpZGIahVatWKTo6Wu3bt9eKFSv0z3/+U8eOHdOrr76qBg0aeDpimblcLq1du1YLlq6Us6RspY2TRw7J5XLqlWcfU8fe/ZTw5rsaMPI+LZ39sVJemFB6jyQt/PAd7dqySWP++oqeffk1lRQV6e9PPaDDe78vc0aTpGwKJQAAAAAAAAAAAAAAAAAAANWWl6cDAEBVEOTjpboBPjqTX3xDFEtMkuoE+CjIp+p/jDudTtntdiUmJmrbtm3q0KGDPv74Y913333y9vb2dLwyc7lcWrdunex2u+bMmaNTp07p1dQMeZXxDIX5eSoqKNDg+x7WE3/8uyTpzsHRcpaUaOkXn+i+8QkqyM+TJBXk5Slp3lKF3fpTyab9nb0UP6SXHO++pecSU8q0nyHpwlVMUAEAAAAAAAAAAAAAAAAAAMDNhQklAFBGbcJq3BBlEumnMkCbsBqejnFdcnNz9cYbbygiIkL333+/QkNDtWTJEm3fvl0PPfRQlSiTOJ1OrVy5UmPHjlX9+vXVv39/paWl6f7779eGDRvUsXPnMq/l4+cnSeodM+KS672H3S1J2rf9a/n6/nRPqzu6lpZJJKlO/YZqdUc37flm61XlL3HdKL/RAAAAAAAAAAAAAAAAAAAAqGxV/5+2B4BKEurvoxahgdqXlefpKGoRGqhQfx9Px7gmp06dUnJysqZPn66LFy/qvvvu0/z589WxY0dPRysTp9OpVatWyW63a968eTpz5owaN26shx56SDabTV27dpXZ/FNfc+nBzDKvG1qnno7t36tatcMuuR5cu7YkKffiBd3SqMn/vxb2fx9XcO3aOrR751WdxW1QKAEAAAAAAAAAAAAAAAAAAKiuKJQAwFVoXbuGfswpVH6JyyPTSkySAr0tal276k0n2b17t6ZMmaJPPvlEPj4++t3vfqfnnntOjRo18nS031RSUqKVK1cqNTVV8+fP17lz5xQeHq5HH31UNptNXbp0kclk+sVz5stcu5KmbTvo241rlZV5Sg2aRpRez848LUkKDglV4xat5eXtrazMU794PivztGqG1L6qc11NPgAAAAAAAAAAAAAAAAAAANxczJ4OAABVicVsUrf6IfLU9/BNJqlr/RBZzFWjCGAYhtauXavY2Fi1adNGGRkZ+p//+R8dO3ZMU6ZMuaHLJMXFxcrIyNDjjz+uevXqaejQoVq9erWeeuopbd26VQcOHNCrr76qrl27XrZMIklelrL/nHpGDZckrbB/fsn15amfyeLlpbbdeso/KEid+g7Q3m+26vjB/aX3HD+wX3u/2arbe/W5qjN6X0U+AAAAAAAAAAAAAAAAAAAA3FyYUAIAVynEz1s9G4Rq3dGzPxUJKqldYpLUs0GoQvy8K2W/6+FyuTR37lwlJSVpy5Ytatu2rT744AONHj1aPj4+no53RUVFRVq2bJlSU1PlcDh04cIFNW/eXGPHjpXNZtPtt99+xfLI5dTy9VZ2QUmZptk0bdNeA0bdp5VzZsvlcqpt1x7auWWTNi1eoJG/G6fQerdIkh6Y8IK+27ReLz1yj6IfelySlPHJ+woKrqWRY8aXOZtJUrDvjf+7BAAAAAAAAAAAAAAAAAAAgIphMgyjLN9zBQD8hzfffFPvzbbrz+99JrPZUqbCwPUwm34qk9QN9K3gna5Pfn6+PvjgA02dOlUHDx5U//79NXnyZEVFRV1VEaMyFRYWasmSJbLb7UpLS9PFixfVqlUr2Ww2xcXFqX379tec/btjp7Q/z13m0pGzpERzZ7yplXO/UPaZ0wqr31BRox/VsEeeuuS+g7t26JMp/9C+7V/LZDKr3Z299HDCn1S/SdOrytf5lmA1Dg64qmcAAAAAAAAAAAAAAAAAAABwc6BQAgBXac6cObLZbJo4caJe/Ps/teVEtvJKXBW2X5C3RV3rh9zQk0kyMzOVkpKit956S9nZ2bLZbJo8ebK6dOni6WiXVVBQoMWLFys1NVULFixQbm6u2rZtq7i4ONlsNrVt2/aa1nW73dq6dasyMjKUkZGhzAu5mpq2opzTl5/IJmFMKQEAAAAAAAAAAAAAAAAAAKimKJQAwFVYt26dBg0apLvvvluffvqpzGazXG5Du8/laF9WnkxSuUwr+XmdFqGBal27hizmG3O6x759+zR16lR99NFHMpvNevLJJ/X8888rPDzc09F+IT8/XxkZGbLb7Vq4cKHy8vLUvn370kkkrVu3vqZ1s7OztXTpUmVkZGjRokU6c+aMgoODNWTIEEVHx6jWnYNUcXWja+dlNmlYRD2Zb9DJMQAAAAAAAAAAAAAAAAAAAKhYFEoAoIx2796tXr166fbbb9fixYvl6+t7yetZBcX6/myOMvOLr7lY8vNzdQN81CashkL9fcohefnbuHGjEhMT5XA4VLduXY0fP15PP/20QkNDPR3tEnl5eUpPT1dqaqoyMjKUn5+vjh07Ki4uTnFxcWrZsuVVr2kYhr777jtlZGQoPT1dmzZtksvlUvv27RUdHa2YmBj16NFDXl5ekqTvMi/qh+y8cikalReTpIiQQLWvW9PTUQAAAAAAAAAAAAAAAAAAAOAhFEoAoAxOnDihHj16qGbNmlq3bp1q1ap1xXtzi506dD5fhy7ky+n+6SP2SgWT/7zuZTYpPDhA4bUCFOTjVc4nuH4ul0tpaWlKTEzUpk2b1LJlS02ePFkPPvig/Pz8PB2vVE5OTmmJZNGiRSooKNAdd9whm82mUaNGqXnz5le9Zm5urlasWKH09HRlZGToxx9/VGBgoAYOHKjo6GhFRUXptttuu/yzxU4tPXTmeo9V7gaH17khf88AAAAAAAAAAAAAAAAAAABQOSiUAMBvuHjxovr27atz585p06ZNatiwYZmecxuGcoqdOl9YouzCEl0oKlGJy5DbMGQ2meRtMSnY11shft6q5eetGj5eMptMFXyaq1dQUKCPP/5YU6ZM0f79+9WnTx8lJCQoJiZGZrPZ0/Ek/fQzWrBggex2uxYvXqzCwkJ17dq1dBJJ06ZNr2o9wzC0b98+ZWRkKCMjQ2vXrlVxcbFatGih6OhoRUdHq2/fvr+YUnMl64+d05n84htiSolJUp0AH/W+rbanowAAAAAAAAAAAAAAAAAAAMCDKJQAwK8oLi5WTEyMvvrqK61fv17t2rXzdKRKc/bsWb311ltKSUnRuXPnNHLkSE2ePFndu3f3dDRJ0vnz57VgwQKlpqZqyZIlKi4uVvfu3UsnkTRp0uSq1isoKNCaNWtKSyQHDhyQr6+v+vXrV1oiiYiIuKasWQXFWn303DU9WxH6NaqtUH8fT8cAAAAAAAAAAAAAAAAAAACAB3l5OgAA3KgMw9ATTzyhtWvXasmSJdWmTHLgwAFNnTpVH3zwgSTpscce08SJE9WsWTMPJ5Oys7PlcDhkt9u1dOlSlZSUqEePHvrXv/6lUaNGqVGjRle13pEjR0oLJCtWrFBBQYEaNWqkmJgYRUdHq3///goMDLzu3KH+PmoRGqh9WXnXvdb1ahEaSJkEAAAAAAAAAAAAAAAAAAAATCgBgCt54YUX9K9//Uuff/657rvvPk/HqXCbN29WUlKS5s6dq9DQUI0bN07PPPOMwsLCPJrr3LlzcjgcSk1N1fLly+VyudSrVy/FxcVp1KhRatiwYZnXKikp0fr160tLJN9//728vLzUu3fv0ikkbdq0kclkKvdzuNyGlh8+o/wSlzzxF69JUqC3RZFN6shiLv/zAQAAAAAAAAAAAAAAAAAAoGqhUAIAl/H5559r9OjRSkpK0qRJkzwdp8K43W6lp6crMTFR69atU0REhCZNmqRHHnlE/v7+Hst19uxZzZs3T3a7XStXrpTL5VKfPn1ks9k0cuRI1a9fv8xrnTx5UosWLVJGRoaWLl2qnJwc1atXr7RAMmjQIAUHB1fgaf5XdmGJ1hw9K7cH/uY1m6S7GoUpxM+78jcHAAAAAAAAAAAAAAAAAADADYdCCQD8H263W7m5ufrwww81bty4CplW4WmFhYWaNWuWpkyZoj179qhHjx5KSEhQbGysLBaLRzJlZmaWlkhWrVolwzB01113KS4uTiNHjtQtt9xSpnVcLpe2bNmijIwMpaen65tvvpHJZFL37t0VHR2tmJgYdezYUWazuYJPdHmZeUXacDyrUqeUmCT1ahiquoG+lbgrAAAAAAAAAAAAAAAAAAAAbmQUSgBUW4ZhXLEs4nK5ZDabb7oySVZWlt5++229+eabyszMlNVqVUJCgnr27OmRPKdOndK8efOUmpqqNWvWSJL69+8vm82mESNGqF69emVa59y5c1qyZInS09O1ePFiZWVlKTQ0VEOHDlV0dLSGDBmisLCwijzKVcnMK9LGH7NkGKrwYonZJPVsQJkEAAAAAAAAAAAAAAAAAAAAl6JQAqDaOXDggJo1a+bpGJXq8OHDeu211/Tee+/J6XTq0Ucf1YQJE9SyZctKz3LixAnNnTtXdrtda9euldlsVmRkpOLi4jRixAjVqVPnN9cwDEPffPONMjIylJGRoc2bN8vtdqtTp06Kjo5WdHS0unfv7rFpK2WRXViiLSeylVfiqrA9grwt6lo/RCF+3hW2BwAAAAAAAAAAAAAAAAAAAKomCiUAqpWlS5fqD3/4g+x2e7UolXz99ddKTExUamqqatWqpWeffVbx8fGqW7dupeY4fvy45s6dq9TUVG3YsEEWi0UDBw6UzWaT1WpV7dq1f3ONCxcuaPny5crIyNCiRYt08uRJ1ahRQ4MGDVJ0dLSioqJUv379SjhN+XG5De0+l6N9WXkyqXymlfy8TovQQLWuXUMW8801ZQcAAAAAAAAAAAAAAAAAAADlg0IJgGpj165duv322/Xyyy/r97///SWvGYYhk+nm+OK9YRhavHixEhMTtWrVKjVt2lQTJ07Uo48+qsDAwErLcezYMdntdtntdm3cuFHe3t4aPHiw4uLiZLVaFRIS8qvPG4ah3bt3KyMjQ+np6Vq/fr2cTqdat26t6OhoxcTEqFevXvLx8amkE1WcrIJifX82R5n5xddcLPn5uboBPmoTVkOh/lX/fQEAAAAAAAAAAAAAAAAAAEDFoVACoFrIyspSRESEnn76ab388svKz8/Xrl27dPDgQUVERKhz586ejnjdiouL9dlnnykpKUm7du1S165dlZCQoJEjR8pisVRKhsOHD2vOnDlKTU3V5s2b5ePjoyFDhshms2n48OGqVavWrz6fn5+vVatWKT09XRkZGTpy5Ij8/f01YMCA0ikk4eHhlXIWT8gtdurQ+XwdupAvp/unv56vVDD5z+teZpPCgwMUXitAQT5elZQWAAAAAAAAAAAAAAAAAAAAVRmFEgDVwpAhQ7Rz507t2bNHNWrU0N133639+/fr7NmzOnPmjJ555hn95S9/UVhYmKejXrXz589rxowZevPNN3XixAkNGzZMCQkJ6tOnT6VMXTl48GDpJJKvvvpKvr6+Gjp0aGmJpGbNmr/6/IEDB5SRkaGMjAytWrVKRUVFCg8PV0xMjKKjo9WvXz/5+/tX+DluJG7DUE6xU+cLS5RdWKILRSUqcRlyG4bMJpO8LSYF+3orxM9btfy8VcPHS+abZMIOAAAAAAAAAAAAAAAAAAAAKgf/jDmAauHOO+9Udna2/vjHP2rr1q3y9/fXzJkz1ahRI23btk333HOPfHx8NGXKFE9HLbNjx47p9ddf18yZM1VUVKSHHnpIkyZNUuvWrSs1x4MPPqhvvvlG0dHRmjBhgoYNG6YaNWpc8f6ioiKtW7eutESyd+9eeXt7q2/fvnr55ZcVExOjFi1aVEoZ5kZlNv1UGAn29VbjYE+nAQAAAAAAAAAAAAAAAAAAwM2ICSUAbmqHDh1SeHi4JOntt9/W1KlTFRoaqk8++UTNmzcvve+tt97SSy+9pG+++Ub169e/ocsM27dvV1JSkr744gsFBQVp7NixGjdunG699dZy38vlcsliscgwjMu+Jy6XS3v37lWjRo0UFBR0xXWOHz9eWiBZvny58vLy1KBBA0VHRys6OlqRkZG/WkIBAAAAAAAAAAAAAAAAAAAAUL6YUALgpvXHP/5Ra9as0e9//3sNHz5cTz/9tBo1aqQjR46oYcOGl9zr6+ur2267TTVr1rwhyySGYWjZsmVKTEzU8uXL1bhxYyUlJemJJ5741SLH1e5hMpm0cuVKJSYm6ujRo4qKitLo0aN1xx13yO12y2w2X/KMxWJRmzZtfrGW0+nUpk2bSkskO3bskNlsVs+ePfXiiy8qOjpaHTp0uCHfawAAAAAAAAAAAAAAAAAAAKA6YEIJgJtSdna2+vbtK7fbrVatWslms+m+++6TJF28eFE1a9a8ZOrGxIkTtX//ftntdvn6+noy+iVKSkr0xRdfKCkpSd9++63uuOMOJSQkKC4uTl5e5d8J3Lt3r2w2m/r06aOuXbvq3Xff1YEDB7Rlyxbddtttv/psZmamFi9erIyMDC1ZskTnz59XWFiYoqKiFB0drcGDBys0NLTcMwMAAAAAAAAAAAAAAAAAAAC4ehRKANy0nnrqKVksFh05ckT5+fkaPXq0xowZoxMnTqh+/fqSpKNHj2rOnDn685//rC+//FJt27b1cOqfXLx4UTNnztTrr7+u48ePKyoqSpMnT1b//v2ve6pHSUmJHA6H5s2bJ5PJJKvVqrvvvlteXl4aP3681q9frxUrVigkJEQul0utWrXS0KFD9T//8z8KCQn5xXqGYegf//iH/vznP8swDHXp0kXR0dGKiYlR586dZbFYrisvAAAAAAAAAAAAAAAAAAAAgPJn9nQAAChvP/fkGjRooCZNmuiTTz5R7dq1NXv2bD377LNq2LChdu3apRMnTuiVV15RUlKS5s6de0OUSX788Uf94Q9/0G233aYXXnhBkZGR+u6775SRkaEBAwZcd5lk3rx56tq1q1588UXVqlVLderU0b333qukpCRJ0rZt2zRgwACFhITI6XTKYrHo6aef1qZNm7R9+3ZJ//v+/szlcmnQoEH64IMPdOrUKX311Vf661//qm7dulEmAQAAAAAAAAAAAAAAAAAAAG5QTCgBcNPasmWL/vGPf8jhcEiS4uLilJ6ers6dO2vevHmqU6eOduzYocLCQnXr1s2jWXfu3KmkpCR99tln8vf319NPP63x48erQYMG5brP5s2bdejQIQ0ZMqR02sjzzz+vTZs2afXq1XrssceUm5urhQsXqqioSL6+vtq9e7fuvfdePf7443r++efLNQ8AAAAAAAAAAAAAAAAAAAAAz2BCCYCbVkhIiL799ludPXtWkrRp0yY1a9ZMhYWFeuWVV/TDDz+oQ4cOHiuTGIahlStXKioqSu3bt9eKFSv0z3/+U8eOHdMrr7xS7mUSSercubPuueee0jKJJJWUlKh9+/by9fVVhw4dtGXLFkmSr6+vJKl169YKDAzU8ePHVVRUVO6ZAAAAAAAAAAAAAAAAAAAAAFQ+CiUAblrNmzfXwIEDdfjwYXXp0kVdunTRN998o1GjRumLL77Qd99955FcTqdTn3/+ubp06aLIyEidOHFCn3zyiQ4ePKhJkyapZs2a17W+YRjavHmzfvzxR7nd7kte8/LyktlsVn5+vv72t7+pY8eO+uyzz9S1a1fl5eWpe/fuunjxorZt2ybpp7KJJNWtW1cnT54sLZkAAAAAAAAAAAAAAAAAAAAAqNoolAC4qfn4+Khbt26yWCx655135O3trRdeeEEff/yx7r777krNkpubqzfeeEMREREaPXq0ateurSVLlmj79u168MEH5e3tfc1ru91ubdy4URMnTlTjxo115513avbs2TIM44pZdu/erREjRuhvf/ub/vWvf+nZZ5+Vt7e3+vbtq6lTp0qSvL29VVJSovz8/NJyyv8tqQAAAAAAAAAAAAAAAAAAAACoekzGlb5tDAA3gWPHjundd9/Vww8/rGbNmsntdstsrtwu3cmTJ5WcnKzp06crJydH9913nyZPnqyOHTte17o/l0hSU1M1Z84c/fjjj6pXr55GjRolm82mPn36yGKxlGmtzZs365lnntFTTz2lli1bauTIkXrooYf0xz/+UYsXL9Y//vEPzZw5U3379r2uzAAAAAAAAAAAAAAAAAAAAABuDF6eDgAAFem2227TH//4x9LpH5VZJtm9e7eSkpI0a9Ys+fj46He/+52ee+45NWrU6JrXdLlcWr9+vex2u+bMmaOTJ0+qfv36GjVqlOLi4tSrV6/SEklJSYncbvevTj75uWBTt25dHTlyRMHBwerfv78SExP1zjvv6Pbbb1dhYaEmT56sXr16XXNuAAAAAAAAAAAAAAAAAAAAADcWJpQAuOl4YgrJzwzD0Lp165SYmKiFCxfq1ltv1XPPPacxY8aoVq1a17Sm0+nUunXrlJqaqrlz5+r06dNq0KCB4uLiZLPZ1KNHj9Lznjx5UosXL1Z6erqWLVumlJQU3XfffZctlbhcLlksFl24cEFJSUlasGCBUlNT1bx5c0nS0aNHVVBQoJYtW17z+wEAAAAAAAAAAAAAAAAAAADgxsSEEgA3jR9++EGvvPKKpk+fLpPJJJPJVGl7u1wuzZ07V4mJifrqq6/Utm1bffDBBxo9erR8fHyuej2n06nVq1fLbrdr7ty5OnPmjBo1aqQHHnhAcXFx6t69u8xms1wulzZv3qyMjAxlZGRo27ZtMplM6t69e+lUkcuVSdLT07VmzRodOnRImzZtUlhYmF555ZXSMomk65qkAgAAAAAAAAAAAAAAAAAAAODGxoQSADeFzMxM9ezZUxaLRVu2bFFwcHCl7JuXl6cPPvhAU6dO1aFDh9S/f38lJCRo6NChV11oKSkp0apVq2S32zVv3jydPXtWTZo0KZ1E0rVrV5lMJp07d05LlixRRkaGFi9erHPnzikkJERDhw5VdHS0hg4dqrCwsF/d6/jx40pISFD9+vU1YsQI9enT53reBgAAAAAAAAAAAAAAAAAAAABVDIUSAFWSYRilhY28vDz1799fR48e1aZNmxQeHl7h+2dmZiolJUXTpk3T+fPndc8992jy5Mnq3LnzVa1TXFyslStXKjU1VfPnz1dWVpaaNm1aWiL5eb3t27eXTiH58ssv5Xa71bFjR8XExCg6OlrdunWTlxdDpwAAAAAAAAAAAAAAAAAAAACUDYUSAFXOmjVrZLPZ9PHHH2vgwIEaMWKEVq9erTVr1lx1oeNq7du3T1OmTNFHH30kLy8vPfHEE5owYYKaNGlS5jWKi4u1bNky2e12zZ8/X+fPn1dERIRsNpvi4uLUqVMn5eTkaPny5UpPT9eiRYt08uRJ1ahRQ4MGDSqdQtKgQYOKOygAAAAAAAAAAAAAAAAAAACAmxqFEgBVzrPPPqu33npLZrNZvXv31saNG7VgwQINHTq0wvbcsGGDkpKS5HA4VLduXY0fP15PP/20QkNDy/R8YWGhli1bptTUVKWlpenChQtq0aKFbDabbDab2rdvr7179yo9PV0ZGRlat26dnE6nWrdurejoaEVHR6t3797y8fGpsDMCAAAAAAAAAAAAAAAAAAAAqD4olACocsLDw3X48OHSP999992aM2eOTCZTue7jcrmUlpamxMREbdq0Sa1atdKkSZP04IMPys/P7zefLygo0JIlS2S325WWlqacnBy1bt26dBJJ06ZNtXr1amVkZCgjI0OHDx+Wn5+fBgwYoJiYGEVFRSk8PLxczwQAAAAAAAAAAAAAAAAAAAAAEoUSAJXAbRjKKXIqu6hE5wtLdL6oRE6XIbdhyGwyyctiUi1fb9Xy81aIr7dq+HrJfIVyyJEjR9SkSZNfXH/qqac0Y8aMcimVFBQU6KOPPtLUqVO1f/9+9enTRwkJCYqJiZHZbP7NZxctWqTU1FQtXLhQubm5ateuneLi4mSz2eTn51daIFm1apUKCwsVHh6umJgYRUdHq1+/fvL397/uMwAAAAAAAAAAAAAAAAAAAADAr6FQAqDC5BY7deh8vg5dyJfT/dNHjUnS5T50/vO6l9mk8OAAhdcKUJCP1yX3vffee3ryyScvfdZkkre3t44fP646depcc96zZ89q2rRpSklJUVZWlkaOHKnJkyere/fuv/pcXl6eMjIyZLfblZ6erry8PHXo0EE2m02xsbE6c+aM0tPTlZGRob1798rb21t9+/ZVdHS0oqOj1bJly3KfrgIAAAAAAAAAAAAAAAAAAAAAv4ZCCYByl1VQrO/P5igzv/iKBZLf8vNzdQN81CashkL9fSRJgwYN0vLly2UymWQYhurVq6cxY8boiSeeUKNGja4p74EDBzR16lR98MEHkqTHH39cEyZMULNmza74TG5urtLT05WamqqMjAwVFBSoU6dOiouLU58+fbRnzx5lZGRo+fLlys3NVf369RUdHa2YmBhFRkaqRo0a15QVAAAAAAAAAAAAAAAAAAAAAMoDhRIA5cblNrT7XI72ZeVdc5Hk//p5nRahgWpdu4YC/P1UXFyswYMH69lnn1V0dLS8vLx+a5nL2rx5sxITEzV37lyFhYUpPj5ezzzzjMLCwi57f05OjhYuXKjU1FQtWrRIhYWF6ty5s0aOHKmmTZtqx44dysjI0Lfffiuz2ayePXuWTiHp0KEDU0gAAAAAAAAAAAAAAAAAAAAA3DAolAAoF9mFJdpyIlt5Ja4K2yPQ26K8vdvVslEDtW3b9prWcLvdWrhwoZKSkrRu3To1b95ckyZN0sMPPyx/f/9f3H/hwgUtWLBAqampWrJkiYqKitS1a1dFRUUpODhYX331lZYsWaLs7GyFhYUpKipK0dHRGjx4sEJDQ6/3yAAAAAAAAAAAAAAAAAAAAABQISiUALhumXlF2vhjlgyjfKaSXIlJkskk9WwQqrqBvpe9x+126/nnn1fv3r11zz33lF4vLCzUrFmzNGXKFO3Zs0c9evRQQkKCYmNjZbFYLlnj/PnzSktLU2pqqpYuXari4mJ1795dd955p8xmszZs2KCvvvpKhmGoS5cuio6OVkxMjDp37vyLtQAAAAAAAAAAAAAAAAAAAADgRkShBMB1ycwr0objWRVaJPm/TJJ6Nbx8qeTFF1/Uyy+/rLp16+rYsWPKzc3V9OnTlZycrMzMTFmtViUkJKhnz56XPJeVlSWHwyG73a5ly5appKRE3bp1U6tWrZSfn6+1a9cqMzNTwcHBGjx4sGJiYjR06FDVq1evkk4NAAAAAAAAAAAAAAAAAAAAAOWHQgmAa5ZdWKI1R8/K7YFPEbNJuqtRmEL8vEuv2e122Wy20j/fdddd2rp1q5xOpx599FFNnDhRLVq0KH393Llzmj9/vlJTU7VixQo5nU7dcccdatCggTIzM7V161a5XC61b99e0dHRio6OVo8ePeTt7S0AAAAAAAAAAAAAAAAAAAAAqMoolAC4Ji63oeWHzyi/xFWp00n+U5C3RZFN6shiNum7775Tt27dVFRUpP/8WPuv//ovTZgwQXXr1pUknTlzRvPmzZPdbtfKlSvlcrnUtm1b1apVS4cOHdKJEycUEBCggQMHKjo6WlFRUWrUqJGHTggAAAAAAAAAAAAAAAAAAAAAFcPL0wEAVE27z+Uor8Tl0Qy5JS7tPpejW0zFGjBggAoLC39xzw8//CDDMPT2228rNTVVq1evlmEYioiIUPPmzXXw4EHt2rVLzZs31z333KPo6Gj17dtXvr6+HjgRAAAAAAAAAAAAAAAAAAAAAFQOJpQAuGpZBcVaffScp2OU+uBPE7UwdfZlXzObzTIMQyaTSQ0aNFBRUZEyMzPl6+urfv36lU4had68eSWnBgAAAAAAAAAAAAAAAAAAAADPYUIJgKv2/dkcmSTdCG00k6QnXnhJjeqEat68eTp58uQlr7vdbnl7e6ukpESSNHLkSEVHR2vAgAEKDAz0QGIAAAAAAAAAAAAAAAAAAAAA8DwKJQCuSm6xU5n5xWW69+CuHfoiZYr2bPtKxUWFqndbYw2yPaCYh5+UJDlLSjR3xptaNT9VWadPKbTeLYocdZ/ufipeFq+yfTwZkoyAmvpy2/ZflEl+NnToUP3zn/9UmzZtZDKZyrQuAAAAAAAAAAAAAAAAAAAAANzMKJQAuCqHzueXaTrJ9vWr9c+xjyq8TTvFjX1efgGBOnXssM6d/t/Sxxu/j9emxQs1YNR9atbudu3bvk2fv/Gqzpz4UWP/lljmTCZJd0ZZte3LjZd9/cyZM2rbtm2Z1wMAAAAAAAAAAAAAAAAAAACAmx2FEgBl5jYMHbqQ/5tlkvzcHCX/13Pq3C9Sk9+YKbPZ/It7fvhuuzYuWqC4Z57X/eN/L0kact/DqhkSogUfvqOoBx9Tk5ZtypTLkDTo3gdVq/iizp09q23btmnHjh0qKiqSJJWUlFzNMQEAAAAAAAAAAAAAAAAAAADgpkehBECZ5RQ55XT/Vp1EWrdwns6fPaPRz/+XzGazCvPz5ePnd0mx5PutmyVJvaNHXPJsr+gRSvtghjZkpJW5UCJJbpn0+z/9RcG+3j/92e3WoUOH9O2336pBgwZlXgcAAAAAAAAAAAAAAAAAAAAAqgMKJQDKLLuobJM+dmxcp4CgGjp3+qReefYxnTh8UH4BAeobG6fHXnhJPr5+chYXS5J8/PwuedbX31+SdHDXjqvOd76wpLRQYjab1axZMzVr1uyq1wEAAAAAAAAAAAAAAAAAAACAm535t28BgJ+cLyyRqQz3nTxySC6XU688+5g69u6nhDff1YCR92np7I+V8sIESVL98J+KHnu2fXXJs7v//+SSrNOnriqbSVJ2YdkKLwAAAAAAAAAAAAAAAAAAAABQ3TGhBECZnS8qkVGG+wrz81RUUKDB9z2sJ/74d0nSnYOj5Swp0dIvPtF94xN0x10DVKd+Q3386v/I189fTdt20P4d2/TZ6/+SxctLxUWFV5XNkHShjBNUAAAAAAAAAAAAAAAAAAAAAKC6Y0IJgDJzuspSJ5F8/PwkSb1jRlxyvfewuyVJ+7Z/LR9fP/33jE8UVCtEieOf1NjIbkr+w3OyPTNBQcG15BcQcNX5SsqYDwAAAAAAAAAAAAAAAAAAAACqOyaUACgzt1G2wkZonXo6tn+vatUOu+R6cO3akqTcixckSY2at9TrC1bp2A/7lHfxvBo2ayEfPz99+K+X1KZrjwrLBwAAAAAAAAAAAAAAAAAAAADVHRNKAJSZ2WQq031N23aQJGVlnrrkenbmaUlScEho6TWTyaRGzVuqdefuqlErRDs3b5Tb7VaHHn0qLB8AAAAAAAAAAAAAAAAAAAAAVHcUSgCUmZelbIWNnlHDJUkr7J9fcn156meyeHmpbbeel32uqLBAs994VSF16qlPzIirzuddxnwAAAAAAAAAAAAAAAAAAAAAUN15eToAgKqjlq+3sgtKZPzGfU3btNeAUfdp5ZzZcrmcatu1h3Zu2aRNixdo5O/GKbTeLZKkpOfHKLRuPTVs1kIFuTlaOXe2Th87qv+e8bH8g4KuKptJUrCv97UdDAAAAAAAAAAAAAAAAAAAAACqGZNhGL/13XAAkCQdvpCvbaculOleZ0mJ5s54UyvnfqHsM6cVVr+hokY/qmGPPFV6z/x3p2nl3C905sfj8vHzU+vO3XTvuMkKb93umvJ1viVYjYMDrulZAAAAAAAAAAAAAAAAAAAAAKhOKJQAKLMLhSVaceSsp2NcUWSTMKaUAAAAAAAAAAAAAAAAAAAAAEAZmD0dAEDVUcPXS15mk6djXJaX2aQaPl6ejgEAAAAAAAAAAAAAAAAAAAAAVQKFEgBlZjaZFB4coButUmKSFB4cILPpRksGAAAAAAAAAAAAAAAAAAAAADcmCiUArkp4rQAZng7xfxj6KRcAAAAAAAAAAAAAAAAAAAAAoGwolAC4KkE+Xqob4HPDTCkxSaob4KMgHy9PRwEAAAAAAAAAAAAAAAAAAACAKoNCCYCr1iasxg0zpcTQT3kAAAAAAAAAAAAAAAAAAAAAAGVHoQTAVQv191GL0EBPx5AktQgNVKi/j6djAAAAAAAAAAAAAAAAAAAAAECVQqEEwDVpXbuGAr0tMnlof5OkIG+LWtdmOgkAAAAAAAAAAAAAAAAAAAAAXC0KJQCuicVsUrf6ITJ5qFFiMkld64fIYvZUpQUAAAAAAAAAAAAAAAAAAAAAqi4KJQCuWYift3o2CK30KSUmST0bhCrEz7uSdwYAAAAAAAAAAAAAAAAAAACAm4PJMAzD0yEAVG2ZeUXa+GOWDEOq6A8Us+mnMkndQN8K3gkAAAAAAAAAAAAAAAAAAAAAbl4USgCUi+zCEm05ka28EleF7RHkbVHX+iFMJgEAAAAAAAAAAAAAAAAAAACA60ShBEC5cbkN7T6Xo31ZeTKpfKaV/LxOi9BAta5dQxazqRxWBQAAAAAAAAAAAAAAAAAAAIDqjUIJgHKXVVCs78/mKDO/+JqLJT8/VzfAR23CaijU36d8QwIAAAAAAAAAAAAAAAAAAABANUahBECFyS126tD5fB26kC+n+6ePmisVTP7zupfZpPDgAIXXClCQj1clpQUAAAAAAAAAAAAAAAAAAACA6oNCCYAK5zYM5RQ7db6wRNmFJbpQVKISlyG3YchsMsnbYlKwr7dC/LxVy89bNXy8ZDaZPB0bAAAAAAAAAAAAAAAAAAAAAG5aFEoAAAAAAAAAAAAAAAAAAAAAAACqGbOnAwAAAAAAAAAAAAAAAAAAAAAAAKByUSgBAAAAAAAAAAAAAAAAAAAAAACoZiiUAAAAAAAAAAAAAAAAAAAAAAAAVDMUSgAAAAAAAAAAAAAAAAAAAAAAAKoZCiUAAAAAAAAAAAAAAAAAAAAAAADVDIUSAAAAAAAAAAAAAAAAAAAAAACAaoZCCQAAAAAAAAAAAAAAAAAAAAAAQDVDoQQAAAAAAAAAAAAAAAAAAAAAAKCaoVACAAAAAAAAAAAAAAAAAAAAAABQzVAoAQAAAAAAAAAAAAAAAAAAAAAAqGYolAAAAAAAAAAAAAAAAAAAAAAAAFQzFEoAAAAAAAAAAAAAAAAAAAAAAACqGQolAAAAAAAAAAAAAAAAAAAAAAAA1QyFEgAAAAAAAAAAAAAAAAAAAAAAgGqGQgkAAAAAAAAAAAAAAAAAAAAAAEA1Q6EEAAAAAAAAAAAAAAAAAAAAAACgmqFQAgAAAAAAAAAAAAAAAAAAAAAAUM1QKAEAAAAAAAAAAAAAAAAAAAAAAKhmKJQAAAAAAAAAAAAAAAAAAAAAAABUMxRKAAAAAAAAAAAAAAAAAAAAAAAAqhkKJQAAAAAAAAAAAAAAAAAAAAAAANUMhRIAAAAAAAAAAAAAAAAAAAAAAIBqhkIJAAAAAAAAAAAAAAAAAAAAAABANUOhBAAAAAAAAAAAAAAAAAAAAAAAoJqhUAIAAAAAAAAAAAAAAAAAAAAAAFDNUCgBAAAAAAAAAAAAAAAAAAAAAACoZiiUAAAAAAAAAAAAAAAAAAAAAAAAVDMUSv5f+3YgAAAAACDI33qQyyMAAAAAAAAAAAAAAIAZoQQAAAAAAAAAAAAAAGBGKAEAAAAAAAAAAAAAAJgRSgAAAAAAAAAAAAAAAGaEEgAAAAAAAAAAAAAAgBmhBAAAAAAAAAAAAAAAYEYoAQAAAAAAAAAAAAAAmBFKAAAAAAAAAAAAAAAAZoQSAAAAAAAAAAAAAACAGaEEAAAAAAAAAAAAAABgRigBAAAAAAAAAAAAAACYEUoAAAAAAAAAAAAAAABmhBIAAAAAAAAAAAAAAIAZoQQAAAAAAAAAAAAAAGBGKAEAAAAAAAAAAAAAAJgRSgAAAAAAAAAAAAAAAGaEEgAAAAAAAAAAAAAAgBmhBAAAAAAAAAAAAAAAYEYoAQAAAAAAAAAAAAAAmBFKAAAAAAAAAAAAAAAAZoQSAAAAAAAAAAAAAACAGaEEAAAAAAAAAAAAAABgRigBAAAAAAAAAAAAAACYEUoAAAAAAAAAAAAAAABmhBIAAAAAAAAAAAAAAIAZoQQAAAAAAAAAAAAAAGBGKAEAAAAAAAAAAAAAAJgRSgAAAAAAAAAAAAAAAGaEEgAAAAAAAAAAAAAAgBmhBAAAAAAAAAAAAAAAYEYoAQAAAAAAAAAAAAAAmBFKAAAAAAAAAAAAAAAAZoQSAAAAAAAAAAAAAACAGaEEAAAAAAAAAAAAAABgRigBAAAAAAAAAAAAAACYEUoAAAAAAAAAAAAAAABmhBIAAAAAAAAAAAAAAIAZoQQAAAAAAAAAAAAAAGBGKAEAAAAAAAAAAAAAAJgRSgAAAAAAAAAAAAAAAGaEEgAAAAAAAAAAAAAAgBmhBAAAAAAAAAAAAAAAYEYoAQAAAAAAAAAAAAAAmBFKAAAAAAAAAAAAAAAAZoQSAAAAAAAAAAAAAACAGaEEAAAAAAAAAAAAAABgRigBAAAAAAAAAAAAAACYEUoAAAAAAAAAAAAAAABmhBIAAAAAAAAAAAAAAIAZoQQAAAAAAAAAAAAAAGBGKAEAAAAAAAAAAAAAAJgRSgAAAAAAAAAAAAAAAGaEEgAAAAAAAAAAAAAAgBmhBAAAAAAAAAAAAAAAYEYoAQAAAAAAAAAAAAAAmBFKAAAAAAAAAAAAAAAAZoQSAAAAAAAAAAAAAACAGaEEAAAAAAAAAAAAAABgRigBAAAAAAAAAAAAAACYEUoAAAAAAAAAAAAAAABmhBIAAAAAAAAAAAAAAIAZoQQAAAAAAAAAAAAAAGBGKAEAAAAAAAAAAAAAAJgRSgAAAAAAAAAAAAAAAGaEEgAAAAAAAAAAAAAAgBmhBAAAAAAAAAAAAAAAYEYoAQAAAAAAAAAAAAAAmBFKAAAAAAAAAAAAAAAAZoQSAAAAAAAAAAAAAACAGaEEAAAAAAAAAAAAAABgRigBAAAAAAAAAAAAAACYEUoAAAAAAAAAAAAAAABmhBIAAAAAAAAAAAAAAIAZoQQAAAAAAAAAAAAAAGBGKAEAAAAAAAAAAAAAAJgRSgAAAAAAAAAAAAAAAGaEEgAAAAAAAAAAAAAAgBmhBAAAAAAAAAAAAAAAYEYoAQAAAAAAAAAAAAAAmBFKAAAAAAAAAAAAAAAAZoQSAAAAAAAAAAAAAACAGaEEAAAAAAAAAAAAAABgJkn4xdPB7WcLAAAAAElFTkSuQmCC",
"text/plain": [
"<Figure size 3200x1400 with 1 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAACvoAAAdiCAYAAABe0agZAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQABAABJREFUeJzs3XmcXXV9P/7XvXcy+xJIAgHCviqyWjcQFxQVUGqLqBRbcUdF64Jal1L1a1u1Wq3Ura6tinVHFtkUrFp3ZVVRhBAgCCQBZt/uvef3B7+ZZjLJJBMymZvk+Xw8eJy5934+5/P5zNy5czh5nfcpFUVRBAAAAAAAAAAAAABoKOX5ngAAAAAAAAAAAAAAMJ2gLwAAAAAAAAAAAAA0IEFfAAAAAAAAAAAAAGhAgr4AAAAAAAAAAAAA0IAEfQEAAAAAAAAAAACgAQn6AgAAAAAAAAAAAEADEvQFAAAAAAAAAAAAgAYk6AsAAAAAAAAAAAAADUjQFwAAAAAAAAAAAAAakKAvAAAAAMAs3HbbbSmVSvnABz4w52N9//vfT6lUyve///05H2u28zjzzDOzzz77bPW5zNe4AAAAAADzQdAXAAAAAGhIy5cvz9lnn52DDjoo7e3taW9vz8Mf/vC8+tWvzvXXXz/f09ssr33ta1MqlfLHP/5xg23e/va3p1QqbbNr3BLuuuuuvPOd78y1114731MBAAAAAJhXTfM9AQAAAACAdV188cV53vOel6amppxxxhk54ogjUi6Xc9NNN+Wb3/xmPv7xj2f58uXZe++953uqs3LGGWfkvPPOy/nnn59zzz13vW2+/OUv57DDDsvhhx+eer2e4eHhNDc3b+WZbtynPvWp1Ov1Odn3XXfdlXe9613ZZ599cuSRR261cQEAAAAAGo2gLwAAAADQUG655ZY8//nPz957753vfe972W233aa8/r73vS8f+9jHUi7PfMOywcHBdHR0zOVUZ+0xj3lMDjjggHz5y19eb9D3Jz/5SZYvX573vve9SZJyuZzW1tatPc1NsmDBgh1qXAAAAACA+TDzmXAAAAAAgK3s/e9/fwYHB/O5z31uWsg3SZqamvLa1742e+655+RzZ555Zjo7O3PLLbfkpJNOSldXV84444wkyQ9/+MOcdtpp2WuvvdLS0pI999wzr3/96zM8PDxlvxP7uPXWW/P0pz89HR0d2X333fPud787RVGsd67/8R//kf333z8tLS151KMelV/84hcbXd8ZZ5yRm266Kb/+9a+nvXb++eenVCrl9NNPT5J8//vfT6lUyve///3JNjfffHNOPfXULF26NK2trVm2bFme//znp7e3N0ly2223pVQq5fOf//y0/ZdKpbzzne+cfLxixYq86lWvysEHH5y2trYsWrQop512Wm677baNruPMM8/MPvvsM/n4SU96Ukql0nr/m5jLfffdl3POOSeHHXZYOjs7093dnRNPPDHXXXfd5H6+//3v51GPelSS5EUvetG0faw7bvJgqPuNb3xj9txzz7S0tOTggw/OBz7wgWk/t1KplLPPPjsXXHBBHvGIR6SlpSWHHnpoLrvsso2uFwAAAABgPqjoCwAAAAA0lIsvvjgHHHBAHvOYx8yqX7VazdOf/vQ8/vGPzwc+8IG0t7cnSb72ta9laGgor3zlK7No0aL8/Oc/z3nnnZc777wzX/va16bso1ar5RnPeEYe+9jH5v3vf38uu+yy/MM//EOq1Wre/e53T2l7/vnnp7+/P694xStSKpXy/ve/P3/5l3+ZW2+9dcaqs2eccUbe9a535fzzz8/RRx89ZeyvfvWrOe6447LXXnutt+/Y2Fie/vSnZ3R0NK95zWuydOnSrFy5MhdffHEeeOCB9PT0zOp79otf/CI//vGP8/znPz/Lli3Lbbfdlo9//ON50pOelN/+9reT38NN8fa3vz0vfelLpzz3xS9+MZdffnl22WWXJMmtt96aCy64IKeddlr23Xff3HPPPfnkJz+ZJz7xifntb3+b3XffPQ972MPy7ne/O+eee25e/vKX57jjjkuSHHPMMesdtyiKnHLKKbn66qvzkpe8JEceeWQuv/zyvOlNb8rKlSvzoQ99aEr7H/3oR/nmN7+ZV73qVenq6spHPvKRnHrqqbn99tuzaNGi2Xz7AAAAAADmnKAvAAAAANAw+vr6ctddd+XZz372tNceeOCBVKvVyccdHR1pa2ubfDw6OprTTjst//zP/zyl3/ve974p7V7+8pfngAMOyNve9rbcfvvtU0K1IyMjecYznpGPfOQjSZJXvepVedaznpX3ve99ee1rX5vFixdPtr399ttz8803Z6eddkqSHHzwwfnzP//zXH755XnmM5+5wTUeeOCBedSjHpWvfOUref/7359y+cEbr333u9/Nvffem//3//7fBvv+9re/zfLly/O1r30tz3nOcyafP/fcczfYZyYnn3zylP0kybOe9aw87nGPyze+8Y389V//9Sbv64QTTpjy+Mc//nGuuuqqvPjFL85JJ52UJDnssMPyhz/8YXLNSfLXf/3XOeSQQ/KZz3wmf//3f59dd901J554Ys4999w87nGPywte8IIZx73wwgtz1VVX5T3veU/e/va3J0le/epX57TTTsu//du/5eyzz87+++8/2f53v/tdfvvb304+9+QnPzlHHHFEvvzlL+fss8/e5PUCAAAAAGwN5Y03AQAAAADYOvr6+pIknZ2d01570pOelCVLlkz+99GPfnRam1e+8pXTnls75Ds4OJjVq1fnmGOOSVEUueaaa6a1XzvsWSqVcvbZZ2dsbCzf/e53p7R73vOeNxnyTTJZefbWW2/d2DLzghe8IHfeeWd+8IMfTD53/vnnp7m5OaeddtoG+01U7L388sszNDS00XE2Zu3vzfj4eNasWZMDDjggCxcuzK9//evN3u/dd9+d5zznOTnyyCPzsY99bPL5lpaWyZBvrVbLmjVr0tnZmYMPPnizx/vOd76TSqWS1772tVOef+Mb35iiKHLppZdOef6pT33qlODv4Ycfnu7u7k36uQEAAAAAbG2CvgAAAABAw+jq6kqSDAwMTHvtk5/8ZK688sp88YtfXG/fpqamLFu2bNrzt99+e84888zsvPPO6ezszJIlS/LEJz4xSdLb2zulbblczn777TfluYMOOihJctttt015fu1KwEkmQ7/333//hpY36fnPf34qlUrOP//8JA9WEv7Wt76VE088cUp4eF377rtv3vCGN+TTn/50Fi9enKc//en56Ec/Om0dm2p4eDjnnntu9txzz7S0tGTx4sVZsmRJHnjggc3eZ7VazXOf+9zUarV885vfTEtLy+Rr9Xo9H/rQh3LggQdOGe/666/f7PFWrFiR3XffffK9M+FhD3vY5OtrW/fnljz4s9uUnxsAAAAAwNYm6AsAAAAANIyenp7stttuufHGG6e99pjHPCZPfepTc+yxx66379rVYifUarWccMIJueSSS/KWt7wlF1xwQa688sp8/vOfT/Jg8HRzVSqV9T5fFMVG++6yyy454YQT8o1vfCPj4+O56KKL0t/fnzPOOGOjfT/4wQ/m+uuvz9ve9rYMDw/nta99bQ499NDceeedSR6sQrw+tVpt2nOvec1r8o//+I957nOfm69+9au54oorcuWVV2bRokWb/b1505velJ/85Cf56le/Oi14/U//9E95wxvekCc84Qn54he/mMsvvzxXXnllDj300If0s5iNh/JzAwAAAADY2prmewIAAAAAAGs7+eST8+lPfzo///nP8+hHP/oh7euGG27IH/7wh/znf/5n/uZv/mby+SuvvHK97ev1em699dbJKr5J8oc//CFJss8++zykuazrjDPOyGWXXZZLL700559/frq7u/OsZz1rk/oedthhOeyww/KOd7wjP/7xj3PsscfmE5/4RN7znvdMVgR+4IEHpvRZt7Jtknz961/PC1/4wnzwgx+cfG5kZGRa30313//93/nwhz+cD3/4w5NVk9cd78lPfnI+85nPTHn+gQceyOLFiycfbyisvD577713vvvd76a/v39KVd+bbrpp8nUAAAAAgG2Vir4AAAAAQEN585vfnPb29rz4xS/OPffcM+312VRenajeunafoijyb//2bxvs8+///u9T2v77v/97FixYkKc85SmbPO6mePazn5329vZ87GMfy6WXXpq//Mu/TGtr64x9+vr6Uq1Wpzx32GGHpVwuZ3R0NEnS3d2dxYsX5wc/+MGUdh/72Mem7a9SqUz7fp533nnrrf67MTfeeGNe+tKX5gUveEH+9m//dr1t1jfe1772taxcuXLKcx0dHUmmh5XX56STTkqtVpvyc0uSD33oQymVSjnxxBNnsQoAAAAAgMaioi8AAAAA0FAOPPDAnH/++Tn99NNz8MEH54wzzsgRRxyRoiiyfPnynH/++SmXy1m2bNlG93XIIYdk//33zznnnJOVK1emu7s73/jGN3L//fevt31ra2suu+yyvPCFL8xjHvOYXHrppbnkkkvytre9LUuWLNmi6+zs7Myzn/3snH/++UkerPC7MVdddVXOPvvsnHbaaTnooINSrVbzhS98IZVKJaeeeupku5e+9KV573vfm5e+9KX5sz/7s/zgBz+YrEy8tmc+85n5whe+kJ6enjz84Q/PT37yk3z3u9/NokWLZr2eF73oRUmSJzzhCfniF7845bVjjjkm++23X575zGfm3e9+d170ohflmGOOyQ033JAvfelL2W+//aa033///bNw4cJ84hOfSFdXVzo6OvKYxzwm++6777Rxn/WsZ+XJT35y3v72t+e2227LEUcckSuuuCLf/va387rXvS7777//rNcCAAAAANAoBH0BAAAAgIbz53/+57nhhhvywQ9+MFdccUU++9nPplQqZe+9987JJ5+cs846K0ccccRG97NgwYJcdNFFee1rX5t//ud/Tmtra/7iL/4iZ5999nr7VyqVXHbZZXnlK1+ZN73pTenq6so//MM/5Nxzz52LZeaMM87I+eefn9122y3HH3/8RtsfccQRefrTn56LLrooK1euTHt7e4444ohceumleexjHzvZ7txzz82qVavy9a9/PV/96ldz4okn5tJLL80uu+wyZX//9m//lkqlki996UsZGRnJsccem+9+97t5+tOfPuu1rFq1KoODg3n5y18+7bXPfe5z2W+//fK2t70tg4ODOf/88/OVr3wlRx99dC655JL83d/93ZT2CxYsyH/+53/mrW99a84666xUq9V87nOfW2/Qt1wu58ILL8y5556br3zlK/nc5z6XffbZJ//yL/+SN77xjbNeBwAAAABAIykVs7nPHQAAAADAdurMM8/M17/+9QwMDMz3VAAAAAAAIElSnu8JAAAAAAAAAAAAAADTCfoCAAAAAAAAAAAAQAMS9AUAAAAAAAAAAACABlQqiqKY70kAAAAAAAAAAAAAAFOp6AsAAAAAAAAAAAAADUjQFwAAAAAAAAAAAAAakKAvAAAAAAAAAAAAADQgQV8AAAAAAAAAAAAAaECCvgAAAAAAAAAAAADQgAR9AQAAAAAAAAAAAKABCfoCAAAAAAAAAAAAQAMS9AUAAAAAAAAAAACABiToCwAAAAAAAAAAAAANSNAXAAAAAAAAAAAAABqQoC8AAAAAAAAAAAAANCBBXwAAAAAAAAAAAABoQIK+AAAAAAAAAAAAANCABH0BAAAAAAAAAAAAoAEJ+gIAAAAAAAAAAABAAxL0BQAAAAAAAAAAAIAGJOgLAAAAAAAAAAAAAA1I0BcAAAAAAAAAAAAAGpCgLwAAAAAAAAAAAAA0IEFfAAAAAAAAAAAAAGhAgr4AAAAAAAAAAAAA0IAEfQEAAAAAAAAAAACgAQn6AgAAAAAAAAAAAEADEvQFAAAAAAAAAAAAgAYk6AsAAAAAAAAAAAAADUjQFwAAAAAAAAAAAAAakKAvAAAAAAAAAAAAADQgQV8AAAAAAAAAAAAAaECCvgAAAAAAAAAAAADQgAR9AQAAAAAAAAAAAKABCfoCAAAAAAAAAAAAQAMS9AUAAAAAAAAAAACABiToCwAAAAAAAAAAAAANSNAXAAAAAAAAAAAAABqQoC8AAAAAAAAAAAAANCBBXwAAAAAAAAAAAABoQIK+AAAAAAAAAAAAANCABH0BAAAAAAAAAAAAoAEJ+gIAAAAAAAAAAABAAxL0BQAAAAAAAAAAAIAGJOgLAAAAAAAAAAAAAA1I0BcAAAAAAAAAAAAAGpCgLwAAAAAAAAAAAAA0IEFfAAAAAAAAAAAAAGhAgr4AAAAAAAAAAAAA0IAEfQEAAAAAAAAAAACgAQn6AgAAAAAAAAAAAEADEvQFAAAAAAAAAAAAgAYk6AsAAAAAAAAAAAAADUjQFwAAAAAAAAAAAAAakKAvAAAAAAAAAAAAADQgQV8AAAAAAAAAAAAAaECCvgAAAAAAAAAAAADQgAR9AQAAAAAAAAAAAKABCfoCAAAAAAAAAAAAQAMS9AUAAAAAAAAAAACABiToCwAAAAAAAAAAAAANSNAXAAAAAAAAAAAAABqQoC8AAAAAAAAAAAAANCBBXwAAAAAAAAAAAABoQIK+AAAAAAAAAAAAANCABH0BAAAAAAAAAAAAoAEJ+gIAAAAAAAAAAABAAxL0BQAAAAAAAAAAAIAGJOgLAAAAAAAAAAAAAA1I0BcAAAAAAAAAAAAAGpCgLwAAAAAAAAAAAAA0IEFfAAAAAAAAAAAAAGhAgr4AAAAAAAAAAAAA0IAEfQEAAAAAAAAAAACgAQn6AgAAAAAAAAAAAEADEvQFAAAAAAAAAAAAgAYk6AsAAAAAAAAAAAAADUjQFwAAAAAAAAAAAAAakKAvAAAAAAAAAAAAADQgQV8AAAAAAAAAAAAAaECCvgAAAAAAAAAAAADQgAR9AQAAAAAAAAAAAKABCfoCAAAAAAAAAAAAQAMS9AUAAAAAAAAAAACABiToCwAAAAAAAAAAAAANSNAXAAAAAAAAAAAAABqQoC8AAAAAAAAAAAAANCBBXwAAAAAAAAAAAABoQIK+AAAAAAAAAAAAANCABH0BAAAAAAAAAAAAoAEJ+gIAAAAAAAAAAABAAxL0BQAAAAAAAAAAAIAGJOgLAAAAAAAAAAAAAA1I0BcAAAAAAAAAAAAAGpCgLwAAAAAAAAAAAAA0IEFfAAAAAAAAAAAAAGhAgr4AAAAAAAAAAAAA0IAEfQEAAAAAAAAAAACgAQn6AgAAAAAAAAAAAEADEvQFAAAAAAAAAAAAgAYk6AsAAAAAAAAAAAAADUjQFwAAAAAAAAAAAAAakKAvAAAAAAAAAAAAADQgQV8AAAAAAAAAAAAAaECCvgAAAAAAAAAAAADQgAR9AQAAAAAAAAAAAKABCfoCAAAAAAAAAAAAQAMS9AUAAAAAAAAAAACABiToCwAAAAAAAAAAAAANSNAXAAAAAAAAAAAAABqQoC8AAAAAAAAAAAAANCBBXwAAAAAAAAAAAABoQIK+AAAAAAAAAAAAANCABH0BAAAAAAAAAAAAoAEJ+gIAAAAAAAAAAABAAxL0BQAAAAAAAAAAAIAGJOgLAAAAAAAAAAAAAA1I0BcAAAAAAAAAAAAAGpCgLwAAAAAAAAAAAAA0IEFfAAAAAAAAAAAAAGhAgr4AAAAAAAAAAAAA0IAEfQEAAAAAAAAAAACgAQn6AgAAAAAAAAAAAEADEvQFAAAAAAAAAAAAgAYk6AsAAAAAAAAAAAAADUjQFwAAAAAAAAAAAAAakKAvAAAAAAAAAAAAADQgQV8AAAAAAAAAAAAAaECCvgAAAAAAAAAAAADQgAR9AQAAAAAAAAAAAKABCfoCAAAAAAAAAAAAQAMS9AUAAAAAAAAAAACABiToCwAAAAAAAAAAAAANSNAXAAAAAAAAAAAAABqQoC8AAAAAAAAAAAAANCBBXwAAAAAAAAAAAABoQIK+AAAAAAAAAAAAANCABH0BAAAAAAAAAAAAoAEJ+gIAAAAAAAAAAABAAxL0BQAAAAAAAAAAAIAGJOgLAAAAAAAAAAAAAA1I0BcAAAAAAAAAAAAAGpCgLwAAAAAAAAAAAAA0IEFfAAAAAAAAAAAAAGhAgr4AAAAAAAAAAAAA0IAEfQEAAAAAAAAAAACgAQn6AgAAAAAAAAAAAEADEvQFAAAAAAAAAAAAgAYk6AsAAAAAAAAAAAAADUjQFwAAAAAAAAAAAAAakKAvAAAAAAAAAAAAADSgpvmeAAAAAAAwe7WiyKrhWu4equbuoWoGqvXU6kUq5VI6m8pZ2t6Upe1NWdJWSaVUmu/pAgAAAAAAm6FUFEUx35MAAAAAADZN71gt164eyTWrRzJSe/DUXjlJfa02az9urZRy1OLWHLm4NT3Nla08WwAAAAAA4KEQ9AUAAACAbcBIrZ6rVw7mujWjKSWZzUm9ifZHLGrJ8Xt0pKVSnptJAgAAAAAAW5SgLwAAAAA0uOV9Y7l4RX+GqsWsAr7rKiXpaCrl5L27sm9385aaHgAAAAAAMEcEfQEAAACggf1q1XCuvHNw1lV8N2RiPycs68gjl7RtgT0CAAAAAABzxT36AAAAAKBBTYR8ky0T8l17P1feOZhfrRreQnsFAAAAAADmgqAvAAAAADSg5X1jkyHfuXLlnYNZ3jc2p2MAAAAAAACbT9AXAAAAABrMSK2ei1f0pzTH45SSXLKiP6O1+hyPBAAAAAAAbA5BXwAAAABoMFevHMxQtUgxx+MUSQarRa5aObeVgwEAAAAAgM0j6AsAAAAADeSB0VquWzM65yHfCUWS69aMpnestpVGBAAAAAAANpWgLwAAAAA0kOvWjKS0lccsJbl29chWHhUAAAAAANgYQV8AAAAAaBC1osg1q0dmXc33J1/5TN538tH5+8cuy0f/5um548Zfz6p/keSa1SOpFVurjjAAAAAAALApBH0BAAAAoEGsGq5lpDa7sO31l38rl/zruXnKy8/J2ed/L7sdeGg+++rnZuC+VbPaz0ityKrh2qz6AAAAAAAAc0vQFwAAAAAaxN1D1Vn3+eGXPpFH/cUL8md//lfZdb+D8+y3fyDNrW355bfP3yrjAwAAAAAAc0fQFwAAAAAaxN1D1VmdsKuOj+Wu312XAx7zxMnnyuVy9n/ME3L79b+c1djlCPoCAAAAAECjEfQFAAAAgAYxUK2nPov2Qw/cl3qtls6dl0x5vmvnXdK/5t5ZjV1PMlidzegAAAAAAMBcE/QFAAAAgAZRqxfzOn51nscHAAAAAACmEvQFAAAAgAZRKZdm1b594c4pVyoZuG/VlOf777s3XYt2mfX4TbMcHwAAAAAAmFuCvgAAAADQIDqbyrM6Yde0oDm7P+yI3PLzH0w+V6/Xc8vPf5i9Dv+zWY1dTtLR5HQhAAAAAAA0EmfuAQAAAKBBLG1vSn2WfY4746z84ltfzK8u+u/ce+sf8u1/elPGhofyyFNOn9V+6v//+AAAAAAAQONw5h4AAAAAGsTmBG0Pf/pfZOD+Nfnux9+X/jX3ZreDH5EX/ftX0rVol60yPgAAAAAAMHdKRVEU8z0JAAAAACCpFUXOu+G+jNS2/im71koprzls51RKpa0+NgAAAAAAsH7l+Z4AAAAAAPCgSqmUoxa3ZmtHbUtJjlrcKuQLAAAAAAANRtAXAAAAABrIkYtbs7Xr+Rb//7gAAAAAAEBjEfQFAAAAgAbS01zJEYtatlpV31KSIxa1pKe5spVGBAAAAAAANpWgLwAAAAA0mOP36EhHU2nOw76lJB1NpRy/R8ccjwQAAAAAAGwOQV8AAAAAaDAtlXJO3rsrxRyPUyQ5ee+utFScJgQAAAAAgEbkDD4AAAAANKB9u5tzwrK5rbT7tGUd2be7eU7HAAAAAAAANp+gLwAAAAA0qEcuaZsM+5a20D4n9vO0ZR05eknbFtorAAAAAAAwF0pFUcz1HQABAAAAgIdged9YLlnRn8FqkYdyMq+UpKOplJP37lLJFwAAAAAAtgGCvgAAAACwDRip1XP1ysFct2Y0pWRWgd96rZZypZIjFrXk+D060lJxoy8AAAAAANgWCPoCAAAAwDakd6yWa1eP5JrVIxmpPXhqr5ykVhQplUopiiIp6imVK0mS1kopv/72l3LeW16dnubKPM4cAAAAAACYLUFfAAAAANgG1Yoiq4ZruXuomruHqrn4yu/luCc+KanXcvXl30nzcF/+4inH5Tc/+2Eu+va3c/nll8/3lAEAAAAAgFkS9AUAAACA7cDjHve4/OQnP0mSjIyM5G1ve1suuOCC7LPPPvn0pz+d/fbbb55nCAAAAAAAzJagLwAAAABsJ+r1eu6///4sWrRovqcCAAAAAABsAeX5ngAAAAAA8NB973vfyy677JI99tgjp59+eq677ro88pGPzFFHHZWf//zn8z09AAAAAABgMwj6AgAAAMB24C1veUu+9rWvZWRkJM9+9rPz53/+53n961+f97znPfnbv/3b+Z4eAAAAAACwGUpFURTzPQkAAAAA4KE56qijcs0110w+3nvvvbNixYokydFHH51f//rX8zU1AAAAAABgM6noCwAAAADbgfHx8axevTpJsnz58qxevTp33HFH7r///oyOjs7z7AAAAAAAgM3RNN8TAAAAAAAeupe97GV55CMfmcc85jH56U9/mk9+8pM59thjMzo6mnPOOWe+pwcAAAAAAGyGUlEUxXxPAgAAAAB46H72s5/lxhtvzLHHHptDDjkk9957b+67774ccsgh8z01AAAAAABgMwj6AgAAAAAAAAAAAEADaprvCQAAAAAAs1criqwaruXuoWruHqrmyh/8KIcfeXQ62ltTHhvODy7+VkbuvTOja/6U1Ov53Oc+N99TBgAAAAAAZklFXwAAAADYhvSO1XLt6pFcs3okI7UHT+2V82Dwt1QqTX88PppffuuL+cy7zklPc2X+Jg4AAAAAAMyaoC8AAAAAbANGavVcvXIw160ZTSnJbE7q1Wu1lCuVHLGoJcfv0ZGWSnmupgkAAAAAAGxBgr4AAAAA0OCW943l4hX9GaoWswr4rquUpKOplJP37sq+3c1banoAAAAAAMAcEfQFAAAAgAb2q1XDufLOwVlX8d2Qif2csKwjj1zStgX2CAAAAAAAzBX36AMAAACABjUR8k22TMh37f1ceedgfrVqeAvtFQAAAAAAmAuCvgAAAADQgJb3jU2GfOfKlXcOZnnf2JyOAQAAAAAAbD5BXwAAAABoMCO1ei5e0Z/SHI9TSnLJiv6M1upzPBIAAAAAALA5BH0BAAAAoMFcvXIwQ9UixRyPUyQZrBa5auXcVg4GAAAAAAA2j6AvAAAAADSQB0ZruW7N6JyHfCcUSa5bM5resdpWGhEAAAAAANhUgr4AAAAA0ECuWzOS0izaL//Vj/Off3tG/ulpj8hbj16S31z9nVmPWUpy7eqRWfcDAAAAAADmlqAvAAAAADSIWlHkmtUjs6rmOzYylN0OOjR//nfv2+xxiyTXrB5JrdhadYQBAAAAAIBN0TTfEwAAAAAAHrRquJaR2uzCtgcf+9QcfOxTH/LYI7Uiq4ZrWdrulCEAAAAAADQKFX0BAAAAoEHcPVTdoccHAAAAAACmEvQFAAAAgAZx91B13k7YlSPoCwAAAAAAjUbQFwAAAAAaxEC1nvo8jV1PMlidr9EBAAAAAID1EfQFAAAAgAZRqxfzOn51nscHAAAAAACmEvQFAAAAgAZRKZfmdfymeR4fAAAAAACYqmm+JwAAAAAAPKizqZxykvos+owODWTNHcsnH9+/8vbc9fsb0t69UxbutmyT91NO0tGkLgAAAAAAADSSUlEU7scHAAAAAA3g2tUjueyOgVn1ufWX/5tPvfzZ054/+lnPy2nv+vdZ7esZe3bmyMWts+oDAAAAAADMHUFfAAAAAGgQdw9V8/nfPzBv45958MIsbXcTMAAAAAAAaBTuxQcAAAAADWJJWyWtldK8jN1aKWVJW2VexgYAAAAAANZP0BcAAAAAGkSlVMpRi1uztaO+pSRHLW5NpTQ/IWMAAAAAAGD9BH0BAAAAoIEcubg1xVYes/j/xwUAAAAAABqLoC8AAAAANJCe5kqOWNSy1ar6lpIcsaglPc2VrTQiAAAAAACwqQR9AQAAAKDBHL9HRzqaSnMe9i0l6Wgq5fg9OuZ4JAAAAAAAYHMI+gIAAABAg2mplHPy3l0p5nicIsnJe3elpeI0IQAAAAAANCJn8AEAAACgAe3b3ZwTls1tpd2nLevIvt3NczoGAAAAAACw+QR9AQAAAKBBPXJJ22TYt7SF9jmxn6ct68jRS9q20F4BAAAAAIC5UCqKYq7vAAgAAAAAPATL+8ZyyYr+DFaLPJSTeaUkHU2lnLx3l0q+AAAAAACwDRD0BQAAAIBtwEitnqtXDua6NaMpJbMK/NZrtZQrlRyxqCXH79GRloobfQEAAAAAwLZA0BcAAAAAtiG9Y7Vcu3ok16weyUjtwVN75SS1okipVEqS1KvVlCqVBx+Pj+a2H16a973mRelprszjzAEAAAAAgNkS9AUAAACAbVCtKLJquJa7h6q5e6iaS6/6fo55/HFpKpfSWqrnfy+9MFd+48vpyng+/an/yH777TffUwYAAAAAAGZJ0BcAAAAAAAAAAAAAGlB5vicAAAAAAMytxz72sfM9BQAAAAAAYDMI+gIAAADAduCMM87I9773vfW+NjY2tpVnAwAAAAAAbAmCvgAAAACwHTj44IPzkpe8JPvvv3/e85735I477pjvKQEAAAAAAA+RoC8AAAAAbAfOPffc3HbbbfnkJz+ZG2+8MQ972MNy0kkn5Rvf+EbGx8fne3oAAAAAAMBmKBVFUcz3JAAAAACALeu+++7LF7/4xXzmM5/JDTfckHq9Pt9TAgAAAAAAZknQFwAAAAC2czfeeGMe8YhHzPc0AAAAAACAWRL0BQAAAAAAAAAAAIAG1DTfEwAAAAAAZq9WFFk1XMvdQ9XcPVTNQLWeWr1IpVxKZ1M5S9ubsrS9KUvaKjnt1FPzzW9+c76nDAAAAAAAzJKgLwAAAABsQ3rHarl29UiuWT2SkdqDN+sq58Hgb6lUmnx87ZoH27dWSuk6+snpHaulp7kyP5MGAAAAAAA2S6koimK+JwEAAAAAzGykVs/VKwdz3ZrRlJLM5qRevVZLuVLJEYtacvweHWmplOdqmgAAAAAAwBYk6AsAAAAADW5531guXtGfoWoxq4DvukpJOppKOXnvruzb3bylpgcAAAAAAMwRQV8AAAAAaGC/WjWcK+8cnHUV3w2Z2M8JyzryyCVtW2CPAAAAAADAXHGPPgAAAABoUBMh32TLhHzX3s+Vdw7mV6uGt9BeAQAAAACAuSDoCwAAAAANaHnf2GTId65ceedglveNzekYAAAAAADA5hP0BQAAAIAGM1Kr5+IV/SnN8TilJJes6M9orT7HIwEAAAAAAJtD0BcAAAAAGszVKwczVC1SzPE4RZLBapGrVs5t5WAAAAAAAGDzCPoCAAAAQAN5YLSW69aMznnId0KR5Lo1o+kdq22lEQEAAAAAgE3VNN8TAAAAAAD+z3VrRlJKNino+/3Pfjg3XnVJVt12cxa0tGXvIx6VZ7z23CzZ54BZjVlKcu3qkTxx947NmTIAAAAAADBHVPQFAAAAgAZRK4pcs3pkk6v53vqrH+dxz31xXvWfl+UlH/9aatXxfPZVp2VseHBW4xZJrlk9klqxteoIAwAAAAAAm6JUFM7eAwAAAEAjuHuoms///oHN7j9w/+r841Melpd/6tvZ95HHzLr/mQcvzNJ2NwEDAAAAAIBGoaIvAAAAADSIu4eqD6n/SH9fkqStZ6d5GR8AAAAAANiyBH0BAAAAoEHcPVTd7BN29Xo9F3/gHdn7yEdn6QEPm3X/cgR9AQAAAACg0bgPHwAAAAA0iIFqPfXN7Hvhe9+Se265KWd99uLN6l9PMljd3NEBAAAAAIC5IOgLAAAAAA1ivFrbrH7ffu9bctMPr8jLP31henbdfbPHr9aLze4LAAAAAABseaWiKJy9BwAAAIA5VqvV0tfXl97e3sntxNcTj6uHHZ/y0n1SKpU2aZ9FUeTC9/1dfnv1d/KyT12QxXvtv9nzK4oiTfetzC4rr0tPT0+6u7unbHt6etLS0rLZ+wcAAAAAAGZP0BcAAAAAHqJ6vZ7BwcEp4d11twMDA1P6tLW1TQvT3t65Z+4o2lNk04K+F/zzm3Pdpd/IX3/ov7Jk7wMmn2/t7M6C1rZZraFUFFk0sjoL7/rN5Jz7+/uz9unDlpaWaXNeOwjc3d2dpiY3EQMAAAAAgC1F0BcAAAAAZlAURYaHhzdYhbe3tzf9/f2p1+uTfRYsWDAZfF03CDuxbW5unjbWtatHctkdA9Oe35C3Hr1kvc8/550fySNPOX3Wa33Gnp05cnHr5ON6vZ7+/v4Nhpd7e3szNDQ0ZR/t7e1T1rvu+ru6ulIul2c9NwAAAAAA2BEJ+gIAAACwQxsbG5sxyNrX15fx8fHJ9uVyeUpgd31B3tbW1pRKm1aVd213D1Xz+d8/sAVXNztnHrwwS9tnV5F3fHx8WvB53cdjY2OT7UulUrq6utZbFXhi297evlnfPwAAAAAA2N64jx4AAAAA261arbbREOrIyMiUPp2dnZPB3V122WVakLezs3POQqhL2ipprZQyUtv61+a3VkpZ0laZdb8FCxZk0aJFWbRo0QbbjIyMbPBncNddd6Wvry+1Wm2yfVNT00bD1C0tLZu1TgAAAAAA2Jao6AsAAADANqkoigwMDEypvrtuiHRgYGBKn9bW1mmB0XUDpZXK7MOuW9L/3DWYn94znK150q6U5LG7tuWJu3dsxVH/T1EUGRwcnLGqcn9/f9Y+ldnS0jJjELi7uztNTeocAAAAAACwbRP0BQAAAKDhFEWRkZGRKeHddbd9fX2p1+uTfRYsWLDe8O7aAdDm5uZ5XNWm6R2r5eO/uX+rj/vKQ3dKT/P8hpxnUq/X09/fP+N7YmhoaEqfjo6OGd8TnZ2dKZfL87QiAAAAAADYOEFfAAAAALa6sbGxaUHNdavxjo+PT7Yvl8tTKreuL7TZ2tqaUqk0j6vaci69vT/XrxndKlV9S0kOX9SSE/fq2gqjza3x8fGNvq/GxsYm25dKpRnfV93d3Wlvb99u3lcAAAAAAGx7BH0BAAAA2KJqtdpGK68ODw9P6dPZ2TkZrFy3Cm9PT086Ojp2qMqro7V6PvXb+zNYLeY07FtK0tFUyssevlNaKtv/97coioyOjs4YBO7r60utVpvs09TUNO09ue7jlpaWeVwVAAAAAADbM0FfAAAAADZZURQZGBjYYEiyt7c3AwMDU/q0trZusFrqxLZSqczTihrX8r6xfOWWvjkf53n7d2ff7uY5H2dbURRFBgcHNxhSn3iPr31ataWlZcYgcHd3d5qamuZxVQAAAAAAbKsEfQEAAABI8mDAcWRkZMaAY19fX+r1+mSfpqamGQOOPT09aW4WIt1cv1o1nCvvHJyz/T9tWUeOXtI2Z/vfXk1UrZ4p8L5u1eqOjo4ZA++dnZ07VNVqAAAAAAA2jaAvAAAAwA5ifHx8Smh3feHE8fHxyfblcjldXV0zBnnb2tpSKpXmcVXbv4mwbynJljiRN7EfId+5NT4+Pu13bd3t2NjYZPu1f982FJr3+wYAAAAAsOMR9AUAAADYDkxUGJ0pyLtuhdHOzs4NVhft7u5WYbSBLO8byyUr+jNYLR5S2LeUpKOplJP37sq+3Sotz6eiKDI6OjpjELi3t3e9FbRn+r1taWmZx1UBAAAAALClCfoCAAAAbEBRFA1RPbMoigwODs4YCOzv75/Sp7W1dYNhwJ6ennR1daWpqWmeVsTmGKnVc/XKwVy3ZnTW1X0n2h+xqCXH79GRlooA97bA7z4AAAAAAIK+AAAAwA5pfHw899xzT9ra2rJo0aIpr51//vk566yz8q1vfStPecpT5nQeRVFkZGRkg9U8e3t709/fn1qtNtlnY1U9e3p60tysWuv2qneslmtXj+Sa1SMZqT14aq+cpL5Wm7Uft1ZKOWpxa45c3Jqe5spWni1zbXOqeXd0dEx+VsxXNe96vZ5nPvOZ2WmnnbLnnntm7733zsknn5y99torfX196e7untPxAQAAAAC2FUo3AAAAANul1atX5/bbb8+KFStyxx135HGPe1we+chH5ilPeUruu+++lMvltLe35x3veEdOPPHEJA+Gbmu1Wj7xiU/kwAMPTG9v70Oex/j4+LTw3brbsbGxyfalUmlK4G6PPfaYFshra2triErDzI+e5kqeuHtHHr9be1YN13L3UDV3D1UzWK2nWi/SVC6lo6mcpe1NWdrelCVtlVS8X7ZblUolCxcuzMKFCzfYZmxsbErwd+0g8C233JLe3t6Mj49Pti+Xy+nq6trghQTd3d0P+XPorrvuyi9+8Yu8+93vzuDgYG655Zbcc889WbhwYXbbbbfst99+6ezszK677po3v/nNOeaYY6b0r9frcx5GBgAAAABoBIK+AAAAwHbp8MMPz6677pqHP/zh2X333XPcccelXC7n1ltvzXnnnZdTTjllSvuiKFIqlfLWt741r33ta/OFL3whq1evTrVa3eBt7icqaW6oiuZMlTS7u7uz//77TwvPbY1KmmwfKqXSZJgXZtLc3JzFixdn8eLF6319orL4hi5GuPPOO9PX15d6/f/qRk9UFp/47Fr3s2xjlcXvuOOOHHjggXnlK1855fnrrrsuBxxwQC677LKMjY3lT3/6U/bcc8/JeZZKpYyOjuad73xnPvnJT+aqq67KkUce+dC/SQAAAAAADcq/AgAAAADbpaVLl+aTn/xkHvWoR015fvfdd58M0q5ZsyYLFy5MpVJJqVTK8uXLc8stt+Stb31rrrrqqqxevXrafouiyG233ZZvfetbGRgYSFEUk6+1tLRMBt322GOPPOxhD5sWhNtQaBhgvpRKpbS1taWtrS1Lly5db5uiKDIwMLDeCxtWrVqVP/7xjxkYGJjSp7W1NUcddVSe9rSnTdvfXXfdlV/+8pc544wzcvDBB+fUU0/NoYcemuXLl6e5uTm77LJLKpVK9t5778nxJ0K+3/jGN/Ltb387xx133JTwMQAAAADA9si/LAEAAADbpZ122ilf/epXc+edd2Z0dDRPfvKTs+uuu2bx4sV5xStekSVLlmTnnXfOi1/84pxyyinp7u7Of/zHf+SFL3xhdt555yxatCj33ntvbrvttuy7776pVCpJHgzE7bTTTjnqqKOmVbBsaWmZ51UDzI1SqZSurq50dXVljz32WG+biSrnaweBd95559Tr9WmVyh/72MfmwgsvTL1ez0UXXZT/+I//yAc+8IHUarXceeedefSjH53FixfnLW95S44//viUSqUkyac+9aksX74873rXu/Lf//3f6erqmvO1AwAAAADMp1KxdtkZAAAAgO3E3/3d3+Wqq67KIYcckqGhoey6664555xzUqlUMjw8nIMPPjg///nP87rXvS4veclL8sIXvjCPf/zjs2rVquy111753e9+l9WrV+fUU0/Ne9/73uy7777zvSSA7dLw8HCe9rSn5SUveUnOPPPMDAwMpLOzM5/5zGdy2WWX5R3veEeOOOKIfOlLX8pvfvObvPnNb85ll12Wb3/72/mXf/mXLFu2bL6XAAAAAAAwZ1T0BQAAALYp9Xp9SsXIlpaWHHTQQdPa/f3f/33e+973JnkwRPaCF7wgH/3oR/OBD3xg8lbvj370o3P00Ufnl7/8ZV7ykpfkHe94R+r1eg477LD88Ic/zAUXXJB///d/z5IlSyZvGw/AQ1OtVlOpVCY/U5uamtLX15eOjo4kmdy+5CUvySc+8Yn88Y9/zF577ZUPfehDOfnkk7Nw4cJcd9112X333bP77rtP2XdRFLnvvvuyYsWKKRXXm5ubt+4iAQAAAAC2EEFfAAAAoGEURZGhoaEpt31fd9vf35+1b1B04IEHrjfoOxEUS5K2trbss88+ueuuu5Jk8hby119/fVavXp2TTjopSfLMZz5zss+qVasyODiY1atXZ8mSJUK+AFvI8PBw/vqv/zrDw8PZf//9s2bNmhx33HE5+uij88c//jFLlixJT09PfvWrX6W3tzd77713RkZGcvzxx+fKK6/MBRdckNtvvz2jo6NZsGBB3va2t6W7uzvJgxeD3HHHHbnoooumjNna2jol+Lvutru7O5VKZT6+HQAAAAAAMyoVa//LGAAAAMAcGhkZmQztTgR3131cq9Um21cqlSnBrIlQ1toBrZaWlvWOdd999+Xmm2/O6OhofvrTn+bXv/513vCGN2RoaChnnXVW2tvbUy6X85znPCd/93d/l+TBoHFRFCmXy6nX65OBYAC2rBUrVuS2227Lbbfdlmq1mtNPPz1jY2P5q7/6q9x5551pampKV1dXzjrrrJx66qnTKvI+5znPyaMf/eg873nPy1577TXtYoxarbbevzFrPx4ZGZnSp7Ozc8a/OZ2dnS76AAAAAAC2OkFfAAAAYIuoVqtTqu+uL1Q1NjY22b5UKqWrq2uD1RV7enrS3t6+2aGqH//4x3nd616XPffcM7vvvntOPPHEnHTSSenv709fX1922203QV6ABtXf35/e3t4sW7YsyYMXYtTr9SQPXgTyjGc8Iy984Qtz+umnb/YYY2NjG6weP7EdHx+fbF8ul6dVAV734pPW1lZhYAAAAABgixL0BQAAYINqRZFVw7XcPVTN3UPVDFTrqdWLVMqldDaVs7S9KUvbm7KkrZKKUMt2rV6vT4auNhSIGhoamtKnvb19xsqIXV1dgrYAbLbx8fEsWLBgzvZfFEWGh4dnvIClv79/MoCcJAsWLJjxApaenp45nTONw3E0AAAAAFuKoC8AAADT9I7Vcu3qkVyzeiQjtQf/t7GcpL5Wm7Uft1ZKOWpxa45c3Jqe5spWni0PVVEUGRoamrEab39/f9Y+hdDS0jJjiKm7uztNTU3zuCoAmHv1ej2Dg4NT/nauux0YGJjSp62tbcaqwF1dXalUHE9tqxxHAwAAALClCfoCAAAwaaRWz9UrB3PdmtGUkszmfxgn2h+xqCXH79GRlopKrY1idHR0xgBSX19fqtXqZPtKpTJjNcLu7u60trbO44oAYNtRrVanVcVf92/xyMjIlD5dXV0zXlDT0dGRkiqwDcVxNAAAAABzRdAXAACAJMnyvrFcvKI/Q9ViVsGEdZWSdDSVcvLeXdm3u3lLTY8NqFar08K764aHRkdHJ9uXSqWNhofa29uFhwBgKxobG5vxopze3t5pF+V0dXVNqwa87kU5/p5vHY6jAQAAAJhLgr4AAADkV6uGc+Wdg7OuPrYhE/s5YVlHHrmkbQvsccdUr9czMDAwY/BncHBwSp/29vaN3g68XFYlDgC2JUVRZHh4eL0X9qx9XLD26f7m5uYZL+zp7u7OggUL5nFV2wfH0QAAAADMNUFfAACAHdxEOGGuCCmsX1EUGRoa2mBYp7e3N/39/dMCO2uHc9YN6wjsAMCOa+ICoQ1V+O/t7Z12gVBbW9uMxxZdXV2pVCrztKLG5zgaAAAAgK1B0BcAAGAHtrxvLF+5pW/Ox3ne/t073O2HR0dHZ7z9dl9f37RbcG+o6t7EtrW1dR5XBABs66rV6rQqwOtWCR4dHZ1sXyqV0tnZOePdAjo6OlIqleZxVfPDcTQAAAAAW4ugLwAAwA5qpFbPp357f4aqxRa5zfCGlJJ0NJXysofvlJZKeYPtVq5cmR/84Ac54YQTsnjx4jmc0UO3bkhmfdV4NxSS2VBQZkcNyQAAjWV0dHTGY5wNXay07gVKa3/d0tLS0Mc5RVHkggsuyB577JFHPepRG51rox1HAwAAALB9a5rvCQAAADA/rl45OOfhhCQpkgxWi1y1cjAn7tU17fXx8fFcddVV+dnPfpalS5emvb19jmc0s4nbXq9b3W7tkMu6t71ub2+fDLLsvffe00IunZ2dbnsNAGwTWlpasmTJkixZsmS9rxdFkeHh4SnHSBPb+++/PytWrEhfX1/WrjHS3Nw8Y1Xg7u7uLFiwYGstcZqJi7IuvfTS3HjjjTnllFNmvPCsUY6jAQAAANgxqOgLAACwA3pgtJZP/Pb+rT7uKw/dKT3N/xd4ve2223LhhRemv78/T3rSk/K4xz0u5fLcVSubKZgyse3v70+9Xp/s09zcPK1C3boBlfkMpgAANJq1L5za0DHXTBdOre+Yq6ura06PE5MHj00vuuii9Pb25klPelKOOeaYaWM2ynE0AAAAADsOQV8AAIAd0P/cNZif3jM851XI1lZK8thd2/LE3TsyOjqaK6+8Mr/61a+y11575ZRTTsmiRYse8hhr32p6Q9tNudX02qGSRr/VNADAtqharU47Tlv3Lgqjo6OT7Seq7q6vGvDEtqOj4yEft42Pj+fqq6/OT3/60yxdujSnnHJKli5dOvn6fB9HAwAAALDjEfQFAADYwdSKIufdcF9Gapv2v4M//drn8rOvfT73/+n2JMku+x2Sp7z8jTn42KfOeuzWSikntt6X71xycUZGRvLUpz41f/Znf7ZJgYxqtZr+/v4ZK8ONjIxM6dPV1TXjbaK3RBgEAIC5MTo6OmMQuLe3N7VabbL9xEVcax/zrfu4tbV1k8ZeuXJlLrzwwqxevTrHHntsnvCEJ6RUqczqOHpd3//cv+Xy896TY05/eZ71pn+cVd/WSimvOWznVBy7AgAAAOxwBH0BAAB2MHcPVfP53z+wye1/9z+Xp1QpZ/Fe+6Uokl9f9N/54X99NK/58lXZdf9DZj3+2P98Jfst7skzn/nMLFy4MMn/3d55phDHurd3bmtr22AV3u7u7nR1daVScXtjAIDtVVEUGRoamvFuDv39/Vn7n0Gam5tnDAL39PSkqakpSVKr1fLDH/4wP/zhD7Pzzjvn2JP+PJc9sGlB4XXd8Ztr8uW3vDQtHV3Z78+OnXXQN0nOPHhhlrY3bdb4AAAAAGy7BH0BAAB2MNeuHslldww8pH28+0kH5sTX/UMe9ewXzKpfURTZdc3N2TODU4K8/f39qdfrk+0WLFiw0QDGggULHtIaAADY/tXr9fT39894QdnQ0NCUPu3t7VOOO8vlcn7/+9+nt3u3LDj8Scksq+qODg3kvL96Sp791vfnqk//a3Y76BGbFfR9xp6dOXLx5gWNAQAAANh2ufQbAABgB3P3UDXlJPWNtpyuXqvlhu9emLHhoex1+KNmv4Oinj8NjKf/9t+mp6cnCxcuzF577bXeWyqX3JYYAICHqFwuTx5n7rnnnuttU61WpwWBJ7bLly9Pb29vxsbG0rTn4SmKekql2d014tvvfUsOefwJOeAxT8xVn/7XzVtHHjyOBwAAAGDHI+gLAACwgxmo1mcd8r375t/m42eemOrYaJrbOvKCD34+u+538OwHL5XT1NGVhz3sYTniiCOy6667zn4fAACwBTU1NWXnnXfOzjvvPOX5oaGh3Hjjjbn++uuzcuXKlNs6UyqVZ7Xv6y7/Vu666Ya8+gtXPKQ51pMMVjfnUj0AAAAAtnWCvgAAADuYWr2YdZ/F+xyQ13z56owO9OeG712Yr5/7mrzs09+eddi3VCqlo6s71/3oe/nJT36SXXfdNYcffngOO+ywdHV1zXpeAACwJVWr1fzhD3/I9ddfn5tvvjlJcsABB+Q5z3lOrm/ePSsGapu8rwfuXpmL/+XtefHHvpYFLa0PfW6bcRwPAAAAwLavVBSFM0MAAAA7kK/f2pc/9o49pH18+qxTs2jZPvmLd3xwdh2LIl0j9+cR43/K8PBw7r777txxxx2p1+vZf//9c/jhh+eQQw5Jc3PzQ5ofAABsqqIocscdd+T666/PjTfemNHR0SxevDjLli3LTjvtlOHh4fT19eWOxYdkrGdpUipt0n5/c/V38sU3vjDlSmXyuXqtllKplFK5nP/305VTXtuYA3uac+p+3bNeHwAAAADbNhV9AQAAdjCdTeWU8+DtfzdXUa+nOj66OT0z2v9AfnbdzzI8PDzlleXLl+eWW25JqVTK/vvvn/322y/d3d3p6elJd3d3Ojs7Uy7P7lbJAAAwoSiKjIyMpK+vL729venr68uqVaty7bXXZmxsLKW1AryrV6/O6tWr09TUNHk82l4pZTxFimxa0PeARz8hf/vVH0x57uvvfG2W7HNgnnjma2YV8i0n6WhyLAwAAACwIxL0BQAA2MEsbW/KtWs2vf1l5/2/HHzMU7Jwt2UZHRzItZd9I8t/9b950Ue/OvvBS+Uc/8jDc+TTH52xsbH09fVNBi16e3uzatWq3H333Vm1alVWrFiR8fHxya7lcjldXV2TQYu1txNft7W1TQloAACw4xgfH59ybLl2oHdiOzb2f3e2KJVK6erqSmtra/bYY4/stttuU44te3p6phxfXrt6JJfdMbDJ82np6MzSAx425bnmtva09+w07fmNqefB43gAAAAAdjzOCgEAAOxgZhsQGLxvdb567tnpX31PWju7s/TAh+dFH/1qDnzskx7S+M3NzVm8eHEWL1683nYTFdc2FNK4884709fXl3r9/2oTT1RcmwhnrBsE7unpSXNz82bNGwCA+VOr1dLf3z8tyLv243XvGNHR0TF5HLj//vtPOzac7R0j5jtoO9/jAwAAADA/SkVRFPM9CQAAALaeWlHkvBvuy0ht6//vYGullNcctnMqW6jqblEUGRgYmDHwMTAwtepaa2vreqsCr72tzOI2ygAAPDRFUWRwcHCDF3hNHNOt/c8ZLS0tM17g1d3dnaamLRuM3Z6OowEAAADYdgj6AgAA7ID+567B/PSe4WzN/yEsJXnsrm154u4dW3HU/6v+NtMtnNet/tbZ2TktALz2152dnZO3cAYAYMOKosjo6OiU4691j8X6+vpSq9Um+zQ1Na03uLv245aWlnlZz450HA0AAABAY3CfJwAAgB3QkYtb85N7hjfecAsq/v9xt7ZKpZKFCxdm4cKFG2wzNjY2LQA88fUtt9yS3t7ejI+PT7Yvl8tTAifrCwW3trYKAwMA273x8fENHkdNPB4bG5tsXyqVphxH7bHHHtOOo9ra2hr2OGpHOo4GAAAAoDGo6AsAALCDuvT2/ly/ZnSrVCMrJTl8UUtO3KtrK4y25RVFkZGRkY1WoqvX65N9FixYMGMQuLu7O83NzfO4KgCAmdXr9Y3eGWFoaGhKn46Ojo3eGaFcLs/TirYMx9EAAAAAbE2CvgAAADuo0Vo9n/rt/RmsFnMaUigl6Wgq5WUP3yktlW071DGToigyMDAwYzW7gYGBKX1aW1tnvCV1d3d3KpXKPK0IANieFUWRwcHB9YZ3J45jBgYGsvY/IbS0tGzwuGVi29S0/d9I0HE0AAAAAFuToC8AAMAObHnfWL5yS9+cj/O8/buzb7fqtbVabUrwd90gcG9vb0ZGRqb06ezsnLEqcGdnZ8Pe2hoAmD8jIyMbvBPBxLZWq022r1QqM16A1NPTk5aWlnlcUWNxHA0AAADA1iLoCwAAsIP71arhXHnn4Jzt/2nLOnL0krY52//2ZmxsbKOhnPHx8cn25XJ5Sgh4faGc1tZWYWAA2I6Mj49v9OKhsbGxyfalUildXV0zXjzU3t7ueGGWHEcDAAAAsDUI+gIAADAZUiglW+T2wxP7EU7Y8oqiyPDw8Iy32e7v70+9Xp/ss2DBghmDwD09PVmwYME8rgoAmFCv19Pf3z/t7/vaQd6hoaEpfdrb26f9fV9729XVlXK5PE8r2r45jgYAAABgrgn6AgAAkOTB2w9fsqI/g9XiIYUUSkk6mko5ee8utxmeJ/V6PYODgzNWBR4YGJjSp62tbb3BoInQUFdXVyqVyjytCAC2D0VRZGhoaL0h3oltf39/1j5t39LSMuPf6O7u7jQ1Nc3jqnAcDQAAAMBcEvQFAABg0kitnqtXDua6NaOzrko20f6IRS05fo+OtFRUjWtk1Wp1o9UCR0ZGpvTp6uqaMWjU0dHhlt8AbDXVarXhAq6jo6MzXmjT29ubWq022b5SqWywCu/EtrW1dR5XxKZyHA0AAADAXBH0BQAAYJresVquXT2Sa1aPZKT24P82lpPU12qz9uPWSilHLW7NkYtb09Os6uv2YmxsbMYgcG9vb6rV6mT7crk8rcLguo9bW1u3ahj4nHPOyY9//OPsuuuu+fjHP56lS5cmSW6++eYsXrw4O+2001abCwCbbnx8PKtXr85uu+2W5MG/Sf/0T/+UX/7yl+nt7c3Y2Fhe9rKX5aUvfelWm1O1Wt1gFd6J7ejo6GT7Uqm03otk1v66vb3dRTLbGcfRAAAAAGxpgr4AAABsUK0osmq4lruHqrl7qJrBaj3VepGmcikdTeUsbW/K0vamLGmrpCKkssMpiiLDw8MzVi3s6+ubcvvxBQsWzBgE7unpyYIFC7bY/K644oqsXLkyr3/963Pttddm3333zcDAQE477bSsWrUqtVotBxxwQD796U+np6cnDzzwQL7+9a9nv/32y1577ZXdd9897e3tW2Q+APyf++67L7fcckvuvPPOVKvVPOc5z0mpVMrg4GD+6q/+Kr/73e/S0dGRs846K694xSuSJEcffXROPPHE/M3f/E2WLVuWjo6OLTafer2e/v7+GS9uGRoamtKnvb19xr9nXV1dKZdVZt1ROY4GAAAAYEsR9AUAAADmTL1ez8DAwIzBqcHBwSl92tra1nv78omvu7q6UqlsesW76667Li9+8Yvzve99LwsXLpzy2uDgYD7wgQ9k9erVOe+883LnnXfmHe94RwYGBnLvvffm5ptvTkdHR/74xz9uiW8HAHmwMu7znve83Hvvvdl3333T29ubww8/PO9617vyr//6r1mxYkU+8pGPpK+vLwceeGCuuOKKHHnkkfnLv/zLvPzlL88znvGMWY1XFEWGhoZmvDClv79/yoUpzc3NM16Y0t3dvcUuTAEAAAAAmEnTfE8AAAAA2H6Vy+XJQNSyZcvW26Zaraa/v3+9t0JfsWJF+vr6MjIyMtm+VCqls7NzMmy1bNmyPO5xj5u236IoUiqV8rvf/S5dXV1pbW2dfG1oaCilUimVSiX33Xdfbr755iTJsmXL8vnPfz5JMjo6mje+8Y2Twa96va4yI8AW0NTUlDe+8Y055phjkiTLly/PE57whJxzzjn52te+lre//e0plUrp6enJM57xjFx66aU58sgj09HRkde//vV55zvfmZ122ilveMMb8qQnPWlK4LZer+eOO+7INddcM+XvSbVanWxTqVQmg7s777xz9tlnn2lB3rX/ZgAAAAAAzCdBXwAAAGBeNTU1ZaeddspOO+20wTajo6MbrMJ4//33z7j/2267LUuXLk1zc/Pkc9dcc03OOeec3HjjjXn+85+fz372s0mSWq2WWq2W5ubmfOELX8h11103+VrJbbUBtphjjjkmtVotlUolvb29WbZsWfr6+pI8+Jk/4eEPf3juvvvuDA4O5qyzzsrq1atz1FFH5aabbsqb3vSmnHPOOXnBC14weXFHkgwPD2fNmjXp6enJ0qVLp1WJ7+jo8JkOAAAAAGwzBH0BAACAhtfS0pIlS5ZkyZIl63197YDXus/deuutWbp06WRF3qIocuyxx+YnP/lJfv3rX+dDH/pQ7rjjjuy+++4plUppbm7Ovffem0suuSRPeMITcuCBB6rmCzAHKpVKkuTDH/5wjj322Oy5557Zaaedcuutt062mXjc29ubY489dvL5vfbaKxdccEGuvvrqvOAFL5h8vlwu55BDDskhhxyy9RYCAAAAADCH/AsVAAAAsM1bX2XGiWBuX19fjjjiiDQ1NU1pW6/Xc/TRR+dPf/pTfvnLXybJ5K3dP/WpT6WtrS2nn376evc/Pj6e3t7e1Ov1uVkQwDauKIoMDQ2lv78/RVFssN2nPvWp/OlPf8qLXvSiJA9W8L322msnXx8dHc2aNWuy++67T9t/b29vdtlllzmZPwAAAABAo1DRFwAAANgufeITn8inPvWpXHPNNbn55ptzww035PWvf31+85vfZJ999slBBx2UW265JTfeeGPe+ta3Jkmam5uTJOeff37e9KY35RGPeESSqUHfoiiyYsWKfOlLX0qpVEpnZ2d6enombwk/cXt4t4gHtmejo6Pp6+tLb29vent709fXN+1xtVrNEUcckWc/+9nr3ccvf/nLXH755fmnf/qnHHrooUmSk046KR/84AdzySWX5Pjjj89NN92Ugw8+OEnyi1/8Im9729tSLpdz77335rGPfWzOPffcJOu/4AMAAAAAYHtQKmYqpwAAAACwjRofH8+KFSty11135eabb87vf//7vPGNb8w73vGOXHfddalWq2ltbc2rXvWqPO95z8uCBQuSJG9729vyq1/9Kl/4whfWWymyKIqMjIxk5cqVk2G2dbcTlYGTB29NPxH+XV8QuKenJ62trVvt+wKwMdVqdb3B3bUfj46OTunT1dU15XNtYrt48eIsWbJk2hh33XVXnvvc56alpSWve93rctVVV2X33XfPm970plx66aV5+9vfnv7+/hx77LH56Ec/mo6OjqxatSo/+tGPst9++2WPPfbI4sWLt9a3BAAAAABg3gj6AgAAADusoaGhtLe3T3nuzW9+c44//vg84xnP2Kx9TtyufqaA3Lq3sm9ubl5vQG7tcPBEEBngoajX6xkYGJj2GbX2dnBwcEqftra2GSuXd3V1pVKpzGoeP/rRj/KXf/mXedaznpXW1tbstddeOfzww3PiiScmefCzVJVeAAAAAABBXwAAAICtbiJot6GQXV9f37SgXXt7+4xVgbu6ulIul+dpRcyHWlFk1XAtdw9Vc/dQNQPVemr1IpVyKZ1N5Sxtb8rS9qYsaaukIjC5QyiKIsPDw1M+T9a92KC/vz/1en2yz4IFC6Z9nqz7GeNCAwAAAACA+SPoCwAAANCAqtXqtADwumHg0dHRyfalUildXV3TgnprB/ba29tVyNwO9I7Vcu3qkVyzeiQjtQdP7ZWT1Ndqs/bj1kopRy1uzZGLW9PTPLuqqzSWsbGxGS8Q6O3tTbVanWxfLpfXWyF87cetra0+FwAAAAAAGpigLwAAAMA2anR0dKOhv1qtNtm+UqmsNwS89ra1tXUeV8RMRmr1XL1yMNetGU0pyWxO6k20P2JRS47foyMtFdWfG02tVttouH9kZGRKn42F+zs6OoR4AQAAAAC2cYK+AAAAANupoigyNDS03uDgxOP+/v6sfXqopaVlxuBgd3d3mpqa5nFVO6blfWO5eEV/hqrFrAK+6yol6Wgq5eS9u7Jvd/OWmh4bUa/XMzg4OGMwf2BgYEqftra2DVbh7enpSVdXVyoVFZoBAAAAALZ3gr4AAAAAO7B6vZ7+/v4NVhDt7e3N0NDQlD7t7e1TQofrhhC7urpSLqsYu6X8atVwrrxzcNZVfDdkYj8nLOvII5e0bYE97tiKosjw8PAGw/QTgfp6vT7ZZ8GCBRutrt3cLIgNAAAAAICgLwAAAAAbMT4+Pi24uO7jsbGxyfalUildXV0zBhnb29tTKpXmcVXbhomQ71wR9t24sbGxDVbhndiOj49Pti+Xy1Pe7+urxtva2ur9DwAAAADAJhH0BQAAAOAhGxkZmTEI3NfXl1qtNtm+qalpo2HIlpaWeVzR/FveN5av3NI35+M8b//u7Nu9Y1aPrdVqGw2xj4yMTOnT2dk5Y0Xrzs5OIV4AAAAAALYYQV8AAAAA5lxRFBkcHJyxKmp/f3/WPlXV0tIyYxC4u7s7TU1N87iq2fnd736X7u7u7LHHHhttO1Kr51O/vT9D1SJzefKulKSjqZSXPXyntFTKG2w3NDSUG264IY985CO3me95URQZGBiY8j5bN8g7MDAwpU9ra+t632drvw8rlco8rQgAAAAAgB2RoC8AAAAADaFer6e/v39KIHPd7dDQ0JQ+HR0d6w1kToQ1Ozs7Uy5vOMC6NX3lK1/JTTfdlMc85jE5/vjj09y84Sq6l97en+vXjM5pyHdCKcnhi1py4l5d014riiK//e1v853vfCf1ej2vetWr0tU1vd3WVhRFRkZG1hviXTvMW6/XJ/ssWLBgxvdKd3f3jD8TAAAAAACYD4K+AAAAAGwzxsfHpwWA163SOjY2Ntm+VCpNqQi8voBnW1tbSqXSnM+9Xq/npz/9aa6++up0dXXlWc96Vvbdd99p7R4YreUTv71/zuezrlceulN6mv+vWm1/f3++853v5KabbsrDHvawnHTSSens7NwqcxkbG9voz3l8fHyyfblc3ujPubW1dav8nAEAAAAAYEsS9AUAAABgu1EURUZHR2cMiPb19aVWq032aWpqmlbZdd3HLS0tW2yOa9asyUUXXZQVK1bk6KOPzgknnJDW1tbJ1//nrsH89J7hrVLNd0IpyWN3bcsTd+9IURS59tprc8UVV6RSqeSkk07Kwx/+8C02Vq1W22jl5uHh4Sl9Ojs7N1iFt6enJx0dHQ1TuRkAAAAAALYkQV8AAAAAdihFUWRwcHCDIdPe3t709/dP6dPS0jItXLr2tru7O01NTbOawy9/+ct897vfTUtLS575zGfmoIMOSq0oct4N92Wktmmn7L77iffne//xL1OeW7LPAXnDN3+yyXOZ0Fop5a/3LOfSSy7JLbfckiOOOCJPe9rT0t7evsn7KIoiAwMDG/y+9vb2ZmBgYOq4ra0bDFhPbCuVygZGBAAAAACA7ZugLwAAAACsY6Lq7IaqAvf29k6rOtvR0TFjVeDOzs5pVWd7e3tz8cUX549//GMe8YhH5OgnPS1fuX10k+f53U+8Pzd+76K85ONfn3yuXGlKx06LNmvd9f/9RtrGh/LMZz4zBx544JTXiqLIyMjIjN+Tvr6+1Ov1yT5NTU0zfk96enrS3Ny8WXMFAAAAAIAdwaaXGQEAAACAHUSlUsnChQuzcOHCDbYZHx+fFnKd2N5yyy3p7e3N+Pj4ZPtyuZyurq5poddHPvKRWbZsWX7605/mj6NNycOOSVLa5LmWK5V0Ld71Iaz2QUVRZOlBj8gxey3KwMBAvv/9708L8s60nmXLlk0L8ra1taVU2vS1AAAAAAAAUwn6AgAAAMBmWLBgQRYtWpRFi9ZfPXdjFXDvvPPO6RVw23pSrtdTKlc2eR6rb1+ef3raI9LU0pq9Dv+zPOPsd2Thbstmv6Cinj8NjucrX/lKkqkVivfff/9NqlAMAAAAAABsWaWiKIr5ngQAAAAA7IiKosif/vSnXHvttbnpppsyfMhxKS/dZ5Or4P7+f7+bsaHBLN77gPSvviff+48PpO/eP+V1X/thWjo6Zz2X9oFVeeqiIgcddFAWLFiwOUsCAAAAAAC2IEFfAAAAANjKRkdH87vf/S7XXXddbrvttjQ1NeVhD3tYeg94XO6pbX7Adri/N+87+aic/IZ351HPfsGs+5fuW5mRH12QnXbaKYcffngOP/zw7Lzzzps9HwAAAAAA4KFpmu8JAAAAAMCOoF6v59Zbb811112Xm266KdVqNXvvvXee8pSnZMmSJRkaGsrPR4aTpqZkEyv6rqutqyeL99o/a+5YPvvORZFdFy/O4c96VpYvX54f//jH+Z//+Z/sueeeOfzww3PooYemra1ts+YFAAAAAABsHhV9AQAAAGAO1Gq19Pf354EHHshPf/rT3HrrrRkfH09zc3NaWloyPj6ekZGRKX1aj35qit0PTMrlzRpzdGgg7zvpqDzlFW/Ksae/fFZ9i3ot9dt/l+r1/5MkWbBgQVpaWlKr1TI8PJxSqZSlS5fm0Y9+dPbYY4/09PSkubl5s+YJAAAAAABsGkFfAAAAAJiloigyODiYvr6+9Pb2pre3d/Lrie3AwEDWPvVWqVTS3d2dRYsWpaenJ93d3enp6Zn8uru7Ozc+UM1ldwxs8jy+86F/yCFPeFp22m3P9K26O9/9xPvzp9/fmNd940fp3GnxrNf1pCVN2bM0OGVNfX19ue+++3L//fdndHR0SvvW1tZpa1j3caVSmfU8AAAAAACABzXN9wQAAAAAoJEURZHR0dEpod21Q68TX9dqtck+TU1NkyHXRYsWZb/99pt8PLFtaWnZ6NhL22c319577sp/v/UVGeq9Px07Lco+Rz4mr/zPSzcr5Jsk++zcmaXtC7PHHnus9/WJKsXrCzffcccd6evry/Dw8JQ+nZ2dGwwC9/T0pLOzM6VSabPmCwAAAAAA2zsVfQEAAADYoYyPj0+rvrtukHdsbGyyfalUSldX14yVa9vb27dIWLVWFDnvhvsyUtv6p+xaK6W85rCdU3mI6xgbG9vg93diOz4+Ptm+XC5P+Z6uu+3p6Ulra6swMAAAAAAAOyRBXwAAAAC2G/V6fbLi7IZCpkNDQ1P6dHR0zBgy7ezsTLlc3mpr+J+7BvPTe4azNU/alZI8dte2PHH3jjkfqyiKjIyMrPdns3bgul6vT/ZZsGDBen82az/X3Nw853MHAAAAAICtTdAXAAAAgG1CURQZGhqaMSDa39+ftU93tbS0bLAK78S2qalpHlc1Xe9YLR//zf1bfdxXHrpTeporW33c9anX6xkcHJyx6vLAwMCUPm1tbTMGtru6ulKpNMb6AAAAAABgUwn6AgAAANAQRkZGNhjqnHhcq9Um21cqlQ2GOie+bmlpmccVbb5Lb+/P9WtGt0pV31KSwxe15MS9urbCaFtOrVZb73tk7e3IyMiUPp2dnVPeI+u+Zzo7O1MqleZpRQAAAAAAMJ2gLwAAAABzrlqtzlidtbe3N2NjY5PtS6VSurq61hvkndi2t7dvt6HM0Vo9n/rt/RmsFnMa9i0l6Wgq5WUP3yktlfIcjjQ/xsbGNlj9eeJ9V61WJ9uXy+Up77P1hcdbW1u32/cdAAAAAACNR9AXAAAAgIekXq+nv79/xsqqQ0NDU/q0t7fPWFm1q6sr5fL2FzydjeV9Y/nKLX1zPs7z9u/Ovt3Ncz5OIyqKIsPDwzMG0Pv7+1Ov1yf7LFiwYKOVpBcsWDCPqwIAAAAAYHsi6AsAAADABhVFkaGhoRmr8fb392ftU0zNzc3Tgo/rhiGbmprmcVXbjl+tGs6Vdw7O2f6ftqwjRy9pm7P9bw/q9XoGBwc3GGLv6+vLwMDAlD5tbW0zVgXu6upKpVKZpxUBAAAAALAtEfQFAAAA2IGNjo7OGGDs6+tLtVqdbF+pVNYbXFx729raOo8r2v5MhH1LSbbEibyJ/Qj5bjnVajX9/f3rDcRPbEdGRqb06erqWu/vz8TvVkdHR0ql0jytCAAAAACARiHoCwAAALCdqlarGwwdTmxHR0cn25dKpY2GD9vb24UP58HyvrFcsqI/g9XiIYV9S0k6mko5ee+u7NvdvKWmxyYYGxub8Xext7d3Wqi+q6trSqh+3ZB9a2ur30cAAAAAgO2coC8AAADANqher2dgYGDG4ODg4OCUPu3t7RsMDPb09KSrqyvlcnmeVsTGjNTquXrlYK5bMzrr6r4T7Y9Y1JLj9+hIS8XPudEURZHh4eH1VgVe+/d67dO5zc3NMwbzu7u7s2DBgnlcFQAAAAAAD5WgLwAAAECDKYoiQ0NDGwz79fb2pr+/f1rgb6bKnwJ/24/esVquXT2Sa1aPZKT24HugnKS+Vpu1H7dWSjlqcWuOXNyanubKVp4tW9JEwH+mz4Z1A/5tbW0zfjZ0dXWlUtn674t6vZ4zzjgj5XI5e+21Vx7xiEfk9NNPd7EBAAAAAMA6BH0BAACAHVJRFLnjjjuy8847p7OzM+Pj4/nIRz6SK664IoODg+nu7s573vOeHH300Vt87NHR0Y1W7axWq5PtK5XKBqt2TmxbW1u3+DxpbLWiyKrhWu4equbuoWoGq/VU60WayqV0NJWztL0pS9ubsqStkkqpNN/TZSupVqvTPk/W/bwZHR2dbF8qldLZ2Tljte+Ojo6UtvB7qFar5X//93+zevXq3Hzzzbn22mtz6qmn5jnPeU6SBz+jzz///HzkIx/JZz/72Rx66KEpiiI33HBDWltbs2zZsrS3t2/ROQEAAAAANCJBXwAAAGC7tGrVqtx+++25/fbbMzAwkOc+97lpaWmZfP3jH/94Xv3qV+drX/taTj311CTJP/zDP+Rxj3tcDjzwwFx//fV59atfneXLl0/ptzETIbv1BewmthsK2W0oaDcXITtgxzU6OjpjVeANXWywoQsNenp60tLS8pA+pz784Q/nv/7rv/LrX/869Xo9P/vZz/I3f/M36erqykc+8pE8/vGPz+rVq/OKV7wit99+e6rVavbZZ598+tOfzqJFi7bEtwUAAAAAoCEJ+gIAAADbpWc/+9np7+/P0qVLUy6Xs3Dhwnzwgx9Mc3NzBgYGcuqpp2ZgYCBnn312nvvc56ZSqWTVqlVZsmTJ5D4WLlyYn//85znooIMmnyuKIsPDw1m+fPl6Q3KDg4NT5tHe3j5jOK6zszOVSmWrfV8ANmbic27tz7h1t319fVn71HJzc/N6L1bYbbfdsuuuu653nBtvvDHnnXdehoaGUhRFjjvuuLziFa/IhRdemIsuuiiPe9zj8p3vfCfvfOc784hHPCL9/f1ZtWpV9ttvvyTJO97xjtx+++35r//6rxRF4YIIAAAAAGC71DTfEwAAAACYC9/4xjcmA7R33313Dj300Jx11lk59NBD86pXvSpvfetb8+lPfzorV67M+Ph4KpVKlixZklqtlkqlkm9961t59KMfnebm5in7LZVKeeCBB/L1r399SrBt1113zUEHHTQt0LtgwYL5WD7AZiuVSmlvb097e3t222239bap1+sZGBiYEgCe+Pqee+7JH/7whwwODuaxj31sTjjhhJTL5Wn72G233XLyySfnm9/8ZlpaWvKSl7wk//u//5srr7wyL3zhCzM4OJjx8fG0t7cnSbq6utLV1TX5Od3Z2Znbbrttcj4umgAAAAAAtkeCvgAAAMB2qVKp5Pbbb88111yTCy+8MGeddVYOPvjgXHPNNWlqasqjHvWoXHHFFRkYGEhra2uSZHx8PAsWLMh9992XD3zgA3nZy16WffbZZ1qlyKVLl+Ytb3nLQ75VPcC2qlwuT1bv3ZBqtZpqtbrBz8lFixbllFNOySmnnJLTTz89//iP/5i77rorBxxwQB7/+Mfnk5/8ZPbee+/ss88+k/trampKpVLJj370o/zwhz/MqaeemiQ+iwEAAACA7ZagLwAAALDNWzeIO/H4Jz/5SS644ILcc8896erqyu23354LL7wwxx13XDo6OlKv1yeDwE94whOycOHCVKvVvOY1r8nRRx+dM888M8n0AFm5XJ4MBwOwfk3/H3t/Hh9nXe///89rrklmn0mapVmaSQtISwtdAFkEWYUeKAIKpSzyATmA4oJHj8fd3zniFznHo+g5HgQPgnBEERVFoGxVKsiiCHSBlp2SpGmTNm2S2TKZmeu6fn9gxkyzNGmTTJbH/Xbr7co1876u9/tK0sw7k+f1ervdcrsHvgWdyWSUzWYVCATyj7366qsKh8PKZrO68cYbdfvtt6uzs1OO46ihoUEf//jHFQqFJElr167V1772NX3oQx/SZz7zGUkatGIwAAAAAAAAAEwHhuM4TrEHAQAAAAAAMJS+5eH3XBq+b3/OnDk644wz9nqef/7nf9amTZtUXl6uBx54QPX19Uomk+ru7tYll1yir371q2poaND//M//aP369frxj38sy7IUi8VUXl4+AVcKADNDMpnUZZddplgspoMOOkjZbFYdHR360Y9+pOrq6ny78847T5FIRKtWrdKJJ54or9erX/7yl7rxxhv1pS99Seeee+6AczuOoy1btuiRRx5RJBLJVx2ORCIF+yUlJRN4xQAAAAAAAACw76joCwAAAAAAisZxHPX09OTDu4MFeePxuGzbzh9TUlKSD2zNnj1bdXV1I+pr1qxZ2r17t+6//35t375djY2NevbZZ3Xdddfp3/7t31RTU6Nnn31W1157rerr6/X+979f7e3tOvHEE3XrrbeO16cAAGacQCCg733ve3r77bfV3Nys7u5uXXzxxZo1a1b+573L5VJnZ6fOPPNMLV++XNK7N2z88Ic/1AMPPKAPfOADQ57f7/dr3rx5isVi2r59u1599VWlUqkBbYYKAkciEYVCIaoEAwAAAAAAAJgUqOgLAAAAAADGTSaTGTTE23+by+Xy7V0u16CVF/vve71eGYYxbL+O46itrU1vvvmmLMvSxo0b9fTTT+vSSy/VWWedlW/32muv6T/+4z/0hS98QQsWLFBHR4ceffRRHXnkkaqoqFBlZeW4fW4AAMNraWlRaWmpqqurZRiGzj77bDmOo46ODmUyGVmWpYcffli1tbV7PVculxv2tSgWi6m3tzff3jAMhUKh/GvQYGFgv9+/19cjAAAAAAAAANhfBH0BAAAAAMA+sSxrQFBqz2q86XS64JjBQlP9w1OBQGDMQlPPPfecPvvZz6qmpkZ1dXU68cQTdf7554/JuQEAxbdr1y6Vl5ePWeXddDo9aAC4/9ayrHx70zQHfT3r/7rm8XjGZGwAAAAAAAAAZi6CvgAAAACAIVmOo509ltpSObWlckrkbFm2I9NlKOh2qcbvVo3frSqfKZOKdtOK4zhKJBLDVj5MJBIFx/h8vmErH4ZCIZmmWaQrAgBg/ziOo1QqNexrYzweV/+33D0ez7BB4HA4LLfbXcSrwnhhHg0AAAAAAICxQtAXAAAAADBAd8bS+o601nWklbbe/bXRJcnu16b/vtc0tKzSq6WVXkVKCXJOdo7jqKenZ8hqhd3d3YrH47Ltv3/FS0pK8oGkwUK84XBYpaWlRbwqAACKz7ZtxePxYavdp1KpgmP8fn/B6+qer7OhUGjMqhZj/DGPBgAAAAAAwFgj6AsAAAAAyEtbtta2JrVhV68MSaP5hbGv/ZIKj06pD8hjEkgplkwmMyBctOc2m83m27tcroLA7mBBXq/XK4NqcwAA7LdsNlsQ/N0zCNzd3a1MJpNvbxiGQqHQsFWB/X4/r9NFxjwaAAAAAAAA44WgLwAAAABAkrQlltGDTXGlcs6oggl7MiQF3IZWNIY0L0yF17FmWdZew0HpdLrgmGAwOGw4KBgMEg4CAGASSafTe71px7KsfHu3273Xm3Y8Hk8Rr2h6Yx4NAAAAAACA8UTQFwAAAACgF3b2aM3W5Kirjw2l7zynzQnoiCrfGJxxZnAcR4lEYshAT3d3txKJRMExXq932OW+w+GwTJNloAEAmE4cx1EymRz2xp9EIqH+b/97PJ5Bb/zpv3W73UW8qqmJeTQAAAAAAADGG0FfAAAAAJjh+sIJ44WQwrscx1E6nS4I7e4ZyonFYrJtO39MSUnJkGGcvo9LS6n2BgAABrIsK38D0VA3EaVSqYJjAoHAsFWBg8GgXC5Xka5o8mEeDQAAAAAAgIlA0BcAAAAAZrAtsYzueSs27v2sOjA8ouWHd+3apfLy8ikZIMlkMgMCNHsGebPZbL69y+UqCNEMtvX5fDIMo4hXBQAAprNsNjvk/KVvm8lk8u0Nwxh2/hKJRKbs/KWrq0vBYHDEVY0n2zwaAAAAAAAA0xdBXwAAAACYodKWrVs3dyqVc8ZkmeGhGJICbkNXLSyXxxw8wJtMJvXII4/o5Zdf1j/+4z9qzpw54zii0bMsS/F4fNiKeD09PQXHBIPBYUMwgUBgSgaaAQDAzOE4jnp7e4edA8ViMVmWlT/G7XYPqAa8577H4yniVQ3kOI7+67/+SyUlJTr77LPV0NAwbPvJNI8GAAAAAADA9EfQFwAAAABmqIeb49q4q3dcwwl9DEmLKzw6IxoqeNxxHG3atEkPP/ywHMfR8uXLtXjx4gmtAuc4jpLJ5LABlng8XnCM1+sddlnrcDgs0zQn7BoAAACKpf9caqhVDQabSw13Q1QoFBpxZd2xsmPHDt1///1qbW3VUUcdpVNPPVWlpYNX0p0M82gAAAAAAADMHAR9AQAAAGAG6uq1dMvmzgnv95pF5YqUvhuAjcfjWr16tV577TUtXLhQZ5xxhoLB4Jj25ziO0un0kKGTvn3btvPHuN3uYSvQRSKRIUMfAAAAGKhvdYQ952D9t3uujhAIBIadkwWDwTFfHcG2bf3lL3/R448/rmAwqA9+8IM64IADCtpMhnk0AAAAAAAAZhaCvgAAAAAwAz2xLak/t/eMuApZ947teuS/rtNrz/xB2XSPKhrm6fx/+2/NWbh0xH0ako6Z7dMJtX6tW7dOjz32mEpKSnTmmWfqkEMO2ZfLUDabHbIKb1+IJJvN/n0MhjFk9bi+rc/nm9CKwgAAABj9vM7lcikUCg17c9a+zut2796tBx54QO+8846WLl2q5cuXy+v1ShrdPNq2LP3+R9/W+od+rfiuHQpX1ejwD16oU6783KjG1TePPrEuMOprAQAAAAAAwNRH0BcAAAAAZhjLcfSDl3YrbY3s18GeWJf++6JTdOCRx+nolR9VoLxCHc1vq2LOXFU0zBtV3x6XNGvDw3pny9taunSpTj/9dPl8vsHHOUUqvwEAAGD87c9KDXve2DWSlRocx9GLL76oxx57TKWlpVqxYoXeM3/+qObRa2/7np762S1a+Y0faPaBC7R183r9+t+u1emf/IqOu+jqUV2/1zT06cNmyeSGNAAAAAAAgBmHoC8AAAAAzDBtqZzueK1rxO0f+e/r1LT+OX3s9gfHpP/SFx7SB088VrW1tQOqtPUPayQSCfX/ldXr9Q5ZhTcSiSgUCsntdo/JGAEAADD1OI6jZDI55E1isVhM8Xi84Biv1ztsVWBJevjhh/XGG2/owGVHa2vDkSMezx3XXqxQRZXO+9f/yj921+cvV4nHp1XX3zzq67t8fplq/Mx3AQAAAAAAZhreEQIAAACAGaYtlRtV+1eeeFTvOfZk/ewLV2jLC88qXF2jY1ZeoaM+fOnoO3ccOaFZuueee2RZVv5ht9udD1NUVlbqgAMOGBDo9Xg8o+8PAAAAM4ZhGAoGgwoGg6qvrx+0Td+qEYOFgbdu3arNmzcPumpEWVmZmjqTcs1xZIywqm7jkvfqud/8VDub3lJV44Ha/vrLalr/nM783HX7dH1tqRxBXwAAAAAAgBmId4QAAAAAYIZpS+XkkmTvteW7drc26S+/vkPHX/JxnXzFP2nrpvV64D+/IrOkREd88MLRde7Y8lTV633RCpWXl+crpvl8vhEHJgAAAIB9ZZqmysrKVFZWNmSbTCZTsOpES0uLWlpapEil5NiSYY6orxM/+hn1JuP63oePlWGacixLp3/yK1p25vmjHrdLo79hDwAAAAAAANMDQV8AAAAAmGESOXvEIV9Jcmxb9QuXavmnvyZJqluwWG1vvaK//PrO0Qd9DZe601n98S9/1MKFC7V48WLV1NQQ8gUAAMCkUVpaKpfLpZaWFm3cuFGdnZ0Kh8OqqJ2jLpdrxOd5ac3vtP7he7XqWz/S7APma9trL+vB735NoaqaUc+jbUnJ3Ghm8QAAAAAAAJguCPoCAAAAwAxj2c6o2ocqZ6v6gIMLHqued7A2/eHB0XduGGqcd4AaAj3auHGj1q9fr3A4rMMOO0xLlixRVVXV6M8JAAAAjIGenh5t2rRJGzduVEtLi0pLS7Vw4UJ98IMf1Ny5c/XLt2LqimdHfL6Hv/9vOvHya7Vk+YckSTXvWaiuthY98ZP/Gv0Nc5Jyo5zHAwAAAAAAYHog6AsAAAAAM4zpGl313MalR6njnTcLHutoektltQ371L/PU6oTTzxRJ5xwgrZu3aqNGzfqhRde0NNPP63a2lotXrxYy5Ytk8fj2afzAwAAAKPx+uuva/369Xr99ddl27YOPPBAffjDH9aCBQtUUlKSbzfaeXQm3SNjjwrALpcp2963yrzuUfYPAAAAAACA6YGgLwAAAADMMEG3Sy69u/zvSBx3ycd1y0fP1NrbvqfDTjtHWzet03O/+ak+9LXvjrpvl6SA+92wg2EYamhoUENDg5YvX6433nhDGzdu1Jo1a9Tb26sTTzxx1OcHAAAARmPXrl26++67VVNTo1NPPVWHHXaYgsHgoG1HO48+5ITTtfa276mspl6zD1ygba++pKfuukVHnHPxqMfZfx4NAAAAAACAmcVwHIe1ngAAAABgBlnfkdYjLYlRHfPKk4/p0f/5/7Sr+W2V10V1/Eeu0VEfvnSf+v+HhqCWVnqHfD6TycjtdsvlIsgAAACA8ZdOp+X1Dj0/7TPaeXRvMqHHfniDNq99SInODoWrarRk+Yd0ytWfl7ukdNTj3Ns8GgAAAAAAANMTQV8AAAAAmGHaUjnd8VpX0fq/fH6ZavwsMAMAAICphXk0AAAAAAAAioHySAAAAAAww1T5THlNoyh9e01DVT6zKH0DAAAA+4N5NAAAAAAAAIqBoC8AAAAAzDCmYWhZpVcTHVEwJC2r9Mo0ihOOAAAAAPYH82gAAAAAAAAUA0FfAAAAAJiBllZ65Uxwn87f+gUAAACmKubRAAAAAAAAmGgEfQEAAABgBoqUmlpS4ZmwamSGpCUVHkVKWW4YAAAAUxfzaAAAAAAAAEw0gr4AAAAAMEOdUh9QwG2Me0jBkBRwGzqlPjDOPQEAAADjj3k0AAAAAAAAJhJBXwAAAACYoTymSysaQ+O+9LAjaUVjSB6TX0EBAAAw9TGPBgAAAAAAwETi3SEAAAAAmMHmhUt12pzxrRB2+pyA5oVLx7UPAAAAYCIxjwYAAAAAAMBEIegLAAAAADPcEVW+fEhhrJYf7jvP6XMCOrzKN0ZnBQAAACYP5tEAAAAAAACYCIbjOOO9uhQAAAAAYArYEstodVNcyZyzX8sQG5ICbkMrGkNUIAMAAMC0xzwaAAAAAAAA44mgLwAAAAAgL23ZWtua1IZdvTKkUQUV+tovqfDolPqAPCaLyAAAAGBm2J959LutDebRAAAAAAAAGBRBXwAAAADAAN0ZS+s70lrXkVbaevfXRpck23Ekw/j7/t/ae01Dyyq9WlrpVaTULMqYAQAAgGIbah5tOY4M5tEAAAAAAADYBwR9AQAAAABDshxHO3sstaVyakvltP6V11ReUaHKWbMUcLtU43erxu9Wlc+U+bfgAgAAADDT7TmP7ognZZhueUtLmEcDAAAAAABgVNzFHgAAAAAAYPIyDSMfQpCkjb/4gw497jgdd8Dc4g4MAAAAmMT2nEcfffSpuu+++1RbW1HQLhaLaeXKlXr00UeLMUwAAAAAAABMAa5iDwAAAAAAAAAAAGA6S6fTqq2tze9fdtllkqRwOKz29vZiDQsAAAAAAABTAEFfAAAAAAAAAACAcWQYRsH+2rVrh3wOAAAAAAAA6I+gLwAAAAAAAAAAwDiqrq7WfffdJ0n66U9/KsMwdMcdd+i+++5TOBwu7uAAAAAAAAAwqbmLPQAAAAAAAAAAAIDp7Dvf+Y7OOussXXzxxTr55JP10EMP6dJLL5Vt27rjjjuKPTwAAAAAAABMYgR9AQAAAAAAAAAAxtHixYvV3Nyszs5OlZeXS5JefPHFIo8KAAAAAAAAU4Gr2AMAAAAAAAAAAACYCfpCvv3t3r27CCMBAAAAAADAVEHQFwAAAAAAAAAAoEhOPfXUYg8BAAAAAAAAk5i72AMAAAAAAAAAAACYTizH0c4eS22pnNpSOT2y9gk1NM7VnLpaRbylqvG7VeN3q8pnyjCMYg8XAAAAAAAAkxhBXwAAAADAiJ1yyimqq6sr9jAAAACASak7Y2l9R1rrOtJKW46kd5dWrDnsKGUNQ28nLCmWlOFySYYhr2nosA9/VN0ZS5FSs7iDBwAAAAAAwKRkOI7jFHsQAAAAAICpwbIsGYYhl8tV7KEAAAAAk0basrW2NakNu3plSBrNH15sy5LLNLWkwqNT6gPymMy1AQAAAAAA8HcEfQEAAAAAAAAAAPbRllhGDzbFlco5owr47smQFHAbWtEY0rxw6VgNDwAAAAAAAFMcQV8AAAAAAAAAAIB98MLOHq3Zmhx1Fd+h9J3ntDkBHVHlG4MzAgAAAAAAYKpj/ScAAAAAAAAAAIBR6gv5SmMT8u1/njVbk3phZ88YnRUAAAAAAABTGUFfAAAAAAAAAACAUdgSy+RDvuNlzdaktsQy49oHAAAAAAAAJj+CvgAAAACAEfv4xz8+6ONPPfWUPvOZz0zwaAAAAICJl7ZsPdgUlzHO/RiSVjfF1WvZ49wTAAAAAAAAJjOCvgAAAACAEVu9evWgjx9wwAG6//77J3g0AAAAwMRb25pUKufIGed+HEnJnKPHW8e3cjAAAAAAAAAmN3exBwAAAAAAmDra29s1b968AY8bhqGmpqYijAgAAACYOF29ljbs6p2w/hxJG3b16n01fkVKzQnrFwAAAAAAAJMHQV8AAAAAwIhVVFTod7/7XbGHAQAAABTFhl1pGdKIq/n2JhN67Ic3aPPah5To7FDd/MN01r9cr4ZFy0bcpyFpfUdaJ9YF9mXIAAAAAAAAmOII+gIAAAAARiwUCmnx4sXFHgYAAAAw4SzH0bqO9IhDvpJ073X/pPa3XtUF37xJoaoarX/o17rtmvP02V8/rUh17YjO4Uha15HW8bV+mYaxT2MHAAAAAADA1OUq9gAAAAAAAFPHH/7wB3V3dxd7GAAAAMCE29ljKW2NPOabTfdo0+MP6ozP/P8074j3qTJ6gD7w8S+oYs48/eVXPxlV32nL0c4ea7RDBgAAAAAAwDRA0BcAAAAAMGLnn3++UqnUgMdjsZiWL19ehBEBAAAAE6MtlRtVe9uyZFuW3KXegsdLvF69s/4v494/AAAAAAAApgeCvgAAAACAEUun06qt/fsSw5dddpkkKRwOq729vVjDAgAAAMZdWyo3qj+qeAJBRRe/V4//+LuK7WyTbVlat/pXat74vOIdo5s7u0TQFwAAAAAAYKYi6AsAAAAAGDHDMAr2165dO+RzAAAAwHSSyNmyR3nMBd+8SXIc3bD8MH39mHo984tbtWT5h2UYo/vzjC0pmRtt7wAAAAAAAJgO3MUeAAAAAABg6qiurtZ9992nc889Vz/96U9lGIbuuOMOlZWVKRwOF3t4AAAAwLixbGfUx1Q0zNPVP75fmZ6k0om4wlU1+vkXr9SsOY2jPlduH/oHAAAAAADA1EfQFwAAAAAwYt/5znd01lln6eKLL9bJJ5+shx56SJdeeqls29Ydd9xR7OEBAAAA48Z07fsKFqW+gEp9AfXEuvTGs2t1xmf+ddTncO9H/wAAAAAAAJi6DMdxuAUcAAAAADAqnZ2dKi8vL/YwAAAAgAnzSHNCG3elZY/imNefeVyO46hq7kHa1bJFD3//3+Qu9epjtz0gs6RkxOdxSVpc4dU/RIOjHjcAAAAAAACmNir6AgAAAABGbbCQ7+7duzVr1qwijAYAAAAYfzV+t9bvGt0x6URMj/7P9epu3yZ/pEyLTjlLyz/51VGFfCXJ/lv/AAAAAAAAmHmo6AsAAAAAGBPLli3TunXrij0MAAAAYFy0pXK647WuovV/+fwywr4AAAAAAAAzkKvYAwAAAAAATB3HH3+8brvtNiWTyQHPGYZRhBEBAAAAE6PKZ8prFmfO6zUNVfnMovQNAAAAAACA4iLoCwAAAAAYsauvvlp33nmnamtrdeWVV+qZZ54p9pAAAACACWEahpZVejXRUV9D0rJKr0xurAMAAAAAAJiRCPoCAAAAAEbs//2//6cnn3xSzz//vCorK3X++edr4cKF+u53vztolV8AAABgOlla6ZUzwX06f+sXAAAAAAAAM5PhOM5EvycFAAAAAJgmbNvW6tWr9eMf/1gPP/ywMplMsYcEAAAAjKuHm+PauKt3QgK/hqTFFR6dEQ1NQG8AAAAAAACYjAj6AgAAAADGRFdXl8rKyoo9DAAAAGBc9Vq2bt3cqWTOGdewryEp4DZ01cJyeUwWaAQAAAAAAJipeGcIAAAAADAmCPkCAABgJvCYLq1oDI17RV9H0orGECFfAAAAAACAGY53hwAAAAAAAAAAAEZhXrhUp80JjGsfp88JaF64dFz7AAAAAAAAwORH0BcAAAAAAAAAAGCUjqjy5cO+xhids+88p88J6PAq3xidFQAAAAAAAFOZ4TjOeK8uBQAAAACYJizLkmEYcrm4bxQAAACQpC2xjFY3xZXMOdqfP7gYkgJuQysaQ1TyBQAAAAAAQB5BXwAAAADAiG3cuFGzZ8/W7Nmziz0UAAAAYNJIW7bWtia1YVevDGmUgV9HkqElFR6dUh+Qx+SmOgAAAAAAAPydu9gDAAAAAABMTrZtD6jc+8gjj+i4444bEPQdrC0AAAAwU3hNl86IhvS+Gr/Wd6S1riOttPVu3NclyXIcGYaR37fzxxlaVunT0kqvIqVmUcYOAAAAAACAyY2gLwAAAABggE2bNunxxx/Xxz/+cZWUlAzbdsOGDXriiSd07bXXTtDoAAAAgMkpUmrqxLqAjq/1a2ePpbZUTm2pnDriSRmmW97SEgXcLtX43arxu1XlM2X+LQAMAAAAAAAADIZySwAAAACAAWpra9XZ2akXX3xx2HaWZWnt2rWqr6+foJEBAAAAk59pGKrxu7W00qt/iAb1gyvO1imRjM47IKx/iAa1tNKrGr9byXhcy5cvL/ZwAQAAAAAAMIkR9AUAAAAADDBr1iwtXrxYTz31lLLZ7JDt1q9fr+7ubp1wwgkTODoAAABgakmn06qtrc3vX3bZZZKkcDis9vb2Yg0LAAAAAAAAUwBBXwAAAADAoE444QQlk8khq/palqU//elPOvTQQ1VVVTXBowMAAACmDsMwCvbXrl075HMAAAAAAABAfwR9AQAAAACD2ltVX6r5AgAAACNTXV2t++67T5L005/+VIZh6I477tB9992ncDhc3MEBAAAAAABgUnMXewAAAAAAgMnrhBNO0MaNG/Xiiy/q6KOPzj9ONV8AAABg5L7zne/orLPO0sUXX6yTTz5ZDz30kC699FLZtq077rij2MMDAAAAAADAJEbQFwAAAAAwpP5VfQ8//PD8433VfC+55JIijg4AAACYGhYvXqzm5mZ1dnaqvLxckvTiiy8WeVQAAAAAAACYClzFHgAAAAAAYHI74YQTlEwm80EE27ap5gsAAADsg76Qb3+7d+8uwkgAAAAAAAAwVRD0BQAAAAAMq39VX8dxtG3bNnV3d+uEE04o9tAAAACAKe/UU08t9hAAAAAAAAAwibmLPQAAAAAAwORlOY529liqWvZ+bXLK5fIFtMV0a9apS/RCj081HWnV+N2q8pkyDaPYwwUAAAAmhb55dFsqp7ZUTo+sfUINjXM1p65WEW+pavzu/DzaYB4NAAAAAACAYRiO4zjFHgQAAAAAYHLpzlha35HWuo600tbffm10bDky/hZEcOSSIftv7b2moWWVXi2t9CpSahZr2AAAAEBRDTaPdkmyHUcyDDmOI9m2DJdLMgx5TUPr7v+5/vsLn2AeDQAAAAAAgEER9AUAAAAA5KUtW2tbk9qwq1fvxnlHrq/9kgqPTqkPyGO6xmeQAAAAwCSzP/No27LkMk3m0QAAAAAAABgUQV8AAAAAgCRpSyyjB5viSuWcUQUT9mRICrgNrWgMaV64dKyGBwAAAExKzKMBAAAAAAAwngj6AgAAAAD0ws4erdmaHHX1saH0nee0OQEdUeUbgzMCAAAAkw/zaAAAAAAAAIw31n8CAAAAgBmuL5wgjU04of951mxN6oWdPWN0VgAAAGDyYB4NAAAAAACAiUDQFwAAAABmsC2xTD6cMF7WbE1qSywzrn0AAAAAE4l5NAAAAAAAACYKQV8AAAAAmKHSlq0Hm+IyxrkfQ9Lqprh6LXucewIAAADGH/NoAAAAAAAATCSCvgAAAAAwQ61tTSqVc8ZsmeGhOJKSOUePt45vxTMAAABgIjCPBgAAAAAAwEQi6AsAAAAAM1BXr6UNu3rHPZzQx5G0YVevujPWBPUIAAAAjD3m0QAAAAAAAJhoBH0BAAAAYAbasCs97ksN78mQtL4jPcG9AgAAAGOHeTQAAAAAAAAmmrvYAwAAAAAATCzLcbSuIz2qKmT/seJwdW1vGfD4MSs/qnO+/O0RncORtK4jreNr/TKNiY5HAAAAAPtnb/PoLS88oyf/7ya1vrJB8Y52feS7d2rRyWfmn3ccR7+/5T/019/+VD3xmBqXHKVzv/JtVUYPHLZf5tEAAAAAAAAzGxV9AQAAAGCG2dljKW2NbrHhT971mL7y2Mv5f/94868lSYedds6ozpO2HO3sYdlhAAAATD17m0dn0inVHrxI53zpPwZ9/sk7f6Bn7r5V537lO/rEnY+o1OfX7Z9cpWzv3qv1Mo8GAAAAAACYuajoCwAAAAAzTFsqN+pjguWVBft//Ml/a9acuZp3xPv2qf8aP7+OAgAAYGrZ2zx6/nEf0PzjPjDoc47j6Omf/0gnX/k5LTzpDEnSBdfdpOtPW6jNf3xYS5Z/aET9M48GAAAAAACYeajoCwAAAAAzTFsqt1+/DOayGa1/+Nc68pyLZYxy6WCX9i1oDAAAABTb/syjO1ubFO/YoYOOPiH/mDcUVsOhh6t541/3ejzzaAAAAAAAgJmLoC8AAAAAzDCJnC17P47fvPYhpePdOuLsi0Z9rC0pmduf3gEAAIDi2J95dHzXDklScFZVwePBiirFO3bs9Xjm0QAAAAAAADMXQV8AAAAAmGEs29mv45+/72c6+H2nKlxVs0/H5/azfwAAAKAY9ncevb+YRwMAAAAAAMxMBH0BAAAAYIYxXcY+H9u5rUVvPvek3vuhj+zzOdz70T8AAABQLPszjw5VVEuSErt3Fjye2LVTocrqEZ2DeTQAAAAAAMDMRNAXAAAAAGaYoNu1z78MvnD/3QrOqtT840/bp+NdkgJufhUFAADA1LM/8+jy+kaFKqv11nN/yj+WTsTV8vKLii5+716PZx4NAAAAAAAwc7mLPQAAAAAAwMSq8bu1ftfoj7NtWy/cf7cOP2uVTPe+/TppO44S27aoWRHV1dXJvY/nAQAAACba3ubRvamEdrVsye93tjZr22svyR8uV1ntHB138cf0+I9vVEX0AM2qi2rNzf+uUFWNFp50xl77tv/WPwAAAAAAAGYe3hUCAAAAgBlmXwMCb/7lCXW1bdUR51yy750bht544VltenS7TNNUXV2dotGootGoGhoa5PP59v3cAAAAwDja2zy6dfMG3Xr1ufn91Td+XZJ0+AdXaeU3/kcnXPZpZXpS+u3/9zml4zE1Lj1aH/2fe1Ti8Y5J/wAAAAAAAJieDMdxnGIPAgAAAAAwcSzH0Q9e2q20NfG/DnpNQ59cVKaOHTvU3Nyc/5dIJCRJ1dXV+eBvNBpVJBKZ8DECAAAAgyn2PPrTh82SaRgT3jcAAAAAAACKi6AvAAAAAMxAT2xL6s/tPZrIXwgNScfM9unEukDB447jqKurS83NzWpqalJLS4s6OjokSeFwuCD4W11dLYNwAwAAAIpkMs2jAQAAAAAAMDMQ9AUAAACAGag7Y+nmTZ0T3u81i8oVKTX32i6ZTKqlpSVf8Xf79u2ybVter1cNDQ354G9dXZ3cbpYwBgAAwMSY7PNoAAAAAAAATD8EfQEAAABghnq4Oa6Nu3onpBqZIWlxhUdnREP7dHw2m1Vra2s++NvS0qJMJiPTNFVXV5cP/jY0NMjn843t4AEAAIB+ptI8GgAAAAAAAFMfQV8AAAAAmKF6LVu3bu5UMueMa0jBkBRwG7pqYbk8pmtMzmnbttrb2/PB3+bmZiUSCUlSdXV1PvgbjUYViUTGpE8AAABAkhLpjG5+aadyrhIZrrGZ3w5mPObRAAAAAAAAmHoI+gIAAADADLYlltE9b8XGvZ9VB4Y1L1w6bud3HEddXV0Fwd+Ojg5JUjgcLgj+VldXyzCMcRsLAAAApq9YLKZ77rlHO+xSmUetGPf+xnseDQAAAAAAgMmPoC8AAAAAzHAv7OzRmq3JcTv/6XMCOrzKN27nH0oymVRLS0s++Lt9+3bZti2v16uGhoZ88Leurk5ut3vCxwcAAICpxXEcvfLKK3r00Ud14YUXapu7bFrOowEAAAAAADC5EPQFAAAAAOTDvoaksfglse88kymckM1m1dramg/+trS0KJPJyDRN1dXV5YO/DQ0N8vkmx5gBAAAwsd58800ddNBBchxnyFUgent75fF4JM2MeTQAAAAAAACKi6AvAAAAAECStCWW0eqmuJI5Z79CCoakgNvQisbQpF5m2LZttbe354O/zc3NSiQSkqTq6mo1NDSosbFR0WhUkUikyKMFAADAeNqxY4dOP/10dXV16a233pJpmiM+dqbNowEAAAAAADCxCPoCAAAAAPLSlq21rUlt2NU76qpkfe2XVHh0Sn1AHtM1PoMcJ47jqKurqyD429HRIUkKh8P5ir/RaFTV1dVDVngDAADA1PLss8/qM5/5jI444gh1dnbq85//vI488shRnWMmz6MBAAAAAAAwvgj6AgAAAAAG6M5YWt+R1rqOtNLWu782uiTZ/dr03/eahpZVerW00qtI6cirn012yWRSLS0t+eDv9u3bZdu2vF6vGhoa8lV/6+rq5Ha7iz1cAAAAjNKvf/1rffGLX9TNN9+s008/Xccee6wuv/xyfexjH5Nt23K5Rhe6ZR4NAAAAAACAsUbQFwAAAAAwJMtxtLPHUlsqp7ZUTsmcrZztyO0yFHC7VON3q8bvVpXPlDkDKtxms1m1trbmg78tLS3KZDIyTVN1dXX5ir8NDQ3y+XzFHi4AAAD2Yv369fL5fJo/f74k6eabb9ZPfvITPfbYYyorK9vn8zKPBgAAAAAAwFgh6AsAAAAAwD6ybVvt7e354G9zc7MSiYQkqbq6Ol/xNxqNKhKJFHm0AAAAkCTLspRIJORyuRQKhfKPmaap5557Tt/85jd10003KRqNynEcGQRxAQAAAAAAUEQEfQEAAAAAGCOO46irq6sg+NvR0SFJCofD+Yq/0WhU1dXVhEYAAAAm2Ntvv63LL79c8+bN02uvvaY1a9YoFAoVBHoXLVqkSy65RF/5yleKPFoAAAAAAACAoC8AAAAAAOMqmUyqpaUlH/zdvn27bNuW1+tVQ0NDvupvXV2d3G53sYcLAAAwbT3yyCP66le/qiuvvFIrV67UxRdfrGuvvVZnnXWWJCmTyai0tFT33HOP7r77bt1+++2aNWtWkUcNAAAAAACAmY6/IAIAAAAAMI4CgYAWLFigBQsWSJKy2axaW1vzwd+nnnpKjz/+uEzTVF1dXb7ib0NDg3w+X5FHDwAAMH3cf//9uu6667RixQo5jqNEIqE33nhDt99+u6644gqVlpZKktxutxKJhFwuV5FHDAAAAAAAAFDRFwAAAACAorJtW+3t7fngb3NzsxKJhCSpuro6X/E3Go0qEokUebQAAABTj+M4MgxD2WxWJSUl6urq0kUXXSS3260LL7xQ1113nc466yx997vfzR+ze/duqvkCAAAAAABgUiDoCwAAAADAJOI4jrq6ugqCvx0dHZKkcDicr/gbjUZVXV0twzCKPGIAAIDJqaurS9dcc43+6Z/+SUcffXT+8Uwmo8cee0xnnXWWJOn555/XhRdeqOeee05lZWVU8gUAAAAAAMCk4i72AAAAAAAAwN8ZhqHy8nKVl5dryZIlkqRkMqmWlpZ88Hfz5s2ybVter1cNDQ1qaGhQNBpVfX293G5+1QcAANi6dasuuOACvfrqq2pvb9edd96phoYGOY6j0tLSfMhXkjo7O3XssccS8gUAAAAAAMCkREVfAAAAAACmmGw2q9bW1nzwt6WlRZlMRqZpqq6uLl/xt6GhQT6fr9jDBQAAmHCdnZ2688479U//9E86++yzFQgEdMsttygSiRS0+93vfqdvfOMb+uIXv6hVq1YVabQAAAAAAADA0Aj6AgAAAAAwxdm2rfb29nzot6mpSYlEQpJUXV2dr/jb2Ng4INwCAAAwXSWTSQUCAcXjcZ1wwgk644wz9NWvflWBQEA9PT36+c9/rm9/+9v66U9/qqOOOqrYwwUAAAAAAAAGRdAXAAAAAIBpxnEcdXV15Sv+Njc3q6OjQ5IUDofzFX+j0aiqq6tlGEaRRwwAACBZjqOdPZbaUjm1pXJK5GxZtiPTZSjodqnG71aN360qnylziPmL4zgFc5u+/ZdeeknnnHOOvvWtb+nCCy/Ut7/9bV166aXy+XwqKyuboCsEAAAAAAAARo+gLwAAAAAAM0AymVRLS0u+6u+2bdtk27Y8Ho+i0Wi+6m99fb3cbnexhwsAAGaQ7oyl9R1pretIK229+ycLlyS7X5v++17T0LJKr5ZWehUpNQvOlc1mZZqmXC5X/jHLsmSapp588kldeOGF8vv9OuSQQ/TAAw+M63UBAAAAAAAAY4GgLwAAAAAAM1A2m1Vra2u+4m9LS4symYxM01RdXV2+4m9DQ4N8Pl+xhwsAAKahtGVrbWtSG3b1ypA0mj9W9LVfUuHRKfUBeUyXHMfRr371K5133nlyuVwDVi14/fXXtXjxYl133XX6whe+MIZXAgAAAAAAAIwfgr4AAAAAAEC2bau9vT0f+m1qalIikZAkVVdX5yv+NjY2KhKJFHm0AABgqtsSy+jBprhSOWdUAd89GZICbkMrGkPKtr2ju+++W1dccYUaGhoK2uVyOV111VVasWKFzj///P0aOwAAAAAAADCRCPoCAAAAAIABHMdRV1dXvuJvc3OzOjo6JEnhcDhf8Tcajaq6unpAxTwAAIChvLCzR2u2JkddxXcofeeJtG6S3fSy4vG4PvCBD+iII44omKPkcjm53e4x6BEAAAAAAACYOAR9AQAAAADAiCSTSbW0tOSr/m7btk22bcvj8Sgajear/tbX1xOiAQAAg+oL+Y6X7MYnVJnaofr6ei1evFjRaFQul2vc+gMAAAAAAADGG0FfAAAAAACwT7LZrFpbW/MVf1taWpTJZGSapurq6vIVfxsaGuTz+Yo9XAAAUGRbYhnd81Zs3PvJPHu/ZtkpzZs3T6eccoq8Xi+rDwAAAAAAAGDKIugLAAAAAADGhG3bam9vz4d+m5qalEgkJEnV1dX5ir+NjY2KRCJFHi0AAJhIacvWrZs7lco5Gt8/Sjjym4Y+tmiWPCaVfAEAAAAAADD1EfQFAAAAAADjwnEcdXV15Sv+Njc3q6OjQ5IUDofzFX+j0aiqq6v3u9Le//7v/yqTyejkk0/WokWLxuISAADAGHm4Oa6Nu3rHOeT7LkPS4gqPzoiGJqA3AAAAAAAAYHwR9AUAAAAAABMmmUyqpaUlX/V327Ztsm1bHo9H0Wg0X/W3vr5ebrd7xOfN5XK66aabdM8992jDhg164403VFdXJ0nq7e2V2+2WaZrjdVkAAGAYXb2WbtncOeH9XrOoXJFSXv8BAAAAAAAwtRH0BQAAAAAARZPNZtXa2pqv+NvS0qJMJiPTNFVXV5ev+NvQ0CCfzzfkeSzLkmmauuuuu/SLX/xCv/zlL+X3+7VhwwbdcccdevTRR1VTU6OLLrpIV1111QReIQAAeGJbUn9u7xmymu+WF57Rk/93k1pf2aB4R7s+8t07tejkM/PPv/yHB/WXe+9U6ysb1NPdqU/f/bjq5h82bJ+GpGNm+3RiXWDsLgQAAAAAAAAogpGXxgEAAAAAABhjJSUlmjt3rubOnStJsm1b7e3t+dDvhg0b9PTTT0uSqqur1dDQoOXLl6ukpKTgPC6XS5L0wAMPaMmSJfL7/ZKkf/3Xf1V9fb02b96sNWvW6K677tJxxx2nhQsXFhzf09MzbJAYAADsG8txtK4jPWTIV5Iy6ZRqD16kI8+5WHd9/vKBz/ekNHfp0Vp82tn6zTc/N6J+HUnrOtI6vtYv0zD2aewAAAAAAADAZEDQFwAAAAAATBoul0u1tbWqra3V0UcfLcdx1NXVla/4u3v37gEh3/42bdqkj3zkI5LeDQ1v3rxZX/jCFyRJp512mr71rW/p2Wef1cKFC9Xb2yuPx6OXXnpJn/rUp5TL5fTLX/5S9fX1E3KtAADMBDt7LKWt4RcWnH/cBzT/uA8M+fzhZ10gSerc1jyqvtOWo509lmr8/CkEAAAAAAAAUxfvbgEAAAAAgEnLMAyVl5ervLxcS5YsGbZdU1OTUqlUvlqv4zg66KCD1NLSIknaunWrnn/+eX3sYx+TJHk8Hj366KP6+c9/LtM0dfjhh+crAwMAgLHRlsoVvX+CvgAAAAAAAJjKeHcLAAAAAABMC2+88YbmzZuXr8hrmqa+9a1v6ZprrtGPf/xj1dfXq6ysTNXV1ZKkp556St/61rd000036fvf/77q6+tVWVlZzEsAAGDaaUvl5JJkF6Fvl4ofNAYAAAAAAAD2F0FfAAAAAAAwpf3pT3/SzTffrOeee06LFi1SaWmpJCmXy2np0qV69tlnJUn//u//rtbWVs2fP1/333+/fvOb3+jee+9VRUWFuru7VVNTo5KSkmJeCgAA004iZxcl5Cu9Gy5O5orVOwAAAAAAADA2CPoCAAAAAIAp7YgjjtD555+vyspKPfvss4pEItq8ebNefvllpdNpfehDH9LGjRv12GOP6YwzzlA4HNadd96pJ598Uqeccop27NihkpISLV26VJJk27ZcLldxLwoAgGkikytuRd2c7RS1fwAAAAAAAGB/EfQFAAAAAABTmt/v14c//GF9+MMfliT19vbK4/Hor3/9q3784x/rX/7lXzRv3jxdccUV+tCHPqRAIKDbb79djz32mJ555hndd9992r59u1wul2688UZVV1cX+YoAAJg6MpmMurq61NXVpc7OzgEfW4tPlatmrgzDKMr43K7i9AsAAAAAAACMFYK+AAAAAABgWvF4PJJUEP5ta2tTTU1Nvk0kEtHKlSu1cuVKWZal8vJynX322SorKys4l2VZeu2117Rt2zZFo1E1NDTI5/NN2LUAAFBslmWpu7t7yCBvMpnMtzVNU5FIROXl5ZozZ44OPfRQtYRmq9mWhqur25tKaFfLlvx+Z2uztr32kvzhcpXVzlGqu1NdbVsV29kmSep4501JUqiiWqHK2UOe1yUp4KZKPwAAAAAAAKY2gr4AAAAAAGDa6x/y7a+zs1OO4ygajeqII44Y8LxpmorFYtqwYYOefvppSVJVVZWi0Wj+XyQSKVqVQgAA9pfjOIrH4/ngbv8wb1dXl2KxmBzn7zHdcDis8vJyVVZW6qCDDlJ5ebnKyspUXl6uUCg04DVxfUdaTS2JYcfQunmDbr363Pz+6hu/Lkk6/IOrtPIb/6NXnnhEv/63a/PP3/3lqyVJp179L/rAx78w5HltSTV+/gwCAAAAAACAqc1w+r9DBwAAAAAAMAPlcjm53UMHgRzHUVdXl5qbm/P/Ojo6JL0beOof/K2qqpLLRfVAAMDk4DiOenp6Bg3ydnZ2qru7W5Zl5dsHAoF8cLesrCz/r7y8XJFIRKZpjqr/tlROd7zWNcZXNXKXzy8j7AsAAAAAAIApjaAvAAAAAADAPkilUvnQb0tLi7Zt2ybbtuXxeNTQ0JAP/tbX1w8bIgYAYH/19vYWhHj7Arx9+5lMJt/W4/EMCPL2/7i0tHRMx2Y5jn7w0m6lrYn/U4TXNPTpw2bJpPI+AAAAAAAApjCCvgAAAAAAAGMgm82qtbW1IPybyWRkmqbq6urywd+Ghgb5fL5iDxcAMIXkcrmC4O6eVXl7enrybd1u94BKvP0/9nq9MiY4+PrEtqT+3N6jifxjhCHpmNk+nVgXmMBeAQAAAAAAgLFH0BcAAAAAAGAc2Lat9vb2fOi3qalJiURCklRVVZUP/kajUUUikQkPXQEAJg/bthWLxQaEePv24/F4vq1hGIpEIgOCvH3bYDA46V5TujOWbt7UOeH9XrOoXJFSc8L7BQAAAAAAAMYSQV8AAAAAAIAJ4DiOurq68hV/m5ub1dHRIUkKh8MFwd+qqiq5XK4ijxgAMFYcx1EymSwI8vYP9HZ3d8u27Xz7YDBYUIm3f5A3EolMydeIh5vj2rird0Kq+hqSFld4dEY0NAG9AQAAAAAAAOOLoC8AAAAAAECRpFKpfOi3paVF27Ztk23b8ng8amhoyAd/6+vr5Xa7iz1cAMAw0ul0QXh3z8q82Ww239br9RYEeftX5Y1EIiopKSnilYyPXsvWrZs7lcw54xr2NSQF3IauWlgujzn1AtEAAAAAAADAngj6AgAAAAAATBLZbFatra0F4d9MJiPTNFVXV5cP/jY0NMjn8xV7uAAwo2Sz2UFDvH0fp9PpfNuSkpKCAO+egV6v11vEKymeLbGM7nkrNu79rDowrHnh0nHvBwAAAAAAAJgIBH0BAAAAAAAmKdu21d7eng/9NjU1KZFISJKqqqrywd9oNKpIJCLDMIo8YgCYuizLUiwWGzLI2/fzV5JcLpcikciQVXn9fj8/k4fwws4erdmaHLfznz4noMOruBkGAAAAAAAA0wdBXwAAAAAAgCnCcRx1dXXlK/42Nzero6NDkhQOhwuCv1VVVXK5WLIcAPo4jqNEIpEP7u4Z5o3FYur/dnk4HB60Gm95eblCoRA/Y/dDX9jXkDQWf6DoOw8hXwAAAAAAAExHBH0BAAAAAACmsFQqlQ/9trS0aNu2bbJtWx6PRw0NDfngb319vdxud7GHCwDjxnEcpdPpIYO8XV1dsiwr397v9xcEePt/HIlE+Jk5zrbEMlrdFFcy5+xX2NeQFHAbWtEY0rxw6VgNDwAAAAAAAJg0CPoCAAAAAABMI9lsVq2trQXh30wmI9M0VVdXp4aGBjU2NqqhoUE+H1UPAey7RCIht9str9c7YX1mMpmC4G7/MG9XV5d6e3vzbUtLS4cM8paVlcnj8UzYuDG4tGVrbWtSG3b1jrq6b1/7JRUenVIfkMekwjIAAAAAAACmJ4K+AAAAAAAA05ht22pvb8+HfpuampRIJCRJVVVV+Yq/0WhUkUhEhmEUecQAJove3l51dXVp9uzZA5770Y9+pE9+8pO65557dN5558lxnDH5+WFZlrq7u4esyptKpfJtTdPMh3b7h3j7tj6fj59pU0R3xtL6jrTWdaSVtt79k4VLkt2vTf99r2loWaVXSyu9ipSaEzxaAAAAAAAAYGIR9AUAAAAAAJhBHMdRV1dXvuJvc3OzOjo6JEnhcLgg+FtVVSWXiwqJwHTlOI6am5u1Y8cOLV68OF/h9o9//KM+97nPKZfLqba2Vtdee61WrFgh27blcrkUi8X0/ve/XwsXLtSpp56qK6+8csR92rateDw+aIi3q6tLsVgs39YwDIXD4SGr8oZCIYK804zlONrZY6ktlVNbKqdkzlbOduR2GQq4Xarxu1Xjd6vKZ8rkaw8AAAAAAIAZgqAvAAAAAADADJdKpfKh35aWFm3btk22bcvj8aihoSEf/K2vr5fb7S72cAGMAcdxdNVVV+mxxx7T1q1btXnzZi1YsECxWEzHHXecbrvtNh111FF65ZVXdPLJJ+u1115TJBKRJH3lK1/RYYcdpj/84Q+aP3++PvvZzw742eA4jtrb2/Xmm28WBHq7urpk23+v0xoIBAYN8ZaXlyscDss0qdYKAAAAAAAAYGbjLzMAAAAAAAAznN/v14IFC7RgwQJJUjabVWtraz78+9RTTymTycg0TdXV1RWEf30+X5FHD2BfGIahj370o7rlllu0bNkydXZ2SpJ2796tRCKhQw45RJJ0yCGHKJfL6f7779ell16q7du364UXXtCXvvQlvfzyy0omk4OGcW3bVmtrq5566ql8ePfggw8uCPKWlZWppKRkQq8bAAAAAAAAAKYagr4AAAAAAAAoUFJSorlz52ru3LmS3g3stbe35yv+bty4Uc8884wkqaqqKh/6jUajikQiMlhOHZgSjj32WLlcLnk8HjU3N+vYY49VNBqVbdv6zW9+o8suu0xPPPGESkpK9Oqrr0qSvv/97+vTn/60wuGwfD6fXn/9dT366KM64YQT5Pf78+d2uVxaunSpjjjiiGJdHgAAAAAAAABMCwR9AQAAAAAAMCyXy6Xa2lrV1tbq6KOPluM46urqylf8bWpq0gsvvCBJCofDikajamhoUGNjo6qqquRyuYp8BQCGU1dXp5aWFknv/n+//fbbdccdd+iGG27QmWeeqYULF8qyLO3atUt/+tOfdMcdd6impkZtbW1KpVLK5XJauHChotFo/pyGYQxa6RcAAAAAAAAAMDoEfQEAAAAAADAqhmGovLxc5eXlWrJkiSQplUrlg78tLS3avHmzbNuWx+NRQ0NDvuJvfX293G7ekgLGk+M4SiaT6uzsVFdXlzo7OzVnzhw1NjYOGr6dO3eutmzZomw2q5KSEp166qk6+uij5ff75XK59PGPf1yZTEYVFRW68cYbZRiGlixZoieffFJ33XWXvvKVrygajcqyLMK9AAAAAAAAADDG+KsKAAAAAAAA9pvf79eCBQu0YMECSVI2m1Vra2s+/PvUU08pk8nINE3V1dUVhH99Pl+RRw9MPT09PfkQb1dXV/5f334ul8u39fl8Ov744zVv3ryCcxiGIUlavHixfv/736ukpESSlMlkFAwGJUmPP/64du3apYsuukiSdMwxx+SPr66uViAQUGdnpyQR8gUAAAAAAACAcWA4juMUexAAAAAAAACY3mzbVnt7e77ib1NTkxKJhCSpqqoqH/qNRqOKRCL5ACIwU2Wz2YLgbv9Ab2dnp3p7e/NtS0pKVF5errKyMpWVlQ342OPxDNvXjTfeqG9/+9u6+OKLdcABB+iyyy7TBRdcoDfeeEORSETXXnutLrvsMjmOI8Mw8lsAAAAAAAAAwPgj6AsAAAAAAIAJ5ziOurq68hV/m5ub1dHRIUkKh8OKRqNqaGhQY2Ojqqqq5HK5ijxiYGxZlqXu7u4BlXj7Pk4mk/m2LpcrH9ztH+Tt2/r9/n0K3uZyOa1atUqvv/663vOe96impkYnnHCCLrzwQm3fvl1VVVVyu99dFI5wLwAAAAAAAAAUB0FfAAAAAAAATAqpVCof+m1padG2bdtk27Y8Ho8aGhryFX/r6+vz4cPpyHIc7eyx1JbKqS2VUyJny7IdmS5DQbdLNX63avxuVflMmQQvJy3HcRSPxwcN8XZ1dSkWi6n/W7PhcHjIqryhUIiwOwAAAAAAAADMUAR9AQAAAAAAMClls1m1trYWhH8zmYxM01RdXV1B+Nfn8xV7uPutO2NpfUda6zrSSlvvvmXnkmT3a9N/32saWlbp1dJKryKl5gSPFo7jqKenpyC82z/Q29XVJcuy8u39fv+gQd7y8nJFIhGZJl9DAAAAAAAAAMBABH0BAAAAAAAwJdi2rR07dqipqUktLS1qampSIpGQJFVVVeVDv9FoVJFIRMYUqXabtmytbU1qw65eGZJG82ZdX/slFR6dUh+Qx6Tq61jKZDJDhng7OzuVyWTybT0ez4BKvP33S0tLi3glAAAAAAAAAICpiqAvAAAAAAAApiTHcdTV1ZWv+Nvc3KyOjg5JUjgcVjQazVf9ra6ulss1+UKwW2IZPdgUVyrnjCrguydDUsBtaEVjSPPCBEpHKpfLqbu7e0CQt+/jVCqVb2ua5oAgb/+qvF6vd8qEywEAAAAAAAAAUwdBXwAAAAAAAEwbqVQqX+23paVF27Ztk23b8ng8+dBvNBpVXV2dSkpKxqzfNWvWyLIsnXbaaTJNc0THvLCzR2u2JkddxXcofec5bU5AR1T5xuCMU59t24rH40NW5Y3FYvm2hmEoEokMGuItKytTMBgkyAsAAAAAAAAAmHAEfQEAAAAAADBtZbNZtba25iv+trS0KJPJyDRN1dXVFYR/fb59D8e+/PLL+u1vf6vGxkatXLlyr+fqC/mOl5kS9nUcR6lUatAgb2dnp7q7u2Xbdr59MBgcsipvOBwecUgbAAAAAAAAAICJQtAXAAAAAAAAM4Zt29qxY0e+4m9TU5MSiYQkqaqqKh/6jUajikQio6rg2tTUpHvuuUc+n08XXXSRKisrB223JZbRPW/FBn1uLK06MKx54dJh2yQSCW3ZskWHHnropK1Wm06nB63G27efzWbzbb1e76Ah3r5/Y1nFGQAAAAAAAACAiUDQFwAAAAAAADOW4zjq6urKV/xtbm5WR0eHJCkcDisajear/lZXV8vlcg17vs7OTt19992KxWJauXKlDjzwwILn05atWzd3KpVzNJ5vyhmSAm5DVy0sl8ccOGbHcbRp0yY99NBDcrvduvbaa+V2u8dxREPL5XIFwd09q/Km0+l8W7fbPWiQt2/r9XqLcg0AAAAAAAAAAIwXgr4AAAAAAABAP6lUKl/tt6WlRdu2bZNt2/J4PPnQbzQaVV1d3aAVYnt7e3XvvffqzTff1PLly3XUUUflq+U+3BzXxl294xry7WNIWlzh0RnRUMHjyWRSq1ev1iuvvKJFixbpjDPOUCAQGLdx2Lat7u7uAZV4+z7uq6gsSS6XS5FIZMiqvIFAYNJWHgYAAAAAAAAAYDwQ9AUAAAAAAACGkc1m1dramq/429LSokwmI9M0VVdXVxD+9fl8kt4Nt65Zs0Z//vOfdcQRR+iMM85QPCfdsrlzwsd/zaJyRUpNSdLmzZu1evVqSdKZZ56pRYsW7ff5HcdRIpEYsipvd3e3+r8FGQqFhqzKGwqF9lo1GQAAAAAAAACAmYSgLwAAAAAAADAKtm1rx44d+Yq/TU1N+aq0VVVV+dBvNBrV22+/rdWrV6uxsVF1J52jF3ZlB63mu+WFZ/Tk/92k1lc2KN7Rro98904tOvlMSZKVzeqxH96g157+vXZvbZI3GNJBR5+of7j26wpX1Qw7VkPSMbN9em+ZoYceekibNm3SIYccohUrVoyqim9PT8+QQd6uri7lcrl8W7/fP6ASb9/HkUhEbrd7xP0CAAAAAAAAADDTEfQFAAAAAAAA9oPjOOrq6spX/G1ublZHR4ekd6vXVlZWamtrq1yn/j+pxDPoOV57+vdqWv+c6g9Zors+f3lB0Dcdj+lnX7hC7/3QR1R78KHqiXXpge98VY5l6VM/+/1ex1ciW/bjP5VjWfkqvoZhFLTJZDL50G7/EG/fx729vfm2paWlQwZ5y8rK5PEMfo0AAAAAAAAAAGD0CPoCAAAAAAAAYyyVSqmlpUVvv/223n77be3KGio98YIRHfvlw6sKgr6Dadm0Tj+89HR9cfU6ldXO2es5a7b8Wae+d4my2eygQd5kMplva5pmPrQ7WKDX5/MNCAoDAAAAAAAAAIDxwTp5AAAAAAAAwBhJJBIFlX3b2trkOI68By2V4zjSGAVkexMxGYYhbyiy98aOo5buHt1+++2SJMMwFA6HVVZWpqqqKr3nPe8pCPSGQiGCvAAAAAAAAAAATBIEfQEAAAAAAIB9tHv3bjU1NeWDvbt375YklZWVqbGxUUceeaSi0aieT3m0cVev7DHoM9ub1sP/dZ0W/8OH5Q2G9n6AY6ti3nydeNRC1dbWKhKJyDTNMRgJAAAAAAAAAAAYbwR9AQAAAAAAgH3Q2tqqH//4x5Kk2bNn68ADD9TJJ5+saDSqcDhc0DbxdmxMQr5WNqu7v3ilJEfnfvk/R3aQ4VJXT6/uvfdhzZs3T4ceeqgOOeQQeb3eMRgRAAAAAAAAAAAYTwR9AQAAAAAAgH1QU1OjK664QlVVVcOGZm3bVm8mu9/9Wdmsfv6lK9W5fauu/NFvRlbNV5IMQ3MPPFDzq1fo5Zdf1v3336/Vq1frPe95jw499FAdfPDBKikp2e/xAQAAAAAAAACAsUfQFwAAAAAAANgHpmlqzpw56unp0fbt29Xd3a1YLDZgG4vFZB55hlw1c2UYxj711Rfy3dX8tq78398qUDZrxMc6jqPmLVuUaHpBkUhES5cuVTKZVHt7u1599VWVlJRowYIFOvXUUxWJRPZpfAAAAAAAAAAAYHwQ9AUAAAAAAACG0NvbO2h4t7u7O/9xLpfLtzdNU+FwWOFwWOXl5WpsbFQkEtFbnhq9k5OcofpJJbSrZUt+v7O1Wdtee0n+cLlClbP1sy9coW2vbtRl//UzOZaleEe7JMkXKZe7pHTYa3AZUnVZSJWZWsViMbW2tqq7u1uZTEaSlM1m9dJLL+nNN99UZWWlwuGwIpHIgK3f79/noDIAAAAAAAAAANg3huM4Q/19AQAAAAAAAJi2crmc4vF4QWh3z206nS44JhQK5cOvfQHY/mHYQCAwaBh2fUdaj7QkhhzL288/rVuvPnfA44d/cJU+8LEv6NtnHTHocVf973064Mjj9nqt/9AQ1NJKb8Fj6XR6QGh5z33LsvLt3W53Qfh3sOv3eDx7HQsAAAAAAAAAABg5gr4AAAAAAACYdmzbViKRGDbImkwmC47x+XyDVrLt+zgUCsk0zX0aT1sqpzte6xqDK9s3l88vU41/dIt7OY6jZDI5bEXjRCKh/m8vejyeYYPA4XBYbjeLjAEAAAAAAAAAMFIEfQEAAAAAADClOI6jnp6eAaHT/kHeeDwu27bzx5SUlBSETgcLoZaUlIzbmC3H0Q9e2q20NfFvxXlNQ58+bJbMQSoN7y/LspRIJIatipxKpQqOCQQCA8LU/b8ewWBQLpdrzMcKAAAAAAAAAMBURNAXAAAAAAAAk0omkxk2ONrd3a1cLpdv73K5BgR399z3er0yxiHoOhpPbEvqz+09msg34wxJx8z26cS6wAT2WiibzQ5aDbh/MDuTyfx9zIZR8DUcbOv3+4v+9QQAAAAAAAAAYCIQ9AUAAAAAAMCEsSxrr6HPdDpdcEwwGBxQfbf/NhgMTonQZ3fG0s2bOie832sWlStSak54vyPlOI56e3uHDXfHYjFZlpU/xu127zXc7fF4inhVAAAAAAAAAACMDYK+AAAAAAAAGBO2bSuZTA4b2EwkEgXH+Hy+ISu3RiIRhUIhmebkDamO1sPNcW3c1TshVX0NSYsrPDojGpqA3saX4zj5762hAuLxeLzgGI/HM2wQOBwOy+12F+mKAAAAAAAAAAAYGYK+AAAAAAAA2CvHcdTT0zNkyLIvaGnbdv6YkpKSIUOWfdvS0tIiXtXE67Vs3bq5U8mcM65hX0NSwG3oqoXl8piucexp8rAsS/F4fMD3aP9tT09PwTGBQGDIStGRSETBYFAu18z4/AEAAAAAAAAAJieCvgAAAAAAAFAmkxmyCm/fNpvN5tu7XK6CAO9gQV6v1yvDMIp4VZPTllhG97wVG/d+Vh0Y1rzwzApS7002mx32+7y7u3vA93koFBo2sO7z+fg+BwAAAAAAAACMG4K+AAAAAAAA05xlWQOq7+65n06nC44JBoPDhhuDwSDhxv3wws4erdmaHLfznz4noMOrfON2/unKcRyl0+lh/6/EYrGCytVut3vYqsDhcFgej6eIVwUAAAAAAAAAmMoI+gIAAAAAAExhjuMokUgMqEraP5yYSCQKjvF6vQXB3T2DvOFwWKZpFumKZo6+sK8haSzeoOs7DyHf8eU4jpLJZMH/tT238Xi84Biv1ztkEDgSiSgUCsntdhfpigAAAAAAAAAAkxlBXwAAAAAAgEmqr7rocIHCoaqLDldhtLS0tIhXhf62xDJa3RRXMufsV9jXkBRwG1rRGNK8MF/fYrMsS/F4fNj/uz09PQXHBIPBYasCB4NBuVyuIl0RAAAAAAAAAKBYCPoCAAAAAIAZx3EcGYZR7GEok8kMCADuWY03m83m27tcLoVCoWGr8fp8vklxbRi5tGVrbWtSG3b1jrq6b1/7JRUenVIfkMckCDpV8P8fAAAAAAAAADASBH0BAAAAAMC0ks1mtWPHDlVWVsrj8UiStm3bps9+9rPatm2bEomELr30Un3uc58b13GMdUXPSCSiQCBARc9prDtjaX1HWus60kpb775l55Jk92vTf99rGlpW6dXSSq8ipeYEjxbjrX9F7z2DwCOt6L1nEHgiKnrbtq1LLrlELpdL0WhUhx56qC666CJ+dgEAAAAAAADAPiLoCwAAAAAAppSdO3equblZzc3NisfjWrVqlTwej55//nl94hOfUC6Xk2EYWr58ub75zW/KNE196lOfUl1dnc477zyFw2EtXrxYjz76qA4//PB9GoPjOEokEkNW4ezu7lYikSg4xuv1DhviDYVCcrvdY/EpwhRnOY529lhqS+XUlsopmbOVsx25XYYCbpdq/G7V+N2q8pkyqd46o/X9LBquKvBgP4sG+znUf2ua+x4ctyxLTz/9tDo6OvTGG29o/fr1uuCCC3TOOefoJz/5if77v/9bfr9fs2fP1re//W0dfPDBkt69SWPr1q2aPXu2/H7/fn1eAAAAAAAAAGA6IegLAAAAAACmlHPPPVfxeFw1NTVyuVwKh8O66aabdMwxx+jrX/+6VqxYIendZe43b96sBQsWKBqN6oYbbtAll1wiSTrkkEP0q1/9SoceeuiA8w9WRXOw7WBVNIcLzvVVFwaAiWRZ1oAbEfbcT6fTBccEg8FhqwIHg0EZIwyZf/e739WDDz6o22+/XUceeaQ2b96sXC6nu+++W08++aTuv/9+xWIx3Xrrrbr77rtl27ZM09Q3vvENnXnmmePxKQEAAAAAAACAKYUyMQAAAAAAYEq5995789Um29radPDBB+tb3/qWWltbtXPnTtm2rY0bN2r58uX5cO1tt92mG2+8Uddff73eeustfeYzn9GcOXMKzus4jlpaWnTXXXcpm83mHzcMoyDsVl9fPyD05vP5Rhx6A4CJZJqmysvLVV5ePmSbTCYz5E0Nb775prq7u5XL5fLtXS6Xjj/+eJ100kmD/ux7+eWX9YMf/ECpVEqWZemqq65SV1eX6urqFAwGFQgENGvWLK1bt06S9PTTT+tHP/qRnn76aVVVVemXv/ylrr/+ep122mkqKSkZ+08KAAAAAAAAAEwhBH0BAAAAAMCUYpqmmpubtW7dOt1///361Kc+pUAgoNWrV+tTn/qUvvSlLymZTOrjH/+4SktLJUmhUEiNjY36/Oc/r2OPPVYXXHCBbrjhBl1//fVyu999e8QwDFVUVOikk04aULnS5XIV85IBYFyVlpaqqqpKVVVVgz7vOI56enoKqgBXV1fLcZxBg761tbVasWKFfvvb38rn8+ncc8+VZVk66aSTVF9fr2AwqGOOOUb33nuvJKm6ulqLFy/Wn//8Z33wgx/Utm3bZNs2IV8AAAAAAAAAkMRfqQAAAAAAwJThOI4k6dlnn9UvfvELbdmyRclkUh0dHXrttde0dOlSNTU1KR6P65133tE3v/lNSdJdd92lsrIynXrqqfL7/brwwgu1bds2bdmypeD8gUBA73vf+7Ro0SI1NDQoHA4T8gUw4xmGIb/fr5qaGs2fP19HHXWU5s6dO+TPx4qKCp199tn6yU9+oo6ODt133326+eab5Xa79eabb+qRRx6RZVnatm2bJKmxsVGNjY265pprFAwG9dhjj+nOO++U9Pef+wAAAAAAAAAwU/GXKgAAAAAAUHR91SLb29v1+uuv6/nnn9frr78+IODVVzly1apVuvvuu/X444/Lsiz9+7//u9566y35fD55PB5J0vLly9XS0iJJCgaDeuaZZ/Ln2b59u2KxmA488MAJukIAmP4ymYySyWTBY6+99ppisZiefPJJnXjiiaqsrNShhx6qsrIy/fnPf5YkffnLX1YoFFJLS4sSiYRKSkr0yCOPSFJBxeBdu3bp2Wef1ebNm9Xa2qp4PE4QGAAAAAAAAMC05y72AAAAAAAAwPSXzWYLlnzv+7j/NpPJ5NsbhqHDDz9cBx988F7PXVVVpeeee05Lly7Vr371K0lSPB7Xq6++qtmzZ0uSPvrRj6qjo0NHHnmkHMdRMBjUDTfcQLVeABhD2WxWl112mWKxmA466CBls1m95z3v0bnnnqtf/OIX2rlzZ77t+vXr9dGPflSStHr1at122235UO+hhx6qrVu3KhaLKRwOS5Js29aOHTv0+OOPK5fL5c/jcrkUDocViUQUDofzH/ftRyIReb3egsAwAAAAAAAAAEwlhkPJAwAAAAAAsB8sy1I8Hh8Q5O2/39PTU3BMIBAoCGb130YiEQWDwUFDuI7jqK2tTW+++aYsy9LGjRv19NNP64orrtB73/teXX/99XrggQcUDAa1YMEC/ed//qfq6+slSbt379bWrVtVV1enysrKCfncAMBM09LSorffflvNzc3q7u7WRRddpIqKCv31r3/Vtddeq97eXrlcLh1++OG67rrrVFNTo4985COKRqO65ppr1NDQoMMPP1xXXnmlrr76arndhbUq+irA979ZZM/XnVgsVlDpt6SkZNDXm/6vOyUlJRP9qQIAAAAAAACAESHoCwAAAAAAhuQ4jpLJ5JBVeLu7u5VIJAoCVR6PZ9jKiuFweEBwazSee+45ffazn1VNTY3q6up0wgknaOXKlZLeXTbe7XZTqRcAJql4PK7t27erpqYmX623vb1d1157rZqamhSLxXTOOefoq1/9qoLB4D71Ydu2EonEsDegJJPJgmN8Pt+wr12hUEimae739QMAAAAAAADAaBH0BQAAAIAZyHIc7eyx1JbKqS2VUyJny7IdmS5DQbdLNX63avxuVflMmSx1PW05jqPe3t69VkW0LCt/jGmaQ1ZD7PvY4/EU8aoAAFNdLpfbrxtCRtrHnq93e74e9vb2FhwTCoWGrQocCARkMG+a9phHAwAAAAAAYKIR9AUAAACAGaQ7Y2l9R1rrOtJKW+/+OuiSZPdr03/faxpaVunV0kqvIqVUsZtqstnsoMGl/sGmTCaTb28YhkKh0LDLm/v9fkJMAIAZobe3d9iqwLFYTLlcLt/eNM386+hQr6Ver5fX0SmKeTQAAAAAAACKhaAvAAAAAMwAacvW2takNuzqlSFpNL8I9rVfUuHRKfUBeUzX+AwSo2LbtuLx+KAh3r5tKpUqOMbv9xeEj/asxhsKheRy8fUFAGAkHMdRT0/PoK/B/YPB/d+CLy0tHbYqcDgcVklJSRGvCntiHg0AAAAAAIBiI+gLAAAAANPcllhGDzbFlco5owom7MmQFHAbWtEY0rxw6VgND4NwHEepVGrY4FA8Hi8IDnk8nr0Gh8Z7GXQAAFDItm0lEolhq+snk8mCY3w+315vzDFNKsROBObRAAAAAAAAmAwI+gIAAADANPbCzh6t2ZocdfWxofSd57Q5AR1R5RuDM85M6XR6r0uBW5aVb2+a5pBLgPdfChwAAEw9uVxu0LlA/21vb2++vWEYCgaDQwaBI5GIAoGADMMo4lVNfcyjAQAAAAAAMFkQ9AUAAACAaaovnDBeCCkMLpfLDVu1r7u7W5lMJt/eMAyFQqFhq/H6/X7COgAAzGC9vb1DVvnvm1/seZNQ/xDwYGFgj8fD/GIIzKMBAAAAAAAwmRD0BQAAAIBpaEsso3veio17P6sODM+o5Ydt21Y8Hh+24l4qlSo4xu/3D1txLxQKyeVyFemKAADAdOA4jlKp1LA3GsXjcfX/c0Bpaemwc5RwOKySkpIiXlVxMI8GAAAAAADAZEPQFwAAAACmmbRl69bNnUrlnDFZZngohqSA29BVC8vlMYcOqr711lt68skn9cEPflCVlZXjOKL90xeQGa4a71ABmaFCMjM1IAMAACYf27aVSCSGvFkpFospmSysYuv3+4dddWCy37DkOI7uvvtuNTY26thjj93rWCfbPBoAAAAAAACQJHexBwAAAAAAGFtrW5PjHk6QJEdSMufo8dakzoiGBjzf09Ojxx57TOvXr9e8efMUCg1sM5H6lrweKtgSi8WUy+Xy7fuWvI5EIpo1a5bmzp07IMjr9XqLeEUAAAAj53K58jciNTQ0DNoml8sNmCf1fdzU1KTu7m719vbm2xuGoVAoNGwY2O/3yzCMibrMAoZhqK6uTn/4wx+0adMmnXPOOZo9e/aQ7SfLPBoAAAAAAADoj4q+AAAAADCNdPVaumVz54T3e82ickVKzfz+K6+8ooceekjZbFann366li1bNq4Bj+FCKX37e4ZSgsHgoEtU920DgUDRQikAAACT1d5unuru7pZlWfn2/W+eGmoVhPG+eaq1tVX333+/Ojo6dPzxx+v973+/3O7COiiTZR4NAAAAAAAA7ImgLwAAAABMI09sS+rP7T2DViHb8sIzevL/blLrKxsU72jXR757pxadfGb++d/f8m1tfOy36mrbJrOkRPWHLNHpn/yKoocdMWyfhqRjZvt0Yl1AiURCDz/8sDZv3qz58+drxYoV+13JdyYuMw0AADBVOY6jVCo17A1Y8Xhc/f80UVpaOmwQOBKJDAjmjpZlWfrTn/6kP/3pT6qoqNDZZ5+tOXPm5J/fn3l0f7+9/vN67t47teKfv6njL/n4sGPqP48GAAAAAAAAhrJ/74wBAAAAACYNy3G0riM95FLDmXRKtQcv0pHnXKy7Pn/5gOcrGw/U2V/8d82qb1S2N62nfnaLbv/kSn3+d88pWF45ZL+OpHUdaYV3vKk1jz0qwzB03nnnadGiRXutiNsXBBkqBDJcECQcDqumpkbz588fEOgtKSkZwWcMAAAAY80wDAUCAQUCAdXV1Q3axrZtxePxQeeA27dv16uvvqpUKlVwjN/vH3IlhpHcyGWapk466SQdcsghuv/++3XbbbfpmGOO0SmnnCKX271f8+g+mx5frZaXnle4qmZvnyZJf59HH1/rl8lKEgAAAAAAABgCQV8AAAAAmCZ29lhKW0Mv2jL/uA9o/nEfGPL5pWecV7C/4nPf1PP3/Uxtr2/WQUefMGzfacvRA088pUMPOkjLly9XIPBuVbLe3t4BAY49t7lcLn+e/ks7l5eXq7GxcUA1N4/Hs9cAMQAAACYvl8uVn+M1NDQM2iaXyw05j9yyZYu6u7uVyWTy7Q3DUCgUGrYqsN/v1+zZs/WP//iPevbZZ/XHP/5Rr732mo474xylraGr6u5tHi1J3Tu26/5vf1lX3PRL3XHtxSP+XKQtRzt7LNX4+XMNAAAAAAAABsc7RwAAAAAwTbSlcntvNEK5bEbP/eb/5A2GVXvwor0f4Dias2iZSnt363e/+10+kNHb25tvYhiGgsFgQTXePQMYgUCAEC8AAADkdrs1a9YszZo1a8g26XR60BvJuru7tW3bNsViMVmWVXDO/iHgJUuWaMuWLXro6edUsvgkaR/nobZt65df+4RO+H+f1OwDF4z6+LZUjqAvAAAAAAAAhsQ7RwAAAAAwTbSlcnJJsvfjHK88+Zh+8eWrlE33KFQ5W1fc/GsFyiv2epzj2NrRYym7vVWRSCRfibf/ksqhUEimae7H6AAAAIC/83q98nq9qq6uHvR5x3GUSqUGrQq8a9cudXd3Kx6Pyz3nMDmOLcPYt7nqk3f8t1xut9530dWjPtalsb1hDwAAAAAAANMPQV8AAAAAmCYSOXu/Qr6SdOB7j9On716rVNdu/fW3P9XdX7xSn/i/RxScVTX8gYZL8vg1Z84cLV68WHPmzKEyLwAAAIrKMAwFAgEFAgHV1dXlH+/q6tLGjRu1ceNGSZI7EJZjuPapj9bNG/T03f+rT//88X2a/9qSkrn9ncUDAAAAAABgOiPoCwAAAADThGU7+32OUl9AldEDpOgBii4+Ut855yg9f9/PdNIV/zTscYZhKFxWrtefeVLPP/+8Zs2apcWLF2vx4sUqLy/f73EBAAAA+yOdTmvz5s3auHGjmpqaVFJSokMOOURnnHGG/upU6J34vlXV3bLuWSV3d+g/zlyaf8y2LD30vX/V0z//X31x9Yt7PUduDObxAAAAAAAAmL4I+gIAAADANGG6xr6CruM4ymUyI2koK5vRoYceqlwup507d+qpp57SH//4R82ZM0dLly7VwoUL5fP5xnyMAAAAwGAsy9Jbb72ljRs36tVXX5VlWaqpqdGyZcsUCASUSCT0zDPPqL1usZzyun2qyLtsxQU66OgTCx77yScv0LIVK3XE2ReP6BzucZjHAwAAAAAAYPog6AsAAAAA00TQ7ZJL7y7/O5jeVEK7Wrbk9ztbm7XttZfkD5fLX1autT/+ng458R8UqpytVNduPfvL2xTbsV2HnXb2CHp3ZPcktXnzZsViMdn230fR2tqqrVu36sEHH1RjY6MaGxsViUQUiUQUDocViURUWlq6X9cOAACAmcuyLMXjcXV3d6u7u1uxWEw7d+7Upk2bZFmWDMOQ47xbNbetrU1tbW0KBoP5uWjEW6LdkoaqqzvcPLqsdo4CZbMK2rvcJQpWVKtq7kF7HbtLUsDt2scrBwAAAAAAwExA0BcAAAAApokav1vrdw39fOvmDbr16nPz+6tv/Lok6fAPrtK5X/mOdr7zpl588KNKdu2WP1KuOYuW6erbHtDsAxfsvXPDpROXLdLS046Q4zhKJBKKxWL5sEVHR4e2bdumnp4evfjii0okEgWHe73eguDvYFvTNPfl0wIAAIApbLC5ZSwWK9gfbG4ZCoVUXl6u6upq1dTUDDu3XN+R1iMtiT27zhtuHr3yG/+zX9dn6915PAAAAAAAADAUw+m7jR0AAAAAMKW1pXK647WuovV/+fyyEYcUBqu6tue2p6en4JhgMJgPZuSrr/ULbASDwX1abhkAAADF4TiO0un0gBDvntv+q0W43e6CeeBg88LRrhYxlebRAAAAAAAAmHl45wgAAAAApokqnymvaShtTfz9nF7TUJVv5BV3TdNUWVmZysrKhmyTyWQGBD36Pn7zzTcVi8WUzWbz7V0uV0HYY89tJBKR1+slDAwAADBBstnsoHO5/vt7zudCoVB+DjdnzpwBQV6fzzfm87mpNI8GAAAAAADAzEPQFwAAAACmCdMwtKzSqz+392giIwqGpGWVXpljHLgoLS1VZWWlKisrB32+rwLcUNXfWlpaBlSAKykpGTYIHA6HR10BDgAAYCbqv0LDUEHePVdoCAQC+XnXgQceOGAeFgwG5XK5Jvxapts8GgAAAAAAANOL4TjOxN+iDgAAAAAYF90ZSzdv6pzwfq9ZVK5I6eSrRGbbtpLJ5LABlEQiUXCM1+sdsPxz/204HJZpTr5rBQAAGCuO4+TnUIPdUBWLxRSPxwuO8Xq9w95QFQqF5HZP3tojzKMBAAAAAAAwWRH0BQAAAIBp5uHmuDbu6p2QamSGpMUVHp0RDU1Ab+PDsqxBwyv9t+l0uuCYYDA4bFXgYDA45ktKAwAAjIW+VRGGmvd0d3crHo/Lsqz8MW63e8B8Z8+tx+Mp4lWNDebRAAAAAAAAmIwI+gIAAADANNNr2bp1c6eSOWdcQwqGpIDb0FULy+UxJ36J5YmUyWSGrQrc3d2tXC6Xb+9yuQZUAd4zGOP1egkDAwCAMZfNZgfMWfbcZjKZfHvDMArmK4PdyOTz+WbEvIV5NAAAAAAAACYjgr4AAAAAMA1tiWV0z1uxce9n1YFhzQuXjns/k53jOOrp6Rk2CByPx2Xbdv6YkpKSYYPAkUhEJSUlRbwqAAAw2ViWpXg8Puyco6enp+CYQCAw7JwjGAzK5SJs2od5NAAAAAAAACYbgr4AAAAAME29sLNHa7Ymx+38p88J6PAq37idf7qxbVuJRGLYZbKTycKvl8/nG7a6XigUkmmaRboiAAAwlhzHUTKZHLIKb3d3txKJhPq/pe/xeIacJ/QFe91udxGvampiHg0AAAAAAIDJhKAvAAAAAExjfSEFQxqT5Yf7zkM4YXzkcjnF4/Fhl9pOp9MFx4RCoWHDwIFAYEYstQ0AwGTmOI56e3sH3OTT/zU+FovJsqz8MaZpDgjt7lmN1+PxFPGqpjfm0QAAAAAAAJgsCPoCAAAAwDS3JZbR6qa4kjlnv0IKhqSA29CKxhDLDBdRb2/vkFX++ra5XC7f3uVyDVrdr/++1+slDAwAwH7IZrODVuvvC/B2d3crk8nk2xuGoVAoNOzrs9/v5/W5yJhHAwAAAAAAYDIg6AsAAAAAM0DasrW2NakNu3pHXZWsr/2SCo9OqQ/IY7rGZ5AYE47jqKenZ9iqwLFYrGDZ75KSkr1WDCwpKSniVQEAUDy2be+14n4qlSo4JhAIDFtxPxgMyuViTjUVMI8GAAAAAABAsRH0BQAAAIAZpDtjaX1HWus60kpb7/466JJk92vTf99rGlpW6dXSSq8ipeYEjxbjxbZtJRKJYasOJpPJgmN8Pt+QYaVwOKxQKCTTLN73yMsvv6zvf//7qqio0KJFi/SRj3xELpdLyWRSgUCgaOMCAAwtm82qra1Npmmqrq6uKGNwHEfJZHLIKvnd3d1KJBIFN8h4PJ5hQ7zhcFhut7so14PxwzwaAAAAAAAAxULQFwAAAABmIMtxtLPHUlsqp7ZUTsmcrZztyO0yFHC7VON3q8bvVpXPlMmS0TNSLpcrCP4OFn7q7e3NtzcMQ8FgcNiqwIFAYFyWIH/11Ve1cuVKffrTn1YikdBf/vIXXXLJJTrttNN05JFHKpPJqLKyUlVVVbryyit19tlnj/kYAAAD2batDRs2aMuWLeru7tall14qSbr88sv14osvyuv1yuv16uqrr9bll18+LmNIp9PDvpbFYjFZlpVvb5rmoAHe/luv1zsuY8XUwDwaAAAAAAAAE42yAgAAAAAwA5mGkQ8hAINxu92aNWuWZs2aNWSb3t7eIUNTbW1t6u7uHhCe6h8CHqwKosfjGXUY+I9//KOqqqp09dVXS5LWrFmjr33ta3rf+96n6upqfetb31I0GlVzc7MqKyv37RMCABi1e++9Vz/84Q81Z84cSdJf//pX/fCHP1RbW5s+/elP65prrtmv82ez2UFvSum/n8lk8u0Nw1AoFMq/7tTW1g64KcXv94/LTSmYPphHAwAAAAAAYKLxThQAAAAAANgnHo9H1dXVqq6uHvR5x3GUSqUGDWB1dnbqnXfeUTweL1gOvbS0dMgg8Jw5c1RSUjIggJVKpZROp/P7mzdvlm3beuqpp1RSUqLZs2ervr5e9fX14/OJAAAM6tprr9UDDzygI488UpIUjUZ12WWXqba2VqWlperp6VEymVQ4HFZpaemA4x3HUUtLy5BB3lQqVdDe7/fnXzfmzp07IMQbCoXkcrkm5NoBAAAAAAAAYKwQ9AUAAAAAAOPCMAwFAgEFAgHV1tYO2sa2bSUSiUGXVG9ra9Prr7+uZDIpSfrkJz85aEXe8847T6+88oouuugiLV26VKtXr1Ztba12796tHTt26KyzzlJNTY2uvfZanXvuueN5yQCAv4nFYqqvr8//DJfevZlj7dq18nq9uv766/W9731P5eXlWrVqlS666CJVVFQUnMMwDN17772KxWIqLS3NB3dra2s1f/78giBvOBxWSUnJRF8mAAAAAAAAAIw7w+lfNgcAAAAAAGCSyeVyisViKisrG7IS4zvvvKM1a9Zo7ty5uvnmm1VfX68vf/nLmj17tkzT1AMPPKBbbrlF//Iv/6KTTjppYi8AAGaoSy65RKWlpfrQhz6k1tZW3XzzzTr11FO1cuVKzZkzR9FoVFu3btXKlSu1YsUKfe1rX5PjOAWV2zs7O+Xz+eT1eot4JQAAAAAAAABQPAR9AQAAAADAlNbT0yOfz5ffP/bYY/XRj35UV199tSTJsiyZpqnjjz9eF1xwga699tqCINnTTz+tdDo9YIl3QmUAMFDfzRd7VmJfsWLFgJsxEomE/u///k+rV6/WypUr9dxzz2nXrl2655578udyu936+te/rpdeekn33XefbNse8qYOAAAAAAAAAJiJ3MUeAAAAAAAAwP747ne/qz/96U+aPXu2uru79YEPfECrVq3Sq6++qpqaGpWVlWnXrl3asmWLDj74YEkqqBbZ1tam5uZmxeNx9b8fum+Z+L7g72BblokHMJ3Ytq14PD4gyNt/P5VKFRzj9/sVDoeVTqfl9/sLngsGg/rEJz6hT3ziE5KkzZs3K5PJSPp7yPftt99WU1OTjjnmGEmFP58BAAAAAAAAAFT0BQAAAAAAU9zOnTu1efNmvfHGGwoGg7rwwgslSeecc47eeusteb1eeTweXXDBBfrYxz42ZKXevoBb/wqVe24HC7j1hX77AsD9w8ChUIjKlAAmBcdxlEqlBq3G27cd7oaHwX7G7e2Gh56eHq1bt07JZFJPP/20Xn/9dd1www2KxWI6//zzFQgEZBiGTj/9dN1www0T8WkAAAAAAAAAgCmHoC8AAAAAAJjW4vG4du3apcbGxv2uFJnNZgdUt9xzv69apfRuZcpQKDRkVeBIJCK/308FSwD7rbe3tyC0u+fPp1gsplwul29vmmZBgHewn08ej2e/fj51dnbqn//5n7V9+3bNnTtXq1at0kknnaR0Oq3du3erpqaGmyEAAAAAAAAAYC8I+gIAAAAAAIyhdDo9bBA4FovJsqx8+76w3WCVMvu2Q1UhxvRkOY529lhqS+XUlsopkbNl2Y5Ml6Gg26Uav1s1freqfKZMQuIzQi6XG7LSeN+2t7e34JhQKDRsNd6+aroAAAAAAAAAgMmNoC8AAAAAAMAEchxHyWRy2NBePB5X/7dsPB7PsFU3w+Gw3G53Ea8KY6E7Y2l9R1rrOtJKW+9+/V2S7H5t+u97TUPLKr1aWulVpNSc4NFirNi2rUQiMWw13mQyWXCMz+cr+P+/58+DUCgk0+R7AgAAAAAAAACmA4K+AAAAAAAAk4xt24rH44MG//q2qVSq4Bi/37/X4J/L5SrSFWE4acvW2takNuzqlSFpNG/W9bVfUuHRKfUBeUy+xpOJ4zjq6ekZ9P9w/zBv/7doS0tL9xrsLykpKeJVAQAAAAAAAAAmEkFfAAAAAACAKSibzQ4IDe5ZBTSTyeTbG4ahUCg0aHiwb+v3+2UYRhGvaubZEsvowaa4UjlnVAHfPRmSAm5DKxpDmhcuHavhYS96e3uH/P/Xt5/L5fLtXS7XgNDunluv18v/QwAAAAAAAABAHkFfAAAAAACAachxHPX29g4bBI7FYrIsK3+M2+0uCBwOFkj0eDxFvKrp5YWdPVqzNTnqKr5D6TvPaXMCOqLKNwZnnNlyuVy+svZQ1XjT6XTBMaFQaNhqvIFAgBAvAAAAAAAAAGBUCPoCAAAAAADMUI7jKJlMDluRNJFIqP/bRx6PZ9ggcDgcltvtLuJVTQ19Id/xQth3eLZtK5FIDPu9n0wWfn18Pt+w3/uhUEimaRbpigAAAAAAAAAA0xVBXwAAAAAAAAzJsizF4/FBq5n2bVOpVMExgUBg2KqmwWBQLperSFdUfFtiGd3zVmzc+1l1YFjzwqXj3s9k4ziOenp6hq1mHY/HZdt2/piSkpKC4O6eQd5wOKzS0pn3uQQAAAAAAAAAFB9BXwAAAAAAAOyXbDY7IFC55zaTyeTbG4ZREKYcbOv3+2UYRhGvauTWrVun8vJyzZ07d69t05atWzd3KpVzNJ5vyhmSAm5DVy0sl8ccOlTd3d2tDRs26Nhjj1VJSck4jmjsZDKZQUO8/be5XC7f3uVyDfu9FolE5PV6p8z3GwAAAAAAAABgZmEdRQAAAAAAAOyXkpISVVRUqKKiYtDnHcdRb2/vkKHM1tZWxWIxWZaVP8btdg9aVbX/vsfjmahLHNabb76pzZs364gjjtBpp5027LjWtibHPeQrSY6kZM7R461JnRENDXzecfTCCy9ozZo18ng8OvLIIydF0NeyrAHfH3tW402n0wXHBIPB/PfF7NmzBwR5g8EgIV4AAAAAAAAAwJRFRV8AAAAAAAAUneM4SiaTwwY84/F4wTEej2fYIHA4HJbbPf73uTuOo+eff16///3v5fV6ddZZZ+k973nPgHZdvZZu2dw57uPZ0zWLyhUpNfP7u3fv1gMPPKB33nlHy/7/7N13nBv1nf/x94x616537cW4YWwwmGZKaKGZZjAECARIgZAAScgldykkIeVy6T9SCDlKDkJNSO7SuNBNSegtgMEGQjUYGxvb2GvvSquumfn9wUmRVtKu1t6+r+fj4cdoZr4z8x3ZXn139J7PLFigY445Rn6/f8j74TiOenp6+qz83NPTU7VNIBBoWIU3FospEonI5XI1OCIAAAAAAAAAAGMfQV8AAAAAAACMCZZlKZlM1gSBK6eZTKZqm1Ao1DAkWqr2aprmoPSvq6tLd9xxh9544w3tvvvuWrRokYLBYHn9Q++k9OSGzJBX861kSDpgSkCHTQ3Jtm09+eSTeuCBBxQOh3XiiSdq9uzZg3Icx3GUyWTqhndLf1fJZFK2bZe38Xg8DUPapanX6x2U/gEAAAAAAAAAMFYR9AUAAAAAAMC4USgUGlaLLQVOC4VCub1pmopEIn0GTgOBgAzDaOr4juNo+fLluueee2Sapo4//njtuuuusiVd/sJmZa36l+JWLn1cD//mSq19ebmSmzboY5f8WvOPOL68/k//8Tk9e/sfqraZe+AR+uSVf+y3T36XoTOnWLrj9tu0du1a7b///lq4cOGAQrT5fL7PgHUikah5Xyvfz3rvq9/vb/p9BQAAAAAAAABgohr6ZxcCAAAAAAAAw8Tj8aitrU1tbW111zuOo2w2WxNaLc2vWbNGiUSiqvKs2+2uWxW4MrxaCs0ahqG99tpLc+bM0V133aU///nPmjdvnvZduKhhyFeS8tm0tttpvvY96SP67YXn1G2z00ELddp3Lvtnv7y+pt6TrOXomt/frFa3rU9+8pOaPn161XrLsqreg97vSXd3t7LZbNU24XC4/B7MnTu35j0Jh8OEeAEAAAAAAAAAGAQEfQEAAAAAADBhGIahQCCgQCCgKVOm1G3jOI5SqVTd6rUbN27UG2+8oWQyWbWN3++vCbvOmzdPU6ZM0VNPPaWV99wvzX+/pPrh150PPko7H3xUn313e32KtNXvc18cx9H0+Qu0z5SQ1qxZo5deeqnqvHp6emrOpRRgnj59uubPn19VjTcajcrlcg24HwAAAAAAAAAAYOAI+gIAAAAAAAAVDMNQOBxWOBzW9ttvX7eNZVlKJpNVgdnS67Vr1+qll15SJpMpt3eHWmTatgxz6wOybz7zmH5w5C4KRGPacb9DdPRnv65QvLX/DR1ba5NZrXrsHnk8nnIQub29XXPmzKmqTByNRsvViQEAAAAAAAAAwMgj6AsAAAAAAAAMkMvlUjweVzweb9hm7dq1Wrp0qV599VXlfSEZhrnVx9vpoCM1f+EJap06Q51r3tK9V/xQN37+TF1w4xKZ/VXXNUyFW9t11Gmnad68eVTjBQAAAAAAAABgDCHoCwAAAAAAAAySnp4evfDCC3r++ee1fv16BQIBzZ8/X5tmzNC6grHV+93z2FPKrzvm7qrt5u6qn35gP735zGOas/+hfW5rGIYy+bz+/Ofb5PF4NHnyZE2dOlUtLS3yeDzyeDxyu93l1/X+uN1uuVwuGcbWnwMAAAAAAAAAABg4gr4AAAAAAADANigUCnr11Ve1fPlyvfHGGzIMQ7Nnz9Zhhx0mt9utzs5Obd60UYpOkQYpKNs6bZZC8UnqfHtlv0FfOY5chqFYLKZsNqt33nlHa9euLYd2Hcdp6piGYTQVDG60rpkwcWlKoBgAAAAAAAAAgPcQ9AUAAAAAAACa5DiOstmsuru7tW7dOv3973/Xu+++K8dxZJqmDMOQbdtasWKFVqxYUd7OvUdMZqRdhuEalH50b3hH6e7NirRPaaLTtvLJLqW7u8uL/H6/JCmbzUqSWlpatNdee6mtrU2BQEAej0fFYlGFQqHmT+/llfPZbLbhNpZlNX1+AwkGb02YuPSHQDEAAAAAAAAAYLQj6AsAAAAAAAD8n0KhoO7ubnV1dWnjxo169913tWXLFiWTSaXTaeVyuboVcEvVboPBoCKRiOLxuNrb29XR0aEpU6ZoRdate9akGh43l+5R59sry/Nb1q7WO6++oGC0RYFYXH+7+mfa7cgTFGmbrM6339KS//yuWqfvoJ0OPKL/kzJdOvbAfTXz/fOVSCTU3d2t7u5uJRIJbdmyRZs2bVJXV5ceeOCBf25imopGo4pGo4rFYuVpa2urYrGYYrGY/H7/gIKytm03DAv3FybuvSyVSjVcXywWm+6Ty+UaUDC4vyBxozamaTbdJwAAAAAAAAAAKhlOs8/mAwAAAAAAAMYwy7KUTCbLAdd3331XnZ2d6u7uVk9PjzKZTMOqs6Zpyu/3KxQKKRaLadKkSZo8ebKmTJmi1tbWfkOv69NF3fhqV8P1bz7zmK751Mk1y/c+8Qyd/PWf6qYvna13Xn1R2WS3Iu0dmnvA4Tr6sxcpMmlyU+d+zs5xdQQb3/PvOI4ymUxNELhyPplMyrbt8jYej6ccAi4FgStDwdFoVF6vt6n+DSbHcbY6TNzfut7Lm2Wa5pCHiUuBYqoUAwAAAAAAAMD4QtAXAAAAAAAAY57jOEqlUuWA6ubNm7Vx40Zt2bJFiURC6XRa+Xy+4fZut7uqGm9bW5umTJmiSZMmKRaLyefzbVP/LMfR5S9sVtYa/ktxfpehz+/eKtc2BkBt21ZPT085/Nt72t3drVSqumpxIBCoqQpcGQqORCJyuVzb1K+R4jiOLMva6jBxvfWN2jd7CbdUWXoow8Qej0cul4tAMQAAAAAAAAAME4K+AAAAAAAAGNUcx1Eul6uqNLt582Z1dnaqq6tLyWRS2Wy2zzCk1+tVOBxWLBZTS0uL2tvb1d7erng8rlgsJre7cbXbwfLQOyk9uSGj4bwYZ0g6YEpAh00NDcvxisWikslk1d9V72k2m63apvT3Ui8MHI1GFQ6HJ3So1HEc2bY95GHiQqFQVbG5P80Eg/sLFDezfiL/3QMAAAAAAACARNAXAAAAAAAAI6xQKFQFQbu6urRlyxZt3rxZiURCqVRKlmX1uY9AIFBVjbetrU0tLS2Kx+Ojpmpsd97Sf/1jy7Af94L5LYp5R/78S3K5XMOqwKVpsVgstzdNs6oKcDQarZn3+/0EQgeBZVl1g8CDGSYuFAr9/n+uVBkG7isYvDVB48o2pmkO4TsLAAAAAAAAAFuPoC8AAAAAAACGjG3bdSu8bt68uVyNN5/P97kP0zQVCoUUjUbV2tqqSZMmqbW1tVyNNxKJjJmQ55LVST3fmRuWqr6GpD0m+XTcjMgwHG3wOI6jTCZT9e+l9LoyEFx5WdPj8fQZBI7FYvJ4PCN4Vqhk2/aAw8Fb275ZLpdrq6oQDyRM7PF4RsVNBwAAAAAAAADGFoK+AAAAAAAA2CqO4yiVStWEMbu7u7VlyxZ1d3crnU5XbWMYhnpfjnK73YpEIorFYjUh3ng8rmAwOGaCvP3JWbaueWmLUkVnSMO+hqSQ29D5u7bI5xp/lUpt21ZPT0+fVYFTqVTVNoFAoCr42zsMPFoqP2PwOI5TFQgeaJi4v20q1zV7md00zUEPE9db73K5xs3PTQAAAAAAAGCiI+gLAAAAAACAurLZbN0Qb3d3d7kar23bVduYplmzzOfzKRKJqLW1tRzirQzy+v3+4TytEbcykdcf3kgM+XHO2DGqHaLeIT/OaFUsFquqAPeuCtzd3a1cLldubxiGwuFwn1WBQ6EQ4UnUcBxHlmX1GyTuKzjc7PLeP1/7MtRh4tJy/k8AAAAAAAAAQ4ugLwAAAAAAwARUKBQahiC7urrU3d1d89h7l8slx3FqgmbBYFCxWKxuiDcWi8nrnbhh00aWbszovjWp/htupWOmhbR3e2DI9j9e5HK5PoPAiURCxWKx3N7lclWFgOtVB/b5fAQfMWSaCRQ3W4W4r2WWZTXdp75CwIMRJi6tM83xV50cAAAAAAAAaAZBXwAAAAAAgHHGtm0lk8mqKry9p+l0umobl8tVrsbbO+AViUTU0tKilpaWcpixFOiNRqNyu93DeXrjRinsa0gajAt0pf0Q8h08juMonU43/H/U3d2tZDKpykusXq+3bgC4cpnH4xnBswL6Z9v2gKsP99Wmr301y+VyNRUO7i8w3F/Y2OVyDeE7CwAAAAAAAAwcQV8AAAAAAIAxpBQ87B02rKxE2jt4aJpmOYxbLBarKvKapqlYLFYO8fauxhuNRqmiOIRWJvK6c1VSqaKzTWFfQ1LIbWjxzIh2iFJBeTjZtq2enp6q/4u9p6lUdfXmYDDYZ1XgSCTC/ztMCI7jNF1leGvDxKU/zTJNs6lw8ECX917vcrmo/g0AAAAAAICmEPQFAAAAAAAYRXK5XJ+Bwe7u7qqKu6VAUqkab6FQqAryut3uuiHe0utwOEzQaIRlLVsPrE1peWduwNV9S+33nOTTwu1D8rkIh45GxWKxbjXgyoB+LpcrtzcMQ+FwuKoacO/qwKFQiP+7QJMcx5FlWUMeJi4UCmr2KxfDMLa6CnGzYeLSa35WAAAAAAAAjG0EfQEAAAAAAIZJZdivUZC3MuwnST6fr1z1r1gsKp/PV4WIfD5fOcjbO8Qbj8cVCAQI+IwR3XlLyzZl9dymrLLWe3/HpiS7ok3lvN9laEGbX3u1+RXz8qj5sa4U8m8UBO4d8ne5XH1WBY5Go/L7/cN+HhdeeKEef/xxTZkyRf/1X/+ljo4OSe/9/EulUorFYsPeJ2A4VQaK+wsGb00149L6yp8H/ekvGFwvPDyQMHHpD+MNAAAAAACAoUHQFwAAAAAAjCvFYlGGYcjlei/4uGXLFv3gBz/Q66+/Lsuy9P/+3//THnvsMejHtW1bPT09fYZ4U6lU1TZer7f8+G7btlUsFpXNZqvahEKhmmq8lYFen8836OeCkWU5jjZmLK1PF7U+XVSqaKtoO3KbhkJuUx1BtzqCbrUHXHIRqpowHMdROp3us9p3MpmsuhHA6/X2WRU4Go3K4/EMah/vvfderV27Vl/84he1bNky7bDDDspms7rsssv0u9/9TqZpKhqN6he/+IUWLFggScpms1q6dKkmT56sadOmKRAIDFqfgPGqVMV/a8LE/W1Xua5YLDbdJ5fLNeRh4tJTDDBwDz74oC666CI99dRTuuqqq/SpT31KktTV1aWf/vSnevXVV2Wapj760Y/qxBNPLL/P9913n9566y15vV4tXLhQ06dPH8nTAAAAAABgQiLoCwAAAAAAxpT169dr3bp12mmnnRQKhSRJr7zyij73uc+pu7tb+XxeH//4x/WlL31JkvSVr3xFlmXpxBNPVKFQ0Gc/+1k988wzisfjTR+zFLDrq9Jm74Cd2+2W3++X2+2W9F6Fv3w+X1OxNxKJ1FThrZwOZggPwPhm27aSyWSfP6vS6XTVNsFgsG5V4NI0EokMOFS3fPlyffKTn9S9996rSZMm6ZFHHtGJJ56ozs5OuVwuXXfddbrhhhv06KOPqrOzUxdffLGWLl2qXC4nl8ulX/3qV5o3b95gvjUAtpLjOFsdJh5o5eJmmabZdDB4a8PEpUDxeKpS/NprrykSiei0007TmWeeqX/5l3+RaZo666yz1NHRoUMPPVSpVEpXXHGFfvSjH+nQQw/V1Vdfrfvvv1+tra3q7u5WNBrVd77znXK1dgAAAAAAMDzcI90BAAAAAACAZn31q1/Vbbfdptdee00PPfSQDjnkEEnSv/3bv+njH/+4TjjhBHk8HkWjUS1evFg777yzrrzySr344ouaPXu2JGnq1Km66aabdMEFF5RDuNJ7QZaenh699tprdatlVla0M01TgUBAXq+3XL0uEokom80qn89Leq+ycDqdVjQarQryVlbjjUaj5crDALCtTNMs/5xpVHGxWCzWBIFL05UrVyqRSFTdkGAYhiKRSE1V4OnTp2vq1KlV+3YcR4Zh6OWXX1YkElEwGCz3a7fddtNbb72lHXfcUfl8Xhs3bpQk3XXXXbrlllv0+uuvS5J++9vf6nOf+5z++te/yrZtKncCI8wwjHLwdSg5jiPLsgYlTJzP55VKpRpu02z9m8pzH6owcenJDsMRKJ4zZ45M05Tf7y//fJbeq/T7ve99TyeeeKIk6XOf+1z5Z/SPfvQjXXrppfrgBz8oSdp///318MMP6/TTTx/y/gIAAAAAgH8i6AsAAAAAAMaMM844Qz/5yU904IEHasuWLeUQ2COPPKJPf/rTamlp0aZNm7TffvuVQxxtbW167LHHykHfDRs26O9//7vOOuusqqq+hmGoq6tLd955pwKBgPx+fzmA0dLSolwup3Q6rWKxKNu2lUqllMvlqqrvVoZ4t7YSJgAMJbfbrdbWVrW2tjZsk81m697w0N3drXXr1qm7u1sHHnigpkyZUvdmhbfeeksdHR3lYODcuXO1YMEC7bvvvpKkww8/XLfeemu57YwZM8rbBgIBWZal9evXUzESmEAMw5Db7Zbb7VYgEBiy4ziOI9u2B60ycTabbdjetu2m+9VMMLivwHDvdW1tbQoEAnUDxOl0Wn6/vzxG/d3vfqdvfOMb+u///m/19PToggsu0GGHHSbpvSdSeL3e8rbBYFBLly7ViSeeOKR/TwAAAAAAoBpBXwAAAAAAMGYsWLBAkhQOh/X222+XAwp33HGHfvCDH+gLX/iCNmzYoK997Wtqa2uTJH3ve9/TXXfdpT/84Q+KxWKaNWuWotGoEolEVdBXkuLxuBzHUTqdVjqdltfrLQd3S+HdytehUGhcPdIZACTJ7/fL7/dr8uTJddc7jqNisVhzI0Opou+bb75ZFdL97ne/q5aWFm3ZskXJZFIf+9jH9MQTT2jevHk64IAD9Nxzz+nmm2/WAQccoD/96U/auHGjuru71dHRUd4nAAwGwzDkcrnkcrnk9/uH9Fj1AsUDDROX5lOpVMNtLMuqOfYpp5yi3Xbbre7Pz3w+X1XRd8mSJTrkkEO033776ZVXXtFzzz1Xruz+hS98QX/4wx/09ttvKxgMatWqVdp9991rqiKXKjJbliWPx8ONbgAAAAAADDKCvgAAAAAAYFQqBQjqBRSmTZumtWvXlgNgXV1d2nXXXXX99ddr+vTpOuWUU/SDH/xAv/jFL3TOOedowYIFeuONN3T00UfrP//zP/XKK6/UrRQZDod1xhlnlAO9fr+fgBkA9FJ6nH1vpWBXIpHQQQcdJLfbLcdx9Nhjj+mHP/yhJCkSiWjKlClasWKFLMvS0Ucfra6uLl111VW67bbblEqldOCBB8rtdpePVULoF8BYYpqmfD6ffD7fkB7Htu2qgHCxWOzzZrR8Pl+u0vvOO+/ojjvu0JIlSzRt2jRJ0p577qmnn35a22+/vS688EJde+21evrpp7XHHnto3rx5mjZtWk01d8dx9PLLL+t///d/JUkul6vPCsSNKhQPdJt6VeUBAAAAABiPCPoCAAAAAIARkcvlGj4avru7W7Nnz9bxxx9fd9sZM2bozTffVKFQkNfr1YMPPqiWlhbNmjVLkvSBD3xAd955pxKJhKLRqPbcc0/tueeekqTXXntNO+ywg7xeryzLqgoIGIahefPmDfm5A8B4dNVVV+maa67Rc889pxUrVui5557TT3/6U3V0dOjVV1/VMcccI4/Ho0cffVRf/OIXyz9/P/ShD+lDH/qQJOmDH/ygpk+frqlTp1bt23Ecvfrqq1qyZIlisZhisZii0aii0WjVfDAYJAwMYEIxTVNer7cc3u2rXcmUKVMkvXfzxYoVK2Tbdnldd3d3VbXj8847T+edd54k6dJLL9VXv/rVmvCyYRiaPn26Tj311D4rF5eW53I59fT0NKxm3LticCOlG08GEg7emgCyy+XiswUAAAAAMKII+gIAAAAAgEFXLBaVTCbLod16gd5sNlu1TSQSUSQSkd/vV3t7u8LhcM0X6qX5XXbZRc8++2w50BAMBvXwww+X261Zs0Yul0vRaFQbNmzQtddeqyeffFLvvvuuDjjgAH3729+W4zhUAQOAQXTuuefqqKOO0jvvvKPXX39dr776qiTpsssu07/8y7/opptuUi6X00knnaTTTjtNknTnnXdq8+bN2mmnnbR8+XK99dZb+slPfqJAIFCz/5aWFu25557lz5G1a9cqkUhUPbbe7XaXw7/1gsCxWGzIq2sCwGh00UUX6Q9/+INWrVqlk046SfF4XMuWLdN3vvMdnX322ero6FA2m9UhhxyiAw88UJL05z//WW+88YbC4bBeeOEFHXHEETrssMNq9m0YhuLxuOLx+Db303EcWZbVMCxcLxjc17p0Ot1wm8qAc3+GOkxcWk6gGAAAAABQj+E0e1ssAAAAAACA3ns8cE9PT1X13UQiUTWfSqWqtgkEAorFYgqFQvL5fOWAbbFYVC6XUyqVUnd3d1X4d/Lkybrgggvq9uHaa6/Vt771LV1wwQWaNm2aTjnlFH3pS1/SM888I9M0NW3aNP3nf/6n5s6dq1Qqpfvvv1+5XE477rijdtppJ4VCoaF7gwAADSWTSXm93nLY9q677tJvf/tbrV27Vtttt50uvvjicnX2ZjiOo1Qq1ednUk9PT1V1SJ/PVxX8rTd1u6mRAWD8yWQy5bF3Op3W3Llzlc1m9fTTT5dvxDv00EPV3t4uSbrnnnt0zz33KJlMatasWbrooovG1Y1y/QWKtyZsXG9Z5Q0p/ekrBDwYYeLSusoKzwAAAACA0Y+gLwAAAAAAKHMcR5lMpqr6bu/QVDKZrKp+5fF4qh6Z7vF4ZJqmbNtWoVBQJpNRIpFQV1eXCoVCeTu3212u/FWqtlg5H4lEaipaWZalM888Uy+++KJmzpyptrY27b///vr85z9fDhh3dHTwxTUAoMyyLPX09PRZZT6dTldtEwqFagLAla/D4TCfNQCApti23TA0PFhh4tLyZrlcrqbCwf0FhvsLG4+nYDgAAAAAjCSCvgAAAAAwAVmOo40ZS+vTRa1PF9VTtGXZjlymobDbVEfQrY6gW+0Bl1w8OnRcyefzdUO8ldPKL4hN0yyHmiKRiAKBQPnLWsuylM1mq8JTldWqfD5fObRbbxoMBnk0LQBgVCgUCjWfh70/I/P5fLm9YRiKRqMNqwLHYjEFAgE+58YhxtEARivHcQYUDN6aMHHpT7NM09ym0HCzlYtdLhefuQAwijGGBgBg2xH0BQAAAIAJpDtvadmmrJ7blFXWeu/XQVOSXdGmct7vMrSgza+92vyKeanEM9pZltUwpFSaz2azVduEw+FyICkcDsvr9co0TTmOo3w+X67uW/pTeRkhGAzWhHcrX/v9/uF+CwAAGBKO4yiXy/VZFTiRSFTd8OJ2u2uqAfee9/l8I3hWGAjG0QDwHsdxZFnWkIeJC4WCmv0a2zCMrQ4UNxsmLr0mUAwAzWMMDQDA4CHoCwAAAAATQNay9cDalJZ35mRIGsgvgqX2e07yaeH2IflcPKZ6JNi2rVQq1WfAqKenp2qbQCBQVWEwHA7L7XZL+mc13mQyqa6uLnV3dyuZTFZtH4lEGlbjjcVi8nq9w3b+AACMdo7jlD+rG91w0/uz1ufz9RkEjkaj5c9ujAzG0QAwcioDxc0Eg3u3aTaAXHmjTn8GGg7emvYej4dAMYAxjTE0AACDj6AvAAAAAIxzKxN53bEqqXTRGdBF1d4MSSG3ocUzI9ohSsBzMDmOo0wm0zAUVAoG2fY/6114PJ6aUFAwGKyqxtvT01PevqurS+l0urx96ZHjlVV4K6vyEiwCAGDwWZalZDJZ85lfOc1kMlXbhEKh8md+vWk4HJZp8uX3UGAcDQATg23bW12ZuL/tKtcVi8Wm++RyuYY8TOzxeBhDABh0jKEBABgaBH0BAAAAYBxbujGj+9akBlw5oZHSfo6eFtI+7YFB2OPEkM/nG1bhLU0LhUK5vWmaVQHe0mu/3y/DMGRZllKpVHn7rq4udXV1KZfLlffhcrkaVuONx+OKRCJ8oQcAwChUKBT6rArc3d1dM24oVeGvVxU4FospEAhQGXCAGEcDAAab4zhbHSbua329Zc0yTXPIw8SlQDFjEWD8YwwNAMDQIegLAAAAAONU6cLqUOEC63ssy6oJ3/QO8maz2aptwuFwTRgnGo3K4/HIcRzlcjklEgl1dXWVg7y9Qz0ej6dhNd5SdT++RAMAYPxxHEfZbLbPIHAikah6EoDb7e6zKnA0GpXP5xvBsxpdGEcDAMYyx3FkWdagBoobtW82amAYxpCHiT0ej1wuF9dCgBHCGBoAgKFF0BcAAAAAxqGVibz+8EZiyI9zxo7Rfh+d5jiO1q1bp46OjjFXQdZxHPX09PRZVa+np6dqG7/fX1VFrxSgKVXQLRaLSiaTVQHerq4uJRIJWZZVtZ9GId54PE5lPgAA0JDjOEqlUg1vQkokEkomk1Xb+P3+hkHg0ljG7XaP0BltvQ0bNqilpUVeb3OP+x1N42gAAEYzx3Fk2/aQh4kLhULVDUz9aSYc3FdguL8wcakN12SAf2IMDQDA0CPoCwAAAADjTNaydc1LW5QuOoPyiLRGDEkht6Hzd22Rz1U/wNvd3a077rhDK1as0Kc//Wl1dHQMYY8GplQNr68ATKNqePUCMKFQSI7jKJ1O14R4S/ur/BU8FAqVQ7u9p/F4nKp6AABgSFmWVb75qNFYKJPJVG1TGr80qgocDodH1Y1djuPo0ksvldvt1oknnqgddtihz/ajaRwNAAD+qVGgeDDDxIVCoeoG7P5UBoIHGhxuNkzs8XhG1dgKqIcxNAAAw4OgLwAAAACMM0tWJ/V8Z25IL6yWGJL2mOTTcTMiVcsdx9Ezzzyjv/71r/L5fDrhhBO00047DUOP/imfz9dU4e09LRQK5famaSoSidStxhuLxeT3+5XL5ZRIJNTV1VUT5O1d2be0bb0gbywWk8fjGdb3AwAAYKAqx1ONnm7QaDxVrypwNBod9qcSbN68WbfddptWrVqlBQsW6JhjjpHf76/bdjSMowEAwMixbXvA4eCtbd8sl8vVVDi49/qBhIk9Ho9cLtcQvrMYa95++21ZlqVZs2b125YxNAAAw4OgLwAAAACMI105S1e9tGXYj3vB/BbFvO99IdDZ2anbb79dq1at0j777KOjjjqqYZhia1mWVRUwaaYCXTgcbvg46mg0KpfLVd6+d4i3q6uran+maSoajZar75bCK6X50v4AAADGs8onJDS6waq/JyT0DgLHYjF5vYP7OF7HcbR06VLdd9998vl8Wrx4sXbeeeeqNqNhHA0AACYGx3GqAsEDDRP3t03lumbjIKZpDnmYuBQoHs6bvrB17rrrLj399NOaM2eOjjrqKE2ZMqVuO8bQAAAMH4K+AAAAADCOPPROSk9uyNStoLBy6eN6+DdXau3Ly5XctEEfu+TXmn/E8eX1X9+7ve4+j/u3/9ChH/9cw2Makg6YEtAhHQE98cQTevDBBxWJRJp6PHI9juOop6enYdW4etVz/X5/w6pxsVhM4XBYuVyuHNotBXgr5/P5fHl/pQBKvRBvLBZTJBLh0YkAAABNKI3tGt2c1Whs11cQeGtvquru7tadd96p119/XbvttpsWLVqkUCgkadvG0cnOd3X3Zd/T6088qGxPQrMWHKAPfO3/qW3Gjn32pzSOPmxqaMDnAgAA0B/HcWRZ1laHiQeyvPLGrv4MdZi4tIxA8dZzHEcvv/yy/va3v2nz5s3aa6+9dMQRRygajVa162sMLUkPXv8LvXj/ndr41uvy+AKaued+WvSv31b7rDmSpHT3Fv31qh/r9ScfVNf6tQq1TNKuhx+nYy74uvyRaN19MoYGAExUBH0BAAAAYJywHEeXv7BZWav+r3mvPvZXrVr2lLbfZU/99sJzagMKmzb0av83/e/3vqALb31KrdNm9Xlsr+Eo/MytWv/OO9p///21cOFCeTyemnZ9VX2rDHzUq/rWqBpvLBaT2+1WT09PVYi397RYLP6zv15vObRbOS29DoVCfBkAAAAwTHo/raHejV7ZbLZqm76e1lC60aveeM5xHL3wwgu6++67ZRiGFi1apF3mz9cVL27ZqnG04zj6r3OOl8vt1vFf+p78oYge/e1/6bXH79cXb35U3kDfAQS/y9Dnd2+Vi7EnAAAYwyzL2uow8UCqFluW1XSfGoWEBytMXFo+nosBWJalpUuX6qGHHlI+n9cBBxyg97///fL5fP1ei5ak6//ldO157CmaNn+BbKuoe674oTaseKU8Tl6/4mX99aofa58TP6zJs3dS17o1+suPLtR2c3fVR396Q8P9MoYGAExEBH0BAAAAYJxYny7qxle7mmr79b3ba4K+vd30pbOVS/XovKv/t6l9hp6/VycedpDC4XCfFdsKhUJ5G8MwqoIZ9Sq2BQIB2batRCJRN8Tb1dVVEw4OBAINq/HG43H5/X6CvAAAAGNIPp+vCQL3nlaOM03TrBpf9p66XC49+OCDeumllzRz9320focDmupH73H0xlVv6OenHKAv/OkRTdlxniTJtm396Oj5OvZz39B+p5zV7z7P2TmujqB7K94VAACAicW27QEHhvta31fF4ma5XK6mqwxvTZi49GckA8W5XE6PPfaYnnjiCXm9Xh122GHafpc9ddOK5ID207Nlk3545C761DW3aod9Dqrb5oX7btUfvvVZffexVXK5G4+RGUMDACYaPvUAAAAAYJxYn27+AnR/kp3v6pVH79OHvntFcxs4jlKuoH79619XLQ6FQuVAxY477lgT5A2HwzJNU4VCoSrAu2bNmqr5RCJRtd9wOFwO7U6dOrWmKq/X6x2stwIAAACjgNfrVVtbm9ra2uqudxxHmUym4c1mq1evVjKZrLo5zOPxKBwOa20yJ9NxtupGMCufkyS5vb7yMtM05fZ69dayvzcV9F2fLhJSAAAAaIJpmvJ6vUN+7c9xnD5DwAMJE+dyOfX09DRs3yzTNJuuMry1YWK32y2Xy1UzLvb5fFq4cKH23XdfPfDAA1qyZIkib22S5u4nqfkxdDb53jXeQKylcZuehPyhSJ8hX4kxNABg4uFTDwAAAADGifXpokxJdr8t+/fs7X+QLxjW/IWLm9vAsRXefpaO3Hl7tbe3l6unuf/vgmwul6uqwrt27dpyNbauri6lUqnyrgzDUCQSUTweV0tLi2bNmlUV5I3FYuX9AgAAANJ7Y8hgMKhgMKiOjo66bWzbViqVUnd3t7Zs2aKVK1dq1apVykbbJMeWDNeAj9s+a67iHdN0zxU/0CnfvESeQFCP/e4qdW94R8mNG/rd3tTg3rAHAACAbWcYRjn8OpQcx5FlWYNWmTidTjfcptmHfVeee6Ng8Ny5c7UmFJdj2zLM5sbQtm3rjp99SzP3ep865uxSt01qS6fuv+bn2u+Dfd8sxxgaADAR8c0oAAAAAIwTPUV7UEK+krT0tv/WXsedKo/P39wGhqlENq+7H71H7e3tisVikqREIqGuri5ls9lyU9M0y6Hd9vZ2zZ07t6oabyQSkcs18JAFAAAA0BfDMNTT06MXX3xRL774olKplCZPnqz2aTO0ucmAQm8uj0cf+9mNuvl7/6bvHT5XpsulHd93qHY6+EipiTCFLSlVHKxRPAAAAMYSwzDkdrvldrsVCASG9Fi9A8VbGyYuFArKZDJy2vySYTZ9/Nsu/po2vPGKPnP9HXXXZ3uSuvHfPqLJs3fSUZ/+ap/7YgwNAJiICPoCAAAAwDhh2c1VZejPymef0Ma3VujDF1/T/EaGIZku2batDRs2aMOGDTJNU5MmTdJuu+2m6dOnq6WlRbFYTJFIZKseiwwAAABsje7ubr3wwgt6/vnntXHjRoVCIe2+++7ac889NWXKFP3xjYQ2J5t/bHJv2++6p/719w8qm0yoWMwr3NKmK88+VtN22bOp7YuDNI4HAAAAGnG5XHK5XPL7myzsUMe6dev0xBNPaMWKFfLO2Kfpa7y3Xvw1vfLIvfrUtbcpNmVqzfpcqkc3fO4M+YJhfeySX8vVRCVlxtAAgImGoC8AAAAAjBMuc3DCs8/c+jttv8ue2m6n3QawlaMZ06bplAsvVDAY1Lvvvqvly5frhRde0DPPPKOVK1dqjz320H777UfIFwAAAEPOcRw9//zzWr58uVauXCm326158+bpmGOO0ezZs2Wa/6w+NljjaH8kKknatPoNrX1pmY6+4KKmtnMP0vEBAACAweY4jlasWKEnnnhCK1euVDwe17HHHqvVk2bpjWSx321v+/FFeumBu3T+NbeodfuZNW2yPUld/y+ny+316uxLb2r6CXOMoQEAEw1BXwAAAAAYJ8JuU6bee3RZPbl0jzrfXlme37J2td559QUFoy2KbzdN0nsXVl+473Yt/tJ3B3RsU4baIiGFQiFJ0pQpU3TMMcfoqKOO0sqVK/X888/r0Ucfldvt1kEHHbQ1pwcAAAA0bePGjbr11ls1c+ZMfeADH9Cuu+4qn89Xt+22jqNfuO9WhVraFO/YXutXvKzbf/pN7Xr4cdrpwCP67acpKeRu/pHHAAAAwHAoFot64YUX9MQTT2jjxo2aOnWqTjvtNO2yyy4yTVNbVvfIVLHhGFp6r5Lv8iU366xLfyNfMKzkpg2SJH84Ko8/8F7I97MfUiGb0Rk/+KVyqaRyqaQkKdTSJtPlqrtfxtAAgInIcByHevYAAAAAMIYVCgV1dXXp2Y1pPZcNSg0q5r75zGO65lMn1yzf+8Qz9KHvXiFJeurm3+iOS76lb9zzYrkiWbMWTQ9rr7bGFRcsy5KrwcVZAAAAYLA1O/5ctimru9/uabi+v3H0Y//zKz3ymyvV07lRkbYpWnDC6Vp4/pfl9nib6md/42gAAABguDiOoyeeeEJPPPGEenp6tNNOO+mggw7SjBkzqp7U1t8YWpK+vnd73eWnfecy7fOBDzccZ0vSV+9YqpapMxrumzE0AGCiIegLAAAAAKNcNptVV1eXuru71dXVVX5dmk+n05IkI9Yu72Gnj1g/z9k5ro4gD44BAADA2LI+XdSNr3aN2PEZRwMAAGC0SKVSuvrqqzV37lwdeOCBamtrq9uOMTQAAMOLTz0AAAAAGEGO4yidTteEeCunuVyu3N7lcikWiykej2vKlCnaeeedy/ORWEy/WW0paw3//Zx+l6H2ANV6AQAAMPa0B1zyuwzG0QAAAJjwQqGQvvSlL/XbjjE0AADDi6AvAAAAAAwhx3GUTCZrwruV00KhUG7v8XgUj8cVj8c1ffp07bbbbuX5WCymcDhc9Yi03hakU3pyQ0bDeXnVkLSgzS9XH/0CAAAARiuXYWhBm59xNAAAANAkxtAAAAwvgr4AAAAAsA1s21YikWhYjTeRSMiyrHJ7v99fDu3Onj27KsQbj8cVCAT6DPL2Z682v57YkBmMU2ua83/HBQAAAMYqxtEAAADAwDCGBgBg+BD0BQAAAIA+FIvFPqvxJhIJOc4/axaEQqFyaLejo6MmyOvz+Ya0vzGvS3tO8un5ztywVFIwJO0xyaeYl0elAQAAYOxiHA0AAAAMDGNoAACGD0FfAAAAABNaPp+vCu/2DvL29PRUtY9Go+XQ7owZM6pCvLFYTB6PZ4TO5J8Wbh/SG915pYrOkF5gNSSF3IYWbh8awqMAAAAAw4NxNAAAADAwjKEBABgehlNZegoAAAAAxhHHcZTNZusGeUvzmcw/Hy1mmqai0WhVFd5SiDcejysajcrlGhvVAlYm8vrDG4khP84ZO0a1Q9Q75McBAAAAhgPjaAAAAGBgGEMDADD0CPoCAAAAGLMcx1EqlWoY4u3q6lI+nxGY+D0AAQAASURBVC+3d7vdVdV3e08jkYhM0xzBMxpcSzdmdN+a1JDt/5hpIe3dHhiy/QMAAAAjgXE0AAAAMDCMoQEAGFoEfQEAAACMWrZtq6enpyrE23taLBbL7b1eb90Qb+l1KBSSYRgjeEbDr3SB1ZAG6dFpjiRD03ve1kcPWTAoewQAAABGm8EeR5f2Q0ABAAAA4xVjaAAAhg5BXwAAAAAjxrIsJRKJuiHerq4uJRIJ2bZdbh8IBMqh3d4h3ng8Lr/fP+GCvM1YmcjrzlVJpYrONl1gNSSF3IZmp9fo6btv0Yknnqi99957sLoJAAAAjCqDPY5ePDPCo4YBAAAwrjGGBgBgaBD0BQAAADBkCoVC3Sq8pWkikahqHw6Ha6rxVgZ6vV4u6G2trGXrgbUpLe/MDbiiQqn9npN8Wrh9SF7T0F133aVnn31WH/vYx7TDDjsMTacBAACAETaY42ifyxyaTgIAAACjyLaMoUut95zkZwwNAEAFgr4AAADAGLd582ZFo1G53W5J0qpVq/SVr3xFq1evVjgc1ne/+10dfPDBQ3LsXC5XU4W3MsibSqXKbQ3DUCQSqanCWzktnQOGTnfe0rJNWT23Kaus9d6vg6Yku6JN5bzfZWhBm197tfkV87rKbWzb1n//939r7dq1Ovfcc9XW1jZcpwAAAAAMu3rjaEOOHP3ziSLNjKMBAACAiWKwrkUDAACCvgAAAMCot2bNGq1fv17z589XIBCQJD311FP613/9V+VyOblcLp122mm66KKLVCwW9fGPf1x77723Tj31VG3atEknn3yy/vGPfygWiw3ouI7jKJPJNKzG29XVpWw2W25vmmaf1XgjkYhcLi7OjRaW42hjxtL6dFHr00WliraKtiO3aSjkNtURdKsj6FZ7wCWXYdTdRzab1fXXX69isajzzjtPwWBwmM8CAAAAGF6V4+j/+t0fdejRi+T2+qrG0REnq385+yO6e8ldI91dAAAAYMQ1uhZtFfKyMj2aP22Kpoa9fV6LBgBgoiPoCwAAAIxin/3sZ3XPPfdo5cqVWrp0qRYsWCBJOvDAA/Uf//EfOvroo5XL5RQOh7V+/XpNnjxZHo9HnZ2dikajkqT9999fZ511li644IKaoK1lWVq3bl1VNd7K6ryFQqHc1u12V1XjrQzxxmIxRSIRGVyEm3C6urp07bXXatKkSTrrrLOoygwAAIAJY88999Ty5cvL8x//+Mf161//WpK01157admyZSPUMwAAAGB0+/3vf69Pf/rT2m677bTddtvpW9/6ls4880zZtq2bbrpJxx9//Eh3EQCAUYVvYAEAAIBR7Oyzz9aVV16pffbZR1u2bJHjODIMQ08//bQkyeVyaeXKlTrssMNkWZYkadKkSbr99tv10Y9+VMlkUuvWrdPy5cuVSqXK4d+SfD6v6667TpLk8/nKod0ddtihJsgbDAYJ8qJGPB7XGWecoV//+te6/fbbdfLJJ/PvBAAAABNC73HvAw880HAdAAAAgH/60Y9+pL///e+aN2+eHnvsMZ188sn6y1/+opaWFp199tkEfQEA6IWgLwAAADCKve9975NhGAoEAnr77bfLXxb/7W9/00UXXaRzzz1Xmzdv1te+9jWZpilJuvzyy3XLLbfoiiuu0LRp07THHnsoFAopnU7XBH0DgYA+85nPKBaLye/3D/v5YXyYPn26Tj75ZN18882aNGmSDj300JHuEgAAADDkJk+erFtuuUUnn3yybrrpJhmGoRtvvFHxeLzmdy8AAAAA/+RyuTRv3jxJ0sEHH6xQKKT3v//9kiTbtkeyawAAjEoEfQEAAIAxYPvtt9fq1avL8ytXrtRBBx2kJUuWKB6P6/jjj1c6ndZPfvITfehDH9Lee++t7u5u7b333vrmN7+pDRs2qKOjo+6+p0yZMlyngXFst9120+bNm/XAAw+otbVVu+2220h3CQAAABhSl1xyiRYvXqyPfOQjOuKII3TXXXfprLPOkm3b+vWvfz3S3QMAAABGLdu2tWLFCs2ZM0fPPPOMurq69PzzzysWi5WfXggAAP6JoC8AAAAwQrLZrLq6utTd3a2uri4ZhqH3ve99ddvOnDlTq1atUqFQkMfj0eOPP66ZM2cqHo9LkhYvXqwHHnhAmUxGfr9fO+64oySpp6dHr776qg477DBJ7108K1X+BQbbIYccos7OTt1yyy2KxWKaPn36SHcJAAAAGDKtra1avXq1tmzZopaWFknSs88+q3w+L8dxRrh3AAAAwOj1jW98QwcccIBmz56tNWvW6H//93+1ePFibdq0SVdfffVIdw8AgFGHoC8AAAAwBBzHUTqdLod4KwO9pWkulyu3d7lcmjZtWk3Q1zAMSe9VS7311lvl8XgkSZFIRH/961/1zW9+U8ViUStXrlQ8HlcgENCaNWt06aWX6qGHHlI2m9UHP/hBff7znyfkiyFnGIZOPPFEdXV16fe//73OO++8cuABAAAAGG+mT5+un/3sZ/rSl75Utfz+++/X1Vdfrb/85S8j1DMAAABgdDvjjDN08MEH69VXX9WCBQvU2tqqlStXKpfLKRQKjXT3AAAYdQyH28oBAACAAXMcR8lksia8WzktFArl9h6PR/F4XPF4XLFYTLFYrGo+HA6XQ731XHnllfr+97+vT3ziE5o5c6Y+/OEP6ytf+Yoefvhh+Xw+7bzzzrrkkks0ffp0ZTIZPf/88/J4PJo1a5ZaW1uH4y0BytLptK699lq53W598pOflN/vH+kuAQAAAINu7ty5isViOvPMM3XhhRdWrZs3b55eeeWVEeoZAAAAMPZ0dnZq0qRJI90NAABGJYK+AAAAQB22bSuRSDSsxptIJGRZVrm93+9vGOItVdrtK8jbSLFY1JlnnqmXX35Zs2fP1uTJk3XQQQfp3HPPVSqVkm3bikQig3nqwKDYtGmTrrvuOm2//fb6yEc+QjVpAAAAjDt77723HnjgAR199NE6+eST9Y1vfKO8bsGCBXruuedGsHcAAADA6PW9731Pn/rUp9TR0aEXXnhBJ510ktatW6e2tjb97//+r/bbb7+R7iIAAKMKQV8AAABMSMVisWE13q6uLiWTSVUOlUOhUDm0Wy/I6/P5RvBsgNFp5cqV+u1vf6sFCxZo8eLFWxV2BwAAAEYTy3G0MWNpfbqoK37zey06+YPK5Qt6+u9PyitLB++2s1a9sFR3/eG3unvJXSPdXQAAAGDEVY6h16eL6inaevDhh3X4oYcq7Db1x2t/qYX77qEPn3isHn7wQf37v/+7Hn300ZHuNgAAowpBXwAAAIxL+Xy+JrxbGejt6empah+NRmuCvJVTj8czQmcCjG3PPvusbr/9dh177LE64IADRro7AAAAwFbpzltatimr5zZllbXe+1rFLhZlut3lNo5tSYYpwzDkka19p4S0V5tfMa9rpLoNAAAAjJh6Y2hTkl3RxtR7QWDDMOR3GVrQ5tfXzzpFj//t3pHoMgAAoxZBXwAAAIw5juMom83WDfKW5jOZTLm9aZqKRqNVVXgrq/JGo1G5XHzxCgyV++67T48//rjOPPNM7bzzziPdHQAAAKBpWcvWA2tTWt6ZkyFpIF+olNrvOcmnhduH5HOZQ9NJAAAAYBTZtjG0I9t2tFd7gDE0AAAVCPoCAABg1HEcR6lUqmGIt6urS/l8vtze7XY3rMYbj8cVDodlmlwMAkaK4zj64x//qDfeeEOf/OQn1dHRMdJdAgAAAPq1MpHXHauSShedAYUTejMkhdyGFs+MaIeod7C6BwAAAIw6jKEBABgaBH0BAAAw7GzbVk9PT1WIt/e0WCyW23u93oYh3lgsplAoJMMwRvCMAPQnn8/rxhtvVE9Pj84//3xFIpGR7hIAAADQ0NKNGd23JjXgCmSNlPZz9LSQ9mkPDMIeAQAAgNGFMTQAAEOHoC8AAAAGnWVZSiQSDavxJhIJ2bZdbh8IBMqh3d4h3ng8Lr/fT5AXGAeSyaSuvfZahUIhnXPOOfJ6qcQAAACA0acUUBgqBBUAAAAw3jCGBgBgaBH0BQAAwIAVCoW6VXhL00QiUdU+HA7XVOOtDPQS9gMmjvXr1+v666/XjjvuqNNPP50QPwAAAEaVlYm8/vBGov+G2+iMHaM8ghgAAADjAmNoAACGHkFfAAAA1MjlclXh3d5B3lTqn3dlG4ahSCRSU4W3cup2u0fwbACMNq+99pr+8Y9/6KSTTpJpmiPdHQAAAECSlLVsXfPSFqWLzqA8argRQ1LIbej8XVvkczEeBgAAwNjFGBoAgOFB0BcAAGCCcRxHmUymYTXerq4uZbPZcnvTNPusxhuJRORyuUbwjACMVY7j9FnRt1gscqMAAAAAhs2S1Uk935kb0oBCiSFpj0k+HTcjMgxHAwAAAIYGY2gAAIYH35gCAACMM47jqKenp6Yab+V8oVAot3e73eXQ7vbbb69dd921qjpvJBLpM4gHAFurr58tGzdu1Oc//3ldfvnlam9vH8ZeAQAAYCLqylla3pkbtuM5kpZ35nRQR1AxLzfPAgAAYOxhDA0AwPAh6AsAADDG2LatZDJZFeLtPbUsq9ze5/OVQ7s77LBDVTXeWCymYDBIkBfAqFGq8tve3q5ddtlFZ599tpYsWTLS3QIAAMA4t7wzK0OqW4nswet/oRfvv1Mb33pdHl9AM/fcT4v+9dtqnzWn3KaQy+qun39by++9RVY+p7kHHqGTvv4TRSZNbnhMQ9KyTVkdNjU06OcDAAAADLW+xtBSc+Pov/zgy1rx1MNKbFwvXyCkGf/XZvIOc+vukzE0AGCiMhzHGY4K+gAAAGhSsVhUIpGoG+Lt6upSIpFQ5RAuGAyWQ7u9Q7zxeFx+v38EzwYABq67u1uxWEyS9JnPfEaFQkHXXXfdCPcKAAAA45XlOLr8hc3KWvW/Lrn+X07XnseeomnzF8i2irrnih9qw4pX9MWbH5U38F7A4JYffUWvPHqfPvSdy+UPR3Xrjy+SaRr6zA139Xlsv8vQ53dvlYsbcAEAADCG9DeGlpobRz9182/UPmuO4ttNU7p7i/529U/1zmsv6qu3L5Xpql+1lzE0AGAiIugLAAAwzAqFQp/VeJPJZFX7SCRSDu3Wm3q93hE6EwAYPLlcTj6fT5L005/+VKtWrdIVV1yhp59+WjfeeKOuvPLKEe4hAAAAxqv16aJufLWr6fY9Wzbph0fuok9dc6t22OcgZZMJ/eDIeTrjR1dp96M+IEl6d+XruvTUg3TBjUs0Y499+9zfOTvH1RHkAYwAAAAYOwY6hpZqx9H1rHvtH7rszMN14a1PadL0HRruizE0AGCi4VMPAABgkGWz2ZoqvN3d3eX5dDpdbmsYhqLRqOLxuCZNmqTZs2dXBXmj0ajcboZsAMa3l156SW+//baOPfZYSdJXvvIV7bjjjjrjjDP08ssva99995VlWXr55Ze12267jXBvAQAAMN6sTxcH1D6bTEiSArEWSdLal5fLKhY0Z//Dym0m7zBX8Y5pWv38M/0Gfdeni4QUAAAAMKYMdAwt1Y6je8tnUlp62/+oZfuZinVs3+/xGUMDACYSPvUAAAAGwHEcpdPpmhBv5TSXy5Xbu1yucmh3ypQp2nnnncvz8XhckUhEpmmO4BkBwMjr7OzU5z73OT3wwAOaNm2aJOnjH/+45s6dq1NPPVWnn3667r//fn3pS1/SxRdfrEWLFo1wjwEAADCerE8XZUqym2hr27bu+Nm3NHOv96ljzi6SpGTnu3J5vApEYlVtw5Palex8t8/9mdq6kAQAAAAwkgYyhpbqj6NLnvjj9br7P7+rfCat9llzdO4v/yS3p/HTLBlDAwAmIoK+AAAAFRzHUTKZrAnvVk4LhUK5vcfjKYd2p0+frt122608H4vFFA6HZRjGCJ4RAIx+hxxyiL785S/rrLPO0nXXXad169bphhtu0A033KDDDz9cknTAAQfosssu07/+679q9uzZ2mmnnUa20wAAABg3eop20wGF2y7+mja88Yo+c/0dg3JsW1Kq2OzRAQAAgNFhIGNoqe9x9ILjTtPcAw5TcuMGPXLTL/XfXztPn7nhTnl8/rr7YgwNAJiICPoCAIAJxbZtJRKJhtV4E4mELMsqt/f7/eXQ7uzZs6tCvPF4XIFAgCAvAAyCz3zmM1q3bp2++c1v6r777tMXvvAFHX744XIcR5ZlKRAI6NBDD9VJJ52kyy+/XJdffvlIdxkAAADjhGU7TbW79eKv6ZVH7tWnrr1NsSlTy8sjkybLKuSVSXZXVfXt6dyoyKTJ/e632OTxAQAAgJFQLBaVTqeVSqWUTqeVTqfVmY9KZqip7RuNo0v8kaj8kajaZuyo6Xvsq+8dNlf/eOAu7bXog437xBgaADDBEPQFAADjSrFYbFiNt6urS8lkUo7zz1/+Q6FQObTb0dFRE+T1+XwjeDYAMLF897vfVaFQUE9Pj1paWlQsFmWaptzu9351zWQysixL06ZNG+GeAgAAYDxxmX3fwOs4jm778UV66YG7dP41t6h1+5lV67ffZU+53B698dTD2u3IEyVJG99aoa71azRjj337Pb67n+MDAAAAg8VxHBUKhXJot/e09KdyeT6fr9mPd//FMiYHpT6K4fQ3jm6wkSRHVj7XZzPG0ACAiYagLwAAGFPy+XxNeLcy0NvT01PVPhqNlkO7M2bMqArxxmIxeTyeEToTAEA9Ho+nXLH34IMPlmVZam1t1ebNmxUKhfTkk0/qhhtuGOluAgAAYBwJu02ZUsNHD9968de0fMnNOuvS38gXDCu5aYMkyR+OyuMPyB+Jat+TP6o7L/m2AtEW+UMR3faTr2vGHvv1G/Q1JYXc5qCeDwAAACYOx3GUzWargrr1wruVr4vFYs1+fD6fgsGgQqGQgsGg2tvby69L08rX96/P6/nObMMxtNT/OHrzmrf0/L23aO4BRyjUMknd776jh264TG6fXzu//6iG+2UMDQCYiAynsqQdAADACCpdjKgX5C3NZzKZcnvTNBWNRquq8JZCvPF4XNFoVC6XawTPCACwNd555x0tXrxYCxcu1Pnnn69Vq1Zp1apV6ujo0Pz587XjjjuOdBcBAAAwjizblNXdb/c0XP/1vdvrLj/tO5dpnw98WJJUyGV118+/reX3/EXFfF47HXiETvr6jxVpm9Lv8RdND2uvNv/WdR4AAADjim3bDQO7qVRKmUymZnm92E/vYG7v+d7TgX6f1t8YWup/HJ3YuF43f+8Leufl55VJdCk8qV2z9j5QR55/odpnzelz34yhAQATDUFfAAAwbBzHUSqVahji7erqqnr8j9vtrqq+WzmNx+MKh8MyTe7YBYDxaNmyZTrvvPN01VVXad99q6ug2bbNz38AAAAMmvXpom58tWvEjn/OznF1BHkAIwAAwHhULBb7rbBbuT6bzdbswzTNulV16wV2g8GgAoHAkF8/ZQwNAMDw4lMPAAAMGtu21dPTUxXi7T2tfByQ1+sth3dnzpypPfbYo6o6bygUkmEYI3hGAICRstdee+nrX/+6Pvaxj+mpp55SNBotryPkCwAAgMHUHnDJ7zKUtYa/LorfZag9wNOIAAAAxgLHcZTP5xtW2y0FdyvnKwvclHg8nqpwbmtrq6ZNm9YwvOvz+Ubd92WMoQEAGF4EfQEAQNMsy1IikWhYjTeRSMi27XL7QCBQDu3OmTOnKsQbj8fl9/tH3YUJAMDoceqpp2r77bevCvkCAAAAg81lGFrQ5teTGzIazpiCIWlBm18uro0AAACMCMdxlMlkmgrslqaWZdXsx+/3VwVzJ0+e3LDabigUksfjGYGzHVyMoQEAGF4EfQEAQFmhUKhbhbc0TSQSVe3D4XA5tDt16tSqEG88HpfX6x2hMwEAjBcHHHBA1XzpQrrLRcUGAAAADJ692vx6YkNmWI/p/N9xAQAAMDgsy+ozpFsvyOs41TFVwzAUCASqQrqtra11A7ul1xP1WiVjaAAAhg9BXwAAJpBcLlcV3u0d5E2lUuW2hmEoEokoHo+rpaVFs2bNqgryxmIxud0MJQAAw8dxHHV1denmm2/WmWeeSaVfAAAADJqY16U9J/n0fGdueCqSObacNa/qxbSpAw44YMKGQwAAAPpSKBSaCuyWXmez2Zp9uFyuqmBuJBLRlClTaqrtlqaBQICnUTZpuMfQhqQ9JvkU8zJ2BgBMPIbT+/YkAAAwJpUeL9SoGm9XV1fVBQ7TNKtCu72r8UYiEb5kAgCMOslkUtdee61CoZDOOeccqscDAABg0OQsW9e8tEWpojOkQQVDUtBlaId3ntGzT/1dra2tWrRokebMmTOERwUAABhZjuMol8s1FdgtTQuFQs1+PB5PTTi30etQKCSv10twdwgN5xg65DZ0/q4t8rnMITwSAACjE0FfAADGCMdx1NPTU1ONt3K+8oKH2+0uh3ZjsVhViDcWiykSiXBhAwAwJq1fv17XX3+9dtxxR51++ul8ngEAAGDQrEzk9Yc3EkN+nDN2jGqHqFcbNmzQkiVLtGrVKu2888469thj1dLSMuTHBwAA2FalAjS9w7mVwd3e85Zl1ezH7/dXBXMDgUDDarvBYFAej2cEzhZ9Ge4xNAAAExFBXwAARgnbtpVMJqtCvL2nlRdAfD5fw2q8sVhMwWCQ4BMAYNx67bXX9Pvf/14HHnigjj766JHuDgAAAMaRpRszum9Nasj2f8y0kPZuD5TnHcfRSy+9pHvvvVepVEoHHXSQ3v/+9/P0CgAAMKwsy+q3wm7l60wmo95xE8Mw+q2wW7ksEAjwdMlxYrjH0AAATDQEfQEAGCbFYlGJRKJuiLerq0uJRKLqgkgwGGxYjTcej8vv94/g2QAAMPKefPJJ3XPPPTrhhBO0zz77jHR3AAAAMI6UggqGNCiPIC7tp6+AQj6f16OPPqrHH39coVBIxxxzjHbddVdu5AYAAFulUCg0rLZbr+puLper2YfL5aob0q0X3g2FQvL7/YxdJrCRGEMDADBREPQFAGCQFAqFPqvxJpPJqvaRSKSmGm/llKotAAD0zXEc3XXXXXr22Wf10Y9+VLNnzx7pLgEAAGAcWZnI685VSaWKzjYFFQxJIbehxTMjTT1qeMuWLbrnnnv06quvatasWVq0aJGmTJmyDT0AAABjneM4yuVyfVbY7R3kLRaLNfvxer11K+02qrrr9XoJ7mJARmoMDQDAeEfQFwCAJmWz2ZoqvN3d3eX5dDpdbmsYhqLRaE0V3tI0Go3K7XaP4NkAADA+2Lat//7v/9aaNWt07rnnqr29faS7BAAAgHEka9l6YG1KyztzA65MVmq/5ySfFm4fks9lDujYK1as0N13363NmzfrM5/5jNrb2wnaAAAwTti2rUwm03S13XQ6Ldu2a/YTCAQaBnbrhXf5bgrDYSTH0AAAjFcEfQEA0Ht3QqfT6ZoQb+W08pFFLperYTXeeDyuSCQi0+QXTwAAhkM2m9X111+vYrGo8847T8FgcKS7BAAAgHGmO29p2aasntuUVdZ672sVU1Jl3KZy3u8ytKDNr73a/Ip5XVt9XMuy9Nprr2mXXXapu9627fI1qNdff12///3vFQgEdOGFF271MQEAwMAVi8W6VXXrBXZTqZQymUzNPkzTrBvWbVRtNxgM8l0URrWRGkMDADAeEfQFAEwIjuMomUzWhHcrp4VCodze4/FUVeOtDPHGYjGFw2EqqAAAMIp0dXXp2muvVWtrq84++2yqkwAAAGBIWI6jjRlL69NFrU8XlSraKtqO3KahkNtUR9CtjqBb7QGXXIN47chxnLrXonp6evTaa6/pJz/5iWKxmP7yl79owYIF+t3vfqe2trZBOz4AABOJ4zgqFApVQd164d3K15XFYkrcbnfDkG69136/n++eMC6N1BgaAIDxhKAvAGBcsG1biUSiYTXeRCIhy7LK7f1+f8MQbzweVyAQ4GIKAABjzNtvv61f//rX2nXXXXXKKafwWQ4AAIBx7eWXX9ZPfvITTZs2TXvttZdaW1v1s5/9TF/84hd11FFHadmyZXriiSd0wgknaPr06SPdXQAARozjOMpms3UDu6Xqur2XF4vFmv34fL6mqu2Wph6Ph+tTAAAAGBQEfQEAY0KxWGxYjberq0vJZFKVH2mhUKgc2q0X5PX5fCN4NgAAYKi8+OKLuvnmm3X44YfrsMMOq1n/+uuva8WKFTruuONGoHcAAADA4Ein0/riF7+oP//5z+rs7JQknXnmmZo1a5Yuvvhi/fKXv9QNN9ygfffdV3//+991wgkn6Hvf+94I9xoAgMFh23bdqrqNXqfTadm2XbOfQCDQdLXdYDDIE6QAAAAwYhiJAgBGhXw+XxPerQz09vT0VLWPRqPl0O6MGTOqQryxWEwej2eEzgQAAIyk3XbbTZs3b9YDDzyg1tZW7b777lXrE4mEnn76aS1cuJAbfwAAADBmBYNBXXbZZZKk+fPna/78+cpkMvr0pz8tSdq0aZNOOeUUfeMb31Amk9Epp5yiBx98UIcffvgI9hoAgPqKxWLDaruVYd3SfCaTqdmHaZpVwdxwOKz29vaG1XYDgYBM0xyBswUAAAAGjqAvAGDIlR6JVC/IW5qvvChjmqai0aji8bja29s1Z86cqqq80WhULpdrBM8IAACMZocccog6Ozt16623Kh6PVz2meObMmXIcR6tXr9bcuXNHsJcAAADA1rNtWz6fT1dffbUefPBBnXbaafJ4PDJNUw8//LAKhYL+53/+R0ceeaT2339/Pf300+ru7pb03rU6HiMOABgqjuMon883VW23NM3n8zX78Xg8VVV14/G4pk6d2rACr8/n4/MNAAAA45bhVD7nHACAreA4jlKpVMMQb1dXV9VFGrfbXVV9t3Iaj8cVDoe5ixoAAGyTYrGom266SZs2bdJ5552nlpYWSe+NWy655BLttddeOuqoo0a4lwAAAMDWs21bpmnqy1/+st5991198IMf1P3336877rhDv/jFL7R69WpddNFFWrx4sUKhkK677jquuQEABqxUzKXZarupVEqWZdXsx+fz1Q3p1qu2GwqFeHIjAAAAUIGgLwCgX7Ztq6enpyrE23taLBbL7b1eb8MQbywWUygU4q5qAAAw5NLptK699lq5XC6de+658vv9kqQ///nP6u7u1rnnnjvCPQQAAAC23W9+8xu1tLToxBNP1KGHHqojjzxS//Ef/yFJuv322/XQQw/pJz/5CSFfAICk977zaRTYbfS6d6TAMAwFAoGmAruldTypEQAAANh67pHuAABg5FmWpUQi0bAabyKRkG3b5faBQKAc2p0zZ05ViDcej8vv9xPkBQAAIy4YDOojH/mIrrvuOv3pT3/SRz7yEblcLs2cOVN333238vm8vF7vSHcTAAAA2CZnn312+drdMcccUxXG+vvf/66NGzc2FfLdsGGDli5dqkWLFhEKBoAxpFAo1K2q26jqbjabrdmHaZpV4dxwOKzJkydXBXUr1/v9fj4rAAAAgGFE0BcAJoBCoVC3Cm9pmkgkqtqHw+FyaHfq1Kk1VXkJxAAAgLGira1Np59+un77299qyZIlWrx4sWbOnCnbtrVmzRrNnj17pLsIAAAAbLNS2Oqkk07S5z73OT333HPad9999Ze//EUXXXSRbNvuN5Bl27aefvppxeNxHXTQQcPRbQBAL47jKJ/PNxXYLU0LhULNfjweT1VIt7W1VdOmTWtYbdfn81HABQAAABjFCPoC45TlONqYsbQ+XdT6dFE9RVuW7chlGgq7TXUE3eoIutUecMnFL+5jXi6Xqwrv9g7yplKpclvDMBSJRBSPx9XS0qJZs2ZVBXljsZjcbj4eAADA2PToo48qHA5rt912K49pdthhBy1evFi33367Jk2apAMOOECBQEBvvfVWTdCXcTQAAADGst13310PPfSQrrzySnV2duryyy/XYYcdVg752ratZDKpSCRSE/zdbrvttP/+++uBBx7QvHnz1Nra2vRxGUcDQH2O4yiTyVQFdeuFdytfW5ZVsx+/318Vzp0yZUrDarvBYFAej2cEzhYAAADAUDGcymc4ARjzuvOWlm3K6rlNWWWt9/57m5LsijaV836XoQVtfu3V5lfM6xrm3qIZpYtAjarxdnV1VT1myTTNqtBu72q8kUhELhd/1wAAYHy65ZZbtHz5cgWDQe29997ad999FYvFJEn33XefHn/8cZ155platmyZ0um0PvGJT0hiHA0AAICJwbZtXXnllfL5fDruuOM0ffr0qvX5fF7/9V//pXg8rrPPPrvf6o6MowFMNJZlNQzsplKpqlBvab731/GGYdQEdBsFdkOhkAKBAN/rAAAAABMcQV9gnMhath5Ym9LyzpwMSQP5j11qv+cknxZuH5LP1fcj3DC4HMdRT09PTTXeyvnKxy653e5yaDcWi1WFeGOxmCKRCI9XAgAAE1pnZ6eefvppLVu2TPl8XvPmzdP73vc+zZgxQ3/605/0xhtvaN9999VTTz2lL37la3p4Q5ZxNAAAACaMt99+W0uWLNG6deu0xx576KijjlIkEimvf/PNN3XTTTfphBNO0D777FN3H1yPBjBeFAqFfivsVr6uLLxS4nK56oZ0G70OBAJ8jwMAAABgQAj6AuPAykRed6xKKl10BnRBtTdDUshtaPHMiHaIegerexNe6XF4lSHe3tPKxzD5fL6G1XhjsZiCwSAXgAAAAJqQz+e1fPlyPfXUU9q0aZMmT56sffbZR88995wSiYQyoUmKHnSCco7JOBoAAAATim3bWrZsmf72t7+pWCzq0EMP1QEHHFCuGHnrrbfq5Zdf1mc/+1lFo9GqbbkeDWC0chxHuVyuYbXdUli3cr6y0EqJ1+utW1W3XrXdYDAor9fL9zYAAAAAhhRBX2CMW7oxo/vWpAZcNaGR0n6OnhbSPu2BQdjj+FcsFpVIJOqGeLu6upRIJKoeyxQMBhtW443H4/L7/SN4NgAAAOOP4zhauXKlnnrqKb366qvy+Xxypu8iY9eDJceRBuHLOMbRAAAAGIsymYwefPBBPf3002ptbdWiRYs0Z84cZTIZ/fKXv9TUqVN15plnlgNsXI8GMJxs21Ymk2mq2m5patt2zX4CgUCfFXZ7L3O73SNwtgAAAADQGEFfYAwrXVQdKlxcfU+hUOizGm8ymaxqH4lEaqrxVk69XqpTAAAAjJQtW7borhdW6u3IjCE7BuNoAAAAjDUbNmzQ3Xffrbfeeks777yzjj32WK1fv15//OMfdeqpp2q33XbjejSAbWZZVp8h3XqVd3szDKNhSLfRctM0R+BsAQAAAGDwEPQFxqiVibz+8EZiyI9zxo7Rcf/YtGw2W1OFt7u7uzxfeSHJMAxFo9GaKrylaTQa5U5vAACAUYxxNAAAAFCf4zh66aWXdO+99yqVSumggw7Sxo0btXr1ap1wzmd065rckPeBcTQwtuTz+aYCu6XXuVztzxG3291UYLc09fv95SrjAAAAADBREPQFxqCsZeual7YoXXQG5fFojRiSQm5D5+/aIp+r8d3O7777rpYsWaJ58+Zp//33H8IeDZzjOEqn0zUh3spp5YUll8vVsBpvPB5XJBLhzm8AAIAxarSNowEAAICRkkqlVCgUFAgE5PV6q0Jz+Xxejz32mB577DEFAgHlLFueIz4i2+1jHA2MY47jKJvNNl1tN5VKqVgs1uzH6/XWrapb73UoFJLH4yG4CwAAAAD9oOwkMAY9sDY15OEESXIkpYqO7l+b0nEzIjXrLcvSY489poceekiTJk3S7Nmzh7hHdfroOEomkzXh3cppoVAot/d4POXQ7vTp07XbbrtVVecNh8NcUAIAABinRss4GgAAABhpV1xxhbLZrKT3nmIWCATk9/sVCATKf+bPn6+1a9cqu/3uKpoeDfVVU8bRwOCybVuZTKYmsFsZ1u09b9t2zX4CgUBVSHe77bZrWG03GAzy1EMAAAAAGAJU9AXGmK6cpate2jLsx71gfotiXld5fsOGDbrlllu0YcMGHXzwwTrssMOG5OKNbdtKJBINq/EmEglZllVu7/f7y6Hdykq8pdeBQIAgLwAAwAQ0WsbRAAAAwGiwZcsWbd68WZlMRplMRtlstuZ1NptV2jGV2/+UYb+myjgaqFUsFhtW2K23LJPJ1OzDNM0+K+z2Du8GAgGecggAAAAAowC3VAJjzPLOrAxpyKuQVTIkLduU1WFTQ7IsS4888ogeeeQRtbW16bzzztPUqVO3et/FYrFhNd6uri4lk0lV3o8QCoXKod2Ojo6aIK/P5xuEMwYAAMB4M9LjaAAAAGA0aWlpUUtLS7/tHnonpSc3ZBhHA4PMcRwVCoWmq+2mUinl8/ma/bjd7qpgbjwe19SpU+tW2w2FQvL5fBRDAQAAAIAxiKAvMIZYjqPnNmX7vKi6cunjevg3V2rty8uV3LRBH7vk15p/xPFVbd598zXdfdn39Oazj8suWpo8eyd97Kc3KL7dtLr7dCQ9tymruUZSt916i9599129//3v16GHHtpvFd98Pl8T3q0M9Pb09FS1j0aj5dDujBkzqkK8sVhMHo+nmbcKAAAAKBuMcXQu3aO7L/u+XnpwidLdW9Q6dYYO+vD52v+0cxruszSOfv92Qbn4IhUAAABjTH/j6Aev/4VevP9ObXzrdXl8Ac3ccz8t+tdvq33WnHKbp27+jZbdfbPeeeV55VI9+vZDKxSIxPo8LuPoiatQKOiBBx7QpEmTtGDBApmmqZ/85Cd69NFHtW7dOh111FG68MILNWnSpJHuag3HcZTNZvussNv7dbFYrNmPz+erCue2t7fXBHYrX3u93hE4WwAAAADAcCPoC4whGzOWslbftRPy2bS222m+9j3pI/rthefUrO98e6WuOvcE7XfSR3XUZ74qXyiiDW++Knc/lXCzlqPr/vgXtfsMnX/++dpuu+3kOI4ymUzdIG9pvvLRUKZpKhqNKh6Pq729XXPmzCmHeOPxuKLRqFwuHscGAACAwTUY4+g7L/m23nj6EZ3xg/9Sy9Tpev2JB3XrxV9VpL1Dux62qOF+s5ajjRlLHUF+/QYAAMDY0t84+s2lj+vA0z+pafMXyLaKuueKH+r6z35IX7z5UXkD71XjzWfT2umghdrpoIW65/IfNH1sxtETi+M4MgxD9957r0488USde+65uuaaa/Sb3/xGr7zyis4//3ztscceOv/88/WrX/1KX//614e8T7Zt162q21fV3cqnE5b0DubG4/GG1XaDwSDfkQAAAAAA6uIKCTCGrE/X3t3d284HH6WdDz6q4fp7r/yRdj74KB33hf8oL5s0fYd+9+s4jtpmz9M0I6UHH3ywHOqtfFSU2+0uB3e322477bLLLlVB3nA4LNM0+z0WAAAAMJgGYxy9+vmntfeJZ2r2vgdLkt536tn6+82/1poXn+0z6Fs6PgEFAAAAjDX9jaM/eeUfq+ZP++7l+uGRu2jtS8u1wz4HSZLe/9HPSJLefOaxrTo+4+iJwTAMbdmyRQ899JAOOeQQTZ48WZL00EMPqVgs6sQTT5QkxePxquIiA1EsFpuutptKpZTNZmv2YZpmVVXdcDisyZMn1w3sBoNBBQIBvhMBAAAAAAwKrpAAY8j6dFGmJHsrt7dtW688ep8O/fjndf1nP6R3Xn1RLdvP0OGf+LeqxxLX5djqsl3SO28rFotp5syZ2mOPPcoh3lgsplAoJINHqQEAAGCU2dZxtCTN2GM/vfzQ3dr3pI8o2t6hN595TJtWv6ETvvz9Prcz1VzQGAAAABhtBjqOziYTkqRArGWbj804euIoVfO99NJLNXv2bO200066//771d3dra9+9au65JJLtPfee6uzs1O77767zj333Lr7+cc//qGurq6G1XYri5aUeDyeqnBua2urpk2bVlOFtzT1+Xx8BwIAAAAAGBEEfYExpKdob1M4IbV5o/LplB664TId89mva9G/fVuvPX6/fnfhOTrvV3/R7H0ObryxYcr2+BUMBjVv3jztuuuu8vv929AbAAAAYHhs6zhakj7wtf+n//3Bl3Txoj1kut0yDFMf/PeflyuVNWJLShW39egAAADA8BvIONq2bd3xs29p5l7vU8ecXbb52IyjJw7DMLR06VIlk0mdddZZevzxxyVJwWBQ2223nfx+v8455xwtWrRIV111lb785S/rj3/8Y02l3CeffFKbNm2qCub2VW03FArJ4/GMxCkDAAAAADBgBH2BMcSynW3a3nHe237Xwxfp/R9775FpU3feXauXP62///nXfQZ9DcOQ2+vTunXr9NZbb+n2229XJBJRa2urWltb5fP55PF45PF45Ha7y6/r/em93uVybdN5AQAAAH3Z1nG0JD3++2v19gtLdfalv1V8u2la+ewTuvXiryna3qE5+x/W57bFQTg+AAAAMNwGMo6+7eKvacMbr+gz198xaMdnHD12WZbVsKru+9///pr29957rzZs2CDbtvXoo4/queee0y9/+Utt2rRJK1eu1GWXXSZJOuOMM/TjH/9YTzzxhA4+uPr7jHPOOYfvGgAAAAAA4xZBX2AMcZnb9kioYLxVptutybN3qlrevsNOWrXsyb43dhxFQkFN23VXZTIZbd68WV1dXVq1apVWr14tn89XvohWKBRUKBTKweL+GIbRZzC4Xjh4oGHiUqCYx2oBAABMPNs6ji5kM7r3ih/qY5fcqHmHHCNJ2m6n+Vr32ot6+DdX9h30dRxt3rRRT256WdFoVLFYTLFYTKFQiLEpAAAARoVisahEIqFEIqHu7m51d3crkUhofXS2FG6X+hm33nrx1/TKI/fqU9feptiUqYPWL/c2juMxeAqFQlVgt/e0d6A3m83W7MPlcikUCunggw+u+l2oUCho48aNeuaZZ3T00UfL5XKps7NT69evVzwe19KlS6vavvbaa5o7d27d/QMAAAAAMF4R9AXGkLDblClt9WOH3R6vpu26QBvfeqNq+abVbyi+3fQ+tzUNQ7O3306LDqy+gLZx40a98MILeuGFF9TV1aUZM2boE5/4hBzHkWVZKhaL5eBvoz+N2lQuT6fTDdvbdvPvyFCHiUvLCW0AAACMHts6jraKRVnFgoxej4Y1TVf/N7c5jlJbNulvz/5NxWKxYluzKvgbjUZr5v1+P+NKAAAAbBPbttXT01MO79abplKpqm0CgYBisZhcoWmSHEn1x6SO4+i2H1+klx64S+dfc4tat585aP02JYXcZr/tMHCO4yiXy9UEdeu9Lk0LhULNfjwej0KhkILBoEKhkFpbWzVt2rTystLy0tTr9db9/cbj8ejnP/+5fv7zn0uSenp6dOSRR+pTn/qUpk2bpjfffFOHHXaYPB6PEomEvvzlL2vy5MlD/j4BAAAAADCaEPQFxpCOoFvLOvtuk0v3qPPtleX5LWtX651XX1Aw2qL4dtN06Nn/ov+56HztsPeBmr3vwXrt8fv1ysP36Pxf3dLnfu3/O35v7e3tWrhwoY444gitWbOmfKe+YRhyu91yu93y+/0DPdUBaSZQ3Nf6ynU9PT0N21uW1XSf+goBD0aYuLTONLnYDQAA0J/BGEfvsM9BWvKL78rjCyi+3TStXPq4nr3zj1r8pe/1vWPT1FH77aU9F+2vTCZTN1hRelJGMpmsuonN4/H0GQSOxWLyeDzb8tYAAABgDHMcp2aM2Xu82XuM6fV6y2PJKVOmaKeddqoZZ5bGmMs2ZXX32z0Nj3/rxV/T8iU366xLfyNfMKzkpg2SJH84Ko8/IElKbtqgZOe76nz7TUnS+tdfki8UVrxjmoKxlob7bnQ9GrVK/w6arbabTqfrXuv2+/1VwdwpU6ZUzVdOg8HgoP8uYtu2TNNUsVjU4sWLVSgU5PF49OMf/1jPPfecWltbNXnyZHV0dAzqcQEAAAAAGAsMp9/yQwBGi/Xpom58tavPNm8+85iu+dTJNcv3PvEMfei7V0iSnrnld3rwhv9U97vr1D5zRx31ma9p18OP6/f45+wcn9AXV23bbjow3Mz6vioZN8vlcjVdZXhrwsSl9Tz2DAAAjGWDMY5Obtqgey7/gV5/8kGlE11q2W6a9vvg2Xr/Rz/Tb9XdZsfRpWprvUMalfONqq2Vwhm9p5FIhLEcAADAGJXL5RpW4S1Nez81oq+xYSwWk8/na/qpEf2No7++d3vd5ad95zLt84EPS5L+etVP9Ldf/bTPNo1M1OvRlmX1W2G38nUmk6l50ohhGDVVdRsFdkOhkAKBAL83AAAAAAAwihH0BcYQy3F0+QublbWG/7+t32Xo87u3ysWjg4ec4zh9hoAHI0xc+tMs0zS3KTTcbOVil8vF46kBAMCgG0/j6GKxqGQyWbdaW2laespGSSQS6bMqcCgUYgwGAAAwzLZ2XFcvvDtU47rxNI4eSfl8vmFgt17V3VwuV7MPl8tVN6RbL7wbCoXk9/sZ4wMAAAAAMI5MvFuhgTHMZRha0ObXkxsyGs5Lq4akBW3+cXFRdSwwDKMcgB1KjuPIsqxBCxOn0+mG2zR7T0np3JsNBm9NmLj0mgvdAABMHONpHO12u9XS0qKWlsaPOe6r8tuGDRtqKr+5XK6qEPC2Vn4DAACY6Lb1SQ0zZsyoCfGOxJMaxtM4erA4jqNcLtdnhd3eQd56T3Dzer1Vgd22trY+q+56vV7G4wAAAAAATGAEfYExZq82v57YkBnWYzr/d1yML4ZhyO12y+12KxAIDOmxegeKBxomrlyWzWYbbmNZVtN9GuowcekPF+ABABgdJtI42ufzqb29Xe3t9R+l7DiOMplM3epxW7Zs0apVq5RIJKpu1vJ6vX0GgaPR6JDfqAYAADAalMZSvUO8ldNkMinbtsvbeDye8rhpypQpmjt3bk2Qd7SOpcb7ONq2bWUymaar7abT6aq/25JAIFAVzt1uu+2qgrq9w7tuN1/PAQAAAACA5hlOs2UWAYwaS1Yn9XxnbliqKBiS9pjk03EzIsNwNGDb2LY9KGHi/rapV4WjEZfL1XQwuL8gcV9tTNMcwncWAIDxgXF080pV6CoDK70r0fWuQhcMBhuGgaPR6IhUoQMAABiofD7f5xio99MRTNOsuQGq97zf7x/TN4OPpXF0sVisW1W3XmA3lUopk6kNMZumWQ7o9q6sW6/abjAY5NocAAAAAAAYUgR9gTEoZ9m65qUtShWdIb24akgKuQ2dv2uLfC4uVAIljuM0FQzuq02zy5tlmuaQh4lLgeKx/MUUAGBiYxw9uIrFYk3opfd8LpcrtzcMQ+FwuM8QTCgUYqwBAACGjGVZNdV3e49hstls1Ta9xy+9p+FweNyPX0ZqHF26BlcZ1K0X3q18XTn+LHG73X2GdHsvH+vBbAAAAAAAMP4Q9AXGqJWJvP7wRmLIj3PGjlHtEPUO+XEA1HIcR5ZlbXWYeCCVi5sdDhiG0VQwuK+wcDNhY5fLxRcqAIAhwTh6eOVyubqPs66cVlbEc7lcVcGZ3kHgWCwmn8/HOAEAANRwHKf8RIJG446enp6qbQKBQMMnEsRiMZ5IUGG4xtFtbz0te+Pb5fBuvSdr+Xy+pgK7panH42H8CAAAAAAAxjSCvsAYtnRjRvetSfXfcCsdMy2kvdsDQ7Z/AKOD4ziybXurw8T11jdqb9t20/1qJhw80OX12vBFDwBMPIyjRw/HcZROp/usCpxMJqtuSvJ6vQ0r6pWmHo9nBM8KAAAMNsdxlM1m+wzxJhKJqusOHo+nz5uHotGovF5uzBqIoR5HR95+Xu3ZTTXB3d6v3W73kPUBAAAAAABgNCLoC4xxpYurhjQoj00r7YdwAoChYFlWwxDwQMPEfW1jWVbTfSoFfvsLB/deP5AwscfjkWmO30e3A8BYxDh67LBtu9/qfKlUdeAkGAz2GeyJRCJ8NgMAMIrk8/maG396TwuFQrm9aZpVn/P1Pu/9fj839w5QsVhUOp0uV9PtPU2n09oUnKzktN0lx5aMbR9PMY4GAAAAAADoH0FfYBxYmcjrzlVJpYrONoUUDEkht6HFMyM8ZhjAmGbb9oCCwVsTJi6ta5bL5Rr0MHG99TxSFACaxzh6/CgWizWBoN7VgXO5XLm9YRiKRCJ9Pqo7GAwSDgIAYBBYllVTsb/3fDabrdomHA73WcE/HA7zOd0Px3GUz+drgrr1Xpem+Xy+Zj8ej6emqm4xPkWrozuoYLilbfh7YBwNAAAAAADQHIK+wDiRtWw9sDal5Z25AVclK7Xfc5JPC7cPyeeishUANMNxnJog8GCHiUt/mmUYxpCHiUuBYr5UBTAeMI6eOHK5XN0gcOW08qkALperpjpg73m/3z+CZwQAwMhzHKdceb9eFd7u7m719PRUbeP3+/v8fI1Go9zEWofjOMpms31W2+29vN4Tj3w+XzmwW5r2DvJWTj0eT93+MI4GAAAAAAAYPgR9gXGmO29p2aasntuUVdZ677+3KcmuaFM573cZWtDm115tfsW8XEAHgNHIcRxZljWgYPDWBJDz+bwGMjQc6jBxaR2BYgDDgXE0HMdROp3usypwMpms+qz0er01jwnvPXW73SN4Vv/0yiuv6J577tGHP/xhTZ48eaS7AwDoQ6FQ0IYNG8qh15FSCpb29dmYSCRk2/8cMXk8nj4r5kejUXm9VG6V3nsaUaPAbqPXvX9nNwxDgUCgJrRbL8hbej3YIWrG0QAAAAAAAEOPoC8wTlmOo40ZS+vTRa1PF5Uq2irajtymoZDbVEfQrY6gW+0Bl1wEqAAA/6cUKN6aMHF/21Wuq1dVqJF6QeBmlw0kbGyaVBDaFitWrNDHPvYxHXfccfrGN74hj8ejn/3sZ3r++edlGIYWLVqkD33oQ6Mm8AY0wjgafbFtW8lkss9Hj6fT6aptgsFgn2GnSCQy5J9BnZ2dOvnkk/XUU0/prrvu0pFHHqlbb71V3//+9+X1etXS0qJvfetbOvDAA4e0HwCAauvWrdNvfvMbnXTSSZo3b55WrFihT3ziE0qn07JtWwceeKB+/OMfKxKJDMnx8/l8TfXd3p9tlU+YMU2zqgJvvWkgEJiwN2sWCoW6VXUbVd3NZrM1+zBNc0DVdv1+/6j5XZZxNAAAAAAAwNDhW3ZgnHIZRvniKQAAzXK5XMPyiFTbtrc6TNx7eTqd7rOScbNcLldT4eCBLu+9frw+gvbnP/+53nrrLUnvVfH63ve+p3feeUdHHnmkTNPU1VdfrdbWVh177LEj21GgH4yj0RfTNMsh3enTp9dtUywWa8JSpenKlSvV3d2tfD5fbm8YhiKRSMPHl8diMQWDwa0OTa1atUqXXnqp9t13X3V0dGj77bfXyy+/rK9//eu64YYbNHv2bP3pT3/S97//fd12223ckAEAw+jnP/+5LrnkEk2ePFnz5s3TRRddpLPPPlvnn3++JCkej+u0007TwoULB7xvy7KUTCbrfh6VpplMpmqbcDhc/uzZcccda25QCYVCoyZUOtQcx1E+n28qsFuaVoaiSzweT1Vgt7W1VdOmTWtYddfn843ZoDTjaAAAAAAAgKHDFRcAAAAMO9M05fV6h/yRrY7j9BsobnZ9NptVMpls2L5ZpmludRXiZsPEpUDxUH9BbNu2TNPUpz/9aS1cuFBdXV3y+/2SpL/97W869thj9fGPf1yS9MMf/rAcBAaA8cztdqu1tVWtra0N22Sz2YaVE9955x0lEomq6vdut7vPCoqTJk2qeyPJunXrdNVVV2n69Ok6+OCD9e///u8KhULauHGjWltbFQ6H1d7erunTp+sf//jHuL0ZBQBGo+XLlyuRSOioo45SLpeTJK1evVqdnZ3q6enRxo0byzdp1JNKpdTV1VU3xNvd3a2enp6q9n6/v/zZMW3atJqbSiKRyLi+2cNxHGUymaqgbr3wbuXrek+i8fv9VeHcKVOmVAV1e4d3PR7PCJwtAAAAAAAAxpvxe+UOAAAAE55hGOXg61ByHEeWZW1zmLhQKJSrRjXaxnGcps+9v2BwvfBwo22mTJlSU1HSNE396U9/km3bOvHEE7VkyRIZhqFCoaDLL79cX/nKV/TYY48pl8vp8MMP14knnjhUfwUAMKb4/X75/X5Nnjy57nrHcZROp+tWYezs7NTKlSuVTCbLnwkf/vCHNXfu3JobPK6++mpNmjRJX/7yl3XnnXdqu+22U0tLi6ZPn66jjjpKhx12mLxer3bffXddd911MgxDjuOM2UqCADAWlH7Ofuc739E3v/lN3XTTTVq9erVyuZxuvvlmffazn9Vll12mZDKp008/veHvMkuWLNE//vEPSe/dEFIK7ra3t5er8VYGeYf6JsvhZllWn4Hd3sszmUzN71KGYdQEdFtbW+sGdkOhkAKBADfFAAAAAAAAYEQQ9AUAAAC2USlU63a7FQgEhuw4juPItu1tDhOX/mSz2YbtbduuOvbpp5+uefPmVS3bsmWLrrrqKl133XUKBoPK5/OaMmWKPB6Pnn32Wc2aNUvve9/7tGHDBj399NPlSmWV57NlyxatXbu2qWrGE+UxwQBgGIZCoZBCoZCmTp1at41t2+VHsk+ePLkmnLt69Wrdeeed2rRpk9566y0tW7ZMhUJBb775pu644w5t2rRJjz76qEKhkL70pS9p7dq15WMDAIaOYRi65ZZbtPvuu2vffffVo48+qnXr1snn82nFihWaMWOGrr76ak2dOlUXXHCBfvjDH+oXv/iF4vF4eR+O4+jQQw/VwQcfrFgspkAgMOZ/fhcKhX4r7Fa+zmazNftwuVxV4dxoNKqOjo6qZZWvx8P7BgAAAAAAgImBoC8AAAAwRhiGIZfLJZfLJb/fP6TH6h0o7l3NV5KeeOIJvf7661q4cKFCoZDefvtt3X///Uomk/r+97+vRx55RDvttJMk6dhjj9U999yjT33qU+XArm3bWrlype64446m+uRyuba5MnEz6wkUAxgLTNMsV2usZ8aMGbrjjjv08ssvq7OzU88995y2bNmi+++/X7/4xS90xRVXlG/gmDdvnp555hmdeuqpCofDkt77Gb1q1Sq9++67VVUh630eAADeY1lW+SaMUjX2fffdt2rs7jiO7rzzTgWDQb388st65JFHtHTpUvn9fj3zzDPacccdyzd5LFq0SDfeeKM2btxYFfQ1DKNhVfjRwHEc5XK5utV2G1XdLRQKNfvxer1Vwdy2tjYFAoG61XaDwaC8Xi+fUQAAAAAAABiXCPoCAAAAqGGapnw+n3w+X8M2xx9/vFasWKFkMinTNHXqqafqiCOO0GmnnaZ/+7d/q6qylc1ma750d7lc2nvvvbX77rtvU2Xi0rJsNqtkMtlw/UDOfajDxKVAMUEEAENpypQpmjJliiTppptu0oc//GF97nOf03333ac33nij3O65557TPvvsU/UzyTAMvfXWW3rsscdkWVZ5udvtLj8GvtG0r88OABirHMdRKpWqCvGWXpfmk8lk1TZ+v19z586tCvqmUikZhqGHHnpIb7zxhhzHkcfj0d57761wOFwO9sZiMS1btqy8j5Fk27YymUxT1XZL095PCJGkQCBQVVW3d7Xd3lV33W6+vgAAAAAAAAAkgr4AAAAAtoHX69WkSZMkvRfmnTt3rjo6OnT55Zfri1/8oqZNmybHcRQKhbR48eKaarmGYcjr9crr9Q5pPx3HKQd+tyZMXLk8n88rlUo13MZxnKb6ZBhGU+HgvgLDzYSN3W43gWJgAnMcR4Zh6NRTT9XMmTNlWZYuv/xynXfeefrTn/4kt9utWbNm6eMf/7hCoVB5O8MwdMQRR+jwww9XKpWqG2rr7OzUm2++qZ6enqqffT6fr6oKcCkAXDlPeAvAaFKqQFv5c673NJFINLzxoa2tTbNnz665+aHejQ/hcFi/+tWvyvOrV6/Waaedpr322kvHHXecisWiDj30UAUCAc2cOVPf//73B/18LcsaULXddDpdsw/DMGpCum1tbVVB3d7hXZ6cAQAAAAAAAGwdw2n2W2gAAAAA6MO6desUCoUUjUZVKBT0yCOPqLOzU+l0WgcddNCIVyIbDo7jyLKsrQ4T91e1uPJPvSppjTQTDh7o8nptCBQDY0symdTatWvV0tJSrvy7NUqPqq8XjCtNe4fEQqFQwyBwLBZTOBwmEAZg0BQKhZobFnpP8/l8ub1hGFU/n3pPY7GYAoHANo19LMuSy+XS5s2bddddd+mYY47R5MmTZVmWDMMY0M/AfD7fMLBb73Uul6vZh9vtrgnp9lVt1+/3M/YDAAAAAAAAhglBXwAAAAAYg/oLFA80bNyofWXluv6UAr/NVBre2jCxx+Mh/AeMQaMxZAdgfLBtW8lkss+fL+PxZoNCoaArr7xSqVRKxWKxZr3X660b0q0X3g2FQty0BQAAAAAAAIxiBH0BAAAAAA3Ztt10leGtDROX1jXL5XINepi43nqXyzWE7yyASo7jKJfL9RnUSyQSVTcfuN3uugG9yqnP5xvBs8JgsxxHGzOW1qeLWp8uqqdoy7IduUxDYbepjqBbHUG32gMuuQgsjguO4yiVStXcKFA539PTo8pL3D6fr+ENAqVgr9vtHrZzsG170EPDjuNoy5YtWrZsWcOqu8N5jgAAAAAAAACGFkFfAAAAAMCIcxxnQMHgrQkTl/40yzCMIQ8TlwLFVNAD+lcK/FUGgHuH/pLJZNU2fr+/z6rAkUiEMNwY0J23tGxTVs9tyiprvXcp05RkV7SpnPe7DC1o82uvNr9iXm7aGM2y2Wyf/6d7B/xdLlef4f5YLDbkAf9isah0Oq1UKqV0Ol31ut6ycDisz372s0PaJwAAAAAAAADjG0FfAAAAAMCE4TiOLMtqOhi8NdWMi8Wi8vm8BvLr9mCFiftq43a7CRRj3LMsS8lksmFV4O7ubmUymaptQqFQTbXPyvlwODzo1TjRnKxl64G1KS3vzMmQNJCLmKX2e07yaeH2Iflc/B0Ot0KhUFN9t/f/x3w+X25vGIYikUif/x+DweCgfpY5jqNCoVAT1K0M7PZeXtnnErfbXbeqbml+t912k8fj4XMYAAAAAAAAwFYh6AsAAAAAwBAoBYq3Jkzc33aV6yorHfanXgi42WXNrne73YQiMaoVCoU+K4h2d3dXVf82TbMcPmxUQTQQCBDgG2QrE3ndsSqpdNEZUMC3N0NSyG1o8cyIdoh6B6t7E55t2zWh+t7/l9LpdNU2oVCozwrbgxGqdxxH2Wy26Wq76XRaxWKxZj8+n68mtFsvyFt67fXybwsAAAAAAADA0CHoCwAAAADAGGbb9laHiQdStbheEKoRl8vVdJXhrQkTl9a7XK4hfGcxUZWCgn1VIU0kErJtu7yN2+3uswppLBYjCDgASzdmdN+a1ICr+DZS2s/R00Lapz0wCHsc3xzHUTqd7vPffzKZrKpc7/P5+gzxRqNRud3uAffFtu2Ggd1UKqVMJlOzvN7l7t7B3Ebh3dKUzxcAAAAAAAAAowlBXwAAAAAA0C/HcQYcGO5rfV/tm2Wa5jaFhputXOxyuajWiiqO46inp6duALIUjuzp6anaxu/39xkEjkajhAv1z5DvUCHsq6oge71/u4lEoqpavMvl6rOidTQald/vb+rYxWKx3wq7leuz2WzNPkzT7LfCbuXrQCBApXkAAAAAAAAAYxpBXwAAAAAAMGo4jiPLsoY8TFwoFOpWfazHMIwBBYO3Jkxcek2gePywLEvJZLLPqqiZTKZqm3A43LAaaiwWUzgcHlP/RtasWSPHcTR9+vSm2q9M5PWHNxJD3CvpjB2j2iHad4Vly7L0j3/8Q3PmzFEwGBzyPg2WYrHYbzXqXC5Xbm8YhiKRSJ8h9GAwWPffneM4yufzDavtloK7lfP5fL5mPx6Pp2Fwt95yn883pv4fAAAAAAAAAMC2IugLAAAAAAAmpN6B4v6CwVsTJi4Wi1WVMfsz1GHi0h9CcqNDPp9vWFG1NF9Z5do0zaowZr1QsN/vHzV/v3fffbf+/ve/a++999bRRx/dZ9XXrGXrmpe2KF10NJQXKw1JIbeh83dtkc9Vv8rrunXr9Je//EUbN27UwoULdcghhwxhj5pn27aSyWTDfyvd3d1Kp9NV2wSDwT6r8UYikXK1W8dxlMlkmgrslqb1fr75/f4+K+z2XubxeIbl/QMAAAAAAACAsYqgLwAAAAAAwBCybXvIw8SlabNcLteQh4k9Hk85QIit4ziOstls3SBwZcjTtu3yNh6Pp88gcDQaldfbdzXbwZBKpfToo4/K5/PpiSeekM/n0wknnKCddtqpbvslq5N6vjM3pCHfEkPSHpN8Om5GpGp5sVjUAw88oMcff1ymacowDH3wgx/UrrvuOuR9chxH6XS6YRXe7u5uJZPJqkrkXq+36u+1999zKBRSoVBoGNKtF+TtfanYMAwFAoGmq+0Gg0G5XK4hf78AAAAAAAAAYCIh6AsAAAAAADAOOI4zoGDwQNb1Xt4s0zSHPExcChSPliq2w81xHPX09PRZFbinp6dqG7/fXxUI7T2NRqPbHNZMJBK6/vrrlUgktNtuuymZTOqtt97S7rvvrkWLFikYDJbbduUsXfXSlm063ta4YH6LYt73znP16tX6y1/+oq6uLknS3Llzddxxx6mlpWVQjpXL5fr8O0okElVhfZfLVTe46/P5ylW564V4K19ns9mafrhcrqYCu6VpIBCYsP+3AAAAAAAAAGC0IOgLAAAAAACApjmOI8uytjpM3Gh9vWXNXrYyDGPIw8Qej0cul2tMhh4ty6oKlfYOmXZ3d9eEQsPhcJ9VgcPhcL/vRbFY1FNPPaVHHnlElmVpxx131FtvvSXTNHXcccdp/vz5MgxDD72T0pMbMnWr+T54/S/04v13auNbr8vjC2jmnvtp0b9+W+2z5tS0dRxHN37+TL32+P362CW/1vwjjm/YN0PSAVMCOrDNo3vvvVdLly6VJEUiES1evFg777xzv+9r5Xn2rr7b+z3O5XL/PLZhKBQKKRqNKhgMyu/3y+v1lgPrpSrgvYO79UL2Ho+nblXdeq9DoZC8Xu+Y/DcMAAAAAAAAABMZQV8AAAAAAACMOo7jlAOPgxEm7qu9bdtN96uZYHBfgeFmw8bDHcbM5/NVQdV608qgqWmaNVWAe1cJ9vv9MgxDmUxGDz/8sJ5++mn5fD7FYjGtW7dOO++8sxYdf7xufKugrFX/EuX1/3K69jz2FE2bv0C2VdQ9V/xQG1a8oi/e/Ki8gVBV20d/e5Ve//uDeu2xv/Ub9JUkj2xZf/uNMqmUDMPQwQcfrEMPPVQej6fcxrbtcsXkRu9LKpWq2q/P51MgEJDP55Pb7ZZpmuV/z/l8XrlcTul0WpZl1fTJ7/c3XW03GAxW9RUAAAAAAAAAMD4R9AUAAAAAAMCEZllW01WGtzZMXCgU6gY7GykFfremCvFAtjFNs6n+OI6jTCbTZ1XgZDJZFZr2eDxVwV+v16s1a9Zo7dq1CoVCsixLTqRVOvCUpt+Xni2b9MMjd9GnrrlVO+xzUHn5O6++oF//20f1ud/epx8ds1tTQV9Jyj/0B00JuLX33nvLcZzyeXV1dZXPqZJpmvJ6veXqzrZtl//ee19mNQyjzwq7vcO7gUBALper6fcCAAAAAAAAADAxuEe6AwAAAAAAAMBIcrlccrlc8vl8Q3qcylDotoaJS6HbRu2b5XK5+g0G1wsPu91uxeNxtbe3l5e5XC4Vi0Vls1llMhllMhmlUin19PRow4YNSiQS6unpkaRyFVxzSlxux2m6gnE2mZAkBWIt5WX5TFp/+MZndNJFP1akbUrT5+44jozYZK1f/ZLuuuuu9/rzf9V369VGcLlcdavqNqq6W6poDAAAAAAAAADAtiDoCwAAAAAAAAyDUjVYr9c7pMdxHKcc+O0vSNyoTWlZLpdTT09Pw/bNPizMMAx5PB4Fg0GZpinLspTL5WTG2iXHloz+K9natq07fvYtzdzrfeqYs0t5+Z2X/Ltm7Lmfdj38uAG+UbZcLZMVTbyjlpYWRaPRukHe0muv10twFwAAAAAAAAAw7Aj6AgAAAAAAAONIKVTr8XiG9DiO48iyrKaqEufzeW3YsEFr1qzRxo0bZdv2e/3zhyTDbOp4t138NW144xV95vo7ysteeuhuvfH0I/r8/9w/8BMwTDnegLq6upROp+VyudTW1qZYLFauWuw4jrLZrCzLqqloTOgXAAAAAAAAADAcDKfZshsAAAAAAAAAMADvvvuuli9frhdeeEHJZFKxWEx+v18bNmyQaZryv/9kWfHt+t3PrRd/TS8/dLc+de1tat1+Znn57T/9pp74/TUyzH+GhW3LkmGamrXgAH3qmlv73vGmt5V/4vamKxNXcrvdVeHfyhBwX/PNbFO53DSbC0IDAAAAAAAAAMYngr4AAAAAAAAABkU+n1dXV5eeeuopvfLKK0qlUjIMQy6XS5Zl1QRq3fsdL7NjVsPquI7j6LYfX6SXHrhL519zi9pm7Fi1Prlpg1Jdm6uW/efph+qEr/xQuxx6bFUouN6+7fUrVXx6iSSV+1ipra1N8+fPV3t7uzwej2zb7rd6cbPLmuVyuZoKBvcXKO5vPYFiAAAAAAAAABidCPoCAAAAAAAA6JdlWUokEurq6tK7776rjRs3avPmzUokEkqn08rlcrJtu+H2pmkqFotp6tSpmjx5sqZMmaJX3e16JWGr0Va3/L+vavmSm3XWpb9R+8w55eX+cFQef6DuNl/fu10fu+TXmn/E8X2ejylp57C0p6dH/5+9+46Po77zP/6eme1VsiRb7sbGYJrB9BZ6JwQIEJILLQkkIYG79JBy6ckvIfUgXCCBQMJxCUkIvSf03mxK6OBCsR037a6278z8/vDtZlfalVayul7Px0OP2d35zsx3ZHn11ex7Pt9EIqFkMqkNGzbonXfe0aZNm3qFfg3DUCQSUTweVywWUywWUzwerzyPx+MKh8MNQ8vVXNetGwBuFAzur01f2zTLNM2mqwwPNkzs8XhkWVZT3yMAAAAAAAAAwGae0e4AAAAAAAAAgNHlOI7S6bQSiUQlyLt+/Xp1dXWpu7tb2Wy2YRVa0zTl9/s1ZcoUxWIxtbW1SZJefPFFpdNpzZs3T/vuu6+23nrrXgHP7PqcXkx2N+zX43++UpL0m3NOqHn95G9dpN3e96EtOGPJkTS3NaJ57e291rmuq5UrV+qZZ57R3LlzFY/HK2HgZDKpRCKhNWvWKJlM1nxfLMuqCQH3XMbjcfn9fhmGUQm/DifXdWXb9qACxfXWZzKZhu2brSdRfe6DCQ03W7nY4/EQKAYAAAAAAAAwIVDRFwAAAAAAAJjAXNdVNputBFQ3bdpUU403nU4rn8833N7j8SgYDCoSiailpUXt7e2aNm2a2tvbFY/HFQgEem3zyCOPaO3atdp77701ffr0hvtekynpqle6huI0B+WsbVvUGRp8LYTy9zaRSFSCwD2XyWSyJgTr8/nqBoCrXxvuAPBw6BkoHurKxOX1PSst92UgweBmg8T12hAoBgAAAAAAADCcCPoCAAAAAAAA41ihUKgJl27cuFEbNmxQV1eXUqmUstmsHMdpuL3P51M4HFYsFlNra6umTp2q9vZ2tba2Kh6PD2vo1HZdXfz8RuXskb9EGbAMnb/TFFnDHNJ0HEfd3d01/0Y9qwOn0+mabUKhUJ9VgaPRqEzTHNZ+j1WO42xRZeJmA8iNKljXY1nWsIeJvV7vpP03BwAAAAAAACY7gr4AAAAAAADAGGXbdq8qsZs2bdKGDRuUSCSUyWRULBb73EcgEFA0GlVLS4umTJmiqVOnVkK88XhclmWN0NnUd/+7aT22NquRvEhpSNp7WlAHzgiP4FEbK5VKNcHfetWBq6suG4ahSCRSUw24Z3XgcDhMpdkt4LruoMPEzWxXva5ZpmkOe5i4HCjmZwcAAAAAAAAYOwj6AgAAAAAAAKPAdd26lV43btxYqcaby+X63IdhGAqHw4pGo5oyZYra29s1ZcoUtbS0jJvKr4mCrV/9Y9OIH/fcHVoV941uyHkg8vl8n1WBE4mEbNuutLcsq2FV4PIyEAiM4hlB2vw+UK4gPJgw8UCCxs1+FGAYxpCEiftbb1kWgWIAAAAAAACgCQR9AQAAAAAAgCHmuq5yuVyv6qzliryJRELpdLrf4J1lWYpGo4rH45oyZYra2toqId6WlpYJU7X19lUpPbchPyJVfQ1Ji9v8OnpOdASONnJc11Umk+kzCJxKpWp+5nw+X90AcHWVYK/XO4pnhaHiuq4cxxl0mLjR+nqvOY7TdL+aCQf3FRhutnLxRHifBAAAAAAAwORF0BcAAAAAAAAYoEKh0CtQWX5crsZbKpVqtjFNs1cAzufzVarxtra2qrW1tRLibWlpUSAQmBQBtbzt6DcvblK65A5r2NeQFPYYOmf7VvmtsV3peDg4jlOpIl39c1u9TKfTNduEQqGa4G91EHi8VI3GyLJtu+kqw820abRNdQXr/lQHggcaHB5I5WL+LwAAAAAAAGA4EPQFAAAAAAAAqti2XVMJtXrZ1dWlRCKhfD5fs41lWZWKmdUCgYBaWlo0ZcqUSni3HOSNx+Py+/0jeWpj2vJkQde+kRz245y6IKatYr5hP854VSqVev3s9/x/UP3zbxiGotFor6rA1aHgUCg0KQLrGFmO4zRdZXiwYeLyumZZljXgcPBg2luWNYzfWQAAAAAAAIw1BH0BAAAAAAAwabiuq+7u7l4Bxurn3d3dNdtYliXDMOS6bq8KkpFIpKYSb3U13ng8Lo/HM5KnN+49vS6ru99O999wkI6YFdauHcFh2/9kkc/n+6wKnEgkav6vWJbVqxpwz+eBQGAUzwhozHXdQQWKBxImLn81yzTNYQ8TlwPFhPQBAAAAAABGH0FfAAAAAAAATAiu6yqXy9WtRFodQqyuulsOS0mbK/lWhxMNw1A8Hm8Y4o3FYlRVHAblsK8haSguXJb3Q8h35Liuq0wm0+f/xVQqpepL036/v8+qwLFYjOA8JrTyzSTDHSYuFosayMdCwx0mLr9OoBgAAAAAAKAxgr4AAAAAAAAYF4rFYr9VRKsrIhqGIa/XK9M05bquisViTcjXsqxKcLcc3q1eRiIRmaY5Gqc66S1PFnTrypTSJXeLwr6GpLDH0LFzo9oq5huq7mEIOI6jVCrVKwhcvcxkMjXbhEKhPqsCR6NR/s8CTagOFA80TDyQbXpWwe9LXyHgoQgTl9fxHgEAAAAAAMYjgr4AAAAAAAAYdbZtK5VK1a0AWl5ms9mabXw+X6XCp+M4KhQKNUFen8/XK8Rb/TgUClFBcAzL2Y7ufSetZzfkB1zdt9x+5za/DpkZlt8i2DUeFYvFXhW5e75HFAqFSnvDMBSNRhsGgePx+Kj+v//CF76gRx55RNOmTdOvfvUrdXZ2SpJKpZLS6bTi8fio9AsYLo7jDDpM3N921etKpVLTfbIsq6lwcH+B4f7CxlT8BwAAAAAAQ4mgLwAAAAAAwCRQKpVkGEYleLJp0yZ973vf02uvvSbbtvX//t//0+LFi4fl2K7rKp1O91mNN5VK1Wzj9Xrl8/kqlfeKxaLy+XzNdOPl6p71qvG2tLQoEAgMy/lgZCUKtpatz2np+pxy9uZ/f1OSU9Wm+nnAMrSkPaBd2gOK+whaTXS5XK7XzQE9n1dXFfV4PDUh4J7LeDwuv98/5P10XVd33XWX3nnnHX32s5/VsmXLtNVWWymXy+miiy7SNddcI9M0FYvF9Itf/EJLliypnN/TTz+tqVOnatasWQoGg0PeN2C8c1130GHigVYubpZpmlsUGm62crFlWdy0NATuu+8+XXDBBXriiSd06aWX6uMf/7gkqaurSz/+8Y/1yiuvyDRNffjDH9Zxxx1XGZ/efffdWrFihXw+nw455BDNnj17NE8DAAAAADCBEfQFAAAAAACYANasWaPVq1drm222UTgcliS9/PLLOu+88ypVL88880x97nOfkyR98YtflG3bOu6441QsFvWpT31KTz31lFpaWgZ0XNd1mwraVVfatSxLgUCgMoW2bdvK5/PK5/M1+45EIjVVeHtW5fX5fFv2TcO4Yruu1mVtrcmUtCZTUrrkqOS48piGwh5TnSGPOkMedQQtWYSe8H9c11Umk+n3RoPqy+R+v7/PqsCxWKxSTXygnn32WX30ox/VXXfdpba2Nj344IM67rjjtGHDBlmWpSuuuEJXXnmlHnroIW3YsEE//OEP9fTTTyufz8uyLP3617/WokWLhurbA2AAXNeVbduDDhPXa9Nom2Y/ujMMY0DB4MGEicuPJ3Kg+NVXX1U0GtXJJ5+sD37wg/r0pz8t0zR1+umnq7OzUwcccIDS6bR++ctf6gc/+IEOOOAAXXbZZbrnnns0ZcoUJRIJxWIxfetb36pUawcAAAAAYCgN7mokAAAAAAAAxowvfelLuummm/Tqq6/q/vvv13ve8x5J0n/8x3/ozDPP1Hvf+155vV7FYjEde+yx2nbbbXXJJZfohRde0Pz58yVJM2bM0NVXX61zzz23V4CtVCpp1apVdUNyiUSipsKdYRgKBoPy+/0yTVOWZSkajSqXy1WCvLZtK5PJ1IToelbj3ZIgHSYmyzAqYV6gWYZhKBwOKxwOa8aMGXXbOI6jVCrV670tmUzq3Xff1csvv6xMJlOzTTgcrlsVuL29vW7Iy3VdGYahl156SdFoVKFQSNLmqp877rijVqxYoQULFqhQKGjdunWSpNtuu0033HCDXnvtNUnS//zP/+i8887T3/72NzmOU6koCWBkGIYhj8cjj8czrNW1XdeV4zhDFibO5XIN21bfiNWf/oLB9cLDgwkgj0ageOutt5ZpmgoEApX3Z2lzpd/vfOc7Ou644yRJ5513XuU9+gc/+IF+/vOf6/3vf78kaa+99tIDDzygD3zgAyPefwAAAADAxMdVcQAAAAAAgHHu1FNP1YUXXqh99tlHmzZtqgTAHnzwQX3iE59Qa2ur1q9frz322KNSIa69vV0PP/xwJei7du1aPf744zr99NN7VfW1bVtXX321JCkYDCoQCFSmi25paVGhUFA2m1WhUKhUz8zn8zUB3p7VeGOxGCE1AGOCaZqV96lGisVi3Rsdksmkli9fXqmcvvXWW+vDH/5ww/2sWLFCnZ2d8nq9kqSFCxdqyZIl2n333SVJBx10kG688cZK2zlz5lS2DQaDsm1ba9asoWIkMIEZhiHLsiozIAynwQaK61UmTqfTDdvbtt10nyzLGrYwcSgUks/naxgmzmQyCgQClTHqNddco69+9av63//9X3V3d+vcc8/VgQceKGnz+Lh6dolQKKSnn35axx133LAGwQEAAAAAkxNBXwAAAAAAgHFuyZIlkqRIJKK33nqrEk645ZZb9L3vfU+f+cxntHbtWn35y19We3u7JOk73/mObrvtNl177bWKx+OaN2+eYrGYkslkr6Cv3+9XMBhUNputfHm93oYh3paWFkUikQk9xTOAycXr9aqtrU1tbW1117uuq3w+X7nhoef7X/m1N998syak++1vf1utra3atGmTUqmUTjvtND366KNatGiR9t57by1dulTXXXed9t57b/35z3/WunXrlEgk1NnZWfc4ADAQpmnK7/fL7/cP63Ecx6kbDh5omLhcoTiVSjXcpi/77ruvDjnkEFmWVXd9oVCoqeh7++236z3veY/22GMPvfzyy1q6dGllhorPfOYzuvbaa/XWW28pFApp5cqV2mmnnSo31ZXxXg0AAAAAGAoEfQEAAAAAACaIWbNm6Z133qkECrq6urT99tvrt7/9rWbPnq0TTzxR3/ve9/SLX/xCZ511lpYsWaI33nhDhx9+uP7rv/5LL7/8csMqkYcffrgCgUAlyBsMBgktAMD/MQxDgUCgYfXN8g0YyWRS++67rzwej1zX1cMPP6zvf//7kqRoNKpp06bp9ddfl23bOvzww9XV1aVLL71UN910k9LptPbZZx95PJ7KMQFgPDBNUz6fr6YC7nBwXbcmINwzLNzfjBKFQqHSx3fffVe33HKLbr/9ds2aNUuStPPOO+vJJ5/UzJkz9YUvfEGXX365nnzySS1evFiLFi3SrFmzeoWIN27cqF//+tf9ViEeSGXiel+WZfF7AQAAAAAmMIK+AAAAAAAAY0xfU8QHg0GddNJJdbebM2eO3nzzTRWLRfl8Pt13331qbW3VvHnzJEnve9/7dOuttyqZTCoWi2nnnXfWzjvvLEl69dVXtdVWW8nn88m27V4hhXLVYADAwF166aX6zW9+o6VLl+r111/X0qVL9eMf/1idnZ165ZVXdMQRR8jr9eqhhx7SZz/72cp78CmnnKJTTjlFkvT+979fs2fP1owZM2r23d3drT/84Q+KxWKKxWKVSuvlx5FIpM9gGwBMFIZhVIKvA1H9Hjlt2jRJm2++eP311+U4TmVdIpGouaHj7LPP1tlnny1J+vnPf64vfelLvaojB4NBHXTQQX1WLM5msw3DydXH708zweC+AsPNho0JFAMAAADAyCPoCwAAAAAAMIIcx1EqlaoJ7/ZcZjKZmm3C4bCi0aiCwWClkmO18oft2223nZ555plKJbJQKKQHHnig0u7tt9+WZVmKxWJau3atLr/8cj322GP65z//qb333lvf+MY35Lpuw+mMAQCD87GPfUyHHXaY3n33Xb322mt65ZVXJEkXXXSRPv3pT+vqq69WPp/X8ccfr5NPPlmSdOutt2rjxo3aZptt9Oyzz2rFihW68MILFQwGa/Zt27amTZumZDKpN998U8lkUoVCobLeNE1Fo9FK8LfnMh6PU6UdwKR2wQUX6Nprr9XKlSt1/PHHq6WlRcuWLdO3vvUtnXHGGers7FQul9N73vMe7bPPPpKkv/zlL3rjjTcUiUT0/PPP6+CDD9aBBx7Ya9+hUKiyzWDYtt0r/NtXaLivdd3d3Q3b27bddJ/Kgd/BVCEeyDbcpAIAAAAA/2K4ruuOdicAAAAAAAAmAtd1lU6ne1XhrX7e3d2t6ssxfr+/UnHR7/dXgrylUkmFQqGyv3L41zAMff3rX6/7wffll1+ur3/96zr33HM1a9YsnXjiifrc5z6np556SqZpatasWfqv//ovLVy4UOl0Wvfcc4/y+bwWLFigbbbZRuFweGS+UQCAXlKplHw+X6Ua5G233ab/+Z//0TvvvKPp06frhz/8YaVCe19c11U+n+/zhpJEIlFTJdLj8dQNAVcve1apBICJJJvNKp/PK51OK5PJaOHChcrlcnryySeVTCaVy+V0wAEHqKOjQ5J055136s4771QqldK8efN0wQUXjOub5RzHaTow3Mz6Ru1LpVLTfbIsq99gcL3w8EADyOP53w0AAADA5EHQFwAAAAAAoEm5XK7P0FQymayphmVZViUgFQ6HKx8kO45Tmaa3XN03n8/XbNfS0qJ4PF6zLD+OxWI1lRdt29YHP/hBvfDCC5o7d67a29u111576fzzz1cikVA6nVZnZydVsQAAkv51Y0r177Cev89SqVTNNoFAoM+qwNFotG7VeQAAylzXrRsC7i9IPJAwcfmrWYZhDHuYuPx3INXzAQAAAAwWQV8AAAAAAP6P7bpal7W1JlPSmkxJ3SVHtuPKMg1FPKY6Qx51hjzqCFqy+IBuwikWi72q7/Z8Xj0VumEYikajlaBTIBCQx+ORYRiybVu5XK5Sjberq6umepXP56uEdnuGeFtaWhQOh/kQGAAwqmzbrtyM0uh3YzabrdkmHA5XfrfVCwVHIhFuOpmgGEcDGEtc15Vt21tUlbjZAPJAPmof7jBx+XX+lgSA8YNxNACgWQR9AQAAAACTXqJga9n6nJauzylnb/4z2ZTkVLWpfh6wDC1pD2iX9oDiPqb5HA8cx+k3rJTJZGq2CYVCNVUK/X6/TNOU67oqFArK5XKVEG/PKdCDwWCvarzVgd5AIMCHrwCAca9QKPR7k0x1VUXTNCs3yZTDv9VVgWOxmILBIL8jxxHG0QAmu+pA8XCEicvrq2eO6U9fIeChCBOX13HzDgAMHuNoAMBAEfQFAAAAAExaOdvRve+k9eyGvAxJA/kDudx+5za/DpkZlt/iA67R4rquMplM3WnHq6cfr74E4vf7ayoMlqcbL1fjLQeXEomEurq6em0fDod7VeGtXvr9/tH4VgAAMKa4rqtcLtfw93N5WX2zjMfj6TMIHI/H5fP5RvGsIDGOBoCR5jjOoMPE/W1Xva56Jpr+WJbVVDi4v8Bwf2FjyyLQBmDiYBwNABgsgr4AAAAAgElpebKgW1amlCm5A7qg2pMhKewxdOzcqLaKEToZDvl8vs8QbyKRqKluZFlWr6nCw+FwpRpvsVisBIO7urrU1dWldDpd2d4wDEWj0Zogb3U13ng8Lo/HMxrfCgAAJhzXddXd3d1nVeDu7u6abQKBQK/f9T2XhIKGD+NoAJi4XNcddJi40fpG7ZtlmmZT4eCBvl4vUMysAgCGE+NoAMCWIOgLAAAAAJh0nl6X1d1vpwdcNaGR8n4OnxXWbh3BIdjj5FEqlXoFe3ou8/l8pX05hFsd5InFYgqFQpI2T5tarhxYDvImEglls9nKPkzTrKm+2zPESzgIAICxxbZtpVKpPscL1b/rJSkSifRZFTgSiRDmGQTG0QCAoeC6rmzbHvYwcbFYVLNxCMMwBl2FuNkwcXnJGASYfBhHAwC2FEFfAAAAAMCkUr6oOly4uPovjuMolUr1WaEvk8nUbBMKhXqFcmKxmHw+X6UabzKZrAR4y8tCoVDZh8fjqYR2q5flx5FIRKbJ1HYAAEwkhUKhVwC459ijunqgaZq9xhvVy3g8rkAgQBCnCuNoAMB447quHMcZ9jBxsViU4zhN96uZcHDP9QMJE5e/GMcAYwPjaADAUCDoCwAAAACYNJYnC7r2jeSwH+fUBbGmpk3LZDLy+XzyeDzD3qeh5rquMplMn9V4U6lUTeUcn89XU02vHKSJRqOyLEu2bSudTqurq6sS4C1/lUqlyn78fn/DarwtLS0KhUJ8mAUAAGq4rltT9b9eVeBkMlkT0vF6vX0Ggcs3I41H2Wy2EghqxlgbRwMAMNb0DBT3FwweTJi4VCrVXB/pj2VZwx4m9nq93EwN9IFxNABgqBD0BQAAAABMCjnb0W9e3KRMyR2S6dEaMSSFPYbO2b5Vfqv+Bx22beuhhx7SAw88oOOOO0677LLLMPZocPL5fJ8V8ZLJZM2HS5ZlNQzCRCIRSVIul+sV4u3q6uoVqilX9W1UlTcQCIz49wMAAEx8juMonU73OQbq7u6u2SYYDPYZBi7f0DTWXH311dq4caOOO+44zZ8/v8+2Y2kcDQDAZFee7WgwVYmb2a56XbNM0xz2MHE5UMyN3RhPGEcDAIYSQV8AAAAAwKRw+6qUntuQH9aLqmWGpMVtfh09J9pr3bvvvqsbb7xR69at0/77768DDjhgxCv6lkqlulXsqpf5fL7S3jAMRSKRutV44/G4gsGgSqVSJbjbc5lKpWqOH4lEaqrw9qzKO14r4wEAgInPtu2a4G+9cVQul6vZpq9xVCwWUyQSGfHQysaNG3XzzTdrxYoVWrJkiY444oiGN1ONlXE0AAAYOa7rVioIDyZMPJCgcbORFcMwhj1M7PV6ZVkWgWLUlUwm1d3drRkzZjTVnnE0AGAoEfQFAAAAAEx4XXlbl764acSPe+4OrYr7NldwKxaLuu+++/Too49q2rRpOv7449XZ2Tnkx3QcR93d3XUr0ZWX6XS6ZptQKNRnJTqPx6Pu7u661Xi7urqUyWQq+zIMQ7FYrGE13lgsNuLBZgAAgJFUKBT6vKEqkUjUzIxgmmbNGKxnEDgejysQCAx54MR1XT3zzDO666675Pf7deyxx2rbbbetaTMWxtEAAGDicl1XjuMMOkxcb32j9tWzSfWnmWBwf4HiZtYTKB5fHnnkEd19993aZpttdNhhh6mjo6NhW8bRAIChRtAXAAAAADDh3f9uWo+tzdatnnDfb3+hF+65VetWvCavP6i5O++ho/79G+qYt3VNu5XPPqm7LvmB3nrhGZmWqenb7KiPXvIneQPBusc0JO09LagDZ4S1cuVK3XTTTUokEjrooIO0zz77DGoKZ9d1lc1mG1aPK1eXq/5T3+fz9RkaiUajKpVKNSHensvqqnSWZdUEeHtW443FYjJNpogDAABopDym63lTVvXzVCpVE0bxer0Nb8oqP/Z6vYPqTzKZ1C233KLXXntNO+ywg44++miFw2FJWz6OTq1fq9t+8W29/vh9yqfT6pi3QAd/7LPa8dDjGvanehwNAAAwVGzbbrrK8GDDxMViUbZtN92n6jBwX8HgRuuaDRtzrW5ouK6rF198UX//+9/V1dWlJUuW6KCDDlI02ruKbl/j6Mf+fKUe//NV2rR6lSRp6vxFOvTjn9e2+x0mSXriut9r2R3X6d2Xn1M+3a1v3P+6gtF4v/1jHA0AExtBXwAAAADAhGa7ri5+fqNydv0/f3/76Q9o5yNP1KwdlsixS7rzl9/X2tdf1meve0i+4OaLoiuffVJXnn+qDvrIf2i7A46UaXm0+tUXtP1BR8vj8zc8tt+UFr79hJ5+6knNnj1b73vf+9Te3t6wfT6f7zPwkUwma6q/WZZVE+CtF/zw+XxKp9M14d2eQd5isVjZp9frbRjibWlpGZWppQEAACYbx3GUTqf7vMGru7u7ZptgMNjvDV6NbjZzXVfPP/+87rjjDknS0Ucfre122EG/fGHTFo2jr/jUKcqlEnrfl3+ocMsULbvjOv3t0gt13v/crRmLFjc8/4Bl6Pydpshi3AkAAMYZx3HqBoGHMkxcXt8sy7IGXYV4INsMprDBeFQqlfTUU0/pgQceUKlU0j777KN9991Xfv/m68T9XY9+6f47ZVim2ufMl+tKz9z8Rz34+0t0/h/u0bQFi/TQNZeqVMhLku68+HtNB30lxtEAMJER9AUAAAAATGhrMiVd9UpX0+27N63X9w/dTh//zY3aard9JUn/fcZR2nrvA3XEp74y4OM7D1+nQ/fYRbvuuqu6u7v7DGtUV86VpGg02mdYIxwOy3VdJZPJukHe8ld1JZFAIFBTkbdnkDcYDBLkBQAAGAdKpZJSqdSAx5d93SQmSXfccYf+8Y9/aO5Ou2nNVns33Z964+hv7jdXx3/lx9r1vR+otPvOwdvo6H//T+1x4ul97u+sbVvUGfI0fXwAAIDJxHXdQYWDB9O+2ViRaZrDHiYuB4rHwvXLXC6nhx56SI899pgCgYAOOuggLVmyROvy7oCuR0vSdw5aqKM/803tccJpldfefOph/ebjJwwo6CsxjgaAiYp3dgAAAADAhLYm03x1C0nKpZKSpGC8VZLUvXGd3nrhae1yzEn61VnHaOPbK9Qxb2sd8emvat6SfoIPrqvw9Ll68MEHK9XRyqorrs2dO7dXkLdcca1UKlXCG11dXVq9erVefvnlyvNkMllzsT0cDldCu52dnTUh3ng8rkAgMKDvBwAAAMYmj8ej1tZWtba2NmxTKBQaBoHXrl2rRCLRa8aIaDSqjo4OvdtdkOG6TYcoeo6jJWnOznvqubtu0KL3HK5ANK7n775RpXxeW+22X7/7W5MpEVAAAABowDCMSvB1OLmuK9u2mwoGN2pT/Vomk6m7rlAoNB0oljTsYeLya32NhQOBgA477DDtscceuvfee3Xrrbfqscce09YHHSsp2tR5OLat5/92kwrZjOYs3qPp8+8L42gAmJh4ZwcAAAAATGhrMiWZkpwm2jqOo1t+8nXN3WVPdW69nSRp49srJUl/u+zHOuYz39KMbXfUM7f8SZd/8iR95s8PqH3OgsY7dB0p1qFdd91Vra2tNRXTyhfhy+GLciXetWvX1lTn7TklczQarVThnT17dq+qvMN9cR8AAADjh8/nU0dHhzo6Ouqud11X2Wy2VwD47bffluLtm8ezRv9TMNcbR0vSv/3ocv3hy2fruwdvI9PjkTcQ1Gk/vUrtc+b3uT9TA79hDwAAAEPPMAx5PB55PMMfL7Jte8BViRut6+7ubrhN9exn/WkUEK73+uLFi7Vq1So9/dpKWXO2l0yz4X7XvPaifnXW0SoV8vIFwzrtp1dp2vxtt/h7yDgaACYugr4AAAAAgAmtu+Q0FfKVpJt++GWtfeNlffK3t1Rec93NW+/1/jO0+/H/JkmasWix3njiQT114//qqPP/s/EODVPdRVuPPfmYZs6cqfb2dlmWpWQyWQn2ZrPZSnPTNBWLxdTS0qK2tjYtWLCgphpvPB6XZfUftAAAAACaYRiGQqGQTNPU6tWr9eKLL2rlypXyer2KLZ6m7j7CCdXqjaMl6e7//n/Kdif1sV9dp3DrFP3j3tv1hy+frU9ccbM6F27fcH+OpHSp2VE8AAAAJgLLsmRZlvx+/7Aex3GcpgPD/a0vVygulUoqFArK5/OSPyzXMNTXvBjt87bW+X+4V/nulJ7/+036yzfO1zmX37jFYV/G0QAwcRH0BQAAAABMaLbT3JRvN/7wy3r5wbv08ctvUnzajMrr0fZpkqSpPS6ydmy1UF1r3ul7p4Yhw7JULBa1YsUKrVixohLmnT59uhYtWlRTjTcajcpsMkwBAAAAbAnbtvXGG2/oueee0yuvvKJSqaT58+frhBNO0HbbbafrV2XVnSr2u59G4+gNby3Xo9deoc/8+UFNW7BIkjR9mx21YuljevRPv9WJX/tJn/stNTmOBwAAAAbCNE35fD75fL4h2V8+n9fTTz+txx9/XNlsVrFoVHmjr5iv5PH6KrNczNx+Z739j2V65H9/rRO//tMt7g/jaACYmAj6AgAAAAAmNMvs+6Kq67q66UcX6MV7b9M5v7lBU2bOrVnfOmOOYh2dWrfy9ZrX1696Q9vue2jfB3ddTZ82TYd/7GOKx+PatGmTnn/+eb3wwgt66aWX1NXVpcWLF2vhwoUKBoODOj8AAABgINauXaulS5fq+eefVyaT0dSpU3XQQQdpp512UiwWq7SzzFyf++lvHF3MbZ65wjBqb2QzTVOu03+VMU8/43gAAABgNCUSCT3++ON65plnVCwWtXjxYu299956MB3U64nCgPblOo5KxfyQ9ItxNABMTAR9AQAAAAATWsRjytTmacvqufGHX9azt1+n03/+e/lDEaXWr5UkBSIxeQNBGYah95zxaf3tsgs1fZsdNH2bHfXMLddq3YrX9eELf9vnsU3D0PQpLZo1KyJJikajmjNnjo488ki99tpreu6553T33Xdr9erVOvHEE4fwrAEAAIDeSqWSLr/8cvn9fi1evFg777yzpk2bJqNOxbEtHUd3zFuottlb6frvf17HfPbbCsVb9eJ9t+v1x+/XGf91TZ/9NCWFPcx0AQAAgLFnzZo1evTRR/XCCy/I6/Vq991311577aVoNCpJiqzq7nMcfcfF39W2+x6qlumzlE93a9kd12n50w/rI5f8SZKUWr9WqQ3/1Ia33tx8vNdelD8cUUvnLIXirX32jXE0AExchuu61GwHAAAAAExIxWJRj7+T0EObXEn1Kxl8ZdeOuq+f/K2LtNv7PlR5ft+V/6XH/vRbZRJdmr7NDjr6P76heUv27rcPR82OaJf2QMP12WxWpmnK7/f3uy8AAABgSyWTSUUiEZlm3wGAZetzuuOt7obrmxlHr1/1hu646LtauewJ5TNptc3eSu85/VPa9b0f6Lef/Y2jAQAAgJG0YsUKPfjgg3rzzTcVj8e19957a8mSJb2u6/Y3jr7u2/+h1594UKn1axWIxNS5cHsdeNb5Wrj3QZKkv116of7+6x/32q7n9epGGEcDwMRE0BcAAAAAMG7l83klEgl1dXWpq6ur8ri8TKfTMuId8h3Yf5BguJy1bYs6Q0yoAwAAgPFlTaakq17pGrXjM44GAADAWOG6rn7+858rEolo33331fbbb9/wxjnG0QCA4cA7OwAAAABgTHJdV9lstleQt/p5LpertDdNU/F4XC0tLero6NDWW2+tlpYWxeItujEp5RvNlTaMApahjqA18gcGAAAAtlBH0FLAMpSzR75eDONoAAAAjCWGYegzn/mMDMOQYdSfOa6McTQAYDgQ9AUAAAAAjArXdZVOpxtW400kEioUCpX2Ho9HLS0tisfjmjlzprbffnu1tLRUXutr+uFd303rsbVZjeSlVUPSkvaArH4u/AIAAABjkWUYWtIeYBwNAAAASA2vPffEOBoAMBwI+gIAAAAAhoXjOEqlUjXh3Z5VeW3brrT3+/2V0O68efNqQrwtLS0KhUL9VktoZJf2gB5dmx2qU2uK+3/HBQAAAMYrxtEAAADAwDGOBgAMNYK+AAAAAIBBsW27bhXe8jKZTMpxnEr7UChUCe0uXLiwJsTb0tKiQGD4LkLGfZZ2bvPruQ35EamiYEha3OZX3Mc0aQAAABi/GEcDAAAAA8c4GgAw1Aj6AgAAAADqKhaLfVbjTaVSNe0jkUgltDtr1qyaEG88HpfP5xulM9nskJlhvZEoKF1yh/XiqiEp7DF0yMzwMB4FAAAAGBmMowEAAICBYxwNABhKhuu6I3HzCAAAAABgjMnlcr1CvNXLTCZTaWsYhmKxWE0V3uogbywWk8cz9u8lXZ4s6No3ksN+nFMXxLRVbHSDzQAAAMBQYRwNAAAADBzjaADAUCHoCwAAAAATkOu6ymQyvcK71cHefD5faW9ZVk2At2c13lgsJtM0R/GMhs7T67K6++30sO3/iFlh7doRHLb9AwAAAKOBcTQAAAAwcIyjAQBDgaAvAAAAAIxDruuqu7u7YTXeRCKhYrFYae/1ehuGeFtaWhSJRGQYxiie0cgqX1w1pCGaNs2VZGjaxjd01iF7TqrvJQAAACaPoR5Hl/dDOAEAAAATGeNoAMCWIugLAAAAAGOQ4zhKJpO9qvAmEonKl23blfaBQKCmIm/PIG8wGCR82sPyZEG3rkwpXXK36OKqISnsMbSds14P3fBHHXroodp///2HqpsAAADAmDLU4+hj50aZZhgAAAATHuNoAMCWIOgLAAAAAKOgVCpVArv1qvImk0lV/7kWDod7BXmrl4FAYBTPZvzK2Y7ufSetZzfkB1xNodx+5za/DpkZlt8yde+99+qBBx7QKaecou233354Og0AAACMsqEeRwMAAACTwZaMo8uzyjGOBoDJiaAvAAAAgAlr48aNisVi8ng8kqSVK1fqi1/8olatWqVIJKJvf/vb2m+//Ybl2IVCoWE13q6uLnV3d9e0j0ajNVV4e1bl9Xq9w9JPbJYo2Fq2Pqel63PK2Zv/TDYlOVVtqp8HLENL2gPapT2guM+qtHFdV3/961/18ssv66yzztLMmTNH6hQAAACAEdd4HL05hPCv55s1GkcDAAAAk0mjcbTtupWZ+RhHAwCqEfQFAAAAMG69/fbbWrNmjXbYYQcFg0FJ0hNPPKF///d/Vz6fl2VZOvnkk3XBBReoVCrpzDPP1K677qqTTjpJ69ev1wknnKB//OMfisfjAzqu67rK5XINQ7xdXV3KZrOV9qZpKhaL1a3G29LSolgsJsvi4txYYLuu1mVtrcmUtCZTUrrkqOS48piGwh5TnSGPOkMedQQtWf93wbWnUqmk3/3ud9q0aZPOOeecAf98AQAAAONNz3H0bX+/V7vvuZfCwUDNONpfTOuDH/iA7rzzztHuMgAAADDq6l2PzuTyKuSymtHWoulhX7/XowEAkwNBXwAAAADj0qc+9SndeeedWr58uZ5++mktWbJEkrTPPvvom9/8pg4//HDl83lFIhGtWbNGU6dOldfr1YYNGxSLxSRJe+21l04//XSde+65NUFb13WVyWRqQrw9q/MWCoVKe8uyGoZ44/G4otGoTJNptCaTdDqtyy+/XD6fTx/96Efl9/tHu0sAAADAiNl555317LPPVp6feeaZ+t3vfidJ2mWXXbRs2bJR6hkAAAAwdv3xj3/UJz7xCU2fPl3Tp0/X17/+dX3wgx+U4zi6+uqrdcwxx4x2FwEAo8Qz2h0AAAAAgME444wzdMkll2i33XbTpk2b5P7flFZPPvmkpM3h2+XLl+vAAw+UbduSpLa2Nt1888368Ic/rFQqpdWrV+vZZ59VOp2uhH8lyTAMXXLJJZWqvD6frxLanTNnjhYvXlwT6A2Hw5XptABJCofD+rd/+zddccUV+stf/qIPfehDhL0BAAAwafT8++jee+9tuA4AAADAZj/4wQ/0+OOPa9GiRXr44Yd1wgkn6Prrr1dra6vOOOMMgr4AMIkR9AUAAAAwLu25554yDEPBYFBvvfVW5cPiv//977rgggv0sY99TBs3btSXv/zlSsDy4osv1g033KBf/vKXmjVrlhYvXqxwOKxMJlMT9JWkU045RYFAQC0tLQoEAnwYjQHr6OjQKaecomuuuUZ33nmnjj766NHuEgAAADAipk6dqhtuuEEnnHCCrr76ahmGoauuukotLS29/vYCAAAAsJllWVq0aJEkab/99lM4HNb+++8vSXIcZzS7BgAYZQR9AQAAAIxrM2fO1KpVqyrPly9frn333Ve33367WlpadMwxxyiTyejCCy/UKaecol133VWJREK77rqrvva1r2nt2rXq7Ozstd+tttpqJE8DE9SCBQt0zDHH6NZbb1VbW5v23HPP0e4SAAAAMOx++tOf6thjj9W//du/6eCDD9Ztt92m008/XY7j6He/+91odw8AAAAYkxzH0euvv66tt95aTz31lLq6uvTcc88pHo9XZi4EAExOBH0BAAAAjDn5fF5dXV1KJBLq7u7Wrrvu2rDt3LlztXLlShWLRXm9Xj3yyCOaO3euWlpaJEnHHnus7r33XmWzWQUCAS1YsECS1N3drVdeeUUHHnigpM0X0MqVf4GhtPvuu2vDhg2644471NraqoULF452lwAAAIBhNWXKFK1atUqbNm1Sa2urJOmZZ55RoVCQ67qj3DsAAABgbPrqV7+qvffeW/Pnz9fbb7+tv/71rzr22GO1fv16XXbZZaPdPQDAKCLoCwAAAGBEua6rbDarRCKhrq6uSqC3+nkul6u0N01TixcvlsdT++eLYRiSpB133FE33nijvF6vJCkajepvf/ubvva1r6lUKmn58uVqaWlRMBjU22+/rZ///Oe6//77lcvl9P73v1/nn38+IV8Mu8MPP1wbN27UX/7yF330ox/VtGnTRrtLAAAAwLCZPXu2fvKTn+hzn/tczev33HOPLrvsMl1//fWj1DMAAABg7Dr11FO133776ZVXXtGSJUs0ZcoULV++XPl8XuFweLS7BwAYRYbLrdMAAAAAhpDrukqn0zUh3uplV1eXisVipb3H41FLS4vi8XjNsvw4Eon0GcK95JJL9N3vflcf+chHNHfuXH3oQx/SF7/4RT3wwAPy+/3adttt9dOf/lSzZ89WNpvVc889J6/Xq3nz5mnKlCkj8S0BJEmFQkFXXnmlstmszj77bEUikdHuEgAAADAsFi5cqHg8rg9+8IP6whe+ULNu0aJFevnll0epZwAAAMD4smHDBrW1tY12NwAAo4ygLwAAAIABcRxHqVSqYZA3kUjItu1Ke7/fXwnt9gzxtrS0KBQKVarzDkSpVNIHP/hBvfTSS5o/f76mTp2qfffdVx/72MeUTqflOI6i0ehQnjqwxZLJpC6//HLFYjGdeeaZlUrUAAAAwESy66676t5779Xhhx+uE044QV/96lcr65YsWaKlS5eOYu8AAACAsek73/mOPv7xj6uzs1PPP/+8jj/+eK1evVrt7e3661//qj322GO0uwgAGCUEfQEAAADUsG27bni3vEwkEqr+MyIUCvWqxlsd6A0EAqN4NsDY8+677+qqq67SwoULdfLJJw8q6A4AAACMJbbral3W1ppMSWsyJd36t3u0/wEHynVs3XfnbfLlkjrxkPfoH48/qJtvvFF33nnnaHcZAAAAGHU9x9E33Xm3Djz4EFmmoQfuul07bzVLx75nL/3j8Qf1zf/8Tz300EOj3WUAwCgh6AsAAABMMsVisSa82zPIm0qlatpHIpFeVXirlz6fb5TOBBi/Xn75ZV177bXaf//9deihh452dwAAAIBBSRRsLVuf09L1OeXszR83mdocWCjf0Fb9vJBOaXGrVwcvnK64zxq9jgMAAACjqJlxtFMqyfR4JEkBy9AzN16ji7/8acbRADBJEfQFAAAAJphcLtcwxNvV1aVMJlNpaxiGYrFYw2q8sVhMnv+7kARgaD3yyCO6++67dfzxx2uXXXYZ7e4AAAAATcvZju59J61nN+RlSBrIB03l9ju3+XXIzLD8ljk8nQQAAADGmC0ZRzu2LdOyGEcDwCRF0BcAAAAYR1zXVSaT6RXkrX6ez+cr7S3LqgnwVod44/G4YrGYTJOLQcBocF1XN998s5599lmdfvrpmjdv3mh3CQAAAOjX8mRBt6xMKVNyBxRM6MmQFPYYOnZuVFvFmCkGAAAAExvjaADAliDoCwAAAIwhruuqu7u7YTXeRCKhYrFYae/1ehuGeFtaWhSJRCrTPAEYe2zb1jXXXKPVq1fr7LPPVltb22h3CQAAAGjo6XVZ3f12esDVxxop7+fwWWHt1hEcgj0CAAAAYw/jaADAliLoCwAAAIwgx3GUTCZrwrvVj5PJpGzbrrQPBAI1FXl7BnmDwSBBXmCcy2az+u1vfyvHcXT22WcrGOTCLAAAAMaecjhhuBBSAAAAwETEOBoAMBQI+gIAAABDqFQq1a3CW14mk0lVD8HD4XCvIG91oNfv94/i2QAYKRs3btTll1+uqVOn6vTTT5dlWaPdJQAAAKBiebKga99IDvtxTl0QY/phAAAATBiMowEAQ4WgLwAAADAAhUKhbjXe8vPu7u6a9tFotKYKb8+qvF6vd5TOBMBYs2rVKt12220644wzqNYNAACAMSNnO/rNi5uUKblDMs1wI4aksMfQOdu3ym+Zw3gkAAAAYPgxjgYADCWCvgAAAMD/cV1XuVyuV4i3epnNZivtTdNULBZrWI03FotRlRPAgNi2LUl9vneUSiV5PJ6R6hIAAAAmudtXpfTchvywhhPKDEmL2/w6ek50BI4GAAAADB/G0QCAocQngwAAAJg0XNdVJpNpGOLt6upSoVCotLcsqxLenT59uhYtWlRTjTcajco0uTsawNDp7+aAdevW6fzzz9fFF1+sjo6OEeoVAAAAJquuvK1nN+RH7HiupGc35LVvZ0hxHzfOAgAAYHxiHA0AGGoEfQEAADBhOI6j7u7uhkHeRCKhUqlUae/z+Sqh3Tlz5mjx4sU1VXnD4bAMwxjFMwKAzVzXlWEY6ujo0HbbbaczzjhDt99++2h3CwAAABPcsxtyMqS6Vcju++0v9MI9t2rditfk9Qc1d+c9dNS/f0Md87autNnw1nLd9otvaeXSx1Uq5rXNvofouC/9P0XbpjY8piFp2fqcDpwRHvLzAQAAAEZCX+Pox/58pR7/81XatHqVJGnq/EU69OOf17b7HaZMYpP+dumP9Npj96lrzTsKt7Zp+4OO1hHnfkWBaKzPYzKOBoCJzXBddySqxAMAAABbzLZtJZPJhiHeRCIhx3Eq7YPBYCW0W15WPw4EAgR5AYwbiURC8XhckvTJT35SxWJRV1xxxSj3CgAAABOV7bq6+PmNytn1P0b67ac/oJ2PPFGzdlgixy7pzl9+X2tff1mfve4h+YJhFbJp/depB2n6wh102Ce/JEm6+1c/VHLdGp37uzv6nCEnYBk6f6cpsvibHQAAAONMf+Pol+6/U4Zlqn3OfLmu9MzNf9SDv79E5//hHrmuq79d+iPtdtyHNHX+Nupa/bau/8EXNH3h9vrwj6/s99iMowFg4iLoCwAAgDGjWCxWArv1qvKmUilVD1/D4XCv8G710u/3j+LZAMCWy+fzlfeyH//4x1q5cqV++ctf6sknn9RVV12lSy65ZJR7CAAAgIlqTaakq17parp996b1+v6h2+njv7lRW+22r1599F5ddf4H9Y37XlcgEpUk5VJJfeegrfXR//6ztt7rwD73d9a2LeoMMTElAAAAxpeBjqMl6TsHLdTRn/mm9jjhtF7rnr/7Rl379U/p2w+vlOXpf3zMOBoAJibe2QEAADBi8vl8TXi3uhJvV1eX0ul0pa1hGIpGo2ppaVFra6vmzZvXqyqvp4kLGgAwXr344ot66623dOSRR0qSvvjFL2rBggU69dRT9dJLL2n33XeXbdt66aWXtOOOO45ybwEAADDRrMmUBtQ+l0pKkoLxVkmSXSjIMAx5fL5KG4/fL8M0tWLp4/0GfddkSgQUAAAAMO4MZBzt2Lae/9tNKmQzmrN4j7ptct1JBcLRpkK+5eMzjgaAiYd3dgAAAAwJ13WVzWYbhni7urqUy+Uq7U3TrAR3Ozo6tPXWW9eEeGOxmCzLGsUzAoDRtWHDBp133nm69957NWvWLEnSmWeeqYULF+qkk07SBz7wAd1zzz363Oc+px/+8Ic66qijRrnHAAAAmEjWZEoyJTlNtHUcR7f85Ouau8ue6tx6O0nS7MW7yRsM6fb/+o6OPO9rklzdcdF35di2UuvX9rk/UwMPGgMAAABjQTPj6DWvvahfnXW0SoW8fMGwTvvpVZo2f9te7dKbNuie3/xMe7z/9KaOzTgaACYuw62e+xgAAABowHVdpdPpmhBvz+q8xWKx0t7j8VRCu9XL8uNIJCLTNEfxjABg7Lv00kt17bXX6oorrtDq1at12mmn6corr9RBBx0kScpkMnrqqaf07//+7/rTn/6kbbbZZnQ7DAAAgAnjL28m9Xqi0FTbG37wRb3y8N/1yd/eovi0GZXXX330Xt34/76kTe+slGGaWnzk+/XPN1/R7B131Qlf/XGf+1wY9+mk+bEtOgcAAABgpDUzji4VC+pa/bby3Sk9//eb9NT11+icy2+sCfvmulO64lMnKxRr0Rk//x9ZXm9Tx2ccDQATE0FfAAAASNpcfSeVSjUM8iYSCdm2XWnv9/srod2eId6WlhaFQiEZhjGKZwQAE8M3v/lNvfrqq7r77rv1mc98Rl//+tfluq5s25ZlWTIMQ9/85je1ceNGXXzxxaPdXQAAAEwQ176e0PJUsd92N/7wy3rp/jv08ctv0pSZc+u2SW/aINPjUTAa1/cP317vOe1TOuDM8/rc71ZRr07dOj6ovgMAAAAjwXVd5XI5ZTIZpdNpZTIZPZgJa4MRHNB+Lv/kSWqbNU8nfv2nkqR8ulu//fQH5A0EdeZ/XSOvP9D0vhhHA8DE5BntDgAAAGBk2LZdN7xbXiYSCVXfAxYKhSqh3W222aZXVd5AoPmLCgCAwfv2t7+tYrGo7u5utba2qlQqyTRNeTyb/6TPZrOybVuzZs0a5Z4CAABgIrHMvm/edV1XN/3oAr1472065zc3NAz5SlK4tU2S9MYTDyq9cb22O/Cofo/v6ef4AAAAwFBzHEfZbLYS2u25LH9VP3ccp2Yfnj2OkdU5TxpAMRzXcVQq5iVtruT7209/QB6fT2f8/OoBhXwlxtEAMFER9AUAAJggisViTXi3Z5A3lUrVtI9EIpXQ7qxZs2qCvPF4XD6fb5TOBADQk9fr1cUXX6yLL75Y++23n2zb1pQpU7Rx40aFw2E99thjuvLKK0e7mwAAAJhAIh5TpiSnwfobf/hlPXv7dTr957+XPxRRav1aSVIgEpM3sLmC2VM3/q+mbrWNwq1tWvXcU7r5J1/Tfh/+pDrmbd3nsU1JYY85dCcDAACASalUKjUM7NZ7nM1me+3DNE2FQqHKVzgcVnt7e+Vx9euhUEgPbnT1/IZ8w3H0HRd/V9vue6haps9SPt2tZXdcp+VPP6yPXPKnzSHfT52iYi6rU7/338qnU8qnN3++F25tl2lZfZ4v42gAmLgMt7psGwAAAMasXC7XMMTb1dWlTCZTaWsYhmKxWK/wbjnYG4vFKpUgAQDjw7vvvqtjjz1WhxxyiM455xytXLlSK1euVGdnp3bYYQctWLBgtLsIAACACWTZ+pzueKu74fqv7NpR9/WTv3WRdnvfhyRJd1z0HT198x+VTXSpZcZs7XXyWdr/w5+U0UR1s6NmR7RLO7MJAQAAYDPXdVUoFHqFc/sK7xYKhV778Xg8NcHc6rBuvdcDgUBT49ey/sbR1337P/T6Ew8qtX6tApGYOhdurwPPOl8L9z5Ibz71sH7z8RPqbvelW55W64w5/R6fcTQATEwEfQEAAMYA13WVyWR6BXmrn+fz+Up7y7JqArzVId54PK5YLCbT5I5dAJholi1bprPPPluXXnqpdt9995p1juPw3g8AAIAhsyZT0lWvdI3a8c/atkWdIW5SBgAAmKhc11Uul2u62m46nZZt27324/f7e4V0GwV5w+GwvF7vgIK7A8U4GgAwHHhnBwAAGAGu66q7u7thNd5EIqFisVhp7/V6K6Hd2bNna8cdd6ypyhuJRIb1IgQAYGzaZZdd9JWvfEWnnXaannjiCcVisco6Qr4AAAAYSh1BSwHLUM4e+XoxActQR7DvaYkBAAAwtjiO07DabqMQb73ahMFgsCak29LS0md4d6zNYMk4GgAwHMbWbzsAAIBxynEcJZPJmvBu9eNkMllzl3EgEKiEdufPn19TjbelpUXBYJAgLwCgrpNOOkkzZ86sCfkCAAAAQ80yDC1pD+ixtVmNZETBkLSkPSCL6yIAAACjqlQq9RnY7fl6LpfrtQ/TNHsFdDs6OnoFdsvLYDA47gsaMI4GAAwHgr4AAABNKJVKdavwlpfJZLLmruNwOFwJ7XZ2dtaEeFtaWuT3+0fxbAAA493ee+9d89xxHBmGwU0iAAAAGFK7tAf06NrsiB7T/b/jAgAAYOi4rqtCoVC3sm6jaruFQqHXfjweT004t7W1VTNnzqypsFu93u/3T8prloyjAQBDjaAvAACApEKhULcab/l5d3d3TftoNFoJ7c6ZM6cmxBuPx+X1ekfpTAAAk43runIcR9dff70OOeQQtbW1jXaXAAAAMEHEfZZ2bvPruQ35kalG5jrS26/qxZylPffcU5bFtMMAAAD1uK6rbDZbN7CbTqeVzWZ7vV4982SZ3++vCeZOnTq1YbXdcDjM519NGulxtCFpcZtfcR/jZwCYqAy3uvQcAADABOS6rnK5XK8Qb/Uym/3XXbWmaSoWi9VU4a0O8sZiMT5oAgCMKblcTldccYUcx9HZZ5+tYDA42l0CAADABJG3Hf3mxU1Kl9xhDSkYkkKWoXnvPKmlTz6htrY2HXXUUVqwYMEwHhUAAGBssG27blXdRhV4s9msesZ9DMNQMBisCefWC+xWP+bzruEzkuPosMfQOdu3ym+Zw3gkAMBoIugLAADGPdd1lclkGoZ4u7q6aqYX8ng8NQHentV4o9GoTJM/hAEA48vGjRt1+eWXa+rUqTr99NO5SA8AAIAhszxZ0LVvJIf9OKcuiGmrmE9r1qzRHXfcoZUrV2rRokU64ogj1NraOuzHBwAAGCrFYrFhtd1ycLf6eS6X67UP0zTrhnQbVdsNBAJ8vjXGjPQ4GgAwcRH0BQAAY57jOOru7m4Y5E0kEiqVSpX2Pp+vYYi3paVF4XBYhmGM4hkBADA8Vq1apd///vfaaaed9L73vY/fdwAAABgyT6/L6u6308O2/yNmhbVrx79mpnBdV//4xz901113KZPJaL/99tP+++/PdNEAAGDEua6rfD7fVGC3vCwWi7324/V661bVbfTY7/dzfW8CGOlxNABgYiLoCwAARp1t20omkw1DvIlEQo7jVNoHg8Gairw9g7yBQIALHwCASeu5557T9ddfr0MPPVT777//aHcHAAAAE0g5pGBIQzL9cHk/fYUTCoWCHnzwQT366KOKRCI64ogjtN1223HtBwAADJrjOMpmsw1DuvWCvLZt99pPIBBoKrBbXnLD0uQ1GuNoAMDEQtAXAAAMu2KxWAns1qvKm0qlVD0kCYfDvcK71Uu/3z+KZwMAwNh377336oEHHtApp5yi7bfffrS7AwAAgAlkebKgW1emlC65WxRSMCSFPYaOnRttaprhjRs36s4779Srr76qrbbaSkcddZSmTp26BT0AAAAThW3bTQV2y4+z2ax6RmUMw6gEdPsL7Ja/LMsapTPGeDRa42gAwMRA0BcAAGyxfD5fE96trsTb1dWldPpf09EYhqFoNFoT5O1Zldfj8Yzi2QAAMP65rqu//vWvevnll3XWWWdp5syZo90lAAAATCA529G976T17Ib8gKuSldvv3ObXITPD8lvmgI792muv6Y477tCmTZt06qmnaptttqG6LwAAE0yhUGgY0q33Wj6f77UPy7L6DOn2fD0YDDKmwLAbzXE0AGB8I+gLAAD65LqustlswxBvV1eXcrlcpb1pmjXVd3uGeGOxGHc4AwAwAkqlkn73u99p06ZNOueccxSPx0e7SwAAAJhgEgVby9bntHR9Tjl788dNpiSnqk3184BlaEl7QLu0BxT3Df76kG3beuaZZ7TLLrvUnQLbcRyZ5ubgw2uvvaY//vGPCgaD+sIXvjDoYwIAgMFxXVf5fL5XULc6sNvz9VKp1Gs/Pp+vqcBueenz+QjuYswarXE0AGD8IugLAMAk57qu0ul0TYi3Z3XeYrFYae/xeCqh3epl+XEkEql8kAIAAEZXOp3W5ZdfLp/Pp49+9KPy+/2j3SUAAABMQLbral3W1ppMSWsyJaVLjkqOK49pKOwx1RnyqDPkUUfQkjWEgRvXdesGeLq7u/Xqq6/qwgsvVDwe1/XXX68lS5bommuuUXt7+5AdHwCAychxHGWz2aar7WYyGTmO02s/gUCgbrXdeo/D4TCzQWJCGq1xNABg/CHoCwDABOc4jlKpVMMgbyKRkG3blfZ+v79hNd6WlhaFQiHugAYAYBxZt26drrjiCs2ePVsf+tCHuCEHAAAAE9pLL72kCy+8ULNmzdIuu+yiKVOm6Cc/+Yk++9nP6rDDDtOyZcv06KOP6r3vfa9mz5492t0FAGDUlUqlhoHddDpdE+otP+/JMIxewdxgMNiw2m4oFOIaFQAAwAAQ9AUAYJyzbbtueLe8TCQSqv51HwqFelXjrQ70BgKBUTwbAAAwHN544w1dc8012mOPPXT00Uf3Wr9p0yY99thjOvLII/mQBQAAAONWJpPRZz/7Wf3lL3/Rhg0bJEkf/OAHNW/ePP3whz/Uf//3f+vKK6/U7rvvrscff1zvfe979Z3vfGeUew0AwNBxXVfFYrHfCrvV6wuFQq/9WJbVZ7Xdnq8FAgGKxAAAAAwj5jYAAGCMKxaLNeHdnkHeVCpV0z4SiVRCu7NmzeoV6PX5fKN0JgAAYLQsWLBAxxxzjG699Va1tbVpzz33rFmfSCT0xBNPaMmSJers7BylXgIAAABbJhQK6aKLLpIk7bDDDtphhx2UzWb1iU98QpK0fv16nXjiifrqV7+qbDarE088Uffdd58OOuigUew1AACNua6rXC7XsNpuObhb/bxUKvXaj8/nqwnpdnR0NAzvhsNheb1egrsAAABjCEFfAABGWS6Xaxji7erqUiaTqbQ1DEOxWEwtLS1qa2vT/Pnza6rxxmIxeTz8egcAAL3tvvvu2rBhg+644w61trZq4cKFlXUzZ86UZVlasWIFQV8AAACMW47jyO/367LLLtN9992nk08+WV6vV6Zp6oEHHlCxWNQf/vAHHXroodprr7305JNPKpFISNocpCLQBAAYbo7j1K2qWy+wW17Wm6Q5GAzWVNWdPn16nxV4+ewIAABgfDPceqNCAAAwJFzXVSaT6RXkrX6ez+cr7S3Lqqm+Wx3ijcfjisViTKcNAAAGzXEcXXvttVqxYoU++tGPatq0aZV1V155pUKhkE499dRR7CEAAACwZRzHkWma+vznP69//vOfev/736977rlHt9xyi37xi19o1apVuuCCC3TssccqHA7riiuu4HobAGDQSqVSTVC3Xni3+nE2m+21D9M0ewVzGz0Oh8MKBoP87gIAAJhkCPoCALAFXNdVd3d3w2q8iURCxWKx0t7r9VZCu9XL8uNIJELlEAAAMKwKhYKuvPJKZbNZnX322YpEIpKke+65R0899ZS++MUvMh4BAADAuPf73/9era2tOu6443TAAQfo0EMP1Te/+U1J0s0336z7779fF154IUEpAECF67oqFAoDqrZbKBR67cfj8TQV2C2/FggEuBYDAACAPjE/AwAAfXAcR8lksia8W/04mUzKtu1K+0AgUAnvzp8/vybE29LSomAwyMUaAAAwqnw+nz70oQ/p8ssv1x//+EedeeaZ8nq9mjdvnh588EGtW7dOU6dOHe1uAgAAAFvkjDPOkOM4kqQjjjiiZtrzxx9/XOvWrWsq5JvL5fTYY49p3333lc/nG7b+AgCGnuu6ymazfVbY7Rncrf7Mp8zv99eEczs6OjRv3ryG4V1+XwAAAGCoEfQFAExqpVKpbhXe8jKZTNZ8CBAOhyuh3c7Ozl5Vef1+/yieDQAAQHNisZg++MEP6qqrrtINN9ygk08+WbNmzZJpmlq5ciVBXwAAAEwI5SDv8ccfr/POO09Lly7V7rvvruuvv14XXHCBHMfpN+xr27Yefvhh5fN5HXnkkSPRbQBAA7ZtK5vN9grnNqq6m8lkVG+C454B3dbW1rqB3fLSsqxROFsAAADgXwy33sgWACYo23W1LmtrTaakNZmSukuObMeVZRqKeEx1hjzqDHnUEbRkUXV1QigUCnWr8Zafd3d317SPRqM1VXirQ7zxeFxer3eUzgQAAGDwXn/9deXzeS1atKjmw6mXX35Z1157rfbff38deuihuuKKKxSPx3XyySfXbM84GgAAABPBJZdcog0bNmj//ffXgQceWBkbu66rUqkky7LqBn8ffvhh/f3vf9dHP/pRzZo1q+njMY4GgL4Vi8V+K+xWP87lcr32YZpm3XBuo8fBYLCpiu4AAADAWELQF8CkkCjYWrY+p6Xrc8rZm9/2TElOVZvq5wHL0JL2gHZpDyju4y7dscp1XeVyuV4h3uplNputtDdNU7FYrKYKb3WQNxaLcVc2AACYkO6880499thjikQi2n333bXbbrspEolIkh555BHdfffdOv7447V+/XotW7ZMn//852UYBuNoAAAATBp//etftX79eh1zzDG9wryO4+jyyy9XqVTSJz7xiX6vITKOBjAZua6rQqHQdLXddDqtYrHYaz9er7dXcDcYDDastuv3+2VwswQAAAAmOIK+ACa0nO3o3nfSenZDXoakgbzhldvv3ObXITPD8lvc3TvSXNdVJpNpGOLt6upSoVCotPd4PDUB3p7VeKPRKHdpAwCASeuf//ynnnjiCT333HOybVs77LCD9txzT82cOVO33HKLli1bpoMPPlh///vfdc65n9azOT/jaAAAAEwaq1at0u233641a9Zo55131mGHHVa5OU6S1q5dq1//+td6z3veo4MOOqjuPrgeDWAicV1X2Wy2zwq7PR/btt1rP4FAoM8Kuz1fY2ZFAAAAoDeCvgAmrOXJgm5ZmVKm5A7ogmpPhqSwx9Cxc6PaKuYbqu5BmythdHd3NwzyJhIJlUqlSnufz9cwxNvS0qJwOMxd2wAAAP3IZrNaunSpnnzySXV1dWnGjBnafffd9dxzz2n16tUqxqcpvNfRKhoextEAAACYVBzH0TPPPKN77rlHtm3rwAMP1F577VWp4HvvvffqoYce0ic+8QlNnTq1ZluuRwMY62zbrltVt1HV3Ww2q55RAsMw6lbX7Su8y0yKAAAAwJYj6AtgQnp6XVZ3v50ecNWERsr7OXxWWLt1BIdgj5ODbdtKJpMNQ7yJREKO868J64LBYE1F3p5B3kAgQJAXAABgiDiOo9dee01PPPGE3nzzTYVCITmzFsldtI/kutIQjLsYRwMAAGA8ymazuvfee/XUU0+pra1NRx11lBYsWKBSqaTLLrtMfr9fH/3oRyuzh3E9GsBoKBaLTQV2y8t8Pt9rH5ZlNRXYLS+DwSCf0wAAAACjgKAvgAmnfFF1uHBx9V+KxWIlsFuvKm8qlaq52zsSifQK8lYv/X7/KJ4NAADA5LV+/Xrd9sIKvRufN2zHYBwNAACA8WbNmjW64447tHLlSi1atEhHHHGEuru79dvf/lZHHHGE9tlnH65HAxgSrusqn8/XBHXrhXerHxeLxV778Xq9davq1nscDofl8/kI7gIAAADjAEFfABPK8mRB176RHPbjnLogNimmTcvn8zXh3epKvF1dXUqn/3UB2zAMRaPRmiq8PavyejyeUTwbAAAANMI4GgAAAKjPdV394x//0F133aVMJqP99ttP2WxWS5cu1XEfOVe3rXX638kWYhwNjD+O4yibzTZdbTeTydTMgFgWCASarrYbCoXk9XpH4WwBAAAADDeCvgAmjJzt6DcvblKm5A7J9GiNGJLCHkPnbN8qv2U2bFcoFHTPPfcoEAjooIMOGsYeDY7ruspmsw1DvF1dXcrlcpX2pmn2WY03FovJsqxRPCMAAAAMxlgbRwMAAACjxXEcua5b9zpnoVDQgw8+qEcffVShUEglmdL+J8v1BhhHA5OAbdv9VtjtGeTtyTCMPivs9gzvBoNBPncBAAAAIImgL4AJ5PZVKT23IT+sF1XLDEmL2/w6ek607vo333xTN998s9LptN73vvdpxx13HIFe1XJdV+l0uibE27M6b/W0Th6Pp26It/w4EonINLmQDAAAMNGMpXE0AAAAMJquvvpqvfnmm/J6vQoGgwoGgwoEAjVL13X15ptvamPn9jLnbCdjBK6ZMo4GhpbruioWi3Wr6jaqupvP53vtx7KsulV1G1XdDQQCMgxjFM4YAAAAwHhH0BfAhNCVt3Xpi5tG/Ljn7tCquO9fd1Pn83ndfffdevrppzV37ly9733v05QpU4bl2I7jKJVKNQzyJhIJ2bZdae/3+yuh3Z4h3paWFoVCIS4wAQAATDJjZRwNAAAAjAXr1q3TO++8o1wup2w2q2w2W/+xPPIeetqIX09lHA3U57qucrlcU9V2y8tSqdRrPz6fr25It9Fjn8/H5yoAAAAARoRntDsAAEPh2Q05GdKIVCErMyQtW5/TgTPCkqQ33nhDN998szKZjI455hjtvvvuW3SBx7btuuHd8jKRSKj6Xo1QKFQJ7W6zzTa9qvIGAoEtPWUAAABMMGNhHA0AAACMFR0dHero6Oi33X3vpPX4P7OMo4Fh4jiOstls09V2M5mMHMfptZ9gMFgTzJ0+fXrDaruhUEgeDx+dAwAAABib+GsFwLhnu66Wrs/1eVH1vt/+Qi/cc6vWrXhNXn9Qc3feQ0f9+zfUMW/rSptfn3O8lj/9SM12e550pk782k/q7tOVtHR9Tru3mvr73Xdr6dKl2mqrrXTmmWeqtbW1334Xi8Wa8G7PIG8qlappH4lEKqHdWbNm1QR54/G4fD5fv8cEAAAAyvobR/c3ht707ipd+N7d6m77bz+6XDsdfnzddeVx9P7TQ7KofAQAAIBxxnZdLdvQeBz92J+v1ON/vkqbVq+SJE2dv0iHfvzz2na/wyRJxXxOt/3sG3r2rhtkF/JauM/BOv4rFyraNrXP4zKOnryKxaLuvfdetbW1acmSJTJNUxdeeKEeeughrV69Wocddpi+8IUvqK2tbbS72lCpVGoY2K33OJvN9tqHaZqVirrlcG57e3vDCryhUEimaY7C2QIAAADA0DPc6nKQADAOrcmUdNUrXX22+e2nP6CdjzxRs3ZYIscu6c5ffl9rX39Zn73uIfmCmysg/Pqc49U+Z4EOP/fLle28gZACkWif+/Y+dasK69/V4Ycfrt12261SxTeXyzUM8XZ1dSmTyVT2YRiGYrFYJcgbj8drqvHGYjHuJAcAAMCQ6m8c3d8Y2rFtpTetr9nmib9erQd+/0t99a4X5A9F+jz+Wdu2qDPEGBcAAADjS3/j6Jfuv1OGZap9zny5rvTMzX/Ug7+/ROf/4R5NW7BIN/zgi3r5obt1yrcuViAS040/ukCmaeiTV97W1PEZR08eruvKMAzdeuutOu644/Sxj31Mv/nNb/T73/9e9913n0488UQtXrxY55xzjg4++GB95StfGbF+FQqFXuHcvsK7hUKh1348Hk+fId2erwcCgS2aRREAAAAAxjOuBAAY99ZkSv22+eglf6p5fvK3L9b3D91O77z4rLbabd/K695AUNH2aU0f23VdeaZ0apf5s7Ru3Tpde+21lWBvPp+vtLMsqxLcnTZtmrbZZpuaUG8sFuPOcgAAAIyo/sbR/Y2hTcvqNXb+x723avHhx/cb8i0fn4ACAAAAxpv+xtHbHXhkzfMjz/uaHv/LVVr1/FOKT52hp264Rqf+4FIt2PM9kqSTv3WRfn7Svlr13FOas3j3po7POHpyMAxDmzZt0v3336/3vOc9mjp1c9Xn+++/X6VSSccdd5wkqaWlpW4F3Ga5rqtcLtcrsFsd1u35um3bvfbj9/trgrkdHR11A7vlpdfrJbgLAAAAAE3iSgCAcW9NpiRTkjOAbXKppCQpGG+tef3Z26/Tstv/omjbVC064Agdcvbn5QuGGu/IddRt+vX4449UQruzZ8/WjjvuWBPkjUQiXLACAADAmDLQcXSjMXTZOy8+q9WvvKDjL/hRv/sy1dwNewAAAMBYM5BxtGPbev5vN6mQzWjO4j30zkvPyi4VtfVeB1baTN1qoVo6ZzUV9GUcPXmUq/n+/Oc/1/z587XNNtvonnvuUSKR0Je+9CX99Kc/1a677qoNGzZop5120sc+9rG6+1m7dq3Wr1/fb9XdehPABoPBmnBuS0tLr8q71Y+ZlRAAAAAAhg9/cQEY97pLzoBCvo7j6JaffF1zd9lTnVtvV3l9l6NOUsv0WYp1dGr1ay/qjou+o/Ur3tBpP72q8c4MU0YgrK222ko77bSTtt12W3m93kGfCwAAADBSBjKObjSGrvbkjddo6lbbaO7Oe/a/P0np0kBG8QAAAMDY0Mw4es1rL+pXZx2tUiEvXzCs0356labN31arX3lBltenYDRe0z7S1qHUhn/2e2zG0ZOHYRh6+umnlUqldPrpp+uRRx6RJIVCIU2fPl2BQEBnnXWWjjrqKF166aX6/Oc/rz/96U+9Zg58/PHHtXTpUpmm2auqbkdHR8Nqu8FgkFkIAQAAAGAMIegLYNyznd53mvflph9+WWvfeFmf/O0tNa/vedIZlcedC7dXrH2aLv/k+7XhreVqm71V3X0ZhiGPP6BVq1bp1VdflWmamjJliqZNm6b29nb5fD55vd7Kl8fjqXne88uyLCr/AgAAYEQMZBzdaAxdVsxl9ezt1+mQcz7f9D5LAxzHAwAAAGNBM+Po9nlb6/w/3Kt8d0rP//0m/eUb5+ucy28ckuMzjh7fXNdVoVDoVWF3xx137FVE5K677tLatWvlOI4eeughLV26VP/93/+t9evXa/ny5broooskSaeeeqp+9KMf6dFHH9V+++1Xc6xDDz1URxxxhPx+P589AAAAAMA4RtAXwLhnmc1fnLrxh1/Wyw/epY9ffpPi02b02Xb2TrtKUp9BX7mu/F6P2mbNUjabVTKZ1KZNm7R+/XoZhiHTNOW6rhyn+SoLPcO/9cLBfQWG+wsTl9twUQ8AAGBya3Yc3cwY+vm/3axiLqsl7/1Acwd3XSU2bdTzz69SPB5XLBZTNBqVZVnNdh8AAAAYdrZtK5VKKZlMKpFIKJFIaIM1TfK3SH1cX/V4fWqfM1+SNHP7nfX2P5bpkf/9tRYfcYLsYkHZVKKmqm/3hnWKtk1tqk+eAVwPx/BzXVfZbLYmtNtzWf4qP7dtu9d+5s6dqylTplSeF4tFrVu3Tk899ZQOP/xwWZalDRs2aM2aNWppadHTTz9d0/bVV1/VwoULa/ZpGIbC4fDwnTwAAAAAYMQQ9AUw7kU8pkypz+nSXNfVTT+6QC/ee5vO+c0NmjJzbr/7ffeVFyRJ0fZpDduYhqFt5s7WUe/51/TFrutq9erVeu655/TCCy8onU5r2rRpOu200yRtvuhWLBZVKpUqjxt99WxTKpWUTqcbtq93gbCR6kDwQIPDzYaJvV4v03sBAACMUf2Nowcyhn7qxmu03YFHKtLa3tzBXVcbV7+tvy69p/KSYRiKRCKV4G8sFlM8Hq88j8fjCofD3LAGAACAIeG6rtLptBKJRE2QN5lMVp53d3fLdf9VQdfv98u3y8HS1Lik5selruOoVMxr5nY7y/J49cYTD2jHQ4+TJK1b8bq61rytOYt373c/pqSwh+utw8m27V7B3EaP0+m0stlszc+ItPlvm2AwqFAopHA4rFAopNbW1srj8rL6cc+bHr1er372s5/pZz/7mSSpu7tbhx56qD7+8Y9r1qxZevPNN3XggQfK6/UqmUzq85//vKZObS4sDgAAAAAYfwj6Ahj3OkMeLdvQd5sbf/hlPXv7dTr957+XPxRRav1aSVIgEpM3ENSGt5Zr2R1/1aL9DlOopVWrX3tRt/70P7XVrvto+jY7NNyv83/Hr2YYhmbMmKEZM2boiCOO0PLly7VmzZoRCSU4jlMTDh5smLhYLFYqFDdq3yzLspoKBw8mUFy9nupvAAAAA9PfOLq/MXTZ+lVvasUzj+rMi/7Q/MFNU0ftu4e2O3LPhqGKNWvWKJlMqlQqVTazLKsmBFwvDMyUtAAAAHBdV/l8vmac2XOZTCZrCid4PJ7KmLK9vV3z58/vNd70+/1atj6nO97qbnjsOy7+rrbd91C1TJ+lfLpby+64TsufflgfueRPCkRj2v2ED+vWn35DwVirAuGobrrwK5qzeI+mgr71rkejb8VicUDVdnO5XK99mKZZE9KNRqOaNm1aTVC3ehkIBIasAIbjODJNU6VSSccee6yKxaK8Xq9+9KMfaenSpZoyZYqmTp2qzs7OITkeAAAAAGBsMtyet5kCwDizJlPSVa909dnmK7t21H395G9dpN3e9yF1rXlHf/r6uVrzxssqZjOKT5uhHQ4+Vgef/TkFItE+933Wti2T7uKq67oDChTXW9/sNs3+mjJNc9jDxOVAMcERAAAwEfQ3ju5vDF1258Xf09Lb/6Iv3fLMgD7MbmYcXZ4Gt7+ARvWY0efz9VkVOBaLyev1Nt1PAAAAjD3FYrHX2LDnjWOFQqHS3jCMujeMVY8Xg8FgU9f9+htHX/ft/9DrTzyo1Pq1CkRi6ly4vQ4863wt3PugzX3P53Tbz76hZ++8XqVCQdvsc7CO/8qP+pxZrtpkvB5dVg5wNxPYLS/rFa3wer11q+rWC+6GQiFuJgQAAAAAjDqCvgDGPdt1dfHzG5WzR/7tLGAZOn+nKbK4yDcsXNeVbduDDhM3+3qhUGg6UCypz2BwvXDwYAPIXDwGAADDaaKMox3HUXd3d58hj3Q6XbNNKBTqM+QRjUaHrAIXAAAABsZxHKVSqT5v9spkMjXbhMPhPm/2ikQiQza+myjj6LHAcRxls9mGId16jx3H6bWfQCDQMLBbL7zLjX8AAAAAgPFmct7yC2BCsQxDS9oDemxtViN5adWQtKQ9MGEuqo5FhmHI4/HI4xn+X1e2bQ86TNxzXS6Xa7hN9XSA/ekrIDwUYeLy64RYAACYnCbKONo0zUqgo5FSqVQ3IJJIJLRy5UolEgnl8/l/9dEwFIlEagIiPQMj4XCYG7MAAAAGyHVdpdPphjdoJRIJdXd319yU7/f7K2OwmTNnarvttus1ThuJ64dlE2UcPRxs2246sJvJZJTNZnsVYDAMo1dAt62trW5gNxwOKxgMyrKsUTpjAAAAAABGBkFfABPCLu0BPbo2O6LHdP/vuJgYLMuSZVny+/3DehzHcZoODPe3vjz1XL1tSqVS032yLGtYw8TlLwLFAACMPZNlHO3xeDRlyhRNmTKlYZt8Pt+wKvDq1auVSCRqbtqyLKvPqsCxWEyBAH8vAACAySWXyzWswlte9hxTlcdPbW1t2mqrrXpV4x3u63WDMVnG0YVCoWFIt95r1TfPlVmWVRPOjcVi6uzsbFh1NxgMckMdAAAAAAA9GO5A5ioHgDHs9lUpPbchPyJVFAxJi9v8OnpOdASOBgyc67oNQ8P9hYnrtelrm2aZptlUOHgglYwbBYr5MAAAgOYxjm6O67rKZDJ9Vp9LpVI1Fcl8Pl+fVYFjsRjTBgMAgHGjWCz2Gv/0fF4oFCrtDcNQNBrtczwUCoXG7XWc8TaOdl1X+Xy+V1C3OrDb8/V6xQR8Pl/dqrr1qu2GQiH5fL5x+28MAAAAAMBYQdAXwISRtx395sVNSpfcYb24akgKewyds32r/BYVSjG5ua4r27aHPUxcLBZ7TePXiGEYTYWDB/p6zzYej4cPKQAAEwLj6KHjOI5SqVTDCnaJREKZTKZmm1Ao1DD4Eo/HFY1GmRkBAAAMu/I4ptEMB/XGMeFwuM8ZDiKRyIQex4z2ONpxHGWz2aar7WYyGTmO02v/wWCwV1XdeoHd8mOPh8lCAQAAAAAYaQR9AUwoy5MFXftGctiPc+qCmLaK+Yb9OAD+pWegeDjCxKVSqWb6yP5sSRXi/gLF1esJFAMAhhvj6JFTKpV6hWd6LqunPC5XwusrRDOeK+EBAIDhV56ZoK/xR8+ZCfx+f5/jj1gsRuBTIzeOnrvuRVlda2qCvNlstlc7wzAahnQbvT6Rw9gAAAAAAEwUBH0BTDhPr8vq7rfTw7b/I2aFtWtHcNj2D2B0OY4z4HDwYNrXm/qwkXIF4WaDwYMJE3u9Xj7YAYBJjnH02JHL5RpWBS4vq29OsiyrbginOozj9/tH8YwAAMBw6mvsUH7M2GH4DPc42vPq44ol3ukzsFteBgIBbgADAAAAAGACIugLYEIqX1w1pCGZNq28H8IJAIaK67qDDhMP9PVmmabZZzC4Xjh4MAFk0zT50AkAxijG0eNDdVW+RtWBqcoHAMDEMNjZAMq/33v+vmc2gMFxXVe5XK5STbfn8l0rrn+2L5RcRzK2/Ebq8jj68Flh7cY4GgAAAACASY+gL4AJa3myoFtXppQuuVsUUjAkhT2Gjp0bnfTTDAMYf1zXValUGnSYeCCB4maHlYZhDHuY2Ov1yrIsPrgEgEFgHD0xOI6jVCrVZ1XgTCZTs00oFKoJAvUMBkWjUWYAAABgCJV/X/cM8lY/b/T7utENPPy+bo7jOMpkMnWDu41er3fdIxgMVqrpGh2ztb5ze5VMr7QF1yMYRwMAAAAAgJ4I+gKY0HK2o3vfSevZDfkBVyUrt9+5za9DZoblt7hADgCNuK4rx3EGHSZutL7ea47jNN2v4Q4Tl9cRKAYw0TCOnhyKxWKvMFHP54VCodK+Z4XAeksqBAIAsFlfFfjLz3tW4Pf5fH3edBOLxeT1ekfxrMauUqlUE9StF96tfpzNZnvtwzRNhUIhhUKhSni3+nHP14LBYK9QNeNoAAAAAAAwHAj6ApgUEgVby9bntHR9Tjl789ueKak6Klb9PGAZWtIe0C7tAcV91gj3FgDQF9u2m64y3EybRtvYtt10n+oFgZt9bSBhY6oyARhpjKORy+X6DAInk8ma35kej6cm/FtvunC/3z+KZwQAGK+KxaLWrl1b+f0y2vL5fN0Qb/Xvy1KpVGlvWVbd4G7180AgMIpnNHa4rqtCoTCgarvVNyeVeTyeuiHdeuHdcDgsv98/ZDcsMY4GAAAAAABDiaAvgEnFdl2ty9pakylpTaakdMlRyXHlMQ2FPaY6Qx51hjzqCFqyqEIFAJOa4zhNVxkebJi4vK5ZlmU1FQ4e6Os921gWHyoOlddff12nnXaajj76aH31q1+V1+vVT37yEz333HMyDENHHXWUTjnlFHk8ntHuKtAnxtFoxHVdpdPpmmBTz2XPaoV+v7/PIHAsFhux98WXX35Zd955pz70oQ9p6tSpI3JMAEDfVq9erd///vc6/vjjtWjRIr3++uv6yEc+okwmI8dxtM8+++hHP/qRotHosPWhVCr1+p3W84aXfD5faV+uet+o4v1kr3rvuq6y2WzT1XbT6XTdm2/9fn9Tgd3yOp/PNwpnW4txNAAAAAAAGAp8mgxgUrEMo3LxFACAvpimKZ/PN+wfDLquO6hAcb0wcT6fV3d3d8NtmmWa5hZVIW6mOrHX65VlWRP+g+6f/exnWrFihSTJ6/XqO9/5jt59910deuihMk1Tl112maZMmaIjjzxydDsK9INxNBoxDEORSESRSEQzZsyo28ZxHKVSqbrVDt999129/PLLymQyNduEw+E+w1KRSGSLK91v2LBB55xzjp544gntuOOOOvTQQ3XjjTfqu9/9rnw+n1pbW/X1r39d++yzzxYdBwAwMD/72c/005/+VFOnTtWiRYt0wQUX6IwzztA555wjSWppadHJJ5+sQw45ZFD7dxxH3d3ddX8vlZfpdLpmm1AoVPk9NHfu3F43qUSj0Uk1A4tt28pms70Cu42q7mYyGdWrOdMzrNva2loT1O0Z3h2PN6UyjgYAAAAAAEOBKwsAAADAKDIMoxKAHU6u68q27S0OE5cfZzKZuu0LhULdD3D7Ovdmg8GDCROXH49koNhxHJmmqU984hM65JBD1NXVVZmC9+9//7uOPPJInXnmmZKk73//+5UgMABMVKZpVgJRjRSLxYaVE5cvX65EIlEzJXe5cmK9asDlZV+VE1euXKmf//zn2n333dXZ2amZM2fqpZde0le+8hVdeeWVmj9/vv785z/ru9/9rm666SYqrwPACHn22WeVTCZ12GGHVSrmrlq1Shs2bFB3d7fWrVtXee+ux3VdZTKZhpXmE4lEr0rzPp+v8rujs7NT2267ba/fKcP999poK/+NV6/Cbr3Xcrlcr32YplkTzI1EIpo6dWrDqruBQGBShaMBAAAAAAC2BJ9SAAAAAJOAYRjyeDzyeDwKBoPDeqzqQPFAw8Q9X8vlcg3X15vKtZH+gsH1wsPNhIkjkYgCgUBNkMw0Tf35z3+W4zg67rjjdPvtt8swDBWLRV188cX64he/qIcfflj5fF4HHXSQjjvuuOH4ZwCAccXr9aqtrU1tbW1117uuq3w+33AK9XfeeUfJZLLmd8Mhhxyifffdt1f1v9WrV+vSSy/V7Nmztd9+++k///M/FQ6HtW7dOk2ZMkWRSEQdHR2aPXu2/vGPf4zL6oEAMN64rivDMPStb31LX/va13T11Vdr1apVyufzuu666/SpT31KF110kVKplD7wgQ/UDd7atq1HHnlE99xzT+U1y7Iqgd3W1ta61Xj9fv+EmmnEdV0VCoWmq+2m0+m6M8B4vd6acO6UKVM0a9asmteqH0+07yMAAAAAAMBYQtAXAAAAwJCyLEuWZVWq2A4Xx3EGHSbu+Xr5w+1660qlUsM+HHTQQdp///1rQmCbNm3SpZdeqiuuuEKhUEiFQkHTpk2T1+vVM888o3nz5mnPPffU2rVr9eSTT1YqlVUrFApavXp1w7Axla8ATDaGYSgQCCgQCGjatGl127iuq3Q6XQkAt7e31w0cXXbZZWpra9PnP/953XrrrZo+fbpaW1s1e/ZsHXbYYTrwwAPl8/m000476YorrpBhGJUAGgBgeBiGoRtuuEE77bSTdt99dz300ENavXq1/H6/Xn/9dc2ZM0eXXXaZZsyYoXPPPVff//739Ytf/EItLS01+9h2223V3t5eCfKGw+Fx//7tuq6y2WyfFXZ7Pq53U2QgEKgJ5k6bNq1htd1QKDThqxgDAAAAAACMJwR9AQAAAIxLpmnK7/fL7/cP63Fc120YFo7FYr2CA48++qhee+01HXLIIQqHw3rrrbd0zz33KJVK6bvf/a4efPBBbbPNNpKkI488Unfeeac+/vGP14R3169fr6uuuqphn0zTbKoqcbOViRutM01z3AcjAEwehmEoEokoEolo5syZddusWrVKt956q9avX68VK1Zo2bJlKhaLevPNN3XLLbdo/fr1euihhxQOh/W5z31O77zzTmXf0ubfCV1dXXr33XcrlSAjkQg3YABAPxzHUXd3d+VmjJkzZyoej9e8v956660KhUJ66aWX9OCDD+rpp59WIBDQU089pQULFmjGjBmSpKOOOkpXXXWV1q1bVxP0NU1TU6dO1dSpU0fjFJtm23bdqrqNqu5ms1m5rluzD8MwKhV1y+HcKVOm1A3slr+oUA8AAAAAADB+EfQFAAAAgD4YhlEJvjbjmGOO0euvv65UKiXTNHXSSSfp4IMP1sknn6z/+I//UC6Xq7TN5XJ1g7RTp07Veeed11Rl4nptylP1NtqmZ1CgmXMfrjCx1+uVZVkEigGMiDlz5uiWW27RSy+9pA0bNmjp0qXatGmT7rnnHv3iF7/QL3/5Sy1atEiStGjRIj311FM66aSTFIlEJG0Oqq1YsUI33XRTZZ+maSoajVaqR5YDwNXTwgeDQd7nAExY5Yqz5RBvIpGoeZxMJpVKpeQ4TmWb448/XjvttFMlfJpOp2UYhu6//3698cYbcl1XXq9Xu+66qyKRSCXYG4/HtWzZMgUCAS1cuHC0TrlGeYaQ/gK75WW9GT0sy6oJ58ZiMXV2dtYEeauX/F4BAAAAAACYXAj6AgAAAMAQ8/l8amtrk7Q5zLtw4UJ1dnbq4osv1mc/+1nNmjVLrusqHA7r2GOP7VUJ0uPxVLYfaq7rynGcPoPCzYSJy1+5XK5h2+owR3+aCQYP9PV6bQhEAJg2bZqmTZsmSbr66qv1oQ99SOedd57uvvtuvfHGG5V2S5cu1W677VbzvmFZlnbZZRctWrSoJsBWvXz77beVTCZr3gM9Hk9N8Lfecrgr1APAYOXz+YbveeVlqVSqtDdNs/Le1traqrlz59a858Xjcfn9/pr310gkol//+teV56tWrdLJJ5+sXXbZRUcffbRKpZIOOOAABYNBzZ07V9/97neH5Vxd11U+n++32m7142Kx2Gs/Pp+vJpjb1tam2bNn9wrslpc+n49xKgAAAAAAABoy3GZLOQEAAAAABmz16tUKh8OKxWIqFot68MEHtWHDBmUyGe27775jphLZcKgXKB5MmLi/bWzbbrpP5cDvQKsQDyRM7PV6e4W3AYwtruvKMAxdffXVmjt3rvbbbz+tXLlSZ599trq6uuTxeDRv3jz98Ic/1Pz58we1/3Q6XbeqZXV1y2qBQKBhEDgejysajcrj4Z59AEOrVCoplUr1+X5VPSOFJEWj0T7fr8Lh8KBDq7Zty7Isbdy4UbfddpuOOOIITZ06VbZtyzCMAY+xHMdRNpttutpuJpOpe7NaIBDoFc5t9DgcDvN+DQAAAAAAgCFF0BcAAAAAMK45jlMTBh6OMHF5fbMsyxryMHG99eXprgEMnVQqpXfeeUetra2Vyr/DwbbtSriu51T35efZbLZmm0gk0m+4jhsNAJQ5jqPu7u6GVXgTiYTS6XTNNsFgsPLeUv3+Un4cjUbH/PjjT3/6k9atW1cJ8vZkGEavYG4wGGxYbTcUCvHeCgAAAAAAgFFF0BcAAAAAgCa4rlsJ/A4mTNzfdtXrmv1T3TCMYQ8TlwPFTCcNjLxCoVAT/K0X1Ku+CcE0TUWj0ZpgXs+gXjAY5P/zBGO7rtZlba3JlLQmU1J3yZHtuLJMQxGPqc6QR50hjzqCliz+7ScM13WVzWYb3iiQSCSUSqVqqtN6vd4+3x9isZh8Pt8ontWWK5VKuummmxoGdsPhsAKBAO+DAAAAAAAAGFcI+gIAAAAAMIa4rivbtgcdJh7I6/Wmpm5kuMPE5XUEb4Dmua6rXC5XNwBcvewZ9KuuBlyvYud4D/pNFomCrWXrc1q6PqecvfkSrymp+p29+nnAMrSkPaBd2gOK+8Z2RVZsDvr3VfE7kUioVCpV2pum2bDid3k53AHX8ntSJpNROp2uVNSt9ziXy+m8886jUi4AAAAAAADQBIK+AAAAAABMUs0EiputQtzXa7ZtN92nZoPD/QWG+wsbEyzCZOG6rrq7u/sMC3Z3d9dsEwgE6oYEq8PBlkVQdLTkbEf3vpPWsxvyMiQN5OJuuf3ObX4dMjMsv8V74WiwbbvPcH4ikVAul6vZJhKJ9FmNNxKJDHmI13EcZbPZSji357JekLfeTUTBYLCmqm65su5uu+2mWCzGTT4AAAAAAABAPwj6AgAAAACAYeU4zoADw32t76ticbMsy9qi0HCzlYsJQ2I8sG1bqVSqJgjcc5nNZmu2KYcOG1UFHo7QIaTlyYJuWZlSpuQOKODbkyEp7DF07NyotopRwXkolcP1fVXj7RmuDwaDDavwxuNxRaPRIfl9UiqVGgZ26z3u+f9e2lw5uDqs29fjcDisYDDIzTUAAAAAAADAFiLoCwAAAAAAJgTXdfsMAQ9FmLj81SzTNAcUDG42SNyzjWVZhCoxrAqFQq/QYs9l9f8N0zRrQsD1wouBQICf2wF4el1Wd7+dHnAV30bK+zl8Vli7dQSHYI8Tn+u6yuVyff4/SCaTNVVtvV5vw+rY5aXPN/Cwteu6KhQKvcK5fYV3C4VCr/14PJ6aYG7Pqrs9l36/n/+3AAAAAAAAwAgj6AsAAAAAADAAruvKtu1hDxMXi0U1e9nGMIxhDxOXnxPwQj1jKQA5EZVDvsOFsO9moxloL/8farbabjqdlm3bvfbj9/v7rLDb8zX+jwEAAAAAAABjH0FfAAAAAACAMapnoHiow8Tl9fXCYo30FRAeaJi40XqPx8NU7xOQ4zhKp9M1wcnqEHAikVB3d3fNNsFgsM8QZTQalWVZo3RGg5NKpdTd3a3p06c31X55sqBr30gOc6+kUxfEtFWs/9Dn6tWrFYlEFI1Gh71PQ8m2baVSqT5DvNlstmabSCRS+ZmrF0YPh8MN36scx2lYbbc6uFv9vN6l+p7B3L6q7YZCoXH3/wEAAAAAAABA/wj6AgAAAAAATHKO4ww6TNzfNtXrSqVS032yLGtYw8TlLwLFY4tt23UDmNXLXC5Xs005jNkokBmJRMZUJerHHntMd955p5YsWaIjjjhCgUCgYduc7eg3L25SpuRqOC/iGpLCHkPnbN8qv1X//0Qul9Odd96pZcuWaeedd9YJJ5wwjD0aGNd11d3d3TBAXi9EHggEGgbIyz9H1aHZUqnUdGA3nU73+jmVNlcArldVt1HV3WAwyHsUAAAAAAAAAIK+AAAAAAAAGBmu6w46TNzfup6vN8s0zabCwQOpZFxvvWVZYypsOp4VCoU+qwInEomaULlpmg2rApeXgUBgRP59XNfVE088oXw+r4cfflh+v1/HHnustt1227rtb1+V0nMb8sMa8i0zJC1u8+voOb0r9b7yyiu6+eabK1Vn99xzTx199NEj0KvN37NcLtfnv3kymZTjOJVtPB5Pn+HvWCwmSTVB3Xrh3erHhUKhV9+8Xm/DkG691/1+P+8DAAAAAAAAAAaMoC8AAAAAAAAmFNd1Zdv2oMPEA6lc3OylNcMwtig03GzlYo/HM+mDhK7rKpvN9hkETqVSNcFQr9fbZzA0Ho/L6/Vucd+KxaJ+9atfKZFIaKeddlIqldKbb76pHXfcUUcddZTC4XClbVfe1qUvbtriYw7UuTu0Ku7bXMk2nU7rtttu04svvijDMBSJRPoMJg9GsVisG+KtXlaH903TVDQarfn3iUajCgaD8nq9sixLpVKpJqybzWZ7BXlt2+7Vl0Ag0FRgt/x4KH4mAAAAAAAAAKA/BH0BAAAAAACAQXBdV47jDFmYuK/21aHU/gwkGDyYMHH5azwHih3HUXd3d69AafWyu7u7ZptgMNhnEDgajcqyrH6PXSwW9fjjj+uhhx6S67raeuuttXz5chmGoaOPPlo77LCDDMPQ/e+m9djabN1qvo/9+Uo9/uertGn1KknS1PmLdOjHP69t9ztMknT99z6v1594QMl1a+QPhjVn5z101L9/Q1O3Wthn3wxJe08L6oDpIb3wwgu69dZbK5Vs99tvPx1wwAEDCrfatq1UKtVnNd5sNluzTSQSUTQaVTgcVjAYlM/nk8fjkWmachxHpVKpV3A3m832Ct0bhqFgMNgwpFvvcTP/fgAAAAAAAAAw0gj6AgAAAAAAAGOcbdtNVxkeTGXi8le9KqeNWJY1oGBwf0HiRm1M0xzG72xjpVKpElJtFAbO5XI120Sj0Urwt+cyHo8rHA5XAtKZTEYPPPCAnnzySYVCIcViMb377rvadtttdeTRR+t3K0vK2fUv3b50/50yLFPtc+bLdaVnbv6jHvz9JTr/D/do2oJFeuK636tj3tZqmT5LmcQm/f2yH+vdV1/Ql25+WmY/YVa/KU159natWP6mJGnu3Ll673vfq/b29pp2rusqnU73+f1JpVI12/h8PgWDQQUCgUr1XUmVAG8+n1cmk+n1fZU2/7w1U223vAwGg+M6jA4AAAAAAAAAZQR9AQAAAAAAAEj6V+ByOMPE5fXNMk1zyMLEfa03TXPAwdB8Pt9nVeBEIlFzrpZl1VQEjsVi8ng8evPNN7Vq1SrFYjEVCgW50SnSPicOqC/fOWihjv7MN7XHCaf1Wrf61X/oog8epC/c+ITaZm/V774K918rf75b+++/v9rb22uq8nZ1dSmRSCiVStVUmjZNs1J91zAMua4r27ZVKBTqBsh9Pl+fFXZ7vubz+QjuAgAAAAAAAJiUPKPdAQAAAAAAAABjQzms6fP5hvU4ruvWhIG3JExcKBSUTqcbrm+2zoFhGFscJp46dapmzJhR09a2beVyOWUyGaXTaXV3dyuZTGrTpk1auXKlkslkpY/JZFKSZE1rleW6TQVbHdvW83+7SYVsRnMW79FrfSGb1tM3/UGtM+cq3jmzqX8bIz5VuVXr9be//a3yejkI7ThO3e+pz+erG9JtFN71er399gUAAAAAAAAAQNAXAAAAAAAAwAirDtUOp3JV2cGGiXu+ns1mG4aNBzJxWnU4eMqUKTJNU5JUKpWUTqflxNsl15EMq+E+1rz2on511tEqFfLyBcM67adXadr8bSvrH/3Tb3XHf31bhWxGHfO21sf++8/yeJsIcLuOzJYOedZsrrgbiUQUjUYVDocbVtsNBoOyrMZ9BQAAAAAAAAAMnuEO5Ao0AAAAAAAAAKAX27YHFSZOp9Nau3atNmzYoFwuJ9M0Ze1+lIxp8/qs6FsqFtS1+m3lu1N6/u836anrr9E5l99YCfvmUkl1b1qn1Lq1evDq/1bin6v1yStvldcf6PM8XNeVs2a5Sk/erlAopAULFmjhwoWKxWINqx2Xg8oAAAAAAAAAgKFH0BcAAAAAAAAARlChUNBLL72k5557Tm+++aYsy1JHR4dSqZTS6bSC+58oZ8qMAe3z8k+epLZZ83Ti13/aa12pWNB3Dlyo93/j59rlqPf3uy/nn6tUfOzmpo9tWVZN8LfRV731A9mGqsEAAAAAAAAAJiPPaHcAAAAAAAAAACa6YrGo1157TY8//rjefvttOY5TCbKWSiWtWbPmX23zeZmu22dF355cx1GpmG+w0pXkyi40WF/T1JVrlyRtDvCapqlisVjTprOzU1tvvbXa2trkum6/1YtzuZxSqVTDisfNMk1zUIHigba3LGtA33sAAAAAAAAAGE4EfQEAAAAAAABgCziOo1Qqpa6uLv3zn//UunXrtHHjRiWTSaXTaeXzedm23Wu7csjV5/OptbVV7e3tamtr09q2Tq2yDTkNjnfHxd/Vtvseqpbps5RPd2vZHddp+dMP6yOX/Ekb316h5+66QQv3Pljh1jYl/vmu7r/yInn8AW27/2H9notlGFq41RwtmnOSksmkEomENm7cqLVr16q7u1uu62rNmjWVYHIoFFIsFlM8Hq8sqx9Ho1GZptnweK7ryrbtfsPCzawvFArKZDIN2zc7uZ1hGMMeJi6/RqAYAAAAAAAAQH8I+gIAAAAAAABAA67rKp1OK5lMqqurS+vWrdO6devU1dWlVCqlbDbbsCqtYRjy+/1qaWlRLBZTKBSqBIFDoZD22msv7bHHHgoGgzXbLVuf04q3uhv2Kb1xvf70jfOUWr9WgUhMnQu310cu+ZMW7n2QkuvWaPnSx/Tw//5a2WSXIm0dmrfrPjr3ytsUmdLR7/k6krbuaNGO7Z291zmOXn31VT355JOKx+OaO3euEomEEomEksmkVq5cqUQioXz+X5WDDcNQNBrtFQauDgWHQiF5PJ5e34eh5LquHMfZ4jBx+Xkul2u4jeM0imj31ldAeKBh4r4CxX2FrQEAAAAAAACMbYbbbBkDAAAAAAAAAJhgcrlcpXLtpk2btH79em3YsEHJZFLd3d3K5/MNK8FalqVgMKhIJKJ4PK729nZNmzZN7e3tamlpUSAQqKnYumzZMj355JPafffdtdNOO8njqV+HYU2mpKte6RqO023KWdu2qDM0+BoR+Xy+Ev6tDgJXL6srHFuW1asacM/ngUBgKE5tRPQMFA82TNzfNqVSqek+WZY1rGHi8heBYgAAAAAAAGDoEfQFAAAAAAAAMCEVi0Ulk8leQd5NmzZVqvFWB0578nq9CoVCisViam1tVUdHhzo6OtTa2qqWlhb5fL5h6bfturr4+Y3K2SN/6TZgGTp/pymyqgLKQ811XWUymboB4PIylUrVBKx9Pl+fQeB4PN4wOD1Rua476DBxM9tVr2uWaZpNVxkebJi4HCg2hvFnFAAAAAAAABhLCPoCAAAAAAAAGHccx1EqlaoJh27atEkbNmxQIpFQOp1WoVDocx9+v1+RSEQtLS1qa2urCfGOdnD0/nfTemxtViN58daQtPe0oA6cER7Bo9ZX/vftWRW4+nkmk6nZJhQK1QR/e4aBo9EoFWcHwXXdSgXhwYSJG62r91qzH1cYhtFUMLivwHAzYWOPx0OgGAAAAAAAAKOOoC8AAAAAAACAMaVexddykHfTpk1KJpPKZrN97sMwDAWDwUo13vb2dk2ZMkUtLS1qaWlRNBqVZVkjdEYDlyjY+tU/No34cc/doVVx39j9vlQrlUq9gsA9f2aqw96GYSgajfZZFTgUChHsHCWu68pxnEGHieutb9TecZym+7UloeGBVC7m5w4AAAAAAACNEPQFAAAAAAAAMKLy+XyvcGY5yJtIJNTd3d1vEM80TUUiEcXjcbW1tdWEeOPxuKLR6LgPzt2+KqXnNuRHpKqvIWlxm19Hz4mOwNFGTi6X6xUA7hkOtm270t7j8dSEgOtVB/b7/aN4RhgKtm03DAEPVZi4WCzW/Gz1p1xBuK9gcL3w8EDCxF6vl6rWAAAAAAAA4xBBXwAAAAAAAABDplGV1UQioa6uLiWTSRWLxZptTNPsFewtBy5bWlrU1tZWE+JtaWmZFJVX87aj37y4SemSO6xhX0NS2GPonO1b5bcmVwiwunp0vTBwMplUKpVS9WV0v99fNwBc/ZrH4xnFs8JY4ThO3SDwUIaJy+ubZVnWgMPBA23v9XrHdMV0AAAAAACA8YagL/D/2bvvOLnqev/j73Omz+yUTbLJpveQUBICSBVCkWaISFFQBFTACveqiHLF609FvYpiAQsICIpIs4FgKAJSlBqS0EIJhISEJCab7Mzs7NRzzu8PnHFmd2Z3drN9X8/HYx9nzjnf02aTme+e8z6fAwAAAAAAgLrYtq1kMtkpyJtIJNTa2qp4PK50Ol2xTLF6ZMcgr8/nUywWU2NjYynEWx7k9fv9A3ZcQ9m6RE63vp7o9+2cNjuimRFvv29nOCr+u69WDbg43t7eXrFMKBTqsipwQ0MDlVXRZxzH6VU4uKftc7lc3ftkGEafhom7ChSP9Js+AAAAAAAACPoCAAAAAAAAKFU2rVaNtzjsWNnUNE2ZpinHcTo9oj4UCpWCvMXwbvnQ6yVUWq8V29K6f2Oq39Z/zJSQ9mkK9Nv6R4N8Pl8R/K32/6c8JGkYhsLhcEU14I7VgUdD1WoML8XP+nqCwbXadLVccV4ul1NPLl31d5i4OJ3/jwAAAAAAYLAQ9AUAAAAAAABGgWw222VF0kQiUfH4d8MwSsEmy7I6BXkjkUipGm8xnFisyhuJROR2uwf6EEe0YtjXkNQXJ3SL6yHkO3AymUzVAHD5sPz/mdvtrlkVuDj0+XyDeERA/7Esq9dh4p5M7/jd1pVqIeB6p9U73+12U+0bAAAAAAB0QtAXAAAAAAAAGOYKhUKn0GDHIG82m61YpvjI8+Ij38vDTqZpKhqNVq3GG4vFFA6HCSINgnWJnO5en1Sq4OxS2NeQFHIbWjo9rJkRKisPFY7jKJVK1fw/HI/H1dbWVlHp1OfzVQ0Al1cJJnQP1GbbdreB4nqqENczrV4ul6vuKsO9CRMX57tcrn58ZwEAAAAAQF8i6AsAAAAAAAAMYbZtq62trSL413GYSqUqlimvCmhZlnK5nGzbLs13u901q/FGo1E1NDTwiPIhKmPZemhTSqtbsj2u7ltsv2isT0dODsnnIqw93FiW1e3nQXt7e8UyoVCoIvhbHgQu/n8fzOD+F7/4Rf3zn//UhAkT9Itf/ELNzc2S3rmBIZVKKRqNDtq+AX2leFNNT4PEtdp0tUy9TNPcpdBwvZWLXS4XfQoAAAAAAHYRQV8AAAAAAACMaoVCQYZhlCrb7dy5U9/61rf02muvybIs/d///Z8WLlzYL9t2HEft7e1Vw3rl1TzLT+G5XC75fL6KarzZbLaijd/vrxnijcViCgQChG6GuXjO0qrtGa3cnlHGeud3b0qyy9qUj/tdhhaP82vvcX5FvVRxHMny+XzNCt/FYS6XK7U3DKMiBFytOnB/fWY4jqP77rtPmzZt0uc//3mtWrVKM2fOVCaT0RVXXKGbbrpJpmkqEonoxz/+sRYvXixJymQyWrFihcaPH68pU6YoEAj0+b4Bw5HjOLIsq9/DxPl8XvVeXjQMo0fB4N6EiYuv6dv0rb///e+6+OKL9dRTT+mqq67SJz7xCUlSa2urvv/97+uVV16RaZo644wztGzZstJNI/fff7/efPNNeb1eHXnkkZo6depgHgYAAAAAjAgEfQEAAAAAADCibdmyRZs3b9a8efMUCoUkSS+//LLOP/98xeNx5XI5nX322frCF74gSbroootkWZaWLVumfD6vz3zmM3rmmWcUi8V6vO1sNtspaNdxvPxx3qZpyu/3y+PxyDAM2batXC6nTCZTsd5ihc7y8G75a5/P1/s3DMOK5Tjalra0pb2gLe0FpQq2CrYjt2ko5DbVHHSrOehWU8AlFwEo6J0gYDab7bIqcCKRkGVZpWXcbnfVasDlw1353Fm9erU+/vGP67777tPYsWP16KOPatmyZWppaZHL5dJ1112n66+/Xo899phaWlr03e9+VytWrFA2m5XL5dIvf/lLzZ8/vy/eHgB16hgo7i4YXG1+PcuUfxZ1pzeB4t4EkEdLoPjVV19VOBzWqaeeqtNPP12f/exnZZqmzjzzTDU3N+uwww5TKpXST3/6U33nO9/RYYcdpquvvloPPvigxowZo3g8rkgkoq9//eulau0AAAAAgN5xD/YOAAAAAAAAAP3lS1/6ku688069+uqrevjhh3XooYdKkv77v/9bZ599tk444QR5PB5FIhEtXbpUu+22m372s5/phRde0KxZsyRJkyZN0o033qhPf/rTcrv/czrNcRzt3LmzyyBvNput2J9AIFCqxmsYhkKhkLLZbCnIa9u22tvbS9U1y8O75UOPxzNA7yCGOpdhlMK8QD0Mw5Df75ff79eECROqtnEcR6lUqmpV4O3bt+v1119XMpmsWMbv93dZFTgWi3UKxzmOI8MwtGbNGoXDYQWDQUnv3PSw55576s0339Ts2bOVy+W0bds2SdJf//pX/fnPf9Zrr70mSfrtb3+r888/X3/7299k23apoiSA/uVyueRyueT3+/t1O7Zt91mYOJVK1ZxffuNVd1wuV5+GiWu1GezPszlz5pRuQit+PkvvVPr95je/qWXLlkmSzj///NJn9He+8x396Ec/0sknnyxJOuCAA/TII4/ogx/84MAfAAAAAACMIJz9BQAAAAAAwIh12mmn6bLLLtNBBx2knTt3lkJgjz76qD75yU+qsbFR27dv17ve9a7SI6jHjRunf/zjH6Wg79atW/Xkk0/qzDPPrKjqaxiGfvWrXymVSkmSfD6fAoFAKZgRiUSUz+fV3t6uXC4nSUqn08pms6UQbzG4W16VNxKJyOVyDewbBQBlDMNQQ0ODGhoaNHny5KptLMtSMpnsFASOx+PatGmTXnrpJaXTaUlSQ0ODLrzwwprbe/PNN9Xc3Fy6iWHu3LlavHix9ttvP0nS4YcfrjvuuKPUdtq0aaVlA4GALMvSli1bqBgJjECmacrn8/X70wocx+l1mLjjvEwmo2QyWXOZepmm2e9h4mK/tasqxe3t7fL7/aXg8U033aSvfOUr+t3vfqe2tjZ9+tOf1pIlSyS9893g9XpLywaDQa1YsULLli1TIBDo5W8HAAAAAEDQFwAAAAAAACPW4sWLJb0TMnvrrbdKAYW77rpL3/rWt/S5z31OW7du1Ze//GWNGzdOkvTNb35Tf/3rX3XrrbcqGo1qxowZikQiSiQSFUFfSZoyZYreeOMN5fN5ZbNZZbNZud3uiuq75SHeaDSqcDg86BXaAGBXuVyu0mdbLfl8vmp186JiRd833nijIqT7jW98Q42Njdq5c6eSyaQ+8pGP6PHHH9f8+fN14IEHauXKlfrDH/6gAw88ULfffru2bdumeDyu5ubm0joBoCcMw5DX660IqfYHx3FkWVavw8Tl83O5XKlKcbVlijexdWfOnDk644wzas7P5XIVFX2XL1+uQw89VO9617v08ssva+XKlaXP+c997nO69dZb9dZbbykYDGr9+vXaa6+96t4XAAAAAEB1BH0BAAAAAAAw4k2ZMkWbNm0qBcBaW1u1++6761e/+pWmTp2qk046Sd/61rf04x//WB/96Ee1ePFivf766zr66KP1k5/8RC+//HLVSpFz587V1KlTK4K8oVCIkBkASPJ4PKWbKKop3vSQSCR08MEHy+12y3Ec/eMf/9C3v/1tSVI4HNaECRO0du1aWZalo48+Wq2trbrqqqt05513KpVK6aCDDpLb/c7lDj5/AQxlhmHI7XbL7Xb3a4Vbx3Fk23ZdYeJQKNTlunK5XCkA/fbbb+uuu+7S8uXLNWXKFEnSokWL9PTTT2vy5Mn64he/qGuvvVZPP/20Fi5cqPnz52vKlClVn1bx85//XC6Xq+7Kwz2Zz3cBAAAAgJGGoC8AAAAAAACGjUKhoGQy2ekx8el0Wh/4wAdqLjdt2rRS5V2v16u///3vamxs1IwZMyRJ73vf+3T33XcrkUgoEolo0aJFWrRokSTp1Vdf1cyZM+X1emVZVkVQYd999+3X4wWAkeyqq67SNddco5UrV2rt2rVauXKlvv/976u5uVmvvPKKjjnmGHk8Hj322GP6/Oc/X/r8/cAHPlD6zD/55JM1depUTZo0qdP6b7/9dgUCgVJ19UgkUhpWC50BwEhhGIZcLpdcLpf8fn+v1lH+BIoJEyZIeufmi7Vr18q27dK8eDxesY1zzz1X5557riTpRz/6kb70pS/J5/NVrNu2bc2ZM6dT+LhYobjaj2VZde97eRi4q2BwrXn1ho15SgcAAACAgULQFwAAAAAAAEOCbdtKpVKdQrzlw7a2toplAoGAIpGIAoGACoVCqaJjUbGa14IFC/Tss8+WqpEFg0E98sgjpXYbN26Uy+VSJBLR1q1bde211+qJJ57Qv/71Lx144IH62te+JsdxCIYBQB8655xz9J73vEdvv/22XnvtNb3yyiuSpCuuuEKf/exndeONNyqbzerEE0/UqaeeKkm6++67tWPHDs2bN0+rV6/Wm2++qcsuu6xTZUzLslQoFLRx40a99NJLSqfTFfMbGhoqgr/lw2g0qoaGBipCAhjVLr74Yt16661av369TjzxRMViMa1atUpf//rXddZZZ6m5uVmZTEaHHnqoDjroIEnS73//e73++utqaGjQ888/ryOOOEJLlizptG7TNHXMMcf0aH9s266oRNyxMnF3lYvLp6XTaSUSiZrL1KtYkbg3VYh7sgx/gwAAAAAwHMdxBnsnAAAAAAAAMLI5jlO6oF4e5C0fTyaTFdXBPB5PKWzl9/tLIV7LspTL5ZRKpZRMJpVKpSRJF1xwgcaMGVN1+9dee62++tWv6tOf/rSmTJmik046SV/4whf0zDPPyDRNTZkyRT/5yU80d+5cpVIpPfjgg8pms5o9e7bmzZvX7SONAQD9I5lMyuv1lqpB/vWvf9Vvf/tbbdq0SRMnTtR3v/vdUnX2ruRyuU43kHT8Lsrn86X2pmkqHA5XrQZcHAYCAcLAAEa0dDqtbDarVCql9vZ2zZ07V5lMRk8//bQSiYQymYwOO+wwNTU1SZLuvfde3XvvvUomk5oxY4YuvvjiYRdSdRynIiDc2zBxPcvUe5neNM1ug8HVwsM9DSC7XC6+1wAAAIAhiqAvAAAAAAAAdlkul+syPFWsmFVkmqYikYgikYhCoZB8Pp9M05TjOMrn88pkMkomk4rH48pkMhXLRaNRxWKxTsPJkyfL7XZXXJy2LEunn366XnjhBU2fPl3jxo3TAQccoAsuuEDxeFypVErNzc08dhcARjnHcZTJZLr9Lut4Q0pXVYEjkUipkjwAAOUcx5FlWb0OE3e3XHFeLperO1Asqd/DxMVpBIoBAACAniHoCwAAAAAAumQ5jralLW1pL2hLe0FtBVuW7chlGmpwm2oOutUcdKsp4JKLi3UjkmVZnarvdqyKWB7Gld55JHp5xUOPxyPDMFQoFJTL5dTe3q54PK7W1taKALDb7VYsFisFeIsh3uJ4OBzmojAAYFA4jqO2traq34PFYVtbW8Uyfr+/IvjbMQgciUSGXbVL1I9+NIChwLKsXoeJexI0tiyr7n3qKiDcF2Hi4nRu6ASA4Yl+NAB0RtAXAAAAAABUFc9ZWrU9o5XbM8pY75w+MCXZZW3Kx/0uQ4vH+bX3OL+iXgIrw0W10FLHCoYdQ0uBQKAUVAqHw/L7/aVqvIVCQel0WslkUq2trYrH4xUXfH0+X9VqvMXXwWCQIC8AYNiqdXNM+XhXN8dUGzY0NPDdOMzQjwYwGtm23avAcFfza02rl8vl6tcwcfGHQDEA9A360QBQG0FfAAAAAABQIWPZemhTSqtbsjIk9eTEQbH9orE+HTk5JJ+Li12Dqfwx5LWqD3b3GPJwOFyqxmvbtnK5nNra2tTa2qrW1lYlEomKR8EGg8Ga1XhjsZj8fv9gvBUAAAwZuVyuyyr5iUSiotq9aZoV380dqwJHo1H5/X7CwEMA/WgA6H/FG0x7Eyau1qarZeplmmZd4eCeVDKuFSjm+x7ASEQ/GgC6R9AXAAAAAACUrEvkdNf6pNoLTo9OqHZkSAq5DS2dHtbMiLevdg8dlAeFagWGqgWFysNCDQ0NcrlcpYulqVRKiUSiVI03mUxWbDMcDneqxls+9Hr5fQMAsCscx1E6na4aAO7qRp2ugsCRSITv6H5GPxoARhbHcWRZVr+HifP5vOqNbBiGUVc4uKfTO853u90EigEMGPrRAFAfgr4AAAAAAECStGJbWvdvTPW4akItxfUcPSWkfZsCfbDG0cWyLCWTyS6r/aXT6Yplyh/9XQz2BAIBGYbRqbpvPB5Xa2ur2tvbS8sbhqFIJFJRhbe8Km8kEpHb7R7otwIAAHRg27ZSqVSX/YS2traKZQKBQEXwt3wYjUYVDoflcvG4296gHw0A2BUdA8X9ESYuFAqyLKvufeptFeJ6w8TFHwLFwOhGPxoA6kfQFwAAAAAAlE6q9hdOrlZyHEdtbW2dqvCWj3cM5/j9/k7BnEgkIp/PJ0kqFAql5YvVeFtbW5XNZkvrcLlcNavxxmIxhcNhmSaPtwMAYCSwLKtm5f/ieCaTqVimeNNQtTBw8UkABHIq0Y8GAAwXtm33e5i4OKyX2+3ucTi4u/bV2nCuAxh66EcDQM8Q9AUAAAAAYJRbl8jp1tcT/b6d02ZH6npsWvFUxXANkRQr53YM1HQclj9u2+12V4RqygM1LpdLjuMolUqVArzlYd58Pl9aj8fjqVmNNxqNEs4BAAAVcrlcl0HgeDxeEdYxTbOiCnB5v6U47vf7h21/o6f90KHWjwYAYChwHKfXYeKeTq+XaZr9HiYuBoqHaz8IGEj0owGg5wj6AgAAAAAwimUsW9e8tFPtBadPHo9WiyEp5DZ03u6N8rlqV1F5/fXX9Ze//EV77LGHjj766H7co97L5/PdBmLKLzaZpqlwOFw1EBMOh2UYhjKZTKcAb2trqxKJRMWjNf1+f80QbywWUyAQ4IISAADoM47jKJ1O17xxKR6PK5lMVtzA5PF4ugwCR6NReTyeQTyq2u677z6tWbNGJ5xwgmbPnt1l26HWjwYAYLRxHEeWZfU6TFxrXrVp9cZqDMPo9zCxx+ORy+Xi/A+GLfrRANA7BH0BAAAAABjFlm9I6rmWbL+eVC0yJC0c69Px08Kd5qXTad13331atWqVZs6cqfe9732KxWIDsFeVLMtSMpnsMsibTqcrlgmFQjUfcR0MBisem10e4m1tbVUymay4WFRcV3l4t/y1z+cb6LcEAACgS7Ztq62trcuboFKpykfyBgKBqn2n8puhXC7XgB9La2ur7rzzTq1bt0577723jj32WPn9/qpth0o/GgAA9C/HcWTbdq/DxNXm12pffvNUd/oiTFzPfALF6E6hUFAikdCYMWPqak8/GgB6h6AvAAAAAACjVGvW0lUv7Rzw7X56j0ZFvf8Jbrz88su6++67lc/ndcwxx2jx4sX9chHBcRylUqmKAErHYTKZrFjG7/fXDKBEo1H5fD61tbVVhHfLA71tbW0V6ysuWx7eLR8O1ep2AAAAu6JQKJRupqrVD8tkMhXLFJ+IUKsqcCgU6rc+47PPPqv7779fHo9HS5cu1fz58yvaDJV+NAAAGFksy6oZAu6rMHE+n694elR36g0PdxUaridQbJpUXB2uXn31Vd18882aP3++jjrqKI0bN65mW/rRANB7BH0BAAAAABilHn47pSe2pqtWT3ji9uv15O03aOfmDZKk8bPm66hPXKjdDnmPJOmX552odSv+WbHM/qecrZMu+UGX2zQkHTghoCWTQkqlUlq+fLlefPFFzZs3T0uXLlUkEunVsTiOo2w222V4JJFIVFzIcLvd3VaScxynUxXe4jZaW1srqvuapqlIJFJRhbe8Km8kEhmUynQAAADDQTabrdqHK+/fFQqFUnuXy1URAq51U1Zvw8CJREJ33323Xn31Ve2xxx46/vjjFQqFJPW+H73z7Q267IR9q27vw9+7VnsdfWLN/SnvRwMAAOwK27arBoH7MkxcnF8vl8u1S6HheqsXc26u7zmOoxdeeEEPPvig4vG49t13Xy1ZskQNDQ2d2nbVj+7o79f/RPde+S0d/KFPaNlF35Yk5bMZ/fWHX9Pq+/4sK5fV3IOO0In/c5nCY8fXXA/9aAAjBUFfAAAAAABGIctxdOXzO5Sxqp8WWPPwvTJcpsZNmyXHkZ79yy169Dc/0wU3P6gJs+frl+edqHHTZuvoT3+5tIzHH5S/ofvHoPldhg53Num+e++RYRg67rjjtOeee3YZwsjn852CHh2HuVyu1N4wjKrBj/LXfr9f7e3tNUO8ra2tFessBoOrVeONxWJqaGig+ggAAEA/cRxH6XS62xu7yi97eb3eLoPAkUikyycqFEMLy5cvlyQdd9xx2n3PPfXTF3b2qh/dNGOuUju3V7R/6o836pHf/FRfue8F+YKdwxDl/C5DF+w1Ri4eoQ0AAIYBx3F6FQ7uSfviT71M0+xRMLg3YeJioLg/nj4xlBUKBT311FN69NFHZdu2Dj74YB100EHyer2Suj8fXe6tF1fq5i+fK18orFn7HVIK+v75Oxfp5cfu1we+fqX8DRHd8b2LZZqGPnX9X7tcH/1oACOBe7B3AAAAAAAADLxtaavLk6oLlhxbMX7s+Zfoyd/foA3PP6MJs995dLHHH1B43IQebztjObrz4Ue1x+zZOu644+T3+2uGNYpBjvLKuZIUCoVK4YxZs2Z1CvEWK0a0tbVVhHhfffXVUpA3Ho9XVBbxer2l8O706dO1cOHCiuq8/fV4aAAAAHTPMAwFg0EFg0FNnDixahvbttXW1la1GvDWrVv16quvKpVKVSwTDAa7DAPvsccemjVrlu655x796U9/0rNr1ysz86Ca+9ldP7pj//nFh+7WwqNP7DbkK73Tj96WttQc5PIeAAAY+gzDKAVf+5PjOLIsq9dh4o7T2tvbq87P5XKqt5aiYRj9HiYujg+V85Vut1sHH3ywFi9erEcffVSPPvqonnnmGR1++OFavHixtmXsukK+2fY23XrJp3Ty//5QD177w9L0TDKhZ/58k077zlWavf+hkqRTv36FfnTKwdrw3DOatnC/muukHw1gJOATDAAAAACAUWhLe/2PzrMtS8//7U7l0u2atvBdpemrl/9Bq5b/XuGx4zX/sGN05LkXyhsIdrs+x3E0duZuat2+XldffbXa2toqTpL7fL5SsGLy5MlasGBBRZA3EonI7XbLsiwlEolSkHfbtm1au3ZtaTyRSMi27dJ6A4FAKbQ7Z86cihBvLBaT3+8fMifGAQAA0HOmaZb6i7UUCoVS9d+O1YHXr1+veDyubDZbam8YhhoaGhSNRjV16lS9ncrLcJy6+o21+tFFm15arc2vvKATL/5e3ce4pb1AQAEAAKBMMVTrdrsVCAT6dVvFQHFvwsQdp2cymZrzLMuqe5+6Cgf3RZi4OK3eJ5kFAgEdc8wx2n///fXggw/qrrvu0pNPPqnZS5ZKCnW7/B3f/bLmv/tozTlgSUXQd9Oa1bIKec05YElp2viZcxVrntJt0FeiHw1g+OMTDAAAAACAUWhLe0GmJLurNq+9pF989HgVcll5AyF95PIbNGHWbpKkvY87RbGJUxRpatbm117SPVd8U9vffF0fufyG7jfu2Mr6wprY2KhZs2Z1qpzm8/kkSfl8vqL67uuvv14xnkgkKlZbDGDEYjFNmjSpIsQbi8VKj4kDAADA6OV2uzVmzBiNGTOmZptsNtvpSRM7d+7U1q1bpbHjJMeWDFfN5bvqR5d7+o6bNH7mPE1ftH9d+26qZzfsAQAAoG+5XC65XLX7gX3Ftu1eh4m7qlDccZnyp511x+Vy9ThM3NTUpAMPPFCvvfaannl1nVzTdpe6CAyvvvdPevvl5/XZG+/rNC/Z8i+5PF4FwtGK6Q1jm5Rs+VeX+04/GsBIQNAXAAAAAIBRqK1gdxnylaRxM+bogpsfUrYtqecfuFO//9oFOu/aOzRh1m7a/5SzSu2a5+6uyLgJuvZTJ6vlrXUaO3Vml+s1DFNp29DatWs1a9Ys+Xw+tbS06I033qgI8pY/VtkwDIXDYcViMTU2NmrGjBkVQd5oNCq3m9McAAAA2HU+n0/jx49XU1OTNm3apC1btmjt2rVKp9Nq2O0Q5Y2uq5l11Y8uymfSWr38DzryvAvr3i9bUqrQXS8eAAAAw51pmvJ6vf1euMBxnLoDw/VUKE4mkzWXcc8KyTEM1XouRuuWTbrr+5fo4z+/XR6fv0+Pk340gJGAK2AAAAAAAIxClu1028bt8WrctFmSpMm7L9LGF1fpn7/7pU766uWd2k7dax9JqivoK8OQ6fYonU7rxRdf1IsvvihJ8vv9GjdunMaPH6958+ZVVOMNh8MDUi0DAAAAaG1t1XPPPafnnntOLS0tCofDWrx4sRYuXKi/J/1al8x3uXw9/ejn//YX5TNpLT7hgz3at0Id/XgAAACgHoZhlKrw9jXHcbRu3To9/vjjWrt2rdxerxyjVsxX2rRmtdp2bNNPzziqNM22LL357ON64rbr9LGf3iYrn1M6Ga+o6tvWsk3hseO73R/60QCGO4K+AAAAAACMQi6z9knVWhzbViGfrTrv7VdekCSFx02oY0WOxjbGdNDJJysSiSiRSGjt2rVas2aNNm7cKJfLpalTp2r+/Pny+/u2egMAAABQTSaT0UsvvaTnnntO69evl8fj0YIFC/Te975XM2bMkPnvRwy7Uoker7taP/qZO27SgiXHqqFxXI/W5e5FPx4AAAAYKJZl6cUXX9Tjjz+uLVu2aMKECTrppJP0ami61iZq3zA3Z//D9N+3PVIx7fdf/y81zZirJR+9QLEJk+Vye/T6U49oz6OWSZK2vblWrVs2atrC/brdL/rRAIY7gr4AAAAAAIxCDW5Tpt55bFk191x5qXY7+CjFJk5RNtWmVff8QetW/EMf+9ltanlrnVbd80fNP+Q9CsYatfm1l3T35f+rmfscpInz9uh226ZhaNqEJu017T+Vf/faay8tXbpUa9as0XPPPae//OUvWrFihc4777y+OWAAAACgCzfeeKM2b96smTNn6qSTTtL8+fOrPip5V/rRRds3vKE3n31cZ19xc4/20ZQUcps9WgYAAAAYCNlsVitWrNCTTz6pRCKhOXPm6Mwzz9TMmTNlGIbe3tAmU/ma/WhfqEHNcxZUTPMGggpGG0vT93v/Gbr78q8pEGmUPxTWnZf9j6YtfFe3QV/60QBGAoK+AAAAAACMQk1+o+ZJVUlK7diu2752vpLbt8rfEFHz3N31sZ/dprkHHq7WLZv0+pMP6x+/u1r5dLuiEyZpzyNP0BHnfqGubduSmoOdT0l4vV4tWrRIixYtUiKRUDZbvXowAAAA0Nfe//73y+fzKRKJdNmuOejWqpba87vqRxetuON3ikyYpLkHHdGjfazVjwYAAAAGSzKZ1OOPP65nn31W+Xxee+21lw466CBNmFD55Lfu+tH1WHrhpTIMQzdd9DEVcjnNO+gInfg/3+t2OfrRAEYCw3EcZ7B3AgAAAAAA9K18Pq/W1la1trYqHo93GraZfnmXfHDQ9u+ju8U4uQoAAIBhZ0t7QTe80jpo26cfDQAAgKHkt7/9rTZu3Kj99ttP+++/f80b5+hHA8Cu4RMMAAAAAIBhKJPJVIR3OwZ529vbS20Nw1AkElEsFtPYsWM1a9YshaNRPWzYyjsD/8gyv8tQU8A14NsFAAAAdlVTwCW/y1DGGvg6OvSjAQAAMNSccsopcrlc8nq9XbajHw0Au4agLwAAAAAAQ4zjOGpvb68Z4m1tbVU2my21d7lcikajisViam5u1vz580vjsVhM4XBYptk50Jt6O6UntqY1kKdWDUmLx/nlMowB3CoAAADQN1yGocXj/PSjAQAAAEmBQKCudvSjAWDXEPQFAAAAAGCAOY6jZDLZKchbHubN5/Ol9h6PpxTanTp1qvbcc8/SeDQaVUNDg4xenKjce5xfj29N9+Whdcv593YBAACA4Yp+NAAAANBz9KMBoPcI+gIAAAAA0Mds21YikahZjTeRSMiyrFJ7v99fCu3OmjWrIsQbi8UUCAR6FeTtTtTr0qKxPj3Xkh2QKgqGpIVjfYp6eUwaAAAAhi/60QAAAEDP0Y8GgN4j6AsAAAAAQA8VCoVO4d3y6rzJZFKO859TlaFQqBTabW5u7hTk9fl8g3YsR04O6fV4TqmC068nVw1JIbehIyeH+nErAAAAwMCgHw0AAAD0HP1oAOgdwym/8ggAAAAAAJTL5WpW443H42pra6toH4lESqHdakOPxzNIR1KfdYmcbn090e/bOW12RDMj3n7fDgAAADAQ6EcDAAAAPUc/GgB6jqAvAAAAAGBUcRxHmUymUxXeeDxeGk+n06X2pmkqEolUVOEthnhjsZgikYhcruH/6K8V29K6f2Oq39Z/zJSQ9mkK9Nv6AQAAgMFAPxoAAADoOfrRANAzBH0BAAAAACOK4zhKpVKdQrzlw1wuV2rvdrtrVuONxWJqaGiQaZqDeEQDp3hy1ZD65LFphhw5MjRmyxqde+who+Z9BAAAwOjS9/3od9ZDOAEAAAAjGf1oAKgfQV8AAAAAwLBi27ba2tpqhnjj8bgKhUKpvdfrrRnijUajCoVCMgxjEI9oaFmXyOnu9UmlCs4unVw1JIXchvZ2J/Tg7TfqgAMO0LHHHttXuwkAAAAMKX3dj146PcxjhgEAADDi0Y8GgPoQ9AUAAAAADCmWZSmRSFQEecur8yYSCdm2XWofCARKod2OId5YLCa/30+Qt4cylq2HNqW0uiXb42oKxfaLxvp05OSQfC5TTz31lJYvX66lS5dqv/3265+dBgAAAAZZX/ejAQAAgNFgV/rR77Q26EcDGPEI+gIAAADAKLNjxw5FIhG53W5J0vr163XRRRdpw4YNamho0De+8Q0dcsgh/bb9fD5ftQpvcZhIJCraNzQ0dKrGWx7o9Xq5O7+/xHOWVm3PaOX2jDLWO6cPTEl2WZvycb/L0OJxfu09zq+o11WxruXLl+vpp5/WGWecodmzZw/E7gMAAACDonY/+p0Qwn/G39FVPxoAAAAYLWr1oy3HKRXzoB8NYLQi6AsAAAAAI8zGjRu1ZcsW7bHHHgoEApKkp556Sv/1X/+lbDYrl8ulU089VRdffLEKhYLOPvts7bPPPjrllFO0fft2vf/979eLL76oaDTaq+1ns9mK8G7HIG8qlSq1NQxD4XC4UxXe8mExkIzBYzmOtqUtbWkvaEt7QamCrYLtyG0aCrlNNQfdag661RRwyVWjerJt27rlllu0YcMGnXPOOWpqahrgowAAAAAGVsd+9F8feEj77X+AQgF/RT/al0/p9A9+UPfee+9g7zIAAAAw6Kqdj27PZJXLpDVpbEwTQ95uz0cDwEhD0BcAAAAARpDPfOYzuvfee7Vu3TqtWLFCixcvliQddNBB+n//7//p6KOPVjabVUNDg7Zs2aLx48fL4/GopaVFkUhEknTAAQfozDPP1Kc//Wm5XJV3wTuOo3Q6XTXIWxzPZDKl9qZpdlmNNxwOd9oGRq5sNqtf/epXyuVyOvfccxUKhQZ7lwAAAIABs2jRIq1evbo0fvbZZ+vXv/61JGnvvffWqlWrBmnPAAAAgKHrlltu0Sc/+UlNnDhREydO1Fe/+lWdfvrpsm1bN954o9773vcO9i4CQL+jLBIAAAAAjCBnnXWWfvazn2nffffVzp075fz7kVZPP/20JMnlcmndunVasmSJLMuSJI0dO1Z/+ctfdMYZZyiZTGrz5s1avXq1UqlUKfxb9Nvf/lZvvPFGadztdpdCu5MnT9buu+9eUZ03HA6XHqkF+Hw+ffjDH9Y111yjW265RWeffTYVmwEAADBqdPzb6KGHHqo5DwAAAMA7vvOd7+jJJ5/U/Pnz9Y9//EPvf//79ac//UmNjY0666yzCPoCGBW4mgYAAAAAI8j+++8vwzAUCAT01ltvlS4WP/DAA7r44ot1zjnnaMeOHfryl78s0zQlSVdeeaX+/Oc/66c//ammTJmihQsXKhQKqb29vVPQ98ADD9S+++5bCvIGg0EuSKOdJ5ybAAEAAElEQVRHotGoPvShD+mGG27QHXfcoZNPPpl/QwAAABgVxo8frz//+c96//vfrxtvvFGGYeiGG25QLBbr9LcXAAAAgHe4XC7Nnz9fknTIIYcoFArp3e9+tyTJtu3B3DUAGDAEfQEAAABgBJo8ebI2bNhQGl+3bp0OPvhgLV++XLFYTO9973vV3t6uyy67TB/4wAe0zz77KB6Pa5999tEll1yirVu3qrm5udN6586dO5CHgRFq8uTJOumkk3T77bdrzJgxOuKIIwZ7lwAAAIB+d/nll2vp0qX68Ic/rCOOOEJ//etfdeaZZ8q2bf36178e7N0DAAAAhiTbtrV27VrNmTNHzzzzjFpbW/Xcc88pGo2WnlwIACMdQV8AAAAAGEby+bxaW1vV2tqqmTNnyu2u/mfd9OnTtX79euXzeXk8Hv3zn//U9OnTFYvFJElLly7VQw89pHQ6Lb/fr9mzZ0uS2tra9Morr2jJkiWS3jmBVqz8C/Sl3XffXUcddZQeeOABjR07VgsXLhzsXQIAAAD61ZgxY7Rhwwbt3LlTjY2NkqRnn31WuVxOjuMM8t4BAAAAQ9NXvvIVHXjggZo1a5Y2btyoP/7xj1q6dKm2b9+uq6++erB3DwAGBEFfAAAAABhCMpmMWltbFY/HS4He4ut4PK729vZS209+8pOdqu4ahiFJ2nPPPXXHHXfI4/FIksLhsP72t7/pkksuUaFQ0Lp16xSLxRQIBLRx40b96Ec/0sMPP6xMJqOTTz5ZF1xwASFf9LtDDjlELS0tuvPOOxWLxTRt2rTB3iUAAACg30ydOlU/+MEP9IUvfKFi+oMPPqirr75af/rTnwZpzwAAAICh67TTTtMhhxyiV155RYsXL9aYMWO0bt06ZbNZhUKhwd49ABgQhsMtwgAAAAAwIBzHUXt7e9Ugb3E8m82W2rtcLkWjUcVisU7DWCymSCRSCvZ29LOf/UyXXnqpPvaxj2n69On60Ic+pIsuukiPPPKIfD6fdtttN11++eWaOnWq0um0nnvuOXk8Hs2YMUNjxowZqLcEkGVZuvHGG/Wvf/1L5557Lv/+AAAAMGLNnTtX0WhUp59+ur74xS9WzJs/f75efvnlQdozAAAAYHhpaWnR2LFjB3s3AGDAEPQFAAAAgD7iOI6SyWTNEG88Hlc+ny+193g8pdBuNBqtCPFGo1E1NDTUDPLWUigUdPrpp2vNmjWaNWuWxo8fr4MPPljnnHOOUqmUbNtWOBzu60MHdkk6nda1114r0zT18Y9/XIFAYLB3CQAAAOhz++yzjx566CEdffTRev/736+vfOUrpXmLFy/WypUrB3HvAAAAgKHpm9/8pj7xiU+oublZzz//vE488URt3rxZ48aN0x//+Ee9613vGuxdBIB+R9AXAAAAAOpkWZaSyWRFiLd8mEgkZFlWqb3f769ZjTcajSoQCPQ4yAuMVC0tLbruuuvU3NysM844Qy6Xa7B3CQAAANglluNoW9rSlvaCtrQXdPffHtS7D1six7b093v/Km8moZOOPFQvPvmo/nLHHbr33nsHe5cBAACAQdexH33nvfdryRFHymUaeuS+5Vo0c4qWHnqAXnzyUf2///1fPfbYY4O9ywDQ7wj6AgAAAMC/FQqFmtV4W1tblUwmVf4nVCgUqhnijcVi8vl8g3g0wPDz5ptv6sYbb9SiRYu0bNkygvAAAAAYluI5S6u2Z7Rye0YZ652/IU29E1go9nHLx3OppBY2enTE3ImKernhDQAAAKNTPf1ou1CQ6XZLkvwuQ8/ecZOu/PJn6UcDGPEI+gIAAAAYNXK5XM1qvPF4XG1tbRXtI5FIpyBv+dDj8QzSkQAj16pVq3THHXfo6KOP1sEHHzzYuwMAAADULWPZemhTSqtbsjIk9eQCXLH9orE+HTk5JJ/L7J+dBAAAAIaYXelH25Yl0+WiHw1gxCPoCwAAAGBEcBxHmUymIrzbsSpvOp0utTdNU5FIpFMV3uIwEonI5eIOcGAwPPDAA3rsscd02mmnaf78+YO9OwAAAEC31iVyumt9Uu0Fp0fBhI4MSSG3oaXTw5oZ8fbV7gEAAABDEv1oAKgPQV8AAAAAw4LjOEqlUjWr8ba2tiqXy5Xau93umtV4Y7GYGhoaZJrc2Q0MRY7j6Pe//71ee+01ffSjH9WkSZMGe5cAAACAmlZsS+v+jakeVx+rpbieo6eEtG9ToA/WCAAAAAw99KMBoH4EfQEAAAAMCbZtK5lM1qzGG4/HVSgUSu29Xm9FNd7yEG80GlUoFJJhGIN4RAB2RT6f169//WvF43Gdd955ikQig71LAAAAQCfFcEJ/IaQAAACAkYh+NAD0DEFfAAAAAAPCsiwlEomqId7W1lYlEgnZtl1qHwgEqlbjLQ79fj9BXmCEa2tr07XXXqtAIKCPfexj8np55BoAAACGjnWJnG59PdHv2zltdoTHDwMAAGDEoB8NAD1H0BcAAABAn8jn8xXVd8uHra2tSiaTFe0bGho6hXfLXxPoAyBJW7du1Y033qjTTjtNU6ZMIeAPAACAISFj2brmpZ1qLzh98pjhWgxJIbeh83ZvlM9l9uOWAAAAgP5HPxoAeoegLwAAAIC6ZLPZimq8HYep1H8esWQYhiKRSM1qvNFoVG63exCPBsBwkslk5PV6ZZq1T8gWCgU+VwAAADBglm9I6rmWbL+GE4oMSQvH+nT8tPAAbA0AAADoP/SjAaB3uAIGAAAAQI7jKJ1Od6rCG4/HS+OZTKbU3jTNUmh3/PjxmjdvXkVV3nA4LJfLNYhHBGAk8fv9Xc7ftm2bLrjgAl155ZVqamoaoL0CAADAaNWatbS6JTtg23MkrW7J6uDmoKJe/tYGAADA8EQ/GgB6j6AvAAAAMAo4jqO2trZOId7yYT6fL7V3u92l0O7kyZO1xx57VAR5GxoaZBjGIB4RALzz2WYYhpqamrRgwQKdddZZWr58+WDvFgAAAEa41S0ZGdKAVCErMiSt2p7RkkmhAdwqAAAA0HfoRwNA7xmO4wzk5ycAAACAfmDbthKJRM1qvPF4XJZlldr7fL5SaDcajVaEeKPRqILBIEFeAMNCPB5XNBqVJH3qU59SPp/XddddN8h7BQAAgJHKchxd+fwOZazql9eeuP16PXn7Ddq5eYMkafys+TrqExdqt0PeI0lKbt+qv/74G1r75N+VTaXUNGO2jjjn89rzqGXdbtvvMnTBXmPk4u91AAAADDPd9aM7+vv1P9G9V35LB3/oE1p20bclSU/94Tdadc8f9PbLzymbatPXHl6rQDja7broRwMYCajoCwAAAAwDhUJBiUSiaoi3tbVViURC5ffwBYPBUmh33rx5FSHeWCwmv98/iEcDALsmm83K5/NJkn75y19q/fr1+ulPf6pzzjlHN9xww+DuHAAAAEa0bWmry3BCdPwkHftfX9W4abPkONKzf7lFN37+LF1w84OaMHu+bvva+cok4zrrR79VKDZGq+75g3735XN1/m/v16T5C7vcdsZytC1tqTnI5T0AAAAML931o8u99eJKPfWH36h57h4V03OZds07+EjNO/hI3Xvlt+reNv1oACMBn2AAAADAEJDL5Sqq75YPW1tb1dbWVtE+HA6XQrtTpkzpVJ3X6/UO0pEAQP966aWX9NZbb+nYY4+VJF100UWaPXu2TjvtNK1Zs0b77befLMvSmjVrtOeeew7y3gIAAGCk2dJe6HL+giXHVowfe/4levL3N2jD889owuz52rD6KZ34P9/X1D33kSQdee6Feuymq7Vpzepug77F7RNQAAAAwHDTXT+6KNveplsv+ZRO/t8f6sFrf1gx791nfEqS9MYz/+jV9ulHAxjO+AQDAAAABkAmk6moxttx2N7eXmprGEYpsDt27FjNmjWrohpvJBKR201XHsDo1NLSovPPP18PPfSQpkyZIkk6++yzNXfuXJ1yyin64Ac/qAcffFBf+MIX9N3vflfHHXfcIO8xAAAARpIt7QWZkuw62tqWpef/dqdy6XZNW/guSdK0Rfvrufv+rPmHHi1/OKrn779DhWxWM/c9pNv1mao/IAEAAAAMJfX2o+/47pc1/91Ha84BSzoFfXuLfjSAkYB0AAAAALCLHMdRe3t7pyq88Xi8NJ7NZkvtXS5XKbTb3Nys+fPnl8ZjsZjC4bBM0xzEIwKAoevQQw/VhRdeqDPPPFPXXXedNm/erOuvv17XX3+9Dj/8cEnSgQceqCuuuEL/9V//pVmzZmnevHmDu9MAAAAYMdoKdrfhhC2vvaRffPR4FXJZeQMhfeTyGzRh1m6SpA9/71rd/OVzdekR82S63fL4A/rI5Tdo3LRZ3W7blpQq1BMxBgAAAIaWevrRq+/9k95++Xl99sb7+nTb9KMBjAQEfQEAAIBuOI6jZDLZKcRbPiwU/nMnsMfjKYV2p06dqr322qsiyBsKhWQYxiAeEQAMb5/61Ke0efNmXXLJJbr//vv1uc99Tocffrgcx5FlWQoEAjrssMN04okn6sorr9SVV1452LsMAACAEcKynW7bjJsxRxfc/JCybUk9/8Cd+v3XLtB5196hCbN20/0//z+l2xI65xd/UKhxjF58aLlu/vK5+uR1f1Hz3N27XXehju0DAAAAQ4FlWWpvb1cqlVKyTeoqpta6ZZPu+v4l+vjPb5fH5+/zfaEfDWC4I+gLAACAUc+yLCUSiZrVeOPxuGz7P3f6+v3+Umh39uzZFSHeaDSqQCBAkBcA+tk3vvEN5fN5tbW1qbGxUYVCQaZpyu1+51RHOp2WZVmaMmXKIO8pAAAARhKX2f3f+26Pt1Shd/Lui7TxxVX65+9+qcPOPl+P33qdPnf7o5owe74kaeK8PfXmyif0+G2/0kmX/KD7ddexfQAAAKA/5HI5tbe3l8K71Ybl88ufdul+13tlNs+oef1s05rVatuxTT8946jSNNuy9Oazj+uJ267TpU9skuly9Xrf6UcDGO4I+gIAAGDEKxQKNUO8ra2tSiaTcpz/3MkbCoVKod3m5uaKEG8sFpPP5xvEowEAFHk8nlLF3kMOOUSWZWnMmDHasWOHQqGQnnjiCV1//fWDvZsAAAAYQRrcpkyp28cOl3NsW4V8VvlMWpJkGGbFfNM05djdr9GUFHKb3bYDAAAAuuM4jrLZbF2B3eKw/OmWRV6vV6FQSMFgUMFgUOPGjSu9Lk4PhUJ6pt2vV9qcmv3oOfsfpv++7ZGKab//+n+pacZcLfnoBbsU8qUfDWAkIOgLAACAYS+bzVZU3y0ftra2KpVKVbSPRCKl0O60adMqgrzRaFQej2eQjgQA0FPnnnuu/vSnP2n27Nk677zztH79eq1fv17Nzc369re/rdmzZw/2LgIAAGAEaQ66taql9vx7rrxUux18lGITpyibatOqe/6gdSv+oY/97DY1zZirsVNn6k/fvlDv/fw3FIw26qW/L9faJx/WWT+5qdtt2//ePgAAANCRbdtKp9MVQd1q4d3y13aVm80CgUBFSHfixIkVQd7y8G4wGCw9Ya0727ZntKatreZ8X6hBzXMWVEzzBoIKRhtL05PbtyrZ8i+1vPWGJGnLay/JF2pQrHmKgtHG2u+N6EcDGP74FAMAAMCQ5jiOMplMRTXejsN0Ol1qb5pmKbDb1NSkOXPmVFTjjUQicu3CXb8AgKFl0qRJuv7663XuuefqQx/6kI499tiK+bZtyzSp1gAAAIC+0V1AILVju2772vlKbt8qf0NEzXN318d+dpvmHni4JOmjV96se664VL/53EeUbU9p7NSZOvUbP9X8dx/dJ9sHAADAyFAoFLoM7HacXn6trMg0zU4B3WLF3Y6B3eJPf51L7Yt+7JO//7Ue+OX3S+O/PPd9kqRTv36F9n3fh/p9+wAwmAyn/BnFAAAAwABzHEepVKpTFd54PF4az+VypfZut7sU2u04jMViamhoINAFAKPQH/7wB11yySV66qmnFIlEBnt3AAAAMEJZjqMrn9+hjDXwl9f8LkMX7DVGLsMY8G0DAACg9xzHUT6f77bCbvn88mtjRW63u2ZIt9prv98vY4j0HelHA8Cu4XYFAAAA9CvbtpVMJjuFeMvDvIVCodTe6/WWQrvTp0/XokWLKoK8wWBwyJyUAAAMHaeccoomT55MyBcAAAD9ymUYWjzOrye2pjWQEQVD0uJxfsIJAAAAQ0DxaZTVqu3Wqrpbfi2syOfzVQRzm5qaqgZ5i0OPxzNsr5HRjwaAXUPQFwAAALvEsqyK6rsdh4lEQrZtl9oHAoFSaHfu3LkVId5oNDqk7i4GAAwvBx54YKdpjuPwvQIAAIA+tfc4vx7f2vnRyP3J+fd2AQAA0Pds265aVbdaYLc4rPYA9WJF3WI4t1jAplblXbd7dMW26EcDQO+Nrm8MAAAA9Fg+n+9Ujbd8PJlMVrRvaGgohXYnTZpUEeKNxWLyer2DdCQAgNGkGPB9/PHHNWPGDE2aNGmwdwkAAAAjRNTr0qKxPj3Xkh2YamSOLW18VS9lXNp///3lcrkGYqsAAADDVqFQqAjqVgvvlr9OpzuHT03TrAjmNjQ0aPz48Z0Cu8VhIBCQaZqDcLTDx0D3ow1JC8f6FPXSfwYw/BlOtVtMAAAAMGpks9mKEG/HYSqVKrU1DEORSKQU2u1YjTcajY66u48BAENXoVDQDTfcoHg8rvPOO0+RSGSwdwkAAAAjRNaydc1LO5UqOP0aUjAkBVzSjI3PaNUzT2ns2LE6/vjjNWvWrH7cKgAAwNDhOI5yuVzVwG4qlVI6ne40PZfLdVqPx+OpWlW3Y2C3+Nrn8/GksH4wkP3okNvQebs3yucigA1g+CPoCwAAMII5jqN0Ot1lkDeTyZTam6ZZEdrtWI03HA5TNQYAMKy0tbXp2muvVSAQ0Mc+9jEqywMAAKDPrEvkdOvriX7fzmmzI5oZ8WrLli1avny5NmzYoAULFuiYY45RLBbr9+0DAAD0peK1q64q7HYM7lqW1Wk9Pp+vaki3Wng3FArJ4/EMwtGimoHuRwPASEDQFwAAYBhzHEdtbW0V4d3i6+J4Pp8vtfd4PJ2q8ZYHehsaGrg7GQAw4mzdulW/+tWvNGPGDJ122mk8Qg8AAAB9ZsW2tO7fmOq+YS8dMyWkfZoCpXHHcfTCCy/o/vvvVzqd1iGHHKJDDjmE4AoAABg0lmVVrapbHtztON4xqmQYhgKBQF2B3eI8CtMMbwPdjwaA4Y6gLwAAwBBm27YSiUTNEG88Hq+4i9nn83Wqwls+DAaDBHkBAKPSa6+9pptvvlkHHHCAjj322MHeHQAAAIwgxZCCIfXJ44eL6+kqnJDL5fTII4/oiSeeUENDg4455hgtWLCA8z4AAGCX5fP5moHdaq/LnxxZZJpm1XButdehUEh+v5+b80ehwehHA8BwRdAXAABgEBUKhU7B3fJhIpGouKs5GAxWBHnLq/FGo1H5/f5BPBoAAIa2p556SsuXL9fSpUu13377DfbuAAAAYARZl8jp7vVJpQrOLoUUDEkht6Gl08N1PWa4paVF9957r1577TXNnDlTxx9/vJqamnZhDwAAwEjiOI6y2WyncG5X4d3yJ0UWeTyeugK7xWk+n48bkFCXwepHA8BwQ9AXAACgH+VyuZrVeFtbW9XW1lbRPhwO1wzxRqNReb38YQoAwK5Yvny5nn76aZ1xxhmaPXv2YO8OAAAARpCMZeuhTSmtbsn2uCpZsf2isT4dOTkkn6tnFe1effVV3Xvvvdq5c6eOOeYYHXjggT1aHgAADA+O4yidTncK7JaHdTuOlz8Zssjv99cV2C2+9ng8g3C0GC0Gsx8NAMMFQV8AAIBdkMlkKkK8HYft7e2ltoZhVAR4qw1dLtcgHg0AACOfbdu65ZZbtGHDBp1zzjlUOwMAAECfi+csrdqe0crtGWWsdy7DmZLssjbl436XocXj/Np7nF9Rb+/PDRUKBT3xxBOaO3eumpqaOj3+2rbt0rTXXntNt9xyiwKBgL74xS/2epsAAGDXWJZVs8JutWnpdFodYz6GYVSttFstvBsKhRQIBLgehSFpsPrRADAcEPQFAACowXEctbe3V4R3OwZ5s9lsqb3L5apZjTcWiykcDne6wAIAAAZeNpvVr371K+VyOZ177rkKhUKDvUsAAAAYgSzH0ba0pS3tBW1pLyhVsFWwHblNQyG3qeagW81Bt5oCLrkG4NHWbW1tevXVV3XZZZcpGo3qT3/6kxYvXqybbrpJ48aN6/ftAwAwGuTz+bqr7aZSqYrrTEUul6tqVd1arwOBgIwB6EsAA2Wo9aMBYCgg6AsAAEYtx3GUTCarBnmL44VCodTe6/XWrMYbi8UUCoU4kQIAwDARj8d1zTXXqLGxUWeffbbcbvdg7xIAAADQb9asWaPLLrtMU6ZM0d57760xY8boBz/4gT7/+c/rPe95j1atWqXHH39cJ5xwgqZOnTrYuwsAwJDgOI6y2WyXFXY7BnfLrysVeb3eqlV1q1XbDQaD8nq9XG8CAAAVCPoCAIARy7IsJRKJmiHeeDwu2/7Pw178fn+nKrzlQ+6IBgBgZNm0aZNuuOEGzZ8/XyeffHKn73nLsvToo4/q4IMPltfrHaS9BAAAAHZNe3u7Pv/5z+v3v/+9WlpaJEmnn366ZsyYoe9+97v6+c9/ruuvv1777befnnzySZ1wwgn65je/Och7DQBA37NtW+l0umq13VpVd8uvIxUFAoEuK+x2nMYN5gAAYFfRmwAAAMNWPp/vFNwtHyaTSZXf0xQKhUqh3YkTJ1ZU441Go/L5fIN4NAAAYKBNnjxZJ510km6//XaNGTNGRxxxRMX8TCajhx9+WE1NTdpjjz0GaS8BAACAXRMMBnXFFVdIkvbYYw/tscceSqfT+uQnPylJ2r59u0466SR95StfUTqd1kknnaS///3vOvzwwwdxrwEA6F6hUKhaVbdaYDeVSimdTndah2EYnUK648aN6zK8a5rmIBwtAAAYzQj6AgCAISubzdasxtva2qpUKlVqaxiGwuFwKbQ7bdq0ihBvNBqVx+MZxKMBAABD0e67766jjjpKDzzwgMaOHauFCxeW5oVCIY0ZM0ZvvvkmQV8AAAAMW7Zty+fz6eqrr9bf//53nXrqqfJ4PDJNU4888ojy+bxuvvlmHXXUUTrggAP09NNPKx6PS3rnkeU84QoAMBAcx1E+n68I6lYL75a/zmazndbjdrsrgrnF4i8dA7vFod/v57sOAAAMeQR9AQDAoHAcR5lMpiLE23FYfme1aZqlwG5TU5PmzJlTCvHGYjFFIhG5XK5BPCIAADBcHXLIIWppadGdd96pWCymadOmleZNnz5d69evH8S9AwAAAHaNaZqybVumaeovf/mLjj/+eJ188sn6wQ9+oLvuuks//vGPNX78eB155JFaunSp3ve+92nZsmWSRPAJANBrxetA1QK7xeq6HacXCoVO6/F6vRXh3Kampk4Vdsvnezwevr8AAMCIQ9AXAAD0C8dxlEqlKsK7HYO8uVyu1N7tdpdCu5MmTdLuu+9eEeRtaGjgUUgAAKBfGIahE044QTt37tQtt9yic889V2PGjJEkzZgxQytXrlR7e7uCweAg7ykAAADQO8XzaosWLVJjY6OWLVumH/3oR/roRz+qE088UdI7fd+HH35Yl112GefhAACd2LZdtapurQq86XRatm13Wk8gEKgI5kaj0ZrVdoPBoNxuYi0AAAD0iAAAQK/Ytq1kMlk1yFv8Kb/z2uv1KhaLKRaLacaMGRUh3lgspmAwyB3WAABg0LhcLp122mm69tprdfPNN+vjH/+4AoGApk+fLklav369FixYMMh7CQAAAOyas846qxS6OuaYY+Q4Tmnek08+qW3bttUV8nUcR6tWrdL8+fMVCAT6bX8BAP2nUCjUrLZbDO6Wj5c/hbHINM2KqrrFirvVAruhUEiBQICbSQAAAHqBoC8AAKjKsqxSYLdjiLe1tVWJRKLiTuxAIFAK7c6dO7cixBuNRuX3+wnyAgCAIS0QCOjDH/6wrrvuOt1+++0644wzSn0agr4AAAAYKYoBqxNPPFHnn3++Vq5cqf32209/+tOfdPHFF8u27W5DWIZh6IEHHtDrr7+uU089dSB2GwDQBcdxlMvl6grsFoflT10scrvdFSHd4lMYq1XbDYVC8vl8XPsBAAAYAIZTfqsuAGBUshxH29KWtrQXtKW9oLaCLct25DINNbhNNQfdag661RRwycUf6yNGPp/vFOItHyaTyYr2DQ0NFVV4OwZ5vV7vIB0JAABA7+zYsUM7duzQrFmzKoIMb775pm688UYtWrRIy5Yt0x133KGtW7fqk5/8ZMXy9KMBAAAwEvzsZz9TS0uL3v3ud2vJkiVyuVylecXLiNVCXM8//7z++Mc/6rTTTtP8+fPr3h79aADonuM4SqfTNUO61V5bltVpPT6fr6KqbrXAbvlrrvUAAAAMTQR9AWAUi+csrdqe0crtGWWsd74OTEl2WZvycb/L0OJxfu09zq+o1yUMbZlMpmY13tbWVrW3t5faGoahSCRSCu12DPFGo1G53TwIAAAAjCz//Oc/df/99ysWi+ld73qXFi9eXHrs8KpVq3THHXfo6KOPViAQ0J133qkvfelLCgQC9KMBAAAwKti2rZUrV+rZZ5/V8ccfrylTplTMdxxHt9xyizZv3qzPfOYz8vv9Xa6PfjSA0cy27aqB3VpVd9vb21UtytExmFvrdXFYfvMGAAAAhi+CvgAwCmUsWw9tSml1S1aGpJ58ERTbLxrr05GTQ/K5un6EG/pH8U7uWtV44/G4MplMqb3L5SoFdjuGeGOxmCKRSLeP4wMAABiJNm3apKeeekovvviiDMPQwoULtf/++2vChAl64IEH9Nhjj2np0qW6++67derpH9aGQDP9aAAAAIwaGzdu1N13360tW7Zo77331lFHHaWGhobS/EQioZ/97GfaY4899L73va/qOjgfDWAkyufzNSvsVptWfs2myDTNugO7wWBQgUCAazkAAACjFEFfABhl1iVyumt9Uu0Fp0cnVDsyJIXchpZOD2tmhMf49DXHcdTW1lYR3u0Y5M3n86X2Ho+nFNqtFuRtaGio+ng9AAAAvKOtrU3PPvusnnnmGSWTSU2fPl3777+/XnjhBb322mvyTJwpc+ERslwe+tEAAAAYVWzb1ooVK/TQQw/Jtm0tWbJE+++/f6lK5DPPPKO7775bZ555pmbNmlWxLOejAQwHjuMol8vVXW03lUpVXKMp8ng8NUO61ab7fD6u3QAAAKAuBH0BYBRZsS2t+zemelw1oZbieo6eEtK+TYE+WOPoYdu2EolEzWq88XhclmWV2vv9/k5B3vJAbyAQ4GQQAABAH7AsSy+//LKeeuopbdiwQZFIRNbk3VSYu7/k2JKx65Vz6EcDAABgOGpvb9dDDz2kFStWaOzYsTruuOM0e/ZsOY6jX//610okEvrUpz4lr/edIC7nowEMluJTEbuqsNvxdfk1mSK/319XYLc49Hg8g3C0AAAAGA0I+gLAKFE8qdpfOLlaqVAolAK75dV4i+OJRELlX8HBYLCiCm/Hqrx+v38QjwYAAGB02rx5s+55aYO2jpndb9ugHw0AAIDhZsuWLVq+fLk2bNig+fPn69hjj5VlWbrqqqu033776dhjj+V8NIA+ZVlW1aq6taruptNpdYxBGIahQCBQtdpurdfFyuUAAADAYCPoCwCjwLpETre+nuj37Zw2OzJqHpuWy+U6hXjLh21tbRXtw+FwzWq80WiUu7wBAACGIPrRAAAAQHWO4+iFF17Q/fffr3Q6rYMPPlhut1sPPfSQjvvIuXow3v/9W/rRwPCVz+frCuwWh9lsttM6XC5Xp6q61YK8xSFPRgQAAMBwRtAXAEa4jGXrmpd2qr3g9Mnj0WoxJIXchs7bvVE+V+3HGRdPAG/dulXvec97+nGPes9xHGUymZrVeFtbW5VOp0vtTdNUJBKpWY03Go1y1zcAAMAwM9T60QAAAMBQlMvl9Mgjj+iJJ55QKBSS6fUrs98JkjdAPxoYJRzHUTabrQjqVgvvlr/O5/Od1uP1erussNtxmtfrJbgLAACAUYOgLwCMcMs3JPVcS7ZfT6oWGZIWjvXp+GnhqvOTyaTuvvtuvfLKK9p33311wgknDMBedeY4jtrb22tW443H4xV3h7tcrpoh3lgspnA4LNPkZDIAAMBIMpT60QAAAMBgevjhh/Xkk08qEAjI7/crEAh0el0oFLRmzRpta9pN5rQFMgbgfCn9aKB/2LatdDpdNbCbSqWUTqc7Tbdtu9N6/H5/1ZBurfAuTz4EAAAAanMP9g4AAPpPa9bS6pbOjzPqL46k1S1ZHdwcVNT7nwq2juPoueee0z333COXy6UPfvCDWrBgQb/th23bamtrqwjvdgzyFgqFUnuv11sK7U6bNq1TkDcUCnFXOAAAwCgyVPrRAAAAwFCwYMECmaapTCajdDqtTCajtrY2bdu2rTQtl8tJgbC8++0+YOdS6UcD9bEsq9sKux2DvB0ZhtEppDt27Nia1XYDgQBPOgQAAAD6EEFfABjBVrdkZEgDUoWsyJC0antGSyaFJL1Txfeuu+7Sq6++qr322kvHHXecgsHgLm3DsiwlEoma1Xjj8XjF3eOBQKAU2p0zZ05FiDcWi8nv9xPkBQAAQMlQ6EcDAAAAQ8X48eM1fvz4LttYlqUHNyb17I4C/WigHzmOo3w+X7PabjG4Wz5e/gTDIpfLVRHSjUajmjhxYqfAbnHIdRQAAABgcBH0BYARynIcrdye6fKk6hO3X68nb79BOzdvkCSNnzVfR33iQu12yHsq2jmOoxsuOF2v/vNBfeTyX2uPI95bc52OpJXbMzqkOaAXnntO9957r9xut0477TTNnz+/rn3P5/OlwG55Nd7ieDKZlOP858hCoVAptDtp0qSKEG80GpXP56truwAAAEBf9aPXr35a9/3sO3rrhWdlukxNnLenPv6z2+TxB6qus9iPfvfEoFxcPAUAAMBwY5p6MW7V7Ed314dueWud/vrjr2v9yidVyGc17+AjtexL/6fw2K4DxvSjR698Pq+HHnpIY8eO1eLFi2Wapi677DI99thj2rx5s97znvfoi1/8osaOHTvYu9olx3GUyWTqCuwWh+VPLCzyer0VId1x48Zp2rRpnQK7xfler5fgLgAAADCMEPQFgBFqW9pSxuq6dkJ0/CQd+19f1bhps+Q40rN/uUU3fv4sXXDzg5ow+z+h3H/cdLXUgxM+GcvRjX+6SxteWKlFixbp2GOPVSDwn0BDNpvtFOItH6ZSqVJbwzAUDodLod3p06dXBHkjkYg8Hk8P3hkAAACgtr7oR69f/bSuv+A0Hf6x/9b7vvx/Ml1ubX71BRmm2eV6M5ajbWlLzUFO1wAAAGB46a4f3VUfunHSVP3qsx/UxLl76Nyr/yhJuv8X39VvPvcRffrX98ikH40yjuPIMAzdd999WrZsmc455xxdc801+s1vfqOXX35Z5513nhYuXKjzzjtPv/zlL/U///M/A7p/tm13GdKtFuQtf0JhUSAQqAjndlVtNxgMyu3m3z8AAAAwktHjB4ARakt75zu6O1qw5NiK8WPPv0RP/v4GbXj+mVLQ9+1Xntejv/25zv/t/frOMXvWtW3HcfSvjKN3v/vdCoVCevjhhyuCvZlMptTWNM1ScLepqUlz5sypqMYbiUTkcrl6cOQAAABA7/VFP/ruy/9XB59+ng7/2H+X2jTNmFP39gkoAAAAYLjprh/dVR86/q/N2vn2Bl3wuwflbwhLkj7wjZ/qm4fP0RtPP6o5Byypa/v0o0cHwzC0c+dOPfzwwzr00EM1fvw7VZ8ffvhhFQoFLVu2TJIUi8WUTqd3eXuFQqFqYLdW1d1q2zRNsyKgGwqF1NTUVDWwGwqFFAgEug24AwAAABhd+IsXAEaoLe0FmZI63wdenW1Zev5vdyqXbte0he+SJOXS7br1K5/SiRd/T+FxE+rfuGOrEIzqscceltvtLoV2J02apN133700HovF1NDQwAkrAAAADBm72o9u27FNb72wQnu/9xT94qPv1Y6Nb6ppxhwd89mvaMbiA7tcl6n6gsYAAADAUNOTfnTHPvSOt96UYRhye72lNm6fT4Zp6s2VT3Yb9KUfPXoUq/n+6Ec/0qxZszRv3jw9+OCDisfj+tKXvqTLL79c++yzj1paWrTXXnvpnHPOqbqOTCajlpaWqhV2OwZ5c7lcp3W43e6KcG4sFtOkSZMqppW/9vv9Mnrw1EQAAAAA6IigLwCMUG0Fu66Tqltee0m/+OjxKuSy8gZC+sjlN2jCrN0kSXdf/r+atuhd2v3w43u2ccOU6Q9pwYIF2nvvvTV79myq8gIAAGBY2NV+9IbnnpEk/e3q7+u9n/u6Ju22p5696zZd+6lT9LnbH9G4abNrrtOWlCrUGzEGAAAAho56+tG1+tChxrHyBIJa/pNv6tjzL5Hk6J4rLpVtWUpu39rttulHjx6GYWjFihVKJpM688wz9c9//lOSFAwGNXHiRPn9fn30ox/Vcccdp6uuukoXXnihbrvttopiI7Zta9WqVbrvvvtK03w+X0Uwt6mpSdOnT69abTcYDMpbFkoHAAAAgIFA0BcARijLdupqN27GHF1w80PKtiX1/AN36vdfu0DnXXuHWt5ap9efflQX3Pxgj7dtGIbc/oDWPbdOa9askdvtVnNzs6ZMmaKmpiZ5PJ5OP263u9M07nAHAADAQNvVfrTjvBMwOODks7TfiR+WJE2av1CvP/Wonrnjdzrugv/tcr2FOrcPAAAADCX19KNr9aEnzNpNH/7edbrj/76kx2+5RoZpauGxJ2vS/IUy6nwaHP3okcG27YpquuPHj1coFKpoc99992nr1q2ybVuPPfaYVq5cqZ///Ofavn271q1bpyuuuEKSdNppp+l73/ueHn/8cR1yyCGl5U3T1J577qmZM2eWKu+63VwyBwAAADC08VcLAIxQLrO+kKzb49W4abMkSZN3X6SNL67SP3/3S7l9fu3Y+Ka+uWRORfubLvqYZiw+UJ+45o7aK3UcmXLUEI3K6/Uqk8lo48aN2rhxY8+OweWqGgquFQ6uFhauJ1Bs1nmyGAAAACPfrvajl3zsvyRJ4//9lIyipplz1bplU9crdRylkgm98UaLotGoIpGIPB5Pzw8CAAAA6Ge2bautrU2JRELxeFyJdEgyQ1IXxRtq9aFP+urlmnfQEbrozqeV2tki0+1WIBzVt4/eXWMmT69rf9x19uMxsPL5vNrb2yvCux2H5fMzmUzF8qeeeqoWLFhQOoefz+e1bds2PfPMMzr66KPlcrnU0tKiLVu2KBaLacWKFRXbfvXVVzV37tyKdRqGoXA4rHA43P9vAAAAAAD0EYK+ADBCNbhNmVJdjx0u59i2Cvms3vOpL+ldJ32kYt5PPniYll54qRYcdmyX6zANQ7vPnqnjjtirNM22ba1fv17PPfecXnrpJeVyOY0fP17HHXec/H6/8vl8lz+FQqHTeCaTUTKZrNm+XqZp9nuYuBgopkoxAADA0Lar/ejGSdMUaWrWtvVrK+Zv3/C6djv4qO5Wos3rX9eNzz1cmhQMBkuh30gkomg0WhqPRqMKh8PcuAYAAIA+5TiO0un0OwHefwd5i6+L48lkUrb9n16zd+8jZEyZ32XQt9N2/t2HLhdqHCtJev2pR5XasV0LlhzX7XpMSSE3feL+5jiOcrlc1aButdepVEr5fL7Tejwej4LBoEKhkILBoBobGzV58uTSeHFY/Fuo/Jy6x+PRD3/4Q/3whz+UJLW1temoo47SJz7xCU2ZMkVvvPGGlixZIo/Ho0QioQsvvFDjx48fsPcIAAAAAPoLQV8AGKGag26taum6zT1XXqrdDj5KsYlTlE21adU9f9C6Ff/Qx352m8LjJig8bkKnZWLNU7qtomD/e/vlTNPUzJkzNXPmTC1dulSvvfaa3njjDY0bN65f7px3HKciHNwxKNxdkLh8WvHkZa35jlPfY+EMw+j3MLHH45HL5SJQDAAA0Eu72o82DEOHnvVZ/e3qyzRx3h6aOG9PPXvXrdr25lqdcdmvul6x6dLxh7xLM5YsrBqqWL9+veLxuLLZ/4QhitWoisHfjsNoNKpgMEj/EAAAACW5XK6in1ltWF5IwTTNUv8yFotp2rRpnW5Ce7lNundjquY2u+pDS9Izd/xO42fOU6hxrDY894z+8oNLdMgZn1LTjDk111lU7Xw0ulcMdNcK6VYL8VqW1Wk9Pp+vIqQ7YcKEToHd8vl98dQS27ZlmqYKhYKWLl2qfD4vj8ej733ve1q5cqXGjBmj8ePHq7m5eZe3BQAAAABDAX/1AsAIVc+JzdSO7brta+cruX2r/A0RNc/dXR/72W2ae+Dh/bp9t9utBQsWaMGCBbu8nVrKQ7X9yXEcWZbV6zBxx+npdLpm2LjeQLGkuoLB3QWK65lPYAQAAIw0fdGPfvcZn1Ihl9Xdl/+v2uOtmjhvD53z89s1durMbtc9qcGnMcGQxowZU7NNNputGczYvHmz4vF4xQV4l8vVKYjRcdzv93f/5gAAAGDIsyyrUx+xY78xk8lULFN+49iECRM63TgWCoW6PQ840en6CWvd9aG3r1+re3/6LaXjrYpNmqojzvm83n3Gp+o+boK+7/zuuwrsdpyeTqc7nXM2DEOBQKAimNvY2Nip2m55iNflcg34sRafahKLxfS1r32tND0Wi+mII44Y8P0BAAAAgP5mOD1JDQEAhg3LcXTl8zuUsQb+Y97vMnTBXmPkIgTapyzL6nWYuN6gcT6fr1qVoZbyMHBXweBa8+oNG/M4agAAMFBGQj/acRy1t7d3+6jl8lNCXq+3Ivhbbeh2E54AAAAYTLZtK5VKdVmNt62trWKZQCBQ82avaDSqcDjcJ0HNkdCPHmry+XyPqu12DHBL7wRiq4Vza03z+/2ciwUAAACAIYigLwCMYA+/ndITW9MayA96Q9KBEwJaMik0gFtFX7Jtu1eB4a7m15pWL5fL1esqxD1ZZjCqTwAAgKFnNPSjbdtWMpmsWeUtHo+rvb29YplgMFg1AFx8HQ6HCQUAAAD0kuM4SqfTNW/UKt6sZdt2aRmPx9PljVqRSERer3fAjmE09KN7y3EcZbPZqoHdYnXdjtPz+Xyn9Xg8nqoh3Wrh3VAoJK/Xy1PZAAAAAGAEoBQLAIxge4/z6/Gt6QHdpvPv7WL4Mk1TXq+33y8COI5Td5Xh7uZns1m1tbXVbF8v0zR7FSjurn21QDEn2AEAGLpGQz/aNM1SSHfq1KlV2+Tz+U7hkuL4unXrFI/HlcvlSu0Nw1A4HO6yYlwwGKQfBAAARqVcLtflExcSiUTFeSzTNCv6U1OnTu3Ut/L7/UOqbzUa+tFFtm0rnU53WWG3Y3C3PKRd5Pf7KwK7EyZMqBrYLc73eDwDfqwAAAAAgMFH0BcARrCo16VFY316riU7IFUUDEkLx/oU9VIVFd0zDKMUfO1PjuPIsqxdDhMXx4vVNKr91PugBMMw+j1MXBwfShd7AAAYLuhHv8Pj8Wjs2LEaO3ZszTaZTKZmWOXtt99WIpGQZVml9m63uyIEXK06sM/nG4jDAwAA6DOWZVW9Qap8mMlkKpZpaGgo9YPmzp3b6SaphoaGYXdeZzj3oy3LqllttxjcLR9Pp9OdzgUahtGpuu7YsWMrgrrl4d1AIMATxgAAAAAAdTGcehMpAIBhKWvZuualnUoVnH49uWpICrkNnbd7o3wuHteL0aljoLi3YeLulikPy3Snq4BwX4SJi9N4TDcAYKShH903HMdRKpXqFHQpHyaTyYqQhM/nqxoALp/mdnPvOgAAGBiO46itra3LarxtbW0Vy/j9/oo+TMc+TSQSGbEBz6HSj87lcjUDu9VeZ7PZTutwuVxVq+rWqrYbCASGXTgbAAAAADA8EPQFgFFgXSKnW19P9Pt2Tpsd0cyIt9+3A4x2tm33Okzc3TLl8wqFQt375HK5+jVMXPwhUAwAGEj0oweGbdtKJpM1q98lEgm1t7dXLBMKhbqsCtzQ0EC/AQAAdMtxHGUymS77IYlEQrZtl5bxeDxd9kMikYi83tHbt5MGrh+9e3qDfMltVcO71c5reb3emiHdaq+9Xi/BXQAAAADAkEDQFwBGiRXb0rp/Y6rf1n/MlJD2aQr02/oBDDzHcXodJu5p0LhepmnWXWW4t2HiYqCYCzkAAIl+9FCRz+c7BW86VtLL5XKl9oZhKBwOd1lJLxgM8n0PAMAIl8vlOvUdOg7Lz0uYplnRb6g2pGprffq7H51/7mH5tr5eV7Xd4pCnQgAAAAAAhiuCvgAwihRPrhpSnzw2rbgewgkAdoXjOLIsq9dh4mrza7Wvt+trGEZdweCuAsP1hI3dbjcXBwFgGKAfPfQ5jqNsNls1CFweCLYsq7SM2+2uCO10DAJHo1H5fL5BPCoAANAVy7IqbvqpNkyn0xXLNDQ0dFmNNxQK8VSAXigUChXVdIvDdVZA64OTJceR+uT8hyPJ0JImtw6YFOF3BQAAAAAYNQj6AsAosy6R093rk0oVnF0KKRiSQm5DS6eHR/VjhgEMH47jyLbtfg8T5/P5ikd6dmdXQsM9qVxMoBgAdg396OHPcRylUqkuqwInk8mKZXw+X5eP5Y5EIlSGAwCgHziOo7a2tprf2fF4XG1tbRXL+P3+Lm/gCYfDfG/XofiEp/LAbvmwWqC3/MkKRW63W8FgUN6JM5WatZ9st2+Xwr70owEAAAAAoxlBXwAYhTKWrYc2pbS6JdvjqmTF9ovG+nTk5JB8LqomAEBHtQLFfRkmzufzFVUJu1MM/fYkHFxP+45tqKYDYCSjHz3yWZalZDLZZaioY2XAUCjUZaiooaGB70cAAMo4jqNMJtPlzTeJRKLiJlq3293lzTfRaFReL+HPaorvd3lQt1p4t/x1oVDotB6fz6dgMKhgMKhQKNTpdcdp5Tcd048GAAAAAGDXEPQFgFEsnrO0antGK7dnlLHe+TowJZXXoSwf97sMLR7n197j/Ip6XQO8twCAjmzbrggDdxcM7k2YuDi/Xi6Xq9/DxB6PRy4X30MABg/96NEtn8/XfDx4MahU/t1pGEZFCLhaQCkQCFB9HwDQK/l8Xlu3bi191wwFxe/Krr4vq31XdnXjDN+V/2Hbds3AbiqVUjqd7jS92qXAQCBQM6Rb7XVfVEOmHw0AAAAAQO8Q9AUAyHIcbUtb2tJe0Jb2glIFWwXbkds0FHKbag661Rx0qyngkosT6gAw6jiOUwr89iZM3N1y5fPq/fPEMIx+DxMXA8VcTO57a9eu1Uc+8hEdf/zx+spXviKPx6Mf/OAHeu6552QYho477jh94AMf4LG6GPLoR6OaYtW8rqoCV6tS2DHU1HHc5/MN2DG8/PLLuvfee/WhD31I48ePH7DtAgBq27x5s37zm9/oxBNP1Pz587V27Vp97GMfU3t7u2zb1kEHHaTvfe97CofD/bofxer3XVXjrVX9vtZ33Givfl8oFLqtsFs+P5PJdFqHaZqdgrnVqu0Wh4FAYFDfc/rRAAAAAAD0DFdNAQByGUbp5CkAAB2Vh2r7k+M4siyr12HijtPT6XTN9uXhqu70d5i4OH00BYp/+MMf6s0335T0zvv7zW9+U2+//baOOuoomaapq6++WmPGjNGxxx47uDsKdIN+NKoxDEOBQECBQEATJkyo2sZxHKVSqarVDrdt26bXX39dyWSyYhm/399lVeBwONwnN0i0tLTovPPO01NPPaU999xTRx11lO644w5deuml8nq9amxs1Fe/+lUddNBBu7wtAED9fvjDH+ryyy/X+PHjNX/+fF188cU666yzdN5550mSYrGYTj31VB155JG93kZX30/FYcfvJ5/PV/oumjx5snbfffdO1XlH0w18juMol8vVrLZbDO6Wj+dyuU7rcbvdFeHcxsZGTZ48uWq13VAoJJ/PN6z+pqQfDQAAAABAz/AXNAAAAIAhwTAMud1uud1u+f3+ft1Wd4Hi7sLG5fPb2tpqLmNZVt37VC0EXO+0eue73e5Bq9pk27ZM09QnP/lJHXnkkWptbS39nh944AEde+yxOvvssyVJ3/72t0tBYAAYiQzDUENDgxoaGjR58uSqbbqqmLhx40a99NJLfV4xcf369frRj36k/fbbT83NzZo8ebLWrFmj//mf/9H111+vWbNm6fbbb9ell16qO++8c1QFtwBgMK1evVqJRELvec97lM1mJUkbNmxQS0uL2tratG3bttJndy27WnG+qalJs2fPHtSK84PBcRyl0+m6q+22t7dX/TvQ5/NVBHPHjx/fZdXd/r7RFgAAAAAADC+cjQcAAAAw6rhcLrlcrn6/KG3bdl3Vh+sJFLe3t3e5rnq5XK66qwz3JkxcnO9yuSq2a5qmbr/9dtm2rWXLlmn58uUyDEP5fF5XXnmlLrroIv3jH/9QNpvV4YcfrmXLlvX1rwMAhhWXy6VYLKZYLFazTS6X61Rtsfj69ddfVzweVz6fL7U3TVN777131c/YzZs366qrrtLUqVN1yCGH6H//938VCoW0bds2jRkzRg0NDWpqatLUqVP14osvdvqcBwD0PcdxZBiGvv71r+uSSy7RjTfeqA0bNiibzeoPf/iDPvOZz+iKK65QMpnUBz/4warhUNu29cYbb+i2226r+E4wDKPippDJkyd3qhYfCASGVZXYeliWpXQ6XXe13fb2djmOU7GOYvX+8nBuY2Njp8Bu+Wu+NwEAAAAAwK4g6AsAAAAA/cQ0TXm9Xnm93n7djuM4VUPAPQ0T5/N5ZbPZUpXiaj/1WLBggT74wQ9WTNu5c6euuuoqXXfddQoGg8rlcpowYYI8Ho+effZZzZgxQ/vvv7+2bt2qp59+ulSprKMdO3ZUhI1dLteICx8AQL28Xq/GjRuncePGVZ1frN5YHgSORCKl4Fi5q6++WmPHjtWFF16ou+++WxMnTlRjY6OmTp2q97znPVqyZIm8Xq/22msvXXfddTIMo+p6AAB9xzAM/fnPf9Zee+2l/fbbT4899pg2b94sn8+ntWvXatq0abr66qs1adIkffrTn9a3v/1t/fjHP664ScQ0TTU1Nenwww+vCPJ2V+V9uCjeFFktsFvtdSaT6bQO0zQrQroNDQ2lirvVqu36/f4R8d4BAAAAAIDhg6AvAAAAAAxzhmGUqun2J8dxZFlWt2HihoaGTss+/vjjeu2113TkkUcqFArprbfe0oMPPqhkMqlLL71Ujz76qObNmydJOvbYY3XvvffqE5/4RMUF9EKhoCuvvLLqsddTZbg3lYnLXxNmAzDcFCsOBgKBLh/nvmHDBt19993avn273nzzTa1atUr5fF5vvPGG7rrrLm3fvl2PPfaYQqGQvvCFL2jTpk2l9RcVCgVt3LixFCKjciEA1MdxHKVSKcXjcfn9fjU2Npb6wI7j6O6771YwGNSaNWv06KOPasWKFfL7/XrmmWc0e/ZsTZo0SZJ03HHH6YYbbtC2bds6VYOPRqM6+OCDB/rQesxxHGWz2U7h3K7Cu9VuRvR4PBVVdceMGaMpU6ZUDe4Gg0H5fD76+gAAAAAAYEgj6AsAAAAAqIthGHK73XK73QoEAj1a9r3vfa/Wrl2rZDIp0zR1yimn6IgjjtCpp56q//7v/66orJXJZKpeaDdNU2effXZdlYvLp2UymZrzLcuq+xh6EyjuTQCZkAGAgTZt2jTdddddWrNmjVpaWrRy5Urt3LlTDz74oH784x/rpz/9qebPny9Jmj9/vp555hmdcsopFTd2bNu2Tb/+9a9L4w0NDaWqkR2H0WhUoVCIaogARrxicDUej1dUVy8fJhKJUp/0wAMP1NFHH11aPpVKyTAMPfzww3r99dflOI48Ho/22WcfNTQ0lIK90WhUq1atkt/v19y5cwfrcDtxHEfpdLpTYLc8rNtxvFr/3O/3V4RzJ0yYUBHU7Rje7e8bIAEAAAAAAAYaQV8AAAAAwIDwer0aO3aspHfCvHPnzlVzc7OuvPJKff7zn9eUKVPkOI5CoZCWLl3aKQBmmqZmzJjRp/tk23bNsHB3YeKO04sVxarNKxQKde+Ty+Xq9zCxx+MhYAegwoQJEzRhwgRJ0o033qgPfehDOv/883X//ffr9ddfL7VbuXKl9t133043JUyYMEGf/exnq4bZ1q5dq0QiUVF10TRNhcPhUvA3EolUBIEjkYgCgQA3PwAY0vL5fKfwbsfPwFwuV2pvGEbpsy8SiWjy5MkVN0OMGTOmoo/W0NCgX/7yl6XxDRs26NRTT9Xee++t448/XoVCQYcddpgCgYCmT5+uSy+9tF+P17KsmhV2q01Lp9NyHKdiHYZhdArojhkzpmpgNxQKKRAIUCUeAAAAAACMeobT8SwLAAAAAAD9bPPmzQqFQopEIsrn83r00UfV0tKi9vZ2HXzwwUOqEllfcByn12HieisXF3/qZZpmv4eJi4FignrA8OA4jgzD0I033qjp06frkEMO0fr163XuueeqtbVVbrdbM2bM0He/+13NmjWrx+tOp9NVq1mWV7W0bbu0jMfj6bIqcCQSkdfr7eu3AQAkvXNDWDKZ7LIab3t7e8UywWCw4jOq4zAcDvfqZivLsuRyubRjxw799a9/1THHHKPx48fLsiwZhtHrG7iKN6vVU203lUopm812WofL5aoa0q31mps4AAAAAAAAeo6gLwAAAAAAI4TjOLIsq9dh4mptai1T7+kEwzD6PUzs8XjkcrkIjQD9KJlMatOmTWpsbCxV/u1rtm0rlUp1Gapra2urWMbv93dZFTgSiVAJEkAnjuMolUp1qsJbPt7W1lbR3/H5fN3efOB2D92HKD7++ON64403KoK71Z464fV6q1bVrVZtNxgMyuv10gcDAAAAAADoZwR9AQAAAABAjziOI9u2+z1MnM/nK6p7dqeecHBXgeHuwsTFNoRZgMFjWVanAHDHgF4mk6lYpqGhoWZ1zWg0qoaGBv5fj0CW42hb2tKW9oK2tBfUVrBl2Y5cpqEGt6nmoFvNQbeaAi65+P2POJlMptNnRMehZVml9i6Xq8vPiUgkIr/fP4hHtOv+8Ic/qFAodKqw27Hq7lAOKwMAAAAAAIxWBH0BAAAAAMCQVS1Q3Ndh4nw+XxH26U55ILinweF6w8Qej6fXj+EGRrtcLtdlEDgej1dUsTRNs6IacMcKndFoVH6/nzDwMBHPWVq1PaOV2zPKWO+c+jYlld82Uj7udxlaPM6vvcf5FfVS/Xk4yOfznf5PdxzP5XKl9oZhKBwOd/l/PBgM9vv/ccuyKqrptre3V319yimnKBKJ9Ou+AAAAAAAAYHgh6AsAAAAAAEY927YrwsD9ESYuzq+Xy+WqKxzccX5PwsQej0cuF8E2jC6O4yidTndZ7TOZTFZUFPd4PKVQYLWQYCQSkdfrHcSjQsay9dCmlFa3ZGVI6slJ72L7RWN9OnJySD4XN1oMFtu2lUwmuwzrt7e3VywTDAa7rMYbDof7/OYZx3GUz+crgrrVQrzl49lsttN63G53p6q673rXuzR58mRu+AEAAAAAAEAJQV8AAAAAAIAB4jhOKfDbmzBxd8uVz6v3lI9pmv0eJi4GiqmIiuHCtm21tbV1CgCXBw9TqVTFMoFAoGbQsBg2JFjfP9YlcrprfVLtBadHAd+ODEkht6Gl08OaGSG43dccx1F7e3vVEG9xmEwmK76/vF5vRbC+Y9A+EonI4/H0yb5lMpm6ArvFYXll8PL9LYZ2y8O71V6HQiF5PB6+GwEAAAAAANAtgr4AAAAAAAAjjOM4siyrR5WGezu9vOppd/o7TFycRmgKA6FQKJQqj1YLAycSCWUymYplGhoaqlYDLg4bGhr499tDK7aldf/GVI+r+NZSXM/RU0LatynQB2scPbLZbJf/H+LxuCzLKrV3uVxVg7vl436/v1f7Ytt2lyHdakHeat9ngUCgIpjbcbxjiNftdvf6/QMAAAAAAABqIegLAAAAAACAXrMsq9dh4p5ULS4Ph3WnVki4r8LExek8Vh3dyWazNQOPxWF5VVDTNOsKPhIGfkcx5NtfCPv+R6FQqFmFtzjMZrOl9oZhKBwO16xyHYlEFAqF6v63XCgUqgZ2a1XdTafTndZhmma3FXbLpwUCAT7nAQAAAAAAMCQQ9AUAAAAAAMCQZ9t2jwPDXc3vqmJxvVwuV91VhnsTJi7+EDQbuRzHUTqdrghMFl+XByjLT+F6PJ4ug8DRaFQej2cQj6p3LMtSPB7XmDFj6mq/LpHTra8n+nmvpNNmRzQz4u22XTqdlm3bCoVC/b5Pfc22bSWTyZph9Hg8rvb29oplgsFgp/Bu+etwOFzzs8txHOVyuS4r7HYM8uZyuU7rcbvdVUO61cK7oVBIPp+PkDwAAAAAAACGJYK+AAAAAAAAwL85jtNlCLgvwsTFn3qZpll3leHehondbrdcLhchuCHItm21tbV1WU01laqsahsIBGpWUS2GMF0u1yAdUXVr167VTTfdpMWLF+uYY46R3++v2TZj2brmpZ1qLzjqz5PbhqSQ29B5uzfK56odWl21apXuueceTZo0SWeffXY/7lHPOY6j9vb2mkHyeDyuZDJZESb3er1dBskjkUhFmNxxHGUymbqr7aZSqapV2n0+X12B3eI8r7f7ADYAAAAAAAAwEhD0BQAAAAAAAAaY4ziyLKvfw8T5fF71nv4zDGOXQsP1Vi52u90EivtYoVDoFN7sOJ7NZiuWCYfDXYY5Q6HQgP6e3njjDW3atEmPPfaYfD6fli5dqt12261q2+UbknquJduvId8iQ9LCsT4dPy3caV5ra6vuuOMOvfnmmzIMQ+PGjdOnP/3pAX3fstlstxWhyyuVu1yuisBurYrQ6XS6ywq7HV9X+5zpGNat9bo4HGrhcwAAAAAAAGCoIOgLAAAAAAAAjGAdA8X9ESYuFApVK3TW0pNgcG/CxMUfAsX/kc1muwwC1wqE1qoKHI1G5fP5+uw9vuaaa7RlyxYtXLhQiURCb7zxhvbcc08dd9xxCoVCpXatWUtXvbSzT7bZE5/eo1FR7ztBVMdx9NRTT+n++++XbdsyDEMHH3ywDj300D6tMlsMcFer4lwclge4DcNQQ0NDRXA3EokoFArJ5/PJ5XLJtu2KEG8qleo0nslkOu2LaZpVq+rWqrrr9/tlmtWrIAMAAAAAAADoGYK+AAAAAAAAAHaZbdu9DhP3ZJnyMGp3XC5Xl8HgauHg3gSQR0Kg0XEcpdPpiuBvx2Eikaio3Or1eqsGgMuneTyeurafy+X0xBNP6B//+Ickae7cuXrjjTdkGIaOO+447bnnnjIMQw+/ndITW9N1VfP9+/U/0b1XfksHf+gTWnbRt9Ue36m/XfU9vfbE39W6ZZNCjWO1++HH65hP/4/84UjN9RiSDpwQ0JJJIW3fvl1//OMftXnzZknS9OnTdcIJJ2jcuHF1HWeRbdtqa2vrshpvKpWqWCYQCCgSiSgcDisQCMjv98vtdpf+/VmWpXQ63akCbz6f77R9j8dTNaRb63VfhroBAAAAAAAA9AxBXwAAAAAAAADDhuM4vQ4Tdzev4/R6mabZ72HiYqB4MMOWvQmnBoPBLqsCh8PhiqB0KpXSww8/rBUrVigUCikSiWjTpk2aN2+ejnvve/Xr9QVlrO5Pab/14krd/OVz5QuFNWu/Q7Tsom9ry9o1+ttV39O+yz6k8bPmqXXzRv3pO1/UxLm764zvX9/l+vwuQ4t2vqBHH35YjuMoEAjove99r/bYY49Ov5PehKaLwVu/3y+v1yuXyyXDMOQ4jizLUi6XU3t7u9rb26tWz/b7/XVX2w0Gg3UHsAEAAAAAAAAMPoK+AAAAAAAAANBBMWDZ2zBxTyoX13uK1jCMfg8TezyeUsi0NwqFQtVga/kwm81WHFNDQ0NFNeBIJCLTNLVmzRq9+eabikajyuVyshsapYNO6nYfsu1tuvLDR+n9/3OZHrz2h5o4b08tu+jbVds+f/8duvWrn9E3/rFeLre7y/XmHr5VTny79t13Xy1evFjpdLrTsbW2tiqRSFSEcQ3DkM/nk9vtlsvlkuM4pQrYuVyu0+/fMIyqYd1aFXiDwaBcLle37wsAAAAAAACA4anrM5cAAAAAAAAAMAoZhiG32y23261AINBv2ykPffYmTNyxTTqdrrmMbdt171dfhIl9Pp8mT56sGTNmVEy3bVvpdFqpVKpTldvNmzcrHo9XBGXj8bgkyT1htkzH6TaEfMd3v6z57z5acw5Yogev/WGXbTNtCflD4W5Dvo7jyGycICPVqhUrVmjFihWleaZpyjRN2bZd9T0uVnyuFdLtOD0QCAxq5WYAAAAAAAAAQwtBXwAAAAAAAAAYJIZhyOVyyeVyye/39+u2LMuqu8pwd21SqVTNtuUh3e5UCws3NzeXKtQ6jqN8Pq94PK58ZKzk2JJRu3rt6nv/pLdffl6fvfG+bred2tmiB6/5od518pnd76hjy4iMU6Hwotxut/x+v0KhkMLhcKegbseh1+sluAsAAAAAAACg1wj6AgAAAAAAAMAoUAwU+3y+ft2ObdudgsE9DRPncjklEgm1trYqlUrJcRx5/CHJMGtut3XLJt31/Uv08Z/fLo+v69B0pi2pG/77wxo/a57e88kvdX9Qhin5gpKkcDis3XffXfPmzVM4HK6oblwMKAMAAAAAAABAXzEcx3EGeycAAAAAAAAAANiyZYtWr16tF154QW1tbYrFYvJ4PNq2bZt8B79PGje15rIvPvRX/fbCs2WWhW1ty5JhGDJMU5c+sUmmy6Vsqk2/+uwH5fEHdPZPbuo2FFxa17/WK//EXV22MU2zIvhb66fa/J4s43K5qBIMAAAAAAAAjBJU9AUAAAAAAAAADJq2tjY9/vjjevHFFxWPx+VyueTxeGSaplpbW0vtrHxBpuPUDLjO2f8w/fdtj1RM+/3X/0tNM+ZqyUcvkOlyKdOW1K8++0G5vV6d9aMb6w75Oo4jx7Jkmqb8fn+p8nCRaZqaOHGipk6dqkgk0mW14vb29qrzc7mc6q3LYRhGv4eJi+MEigEAAAAAAIDBRdAXAAAAAAAAANAvbNtWKpVSa2urtm3bpn/961/asWOH4vG4UqmUMpmMLMuqWMayLFn/rsQbCAQUi8UUi8WUbAxruyHVisL6Qg1qnrOgYpo3EFQw2qjmOQveCfl+5gPKZ9I67Vs/VzaVVDaVlCSFGsdVVALuyDSkmVMmaubYYxSPx5VIJLRjxw61tLQol8vJtm1t2rRJmzZtks/nUyQSUTQa7TQsvna7q5+atyyrUzC42k+t+eXTM5lMzXkd3/OudBUO7oswcXGaaZp17xMAAAAAAAAwmhD0BQAAAAAAAAD0mOM4SqfTSiQSpSDvtm3b1NraqmQyqfb2duVyuarLGoYhn8+naDSqhoYGZbNZ7dixQ/l8XnPnztWhhx6qqVOnViyzantG97zV1uv9ffvl5/TWCyskST84cf+KeV+6a4UaJ02rfawyNH9Sk/YeN7XTvHw+r1WrVmnlypWyLEsLFy5UIpFQPB7X5s2b9fLLL6u9vb1imWAwWBH87RgEDofD/Rp8tW2712HirioUd1ymUCjUvU/FSs71VBnuKkjcXRsCxQAAAAAAABhuDKfeZ4EBAAAAAAAAAEaNXC5Xql5bDPK2tLQoHo+rra1N2WxWtm1XXdY0Tfn9fjU0NCgajWrcuHEaP368mpqa1NjYqEAgIMMwJEnr1q3TrbfeqkWLFunAAw9UY2Nj1XVuaS/ohlda++twu/XR3WJqDvaudkY+n1cikSgFgIvva/l4eSjaMAyFw+GaQeBoNKpgMFh6D4cqx3HqDgzXM7+r9vUyTbPfKhN3DBQP9d8PAAAAAAAAhgeCvgAAAAAAAAAwyliWVRE03blzp7Zv366dO3eWqvF2VY3V7XYrGAwqEokoFoupqalJ48ePV2Njo2KxmHw+X9/vs+Poyud3KGMN/Cltv8vQBXuNkasfg5uZTKbLIHAikZBlWaX2bre7IgRcLQzcH7+HochxHFmW1e9h4nw+r3ovqRiGUVcwuKfTO7Zxu90EigEAAAAAAEY4gr4AAAAAAAAAMII4jqO2trZSOLQY5O1YjbcrXq9XDQ0NisViGjNmjJqamjRmzBjFYjFFo1F5PJ4BOppKD7+d0hNb0xrIk9qGpAMnBLRkUmgAt9qZ4zhKpVKl32nHYfF3W37K3+fzdVkVOBKJyO3uXZXi0chxHNm23e9h4nw+X7NadjX1hIN7U7W4YxsCxQAAAAAAAIODoC8AAAAAAAAADBOO4yiTyVRUeS0GeXfs2FGqxtvdad9AIFBRjbcY4o3FYopEInK5XAN0RD0Tz1n6xYs7B3y7n96jUVHv0HxPylmWVQp5VwsDJxIJtbe3VywTCoU6VQUuDwU3NDTINM1BOqLRq2OguK/DxMX5XVXu7qhYQbjeYHBvwsQej4d/bwAAAAAAAB0Q9AUAAAAAAACAISKXy1Wt1Lpz5061traqra1NlmV1uQ7DMNTQ0KBIJKKxY8dqzJgxamxsLFXjDYfDwzpIt3xDUs+1ZAekqq8haeFYn46fFh6ArQ2MfD5f9d9YIpEojedyuVJ7wzAUDocrqgF3rA4cDAap9jpMOY7T6zBxT6fXyzTNfg8TFwPF/LsFAAAAAADDAUFfAAAAAAAAABgAlmUpmUx2qrYaj8fV2tqqRCKhbDZbsYxhGJ2q87rdboXDYcVisU4h3lgsplAoNKLDa1nL1jUv7VSq4PRr2NeQFHIbOm/3RvlcwzcY3VOO4yibzXZZFTiRSFQEzt1ud5dVgSORiHw+3yAeFQab4zgqFAq9DhPXmldtWr2XvQzD6LMwcVfzXS7XiP5MBgAAAAAA/Y+gLwAAAAAAAADsIsdx1NbWVrNCamtrq1KpVMUyxWqSHSv0er1eRSKRihBveZDX7/eP+tDYukROt76e6PftnDY7opkRb79vZ7hxHEepVKrLqsDJZLJiGZ/P12VV4EgkIrfbPUhHhJHCcRzZtt3rMHG1+bXa27Zd9371d5i4OH+0fzcAAAAAADBSEfQFAAAAAAAAgC44jqNMJlOzumlxWB76MgxDLpdLjuN0CvIGAoFSNd5ieLd8SOXT+qzYltb9G1PdN+ylY6aEtE9ToN/WP9IVK1h3DAKXD9PpdMUyoVCoZhA4Go2qoaFBpjl6qitjaLMsq2YIuK/CxPl8vtN3SFfqDQ/3dHrH+fw/BAAAAABgYBH0BQAAAAAAADCq5fP5LiuTxuNx5fP5imU8Hk+pGm/HEFZDQ4MaGxvV2NhYCiqWV+WlamnfKYZ9DUl9caK7uB5CvgOj4/+9jsOO//dM01Q4HC4FfzsOo9GoAoEAVU0xoti2XTUI3Jdh4uL8erlcrrrCwdXm9aRyscvl6sd3FgAAAACA4YOgLwAAAAAAAIARq1hVtKsgb8eqosVwkeM4KhQKFUFewzAUjUZrhngjkQjBpAG2LpHT3euTShWcXQr7GpJCbkNLp4c1M+Ltq93DLihW0+4qhN+xmrbb7a4aAi4fUjUb6Kz4nVdvMLi3YeJ8Pq96L02aptnjcHBv2rtcLm4QAAAAAAAMaQR9AQAAAAAAAAxLjuMolUpVBP46DpPJZMUyxXCPYRiybVu5XK4iJOhyuUoh3mJ4tzzI29DQwCPLh6CMZeuhTSmtbsn2uLpvsf2isT4dOTkkn4vf73DSm88Bv9/fZVXgcDg86JW3v/jFL+qf//ynJkyYoF/84hdqbm6WJBUKBaVSKUWj0UHdP6C3HMeRZVm9DhN3t1xxXi6XqztQLKnLYHBfhImL0wgUAwAAAAB6g6AvAAAAAAAAgE4KhYIMwyhVp925c6e+9a1v6bXXXpNlWfq///s/LVy4sN+237GSZ8dhPB5XMpmsqLZrmqZ8Pl9pnwuFgrLZbEXQx+fzlUK7HUO8sVhMwWCQEM4wFs9ZWrU9o5XbM8pY7/zeTUl2WZvycb/L0OJxfu09zq+ol0rMI1V5Ze9aYeCOlb1DoVDpcyISiVQEgSORSL+G/h3H0X333adNmzbp85//vFatWqWZM2cqk8noiiuu0E033STTNBWJRPTjH/9YixcvliRlMhmtWLFC48eP15QpUxQIBPpl/4DhwrKsuqsM92Rex+nlfZHudBUQ7oswcXE6NyX1n7///e+6+OKL9dRTT+mqq67SJz7xCUlSa2urvv/97+uVV16RaZo644wztGzZstLv4v7779ebb74pr9erI488UlOnTh3MwwAAAAAwzBD0BQAAAAAAAEahLVu2aPPmzZo3b55CoZAk6eWXX9b555+veDyuXC6ns88+W1/4whckSRdddJEsy9KyZcuUz+f1mc98Rs8884xisVivtp/P5ytCu9WCd7lcrtTeMAz5/X55PB6ZpinbtpXP5zuF84LBYKdqvOWBXr/f37s3DMOK5Tjalra0pb2gLe0FpQq2CrYjt2ko5DbVHHSrOehWU8AlF8FuSMrlclVvKEgkEqXxfD5fam+apsLhcNWqwMVhIBDYpRsHVq9erY9//OO67777NHbsWD366KNatmyZWlpa5HK5dN111+n666/XY489ppaWFn33u9/VihUrlM1m5XK59Mtf/lLz58/vi7cHQBds2+5VYLinVYsLhULd++RyuequMtybMHHxZzQGil999VWFw2GdeuqpOv300/XZz35WpmnqzDPPVHNzsw477DClUin99Kc/1Xe+8x0ddthhuvrqq/X/2bvv8DjKe/3/92zvWlmyLduSccc0G9NLwPTmcIBAgDQgAVJOyklvJOeben4JJwkJJDmQkJCEkIQktNADoYcOxnSCwRh3bNnaXmfm94fZza60u5JsSavyfl2Xr9nZeWbmGdmWHs3e83nuueceTZo0SbFYTJFIRN/4xjfK1doBAAAAoD/NnXsKAAAAAAAAwIj74he/qL/97W/617/+pfvvv1+HHXaYJOm//uu/dO655+qd73yn3G63IpGIli1bpl133VU/+9nP9Pzzz2vOnDmSpOnTp+vqq6/Wxz72sT5T3JeqZ9YLy8VisT4BXZ/PV67GaxiG/H6/HA6HstmspO0VLjOZjJxOpyKRSM0gb0tLizwezwh8BTHaOQ2jHOYFBsLj8ai9vV3t7e01t5eqjNcKAsdiMa1du1bxeFyW9e/60S6Xq2FV4Hrfs2zblmEYeumllxQOhxUIBCRtDxfvueeeeuONNzR37lzl83lt3rxZknTbbbfpxhtv1KuvvipJ+v3vf69PfOITuvvuu2VZ1oQM4wEjxeFwyOPxDPsYxLbtAVcZ7q9NNptVMpms23agHA7HgKsM72iY2OVylceHo8G8efPkcDjk8/nK35+l7ZV+v/Wtb+nkk0+WJH3iE58of4/+n//5H11yySV617veJUk68MAD9cADD+jMM88c+QsAAAAAMCZxlxMAAAAAAACYYM466yxdfPHFOvjgg7Vt27ZyCOzBBx/URz7yEbW2tmrLli3af//9VZoQrL29Xf/85z/LQd9Nmzbpscce0wc+8IE+VX2vueYarVq1qrzu8Xjk9/vLld9CoZC8Xq8ymYxyuZyk7VPO53K5uiHeaDSqSCTSJ1QMACOh9ACC3++vW4HRtm0lk8maYeDNmzdr5cqVSiaTVft88YtflN/vr3m8N954Qx0dHXK73ZKk+fPna8mSJdpvv/0kSUcccYRuuummctuZM2eW9/X7/TJNUxs3bqRiJDBOGIZRDr8OJ9u2ZZrmkFQmLhQKSqfTdfcZ6MSzlde+I6HhgVYudrlcAw4Up9Np+Xy+8oMU11xzjb761a/qD3/4g5LJpD72sY9p6dKlkrY/BFcZBA8EAnrqqad08skn1/0ZAAAAAACVuCsOAAAAAAAATDBLliyRJIVCIa1Zs6YcULjlllv0ne98R5/+9Ke1adMmfelLXypXt/zWt76l2267Tddee61aWlo0a9YsRSIRxePxPkHfzs5Obdu2TalUSoVCQfl8Xvl8Xk6nsyrAWxniLVW4pOokgLHKMAyFw2GFw+G6bUzTLFc4j8fjNQNepYq+r7/+elVI95vf/KZaW1u1bds2JRIJvf/979cjjzyihQsX6qCDDtLy5ct13XXX6aCDDtJf/vIXbd68WbFYTB0dHeVjAkB/DMOQy+WSy+Ua9hBq70DxYMPEvasU19vHNM0B96kU+I1Go/rwhz9ct10+n6+q6Hv77bfrsMMO0/7776+XX35Zy5cvLz/Q9ulPf1rXXnut1qxZo0AgoNWrV2uvvfYacNAZAAAAAAj6AgAAAAAAABNUZ2en1q1bVw6A9fT0aPfdd9evf/1rdXV16bTTTtN3vvMd/fjHP9Z5552nJUuW6LXXXtOxxx6rn/zkJ3r55Zf7VIq0LEttbW2aN29enyBvKBQiaAZgQnM6nWptbVVra2vdNqUHHuLxuA455BC5XC7Ztq1//vOf+u53vytJCofDmjp1qlauXCnTNHXssceqp6dHl19+uf72t78plUrp4IMPLldB53svgNHI6XTK6XTK5/MN63ksyxp0mNjpdDY8Zj6fL1fpXb9+vW655Rbdfvvt6uzslCQtXrxYTzzxhGbMmKHPf/7zuvLKK/XEE09o0aJFWrhwoTo7O2ue45ZbblEikahZhXiglYkr//AQHQAAADA+EPQFAAAAAAAAxgHLspRIJKqmio/FYjr66KPl9Xpr7jNz5ky9/vrrKhQK8ng8uu+++9Ta2qpZs2ZJkv7jP/5Dt956q+LxuCKRiBYvXqzFixdLkv71r39p9uzZ8ng8Mk2zHFRwOBxV7QAAg3P55Zfrl7/8pZYvX66VK1dq+fLl+t///V91dHTolVde0XHHHSe3262HHnpIn/nMZ8rff9/97nfr3e9+tyTpXe96l7q6ujR9+vQ+x3/ooYdULBYViUTK1dUjkUjVtPIAMJ44HA55vd66Y+LBHqtk6tSpkrY/fLFy5UpZllXeFovFqgLMF1xwgS644AJJ0iWXXKIvfvGLNfvjdrtlGIay2awSiUTdgPJg+juYYPCOhIlLgWIeKgEAAACGD0FfAAAAAAAAYJSzbVupVKoc3u29jMViSiaTVdP/ejwetbS0KJlM9gkRlD6E32233fT000+Xw12BQEAPPPBAud3atWvldDoViUS0adMmXXnllXr00Uf11ltv6aCDDtJ///d/y7btfiueAQAG7vzzz9cxxxyj9evX69VXX9Urr7wiSbr00kv18Y9/XFdffbVyuZxOOeUUnXHGGZKkW2+9VVu3btWCBQu0YsUKvfHGG7r44ovl9/v7HH/t2rVat26dkslk1fs+n68q+Ns7CByJRPh+D2DC+/KXv6xrr71Wq1ev1imnnKJoNKpnnnlG3/jGN3TOOeeoo6ND2WxWhx12mA4++GBJ0l//+le99tprCoVCeu6553TkkUdq6dKlNY9//PHH99sH27ZlmuaAKhP3tz2fzyuVStXdp/L3i0YMwxj2MLHb7ZbT6SRQDAAAgAnJsAc6OgcAAAAAAAAwLLLZbFVoNx6P91k3TbPcvhS+jUQi8nq95cpfpmkqn88rk8koHo8rmUzq3e9+txYuXFhz2t4rr7xSX/va1/Sxj31MnZ2dOu200/TZz35WTz75pBwOhzo7O/WTn/xE8+fPVyqV0j333KNcLqe5c+dqwYIFCgaDI/llAgC8LZFIyOPxlB/kuO222/T73/9e69at07Rp0/S9732vXJ29nmKxWK4EX+9nUDabrdonFAqVg7+1lqFQiAAWgHEvk8kol8splUopnU5r/vz5ymazeuKJJxSPx5XNZnX44Ydr8uTJkqQ777xTd955pxKJhGbNmqUvf/nLY+LBCdu2ZVnWToeJB7JPZTXk/gwkHLwzYeLSdn6eAQAAYDQh6AsAAAAAAAAMo2Kx2DBEFYvFlM/ny+0Nw1A4HFYkElEoFJLH45HT6ZRt2yoWi8pms0omk4rFYspkMuX9HA6HIpGIotGoWlpayss5c+YoEolUfVBtmqbOPvtsPf/889pll13U3t6uAw88UJ/85CcVi8WUSqXU0dFRMxwMAJg48vl8zZ9hlctisVhuX/pZVK8qcEtLi3w+H+EpAEAV0zQHFQxu1KbRPpUPT/anMgzcKBhcb9tAw8b8zgUAAICBIOgLAAAAAACwA0zb1uaMqY3pojami0oWLZmWLafDUMjlUEfApY6AS5P9TjkJs4xblmX1qYbYe5lOp6v2CQQC5cBTIBAoV+O1LEu5XE6ZTEaxWEw9PT1VAWCXy1UV4C29Lq2Hw2E+JAYAjCjbtss/t+r9HIzH41VTv7vd7oZB4EgkIo/H08SrwnBjHA2gWSzLGlQweEfCxKXtA+V0One4CvFg9hkLVaQBAI0xjgYmNoK+AAAAAAAAgxDLm3pmS1bLt2SVNbffVnFIqpxotHLd5zS0pN2nvdt9avHwwdpYYtu20ul0w2q8iUSiKrzk8XjKgaVwOCyfz1f+QLVUjTeRSKinp6dPFUSPx1M3xBuNRhUMBqmACAAYcyzLUjKZbFjZPpVKVe3j9/urgr+Vy9LPWAJLYw/jaAATRWk2luEOExcKBQ007uFwOHYoUDzY9k6nk99bAWCIMY4GIBH0BQAAAAAAGJCsaenedSmt6M7JkDSYGyql9ovbvDpqRlBeJ1VXR4NcLld3GvLSsnJqV6fTWRU2CofD8ng8MgxDtm0rn88rlUqVQ7yxWEyW9e9b7n6/v6oib+8gL1OZAwAmqmKxWK6QX+/ncjabrdonHA43DAPzgMzowTgaAIaHbdsyTXOHw8T97Vfals/nBxwoNgxj2MPEpff4OQ9gvGMcDaASQV8AAAAAAIB+rIrndcvqhNJFe1A3VHszJAVdhpbtEtbsCFNSD6disdincmDvZS6XK7c3DEOhUKhq+vBgMCi3210+XjqdVjweLwd5e1fzDQaDfcK7lUuv1zviXwcAAMaLXC5X98Gc0rKyUr7D4agK/kYikT7rPGQz/BhHA8D4YJrmDoeJB/N+5cO2/WkUEB6KMHHpfYeDcByAkcc4GkBvBH0BAAAAAAAaeGpzRnetTQ26akI9peMc2xnUvpP9Q3DEiac0BXijEG/vKcADgUCfan+BQKBcjbcyPBSLxdTT01N1DMMwFA6Hq4K8vavyulyukf5SAACAt9m2rUwm03B8EI/Hqx7ScbvdVcHfWsvSQz8YPMbRAIDBsiyr30DxQKoQD+S9gXI6ncMaJi79IVAMoIRxNIBaCPoCAAAAAADUUbqpOly4udqXbdvlyrmVQZ3K9d6VdD0eT59KfaUqfdL2aryVweCenh719PRUTQHucDiqqu/2DvFGIhE5nc4R/3oAAIChU/mwUL2xRu+Hhfx+f80AcOl1OBxmjFAD42gAwGhm2/agA8ONtjdqP1AOh2NA4eDBVDKuFyhmRgNg9GIcDaAegr4AAAAAAAA1rIrnde1r8WE/z1lzIxNq2rRcLtcwXBOPx6sq6zidzqpgTeVrt9sty7LKweCenp6qIG/lB2oul6sc2q1cll6HQiGq5wAAABWLxT4PGfVez+Vy5faGYSgUCvUZq1SGgoPB4IQK1DCOBgBgO9u2ZZrmsIeJC4WCBhr9MQxjQOHgwb7fu43L5ZpQ4x9gKDCOBtAIQV8AAAAAAIBesqalX764TemiPSTTo9VjSAq6DF24e6u8zvoh00Qiodtvv11Op1Onn376MPZo59QLxlQuK4MxkhQOh2tWyQuHw3I4HMrn8+UQb2WQNxaLyTTN8nG8Xm/darzRaFSBQIAPmAAAwJDI5XINxzv1HlzqPd6pDAV7vd5RO1Z54YUXdP/99+v444/X3LlzG7YdbeNoAAAmilqB4qEOExeLxap7Mf3Z0SrEAw0Tl16P1jEUMBiMowH0h6AvAAAAAABAL7e/mdCz3blhvalaYkha1ObViTPDfbbZtq3ly5fr73//u9xut0455RTNmzdvBHrV185MdV2rwl0wGJRlWUokElXh3dIyFotVVaMJBAJ9qvFWBnp9Pt9If0kAAABqsm27PONArSBwLBZTIpGoGut4PJ6aAeDesxk0QzKZ1PXXX69Vq1Zp77331nHHHSe/v/Z0v6NlHA0AAIaHZVnDHiYuLQeqVEF4oMHgHQkTu91uZoLCoOVyOXm93gG1ZRwNoD8EfQEAAAAAACr05Exd/uK2ET/vx/ZoVYvHWV7ftm2bbr755gEFKnaWbdvKZDINq9LF4/F+wyiVoRS/369UKlUO7/YO8iYSiao+hEKhPlV4K5ceD9PJAQCA8aPyIap646/eD1EFAoGG46/SjAjDwbZtPf3007rrrrvkdru1bNkyLVy4sKrNaBlHAwCAsc+27R0OEw/2/YFyOBzDHiYuBYqpUjz29fT06Cc/+Yl22203HX300Wpra6vflnE0gAEg6AsAAAAAAFDh/vUpPbopM6DqCfdd9RPdedl3dMh7PqyTv/Ddqm22bes3nzxb/3r4Hr3/h7/VHkeeVPc4hqSDpvq1dPr2KrePP/647rnnHgUCAb3zne/c6Sq+ldNL16oo13t6aYfDUTNAUhkksW1b8Xi8Zoi3p6dH6XT639dnGIpEIlVB3spqvJFIRC6Xa6euEQAAYLwpFot1x26l9VwuV25vGIZCoVDdGRUikYiCweBOBUfi8bhuvfVW/etf/9Luu++uE088UaFQSNLQjKNXr3hCf//Z/2jN80/L4XRo2oI99aGf/VluX+0H3irH0QAAAINl27aKxeIOh4nrbav13kDjWYZhDHuY2O12y+l0EigeZitWrNA999yjZDKpfffdV0uXLlUw2HfcurPj6O41q3Tbj7+h1csfU7GQ04JDjtLJX/z/FG6bUvc4jKOBsYdPUAAAAAAAAN5m2raWb8kO6KbqmheW6/HrfqeO+XvU3P7Pa66QBniz3Ja0fEtWC11p3XLz37R27Vrtv//+Ovroo/ud3q1YLCqRSDSsBpfNZqv2CYfD5dDH1KlT+4R4A4FAucJvKci7efNmrVy5srxeGSpxOp3l4O7UqVO1YMGCqlBvJBJhekMAAIBBcrlcmjRpkiZNmlS3TS6XqxsE3rBhg2KxmEzTLLd3Op11H+YqLX0+X93zRSIRnX322Xr++ed1xx136Oc//7lOOOEE7b7nnjs9jl694gld9cmzdMQH/0v/8aX/Tw6nSxv+9byMBuPI0jj6HdMCchJUAQAAg1QZqh2umbSk7YFiy7J2OEzce3smk6nb3rKsAfdruMPEpW0TNVC8ePFi7b777nrsscf00EMPacWKFXrHO96hgw46SG63W9LO34/OZ1L69cfP1LT5e+iCK66XJN31f9/T7z79fn3st3fUvSfLOBoYewj6AgAAAAAAvG1zxlTW7P+2ai6d1LUXfVTv+vqPdM+VP+qzff0rz+nB3/9cn/j9Xfqf4/Yc0Lmzpq1f/uk6RR1FffCDH9TMmTNlWVZVxbbeFdxisVifKZ39fn85qDFz5syqCm6VUzonk8mqaryvv/56VVXeyqkL3W53ObTb1dWlPffcsyrIGwqFJuwNewAAgGbyer2aMmWKpkypXa3Ltm2l0+maD4Rt27ZNb7zxhhKJRFWFOY/H07AqcCQS0V577aU5c+bojjvu0A033KCnV65WdvbB/fa30Tj61h9+XYecfaGO+OB/ld+bPKv/mS2ypq3NGVMdAT72BAAAo5NhGHI6nXI6nQ0fqhoKpmnWDQEPtnJxMpmsu0/lw2T9GWh4uL/AcH9h49FYaMDtdusd73iH9tlnHz3wwAO677779MQTT+jII4/U4sWLtTlr7dT96DeeeVzb1r+pT/7hHvlCYUnSu7/5U33riHl6/YkHNe/ApXWPyTgaGFv4nwoAAAAAAPC2jenigNrd9L0vaeE7jtW8A5f2CSjkM2ld+9WP6pQvf1/h9qkDPrdt24rOnKuphR794x//UCwWUyKRqKrC4Xa7yyGLqVOnav78+X1CFx6PpxwQLoV2t27dWhXkjcfjVTfjfT5fuSLvnDlzqkK80WhUfr+fIC8AAMAYZBiGgsGggsGgpk+fXrONZVlKJBJ1qwK//PLLSqfTVfsEAoHyGHTevHlaky7Ktu1+x4z1xtHJrZu15vmntPdJp+v/zjtJW9e+ocmz5um4j39Vs5Yc1O91bkwXCSgAAABI5UBxf7OE7SzLsmqGgAcbJi5VKI7H43XbD5TT6dyp0PBAwsRut1tOp3PQX69AIKATTjhBBxxwgO655x797W9/06OPPqq5S5dJCvS7f71xtJnPyzAMuTye8nsur1eGw6E3lj/WMOgrMY4GxhL+pwIAAAAAALxtY7ooh6RGE9ytuPMGrX/5OX386r/X3H7rD7+umYv31+5HnDi4k9uWUs6AktvWKhqNaubMmX2qp/l8PhmGoWKxWFV994033qhaj8fjVVXZgsFgObTb0dFRFeKNRqPDfuMfAAAAo5fD4SiPObu6umq2KRaLfYLApeXWrVtldXXKsC3JqB96aDSO3rp2tSTp7iv+Vyd9+huavuueevqWP+vKj56uT//lAbXPnFu//xr4A3sAAAAYGg6HQx6PR56KgOlwsG27Tzh4sGHi0noul1Mymay730A5HI5BBYN7vzdv3jxNnTpVzz33nJ545XU5Z+4uNahG3Ggc3bVoX7n9Ad3+k2/p+E9cJMnWHZd+W5ZpKrFlU+PrEONoYCwh6AsAAAAAAPC2ZNFqGPLt2bhOt/zvRfrQz/8it7fvNHsv3n+HXnviQX3yj/cM+tyG4VDR6VZPT4+mT5+uGTNmyOl0qqenR6tXry6HKnp6epRMJqv2DYfD5dDuzJkzq0K8LS0tcrvdg+4PAAAAUOJyuTRp0iRNmjRJkpTJZPTCCy9o8+bN2rp1qzzzgzKM+uGE/sbRtr19FH7gu87Rfqe8V5I0feEivfb4g3rypj/ohE9+ve6xLUmpYqNRPAAAAMYqwzDKIdnhZNu2TNPcqcrEle+l0+ma2/P5fFWBBtesoGzDUL15MfobR4da2/Xe7/9KN/1/X9Qjf/qlDIdDi45/l6YvXCSjQXhYYhwNjDUEfQEAAAAAAN5mWnbD7eteWqHk1s366fuOLr9nmabeePoRPfrnX+nAM87T1rVv6FtL51Xtd80XPqhZSw7Sh395U/2DG4Y8Pr9SqZQeffRRPfroo2+/bSgcDmvSpElqa2vT3Llzq4K8kUhkh6aLAwAAAAbDNE29+uqrevbZZ/Wvf/1LlmVp7ty5ete73qXnfZ1anTTr7tvfOPqz1z8iSZoyZ9eq/SbPnq+ejev67Vuxn3E8AAAA0IhhGHK5XHK5XPL7/cN6rp6eHj322GNavny5LKdThlEv5tv/OPrbj67TgoOP1Bf+9oRS27rlcLnkD7fou8furkkzdum3L4yjgbGDoC8AAAAAAMDbnI76N1Ulad4Bh+u//vxA1Xt//canNHnWfC0975MKRifpgNPPrdr+kzMP17LPfVu7HX5845PbtgI+rw48/HCFw2Elk0mtXr1aq1atUiKR0NSpUzVv3jztuuuuVOgFAADAiLBtW+vXr9eKFSv0/PPPK5PJqKOjQ0cffbT22msvhUIhSdIrr8cl1Q/69jeOntQ5S5HJHdq8emVVmy1vvqZdDzla/XH1M44HAAAAmu2tt97SI488omeffVYul0v77ruvtu6yi95I1w/b9jeOdlQUgAi2tkmSXnv8QaW2btFuS0/ot0+Mo4Gxg6AvAAAAAADA20IuhxzaPm1ZLd5gSB3zdqt6z+MPKNDSWn4/3D61z37Rjs5+Kyg4DENzO6fr8JkLyu8ddthhSqfTeuGFF/Tss8/quuuuUzgc1qc+9Sm5XNzWAQAAwPC6/fbb9cQTTygcDmvJkiVatGiRpk7tO94dinH0Yed8XHdfcbGmLdhD0xbsqadvuVab31ip913864Z9dEgKuhpPSwwAAAA0g23beuONN/Twww9r5cqVCofDOvroo7XPPvvI5/PpjjeTcqSzOzWOfvKmP2jK7AUKtrbpzWef1M0/uEiHvu+jmjxrXq1DljGOBsYWPhECAAAAAAB4W0fApWe6m3Nu6+3z9xYIBLT//vtr//33V3d3tzZv3kzIFwAAACNin3320cKFCzVr1iw5HPVDAEMxjn7H+z6qYj6nW3/4daVjPZq2YA+d//O/qK1rdsP96o2jAQAAgGYxTVMvvviiHn74YW3cuFFTp07Vaaedpj322EPOiiq8QzGO3rJ6pe786XeUifUoOr1LR57/Gb3jfR/tdz/G0cDYYti2Xb/+NwAAAAAAwDhTKBQUi8UUi8XU09Ojnp6e8uttplOF/ZY1rW/n7Rrl5ioAAADGnI3pon7zSk/Tzs84GgAAAKPJ3XffrX/+85+aO3euDjnkEM2ePVuGYfRpxzgawEDxPxUAAAAAAIwruVyuKrxbel1aT6VS5baGYSgcDisajaq1tVUzW1r0jG2qaDgbnGF4+JyGJvtH/rwAAADAzprsd8rnNJQ1R76+EONoAAAAjDYHHnig9t57b7W3tzdsxzgawEAR9AUAAAAAAGOGbdvKZDJ1Q7w9PT3KZrPl9g6HQy0tLYpGo5o8ebLmz59fXm9paVEkEqmaKk2S3OtTenRTRiN5a9WQtKTdJ2eNqg4AAADAaOc0DC1p9zGOBgAAACSFw2GFw+F+2zGOBjBQBH0BAAAAAMCoYdu2UqlUVYi3d3XeQqFQbu9yucqh3RkzZmj33XdXNBotvxcKheRwOAbVh73bfXpkU2aoL60h++3zAgAAAGMV42gAAABg8BhHAxgIgr4AAAAAAGDEWJalRCJRN8gbi8Vkmma5vdfrLYd2Z82aVRXijUajCgQCMoa46kCLx6nFbV49250bkSoKhqRFbV61eJgmDQAAAGMX42gAAABg8BhHAxgIgr4AAAAAAGDImKZZM7xbWsZiMdn2v29XBgKBcmh3wYIFVSHeaDQqn685VQWOmhHUa7G8UkV7WG+uGpKCLkNHzQgO41kAAACAkcE4GgAAABg8xtEA+mPYlZ+uAQAAAAAANFAoFKrCu72DvIlEoqp9KBTqU4W3cunxeJp0Jf1bFc/r2tfiw36es+ZGNDsyer8OAAAAwGAwjgYAAAAGj3E0gEYI+gIAAAAAgLJsNls3xNvT06N0Ol1uaxiGIpFIVZC3shpvJBKRyzW2JxN6anNGd61NDdvxj+sMap/J/mE7PgAAANAMjKMBAACAwWMcDaCesf1pGwAAAAAAGDDbtpVOp/sEeSvXc7lcub3T6SwHd6dOnaoFCxZUhXojkYgcDkcTr2j47fv2Tc+71qZkSEMybVrpOOE1z2rRXocPwREBAACA0WU4x9GEEwAAADBeMY4GUA8VfQEAAAAAGCds21YymaxbjTcWi6lQKJTbu93ucmi3cll6HQqFZBhGE69o9FgVz+vW1QmlivZO3Vw1JAVdhg4IZPX3P16lPfbYQ6eeeipfZwAAAIxLQz2OXrZLmGmGAQAAMO4xjgbQG0FfAAAAAADGCMuyFI/Hq8K7la/j8bhM0yy39/l8dUO80WhUfr+fgOkgZE1L965LaUV3btDVFErtF7d5ddSMoLxOh5577jldf/31OvLII3X44VT2BQAAwPg01ONoAAAAYCLYmXH09tYG42hgHCHoCwAAAACApK1btyoSicjlckmSVq9erS984Qt68803FQqF9M1vflOHHnrosPahWCzWrMJbWsbjcVX+Gh8MBvsEeSsDvV6vd1j7O1HF8qae2ZLV8i1ZZc3tfx8OSVZFm8p1n9PQknaf9m73qcXjrDrW/fffr/vuu0+nn3669txzz5HoPgAAANAU9cfR20MI/17frtE4GgAAAJgo6o2jTdsuF/JgHA2MfwR9AQAAAAATwtq1a7Vx40btscce8vv9kqTHH39cn/rUp5TL5eR0OnXGGWfoy1/+sorFos4991zts88+Ov3007VlyxadeuqpeuGFF9TS0rLDfcjn8zWr8ZbWk8lkVftwONynCm/l0u1279TXBDvHtG1tzpjamC5qY7qoVNFS0bLlchgKuhzqCLjUEXBpst8pZ53KybZt68Ybb9QLL7ygc889V11dXSN8FQAAAMDI6j2Ovu0f92q/Aw5U0O+rGkd7CymdfeaZuvPOO5vdZQAAAKDpat2PTmdzymczmt4W1bSgp9/70QDGLoK+AAAAAIBx7z//8z915513atWqVXrqqae0ZMkSSdLBBx+s//f//p+OPfZY5XI5hUIhbdy4UVOmTJHb7VZ3d7cikYgk6cADD9QHPvABfexjH5PT2fcpeNu2lc1m+4R4K5eZTKbc3uFwKBKJ1K3GG4lEap4H40+xWNTVV1+tLVu26MILL1Q0Gm12lwAAAIARs3jxYq1YsaK8fu655+q3v/2tJGnvvffWM88806SeAQAAAKPXn/70J33kIx/RtGnTNG3aNH3ta1/T2WefLcuydPXVV+ukk05qdhcBDCFXszsAAAAAAMBwO+ecc/Szn/1M++67r7Zt2yb77SmtnnjiCUmS0+nUqlWrtHTpUpmmKUlqa2vTzTffrPe9731KJBLasGGDVqxYoVQqVQ7/StsDvg888IAefvhh5fP58vsul6sc3J02bZoWLlxYVZ03HA7L4XCM7BcCo5LL5dJZZ52lK6+8Un/4wx/0oQ99SD6fr9ndAgAAAEaE0ava2L333lt3GwAAAIDt/ud//kePPfaYFi5cqH/+85869dRTdcMNN6i1tVXnnHMOQV9gnCHoCwAAAAAY9w444AAZhiG/3681a9aUPyz+xz/+oS9/+cs6//zztXXrVn3pS18qh28vu+wy3XjjjfrpT3+qzs5OLVq0SMFgUOl0uk/Qd8aMGTr88MOrqvIGg0E+lMaABQIBvfe979WVV16pv/71r3rve99LEBwAAAATwpQpU3TjjTfq1FNP1dVXXy3DMPSb3/ymPNMJAAAAgL6cTqcWLlwoSTr00EMVDAb1jne8Q5JkWVYzuwZgGBD0BQAAAABMGDNmzNCbb75ZXl+1apUOOeQQ3X777YpGozrppJOUTqd18cUX693vfrf22WcfxWIx7bPPPrrooou0adMmdXR0VB3T4XBo3rx5mjdv3khfDsaZ9vZ2nXnmmbrmmmt0++2366STTiIsDgAAgHHvhz/8oZYtW6b3vve9OvLII3XbbbfpAx/4gCzL0m9/+9tmdw8AAAAYlSzL0sqVKzVv3jw9+eST6unp0bPPPquWlpbyzIUAxg+CvgAAAACAcaFQKCgWiykYDMrv99dss8suu2j16tUqFApyu916+OGHtcsuuygajUqSli1bpnvvvVeZTEY+n09z586VJCWTSb3yyitaunSppO030Ki2iuEwZ84cLVu2TDfffLPa2tp00EEHNbtLAAAAwLCaNGmS3nzzTW3btk2tra2SpKefflr5fF62bTe5dwAAAMDo9NWvflUHHXSQ5syZo7Vr1+r666/XsmXLtGXLFl1xxRXN7h6AIUbQFwAAAAAwJuRyOfX09CgWi6mnp6f8urSeSqUkSaeeeqr23HNPOZ3O8r6lqqh77rmnbrrpJrndbklSOBzW3XffrYsuukjFYlGrVq1SNBqV3+/X2rVrdckll+j+++9XNpvVu971Ln3yk58k5Itht88++6i7u1t33nmnJk2apAULFjS7SwAAAMCw6erq0g9+8AN99rOfrXr/nnvu0RVXXKEbbrihST0DAAAARq+zzjpLhx56qF555RUtWbJEkyZN0qpVq5TL5RQMBpvdPQBDzLB5FBYAAAAA0GS2bSuTydQN8fb09CibzZbbOxwOtbS0KBqN9llOnTpVPp+vHO6t9LOf/Uzf/va39cEPflC77LKL3vOe9+gLX/iCHnjgAXm9Xu2666764Q9/qK6uLmUyGT377LNyu92aNWuWJk2aNJJfEkxwtm3rz3/+s1577TV96EMfUkdHR7O7BAAAAAyL+fPnq6WlRWeffbY+//nPV21buHChXn755Sb1DAAAABhburu71dbW1uxuABgGBH0BAAAAAMPOtm2lUqmqEG/v6ryFQqHc3uVy1Qzxll6HQqFBVdUtFos6++yz9dJLL2nOnDmaMmWKDjnkEJ1//vlKpVKyLEvhcHg4Lh3YYfl8Xr/5zW+USqV0wQUX8G8UAAAA49I+++yje++9V8cee6xOPfVUffWrXy1vW7JkiZYvX97E3gEAAACj07e+9S19+MMfVkdHh5577jmdcsop2rBhg9rb23X99ddr//33b3YXAQwhgr4AAAAAgJ1mWZYSiUTdIG8sFpNpmuX2Xq+3HNrtHeKNRqMKBAI1K/ICE00ikdAvf/lLhUIhnXfeefJ4PM3uEgAAALBTTNvW5oypjemiNqaLuvXue/SOw5fKtkzdd+dt8mTjOu2ow/TCYw/q5ptu0p133tnsLgMAAABN13sc/bc779LSI4+S02Hogb/frsWzO7XssAP1wmMP6v99/et66KGHmt1lAEOIoC8AAAAAoF+madYM75aWsVhMlb9eBgKButV4o9GofD5fE68GGFs2btyoX//615o7d67OPPNMQvAAAAAYk2J5U89syWr5lqyy5vbfHx3aHlgojXEr1/OphBa1unXk/Glq8Tib13EAAACgiQYyjraKRTlcLkmSz2no6Zuu0WVf+jjjaGAcIegLAAAAAFChUKgK7/YO8iYSiar2oVCoT3i3cknVUWBovfLKK/rTn/6kQw45RMcee2yzuwMAAAAMWNa0dO+6lFZ052RIGswHk6X2i9u8OmpGUF6nY3g6CQAAAIwyOzOOtkxTDqeTcTQwjhD0BQAAAIAJIJvN1g3x9vT0KJ1Ol9sahqFIJFIV5K2syhuJROR6+8lwACPn0Ucf1Z133qmTTz5Z++yzT7O7AwAAAPRrVTyvW1YnlC7agwom9GZICroMLdslrNkRHiwFAADA+MY4GkBvBH0BAAAAYIyzbVvpdLpPkLdyPZfLlds7nc6q6ruVId6WlhZFIhE5HDzdDYw2tm3r1ltv1fLly/X+979fs2fPbnaXAAAAgLqe2pzRXWtTg64+Vk/pOMd2BrXvZP8QHBEAAAAYfRhHA6iFoC8AAAAAjHK2bSuZTNatxhuLxVQoFMrt3W53ObRbuSy9DoVCMgyjiVcEYEeZpqk//vGPWrdunc4//3y1t7c3u0sAAABAH6VwwnAhpAAAAIDxiHE0gHoI+gIAAABAk1mWpXg8XhXerXwdj8dlmma5vc/nq1uNNxqNyu/3E+QFxrFsNqtf//rXKhaLuuCCCxQIBJrdJQAAAKBsVTyva1+LD/t5zpobYfphAAAAjBuMowE0QtAXAAAAAIZZsVisWYW3tIzH46r81SwYDPapxlsZ6PV6vU28GgCjwbZt23TllVfqsMMO04EHHki4HwAAAKNC1rT0yxe3KV20h2Sa4XoMSUGXoQt3b5XX6RjGMwEAAADDj3E0gP4Q9AUAAACAnZTP52tW4y2tJ5PJqvbhcLhPFd7KpdvtbtKVABhLEomEwuFwwzbFYlEul2uEegQAAICJ7vY3E3q2Ozes4YQSQ9KiNq9OnNl4TAwAAACMdoyjAfSHT3oAAAAAoAHbtpXNZvuEeCuXmUym3N7hcCgSiSgajaqtrU1z586tqsYbiUTkdDqbeEUAxov+Qr6bN2/WJz/5SV122WWaPHnyCPUKAAAAE1VPztSK7tyInc+WtKI7p0M6Amrx8Hs2AAAAxibG0QAGgqAvAAAAgAnNtm2lUqm61Xh7enqUz+fL7V0uVzm4O23aNC1cuLCqOm84HJbDwXRHAJrHtm0ZhqHJkydrt9120znnnKPbb7+92d0CAADAOLeiOytDGpEqZCWGpGe2ZLV0enAEzwoAAAAMHcbRAAbCsG17JL9PAAAAAMCIsixLyWSybjXeWCymYrFYbu/xeMqh3cpKvKXXwWBQhmE08YoAoH+xWEwtLS2SpI9+9KMqFAr61a9+1eReAQAAYLwybVuXPbdVWXNgHzved9VPdOdl39Eh7/mwTv7Cd7Vt/Zu6+J371mz73u9fqb2OPaXusXxOQ5/ca5Kc/K4OAACAMaa/cfTdl1+sf/zif6vemzxrnj57/SOSpEIuq9t+9N9a8fcbZeZzmn/wkTrlKxcr3Dal33MzjgbGFir6AgAAABjTTNNUPB6vG+KNxWKyLKvc3u/3l0O78+bN6xPk9fl8BHkBjEm5XE5er1eS9Itf/EKrV6/WT3/6U51//vn6zW9+09zOAQAAYFzbnDEHHPJd88JyPX7d79Qxf4/yey1TZ+irf3++qt3j11+tB373Uy049OiGx8uatjZnTHUE+NgTAAAAY8tAxtFT5y7U+f/31/K6w/nvce+tP/y6Xn7oLr3v+7+SLxTRTd//sq75/Hn66FW39XtuxtHA2ML/VAAAAACjWqFQKAd2a1XlTSQSqpyoJBQKlUO706dPrwrxtrS0lENwADCevPjii1qzZo2OP/54SdIXvvAFzZ07V2eddZZeeukl7bfffjJNUy+99JL23HPPJvcWAAAA483GdLH/RpJy6aSuveijetfXf6R7rvxR+X2H06lw+9Sqti/ce6sWHXuKvIHQgM5PQAEAAABjzUDG0bXGypKUTcT15I3X6Kz/uVxzDzhMknTGNy7VJacfojeffVIzF+03oPMzjgbGBv6nAgAAAGiqXC5XFd6trMTb09OjVCpVbmsYhsLhsKLRqFpbWzVr1qxyiLcU5HW5+DUHwMTT3d2tT3ziE7r33nvV2dkpSTr33HM1f/58nX766TrzzDN1zz336LOf/ay+973v6YQTTmhyjwEAADCebEwX5ZBk9dPupu99SQvfcazmHbi0Kujb27oXV2jDK8/rlC9/v99zOzTwoDEAAAAwmgxkHL3lzVX6n+P2lMvr08xF++mET3xN0WmdWvfSCpnFguYduLTcdsrs+Yp2dA4o6Ms4Ghhb+AQcAAAAwLCxbVuZTKZuNd6enh5ls9lye4fDUQ7uTp48WfPnz6+qxhuJROR0Opt4RQAwOh122GH63Oc+pw984AP61a9+pQ0bNuiqq67SVVddpSOOOEKSdNBBB+nSSy/Vpz71Kc2ZM0cLFixobqcBAAAwbiSLVr8h3xV33qD1Lz+nj1/9936P98RN12jK7AXaZfEB/ba1JKWK/Z0dAAAAGH36G0d37bWP3v3NS9W+yzwltmzSP37xA11x/sn69F8eVKL7LTndHvnDLVX7hNomK9H9Vr/nZhwNjC0EfQEAAADsMNu2lUql6oZ4e3p6VCgUyu1dLle5+u6MGTO0++67V1XjDYVCcjgcTbwiABi7PvrRj2rDhg266KKLdNddd+nTn/60jjjiCNm2LdM05ff7dfjhh+uUU07RZZddpssuu6zZXQYAAMA4YVp2w+09G9fplv+9SB/6+V/k9voati1kM1px+3U66sLPDfj8xX7ODwAAAIwmtm0rl8spm8s3bLfroceUX09bsIe69tpX31+2RM/edaPcXv9O94NxNDB2EPQFAAAAUJdlWUokEnWDvLFYTKZpltt7vd5yaHfWrFlVId5oNKpAICDDMJp4RQAwvn3zm99UoVBQMplUa2urisWiHA6HXK7tt4AymYxM01RnZ2eTewoAAIDxxOlo/Lv+updWKLl1s376vqPL71mmqTeefkSP/vlX+vaj6+R4ewaf5+6+WYVsRkveeeaAz+/q5/wAAADAcLIsS5lMRul0Wul0WqlUqmpZ67VlWXLtf5IcHbMG/NmZP9yi9plz1b1mleYfeITMQl6ZRKyqqm+ye7PCbVMGdDzG0cDYQdAXAAAAmMBM06wZ3i0tY7GYbPvfT/MGAoFyaHfBggV9grw+X+OqPACA4ed2u8sVew899FCZpqlJkyZp69atCgaDevTRR3XVVVc1u5sAAAAYR0IuhxxS3WmH5x1wuP7rzw9UvffXb3xKk2fN19LzPlkO+UrSkzddo92WHq9Qa/uAzu2QFHQxOxAAAACGjmmaNQO7lWHdyvVMJlP1eZokGYahQCCgYDCoQCCgQCCgtra28nowGNSLatXreWmgdXVz6aS2rn1D4WXv1ozdFsvpcuu1xx/QnkefLEna/MZK9Wxcq5mL9uv3WIyjgbGFoC8AAAAwjhUKharwbu8gbyKRqGofCoXK4d3Ozs6qEG9LS4s8Hk+TrgQAMBgXXHCBbrjhBs2dO1cXXnihVq9erdWrV6ujo0Pf/e53NXfu3GZ3EQAAAONIR8ClZ7rrb/cGQ+qYt1vVex5/QIGW1qr3t7z5ut54+hGde+kfB3xu6+3zAwAAAPXk8/m6FXZrvZfL5focw+l0VoV0I5GIOjo6qoK8ldt9Pl+/lXoLW7J6bU2y7vbbLvl/Wnj4cWqd1qX45o26+/KL5XA4tfiEd8kXjmi/U9+nW3/43/JHWuULhvW3i7+imYv2H1DQl3E0MLbwvxUAAAAYw7LZbM0gb2k9nU6X2xqGoUgkomg0qra2Ns2ZM6cc4o1Go4pEIuWp3QEAY9v06dN11VVX6YILLtB73vMeHX/88VXbLcuSw0G1BgAAAAyNoQoIPHXTHxSZOl3zDz6yKecHAADA6GfbtnK53ICr7aZSKRWLxT7H8Xg8VcHc9vZ2zZw5s09gt7R0u939BncHq79xbGzTev3pKx9ROrZNwdY2zdr7QH3st7eXZ79Y9rlvyzAMXfOFD6qYz2vBwUfqlK98f8jOD2D0MOzedcMBAAAAjAq2bSudTtcN8fb09FQ9Uex0Oquq71aGeFtaWhSJRAh1AcAEc9111+miiy7S448/rkgk0uzuAAAAYJwybVuXPbdVWXPkP3b0OQ19cq9Jcg5x6AIAAAAjw7IsZTKZhhV2e7+2LKvPcfx+f1U4t1Zgt/L1aCh+wzgawEA1/zsWAAAAMEHZtq1kMlkV4u29LBQK5fZut7sc2u3q6tKee+5ZFeQNhUJD/iQxAGBsO/300zVjxgxCvgAAABhWTsPQknafHt2U0UhGFAxJS9p9hBMAAABGkWKxWLOqbr2qu5lMps8xHA5Hn2Bue3t73Wq7fr9/TBa7YRwNYKCo6AsAAAAME8uyFI/Hq8K7la/j8bhM0yy39/l8davxRqNR+f1+grwAgCFh2zY/UwAAADCkYnlT//fCthE/78f2aFWLxzni5wUAAJgIbNtWoVAYcLXdVCqlfD7f5zgul6tmVd16VXd9Pt+EuX/JOBrAQFDRFwAAANhBxWKxZhXe0jIej6vyubpgMFgO7XZ0dFSFeKPRqLxebxOvBgAwUdi2rbVr18qyLO2yyy7N7g4AAADGiRaPU4vbvHq2Ozcy1chsS1r7L72Uc2n//feX00lIAQAAoD+2bSubzdYN6fautptOp1UsFvscx+v1VoVzJ0+e3DC86/F4mnC1Y8NIj6MNSYvavIR8gTGGoC8AAABQRz6fr1mNt7SeTCar2ofD4XJod+bMmVVB3paWFrnd7iZdCQAA/2bbth588EGtWbNG559/vtrb25vdJQAAAIwTR80I6rVYXqmiPawhBUOS3+XQLs6E7rzzcT399NM68cQTNXv27GE8KwAAwOhjWdaAA7ulZa3J33sHdKPRaN1qu4FAQC4XkbOhNJLj6KDL0FEzgsN4FgDDwbBrffcGAAAAxrnSE8u9Q7yVy0wmU27vcDgUiUT6hHdLwd5IJELlGADAmJHNZvXrX/9axWJRF1xwgQKBQLO7BAAAgHFiVTyva1+LD/t5zpob0eyIRxs2bNDtt9+uNWvWaLfddtNxxx2naDQ67OcHAAAYDsVisd9qu5WvKz/LKnE4HHVDurVe+/1+ORyOJlwtKo30OBrA2ELQFwAAAOOSbdtKpVJ1q/H29PQon8+X27tcrqoAb2WIt6WlReFwmJscAIBxZdu2bbryyivV3t6uD3zgA1ThAAAAwJB5anNGd61NDdvxj+sMap/J/vK6bdt67rnndNdddymbzerQQw/VoYceyuxKAACgqWzbVj6frxnYTaVSymQyfd6v/OyqxO1216yq2zvIW1p6vV4ZhtGEK8bOGulxNICxg6AvAAAAxiTLspRMJutW443FYioWi+X2Ho+nZjXe0jIYDHLTAwAw4axZs0a//e1vtccee+jUU0/lZyEAAACGTCmkYEhDMv1w6TiNwgm5XE4PPvigHnnkEUUiER133HFauHAh41wAADAkbNtWJpNpWGG3d3DXNM0+x/F6vQOuthsMBnl4aYJpxjgawOhH0BcAAACjkmmaisfjNUO8PT09isfjsiyr3N7v9/cJ71a+9vl8fKgDAEANzz//vK677jodeeSROvzww5vdHQAAAIwjq+J53bo6oVTR3qmQgiEp6DK0bJfwgKYZ7u7u1h133KGVK1dqzpw5OuGEEzR58uSd6AEAABiPTNOsWVW3Mrjbe713zMowDPn9/qpgbu/13iFep9PZpCvGWNGscTSA0YugLwAAAJqiUCjUrMJbWiYSiaqbJaFQqG413paWFnm93iZeDQAAY9v999+v++67T6effrr23HPPZncHAAAA40jWtHTvupRWdOcGXZWs1H5xm1dHzQjK63QMeF/btvXqq6/qjjvuUCwW0yGHHKKjjjqKB8EBABjHCoVC3cBurdfZbLbPMZxOZ78Vdivf8/l8cjgGPkYBBqpZ42gAoxNBXwAAAAyLXC7XpwpvLBYrr6dSqXJbwzAUDoerqvD2rsrrcrmaeDUAAIxvtm3rxhtv1AsvvKBzzz1XXV1dze4SAAAAxplY3tQzW7JaviWrrLn940mHJKuiTeW6z2loSbtPe7f71OLZ8ap3xWJRjzzyiPx+v/bZZ58+QRzLssrvvfrqq/rTn/4kv9+vz3/+8zt8TgAAsPNs21Yul+sTzm0U3i0UCn2O43a7a4Z0a4V3g8GgPB4PDwZhVGnWOBrA6ELQFwAAAINm27YymUyfEG/lsvIpaIfDUbcabzQaVTgcZpoiAACarFgs6uqrr9aWLVt0wQUXqLW1tdldAgAAwDhk2rY2Z0xtTBe1MV1UqmipaNlyOQwFXQ51BFzqCLg02e+UcwhDNrZt1wztJJNJ/etf/9LFF1+slpYW3XDDDVqyZImuueYatbe3D9n5AQCY6EqfLQ202m46nZZpmn2O4/P5BhTYLW1zu91NuFpg6DVrHA1gdCDoCwAAgD5s21Yqlaob4u3p6al6KtrlcjWsxhsOh3n6GQCAMSCdTuvKK6+Uy+XShz70Ifl8vmZ3CQAAABg2L730ki6++GJ1dnZq77331qRJk/SDH/xAn/nMZ3TMMcfomWee0SOPPKJ3vvOdzHoBAEAvpmnWDelWvldaz2Qy6h1RMgyjT1i33utgMCi/30/hGADAhETQFwAAYAKyLEuJRKJukDcWi1U9Je31euuGeKPRqAKBAEFeAADGiS1btujKK69UZ2en3vve9/aZ2liSnnvuOc2bN09+v78JPQQAAAB2Xjqd1mc+8xn99a9/VXd3tyTp7LPP1qxZs/S9731PP//5z3XVVVdpv/3202OPPaZ3vvOd+ta3vtXkXgMAMHwKhUKfoG6twG5pmcvl+hzD6XTWrKpbr9qu3+/n8yUAAAbA1ewOAAAAYOgVi0XF4/G6Id5YLFb11HQgECiHdhcsWNAnyEs1PwAAJo729nadeeaZuuaaa3Tbbbdp2bJlfT5wueOOO3TggQfq8MMPb1IvAQAAgJ0TCAR06aWXSpL22GMP7bHHHspkMvrIRz4iafsDcKeddpq++tWvKpPJ6LTTTtN9992nI444oom9BgBgYGzbVi6X67fabuXrypkcSzweT1U4t729vWHVXY/HQ3AXAIBhQNAXAABgDCoUClXh3d5B3kQiUdU+HA6XQ7udnZ1VId6WlhZ5PJ4mXQkAABiN5syZo2XLlunmm29We3u7DjrooKrtM2bM0OrVq5vUOwAAAGDnWZYlr9erK664Qvfdd5/OOOMMud1uORwOPfDAAyoUCvrjH/+oo48+WgceeKCeeOIJxWIxSdvDU4SYAAAjybIsZTKZmoHdVCqlTCbT533Lsvocx+/3VwVzp02bVrPabmnpchErAgBgNOAnMgAAwCiUzWZrBnlL6+l0utzWMAxFIhFFo1G1tbVpzpw55RBvNBpVJBLhRgwAABi0ffbZR93d3brzzjvV2tqqXXfdtbxtl1120f333y/TNOV0OpvYSwAAAGDHOBwOWZYlh8Ohm2++WSeeeKLe9a536Qc/+IFuueUW/fjHP9aUKVN01FFHadmyZfqP//gPnXzyyZJEyBcAsNNM0+y3wm7vIG9vhmH0CeeWKu7WqrYbCATkcDiacLUAAGBnkfgAAAAYYbZtK51O1w3x9vT0KJfLlds7nc5ycHfq1Knaddddq6rxRiIRbswAAIBhccwxx2jr1q267rrr9KEPfUgdHR2SpFmzZunuu+/W+vXr1dXV1eReAgAAADumdE9t8eLFam1t1cknn6xLLrlE5513nk455RRJ28e+999/vy6++GLuwQEAarJtW4VCoW613VJwt3K98nOgEpfLVRXMjUajmjZtWt1quz6fj4dPAACYIAj6AgAADDHbtpVMJqtCvL2XhUKh3N7tdpdDu11dXdpzzz3L1XhbWloUCoW4UQMAAJrCMAyddtpp+s1vfqM//vGPuuCCCxQOh9XR0SG3263Vq1cT9AUAAMCYd84555SnNz/uuONk23Z522OPPabNmzcPOOS7Zs0aTZo0ScFgcFj6CgAYfrZtK5vNDiiwW1oWi8U+x/F6vVVVddvb2zVz5sw+gd3Sa7fbzedBAACgJsOu/E0VAAAA/bIsS/F4vCq8W/k6Ho/LNM1ye5/PVw7tlirxltaj0aj8fj83bgAAwKiWSCT0y1/+UqFQSOedd548Ho9+//vfyzAMve9972t29wAAAIAh89xzz+kTn/iE2tratN9+++maa67Rl7/8Zb3vfe8bUNj317/+tQzD0Hnnncc9PwAYJSzLahjSrRXkLT0AUsnv99cM6daqthsIBORyUXsPAAAMDYK+AAAAvRSLxZpVeEvLeDxeVdUjGAyWQ7u9l9FoVF6vt4lXAwAAMDj5fF5btmzRtGnTqoIJGzZs0FVXXaW5c+fqzDPP1EMPPaSHHnpIX/rSl5jCGAAAAOPOz372M3V3d+sd73iHli5dKqfTWd5WujdYK8i7atUq/e53v9NJJ52k/ffff8T6CwATSbFYHFBgt/Q6k8n0OYbD4RhQYLe09Pv93P8AAABNQ9AXAIAGTNvW5oypjemiNqaLShYtmZYtp8NQyOVQR8CljoBLk/1OOanOMGbk8/ma1XhL68lksqp9OBzuU4W3cul2u5t0JQAAAEPv5Zdf1rXXXqv29nbtv//+Wrx4cfnBpVdeeUV/+tOfdMghh2jXXXfVVVddpQsvvFDTp08v788YGgAAAOOZZVnq7u7W3/72N51wwgmaMWNGnzY333yznn/+ef3nf/6nWlpaBnRcxtEAJirbtpXP5wdcbTeVSimfz/c5jsvlqllVt9brYDAor9dL5XUAADBmEPQFAKCGWN7UM1uyWr4lq6y5/UelQ1LlJD2V6z6noSXtPu3d7lOLxyk0j23bymazfUK8lcvKJ7cdDocikUhVkLeyGm8kEqmq1gEAADDe2batN998U48//rheeukleTweLV68WAcccIDa2tr0yCOP6O9//7uWLVumO++8U0ceeaQOOeQQxtAAAACYMDZu3Kgbb7xRmzZt0t57761jjjlGwWCwvD2bzernP/+5pk6dqve+970Ng2SMowGMN6XPaXoHdivDur3fN02zz3G8Xu+Aq+0GAgF5PJ4mXC0AAMDIIOgLAECFrGnp3nUprejOyZA0mB+SpfaL27w6akZQXifT9wwH27aVSqXqVuPt6empepLb5XJVVd+tDPG2tLQoHA4z1RIAAEAdsVhMTz75pJ5++mml02nNmzdP+++/v1555RU988wzmjJlikLRSZp08AmMoQEAADChWJalp556Svfcc49s29YRRxyh/fffv1w0oDQbxmmnnaZFixb12Z970QDGCsuy6lbYrVd1t1YMpb8Ku73fowgLAADAvxH0BQDgbavied2yOqF00R7UTdXeDElBl6Flu4Q1O8LTw4NlWZaSyWTdaryxWEzFYrHc3uPxlEO7tZbBYJCplwAAAHZSsVjU888/r8cff1wbNmxQa2urHA6HYq6QnHsfJcMbYAwNAACACSmdTuuee+7RU089pcmTJ+vEE0/U7NmzJUnXXXedXnvtNX384x+vqvjLvWgAzVQsFutW202lUspkMlXr2Wy2zzEcDkfNkG69qrs+n4+iKwAAADuBoC8AAJKe2pzRXWtTg66cUE/pOMd2BrXvZP8QHHH8ME1T8Xi8Zoi3p6dH8XhclvXvien8fn+f8G7la5/PR5AXAABghNi2rbVr1+rxxx/Xy2mHnHseJtuyZAzBh3WMoQEAADCWbdiwQbfffrvWrFmj3XbbTccdd5zcbrd+9rOfac6cOTrjjDMkcS8awNCybVv5fL7fCruV2wuFQp/juN3ufivsVr72er18NgMAADCCCPoCACa80o3V4TLRbrAWCoWaVXhLy0QiUTVlUygUqluNt6WlRV6vt4lXAwAAgFoYQwMAAAB92bat5557TnfddZey2awOPfRQRaNR3XTTTTrrrLOUatuFcTSAhmzbViaTqVtttxTcrVw3TbPPcXw+34Cr7QYCAbnd7iZcLQAAAAaKoC8AYEJbFc/r2tfiw36es+ZG+p06bfPmzXrhhRd0+OGHj+rpi3K5XJ8qvLFYrLyeSv37RrVhGAqHw1VVeHtX5XW5XE28GgAAAAzWaBpDAwAAAKNRLpfTgw8+qEceeUThcFiBQEBxd1jFvY8d9nMzjgZGF9M0a1bVrRXYTaVSymQy6h3hMAyjZli3XgXeQCAgp9PZpCsGAADAcCDoCwCYsLKmpV++uE3poj0kU6TVY0gKugxduHurvM6+AV7LsvTwww/rvvvuU2trqz7ykY80LfxaelK8d4i3cpnNZsvtHQ5H3Wq80WhU4XCYm0kAAADjyGgZQwMAAADNtnLlSt19993yer3y+/3y+/3y+XxVy0KhoGeeeUZrNmyS56j3yvAGpGGc6p5xNDD8CoVCVVC3Vni38nXlZyolTqezYUi39/t+v1/GMH7vAAAAwOhH0BcAMGHd/mZCz3bnhjWgUGJIWtTm1Ykzw1Xvv/XWW7rpppu0YcMGHXTQQTryyCOHdXok27aVTCb7hHcrg72FQqHc3uVyNazGGw6HubkEAAAwgYyGMTQAAAAwGnR3d+vxxx9XNptVJpNRJpOpem1ZVrmta9ERcszcTcYIzOTGOBoYONu2lcvlBlxtN51OV32GUuLxeAYU2C0tPR4Pn60AAABgUAj6AgAmpJ6cqctf3Dbi5/3YHq1q8ThlWZb++c9/6v7771dra6tOOeUUdXZ27vTxLctSIpGoW403FovJNM1ye6/XWzfEG41GFQgEuNkEAAAASc0fQwMAAABjhW3bKhQKymQy2pzM6q9vObQ9gjtyGEdjIrIsS5lMZsDVdlOpVFUov8Tn89WstlvrdTAYbNosjQAAAJg4GHECACakFd1ZGdKAKpHdd9VPdOdl39Eh7/mwTv7CdyVJN3znc1r5+AOKb94orz+omYv31wmf+m9NmT2/7nEMSc9syWqhM6mbbrpJGzdu1CGHHKIjjjhiwDeBisWi4vF43RBvLBZT5TM8gUCgHNpdsGBBnyCvz+cb0HkBAACAnR1D/+LCU7TqqYer2h1w+rk67aIf1D1OaQy9dHpwxzsOAAAAjDDDMOTxeOTxePRMyiVDmR0eRye2bNJtP/6mVj52n3KplCbPmqsjz/+M9jz65PrnF+PoiapQKOjee+9VW1ublixZIofDoYsvvlgPPfSQNmzYoGOOOUaf//zn1dbW1uyuDohpmjUDu/Wq7mYyGfWuc2YYRp+QbltbW91qu36/X04nIXkAAACMLgR9AQATjmnbWr4lO6Abq2teWK7Hr/udOubvUfX+jN0Wa+8TT1d0WqfSsW36xxX/q19//N364s1PyVHnBpAt6YmNST1w25Vqm9Sq888/XzNmzKhqUygUqsK7vYO8iUSiqn04HC6Hdjs7O6tCvC0tLfJ4PIP50gAAAAA1DcUYWpL2P+0DOvZjXyqvu32BhseyJS3fktU7pgXkZKYJAAAAjDFDMY7+839/QtlETOdc8nsFo5P0zB3X6Q9fukCf+P1dmr5wUc1jMY6eeGzblmEY+vvf/66TTz5Z559/vn75y1/qd7/7nV5++WVdeOGFWrRokS688EL94he/0Fe+8pWm9DOfz9etsFvrvVwu1+cYTqezKpwbiUTU0dFRtwKvz+dj5kIAAACMeQR9AQATzuaMqazZ/63VXDqpay/6qN719R/pnit/VLXtgNPPKb9unT5Tx/7nV3Tp2Udo2/o31dY1u+4xi4ZTC/Y9SHvtMk1r167V888/X67E29PTo3Q6XW5rGIYikYii0aja2to0Z86ccog3Go0qEokwHRQAAABGxFCMoSXJ7fMr3D51UOfOmrY2Z0x1BBj7AgAAYGwZinH0myse1ylf+V917bmPJOmoCz6nh665QuteWlE36Csxjp5oDMPQtm3bdP/99+uwww7TlClTJEn333+/isWiTj55ewXoaDSqTCYzJOe0bVu5XG7A1XZTqZSKxWKf43g8nqqQbnt7u2bOnFmz2m4wGJTb7Sa4CwAAgAmH3+wAABPOxnTfG0m13PS9L2nhO47VvAOX1gwplOQzKT31tz+qdcYuaumYUbedtP3G1782btXLjz8kp9NZDu5OnTpVu+66a1U13kgkIofDMahrAwAAAIbDUI2hV9x+nZ65/a8Kt03RwsOP01EXfE4ef+OqvqXzE1AAAADAWDMU4+iZiw/Qs3+/UQsPO1a+cIueu+smFXM5zd730AGdn3H0+Feq5nvJJZdozpw5WrBgge655x7FYjF98Ytf1A9/+EPts88+6u7u1l577aXzzz+/7nH6q7Db+7VlWX2O4/f7q8K506ZNq1ttNxAIUNAEAAAAGABGzQCACWdjuiiHpL63n/5txZ03aP3Lz+njV/+9bptH/vxr3fGTbyqfSWvyrHk6/+d/kcvtaXxy21LrrPk6+qA9teuuuxLkBQAAwJgwFGPovU84XdFpnYpM7tCGV1/UHZd+S1veeE3v/+FvGp7boYEHJAAAAIDRZCjG0e/9/pX645cu0LePXCCHyyW3z6/3//A3ap85p+G5GUdPHIZh6KmnnlIikdAHPvABPfzww5JUDtn6fD6dd955OuGEE3T55Zfrc5/7nP785z/3+Xzi9ddf1+9///uq9xwOR59gbnt7e91qu36/n889AAAAgGFA0BcAMOEki1bDG6s9G9fplv+9SB/6+V/k9vrqtlty4hmaf9BSJTZv0oNX/1x/+NIF+uhVtzbcxzAcSuaK+vOfb5LP51NXV5dmz56tyZMny+12y+12y+VylV+X/nBjDAAAAM00FGPoA04/p/y6Y/7uirRP1ZUffZe616xSW9fsuse2JKWKjc4OAAAAjE5DMY6+6+f/nzLJuM7/v+sUbJ2kF+69XX/80gX6yK9uVsf83esem3H0+GLbtgqFglKplNxut4LBoAzDKG//+9//rk2bNsmyLD300ENavny5fv7zn2vLli1atWqVLr30UknSWWedpe9///t65JFHdOih1VWhp0+frrPOOquq6q7P56s6DwAAAIDmIOgLAJhwTMtuuH3dSyuU3LpZP33f0eX3LNPUG08/okf//Ct9+9F1cjid8oUj8oUjap85V12L9tO3ls7XC/fepr1PeFf9gxuG5HTJ5XIpm83q1Vdf1auvvtpvnx0OR5/wb+Wf3uHgWmHhgWx3OBzctAMAAEAfQzWGrtS11z6S1G/QV5LiyZTeeiurlpYWeb3eHbwKAAAAYPjZtq1UKqVYLKZY3JBUfxa4/sbRn73+ET1y7a/06b88qKlzF0qSpi3YU28sf1SP/PnXOu2iHzTsS7GfcTyax7ZtZbNZpVIppdNppdPp8uta76XTaRWL2ys0L126VIcddpicb/+OVSgUtHnzZj355JM69thj5XQ61d3drY0bNyoajeqpp54qn7dQKOhf//qX5s+f36dPfr9fCxcuHJkvAAAAAIBBIegLAJhwnI7GQdZ5Bxyu//rzA1Xv/fUbn9LkWfO19LxP9gkoSJJsW5ItM5/r9/zz587R6cdeJNu2lc/n9corr+iFF17Qa6+9JtM01dHRoQMOOECBQEDFYlGFQqHun9L2fD6vVCpV9V7lH9se2A1dwzCGPUzsdrvldDoJFAMAAIwhwzGGXv/K85KkcPvUhse2bVvr167R/91wuyTJ6/UqEomopaWlz7L02uXilhcAAACGnm3byuVyisViisfj28O8b78urcfjcZmmKUly7X+SHB2z6t4L7W8cXchmJG2fKa6Sw+GQbfVfrdfVzzgeQ8eyrLqB3VQqpUwm0+f9WvftS5V0S1V1o9Fo1XowGFRbW1vVLIBut1s/+tGP9KMf/UiSlEwmdfTRR+vDH/6wOjs79frrr2vp0qVyu92Kx+P63Oc+pylTpozY1wYAAADAzuNTDwDAhBNyOeSQ6k6Z5g2G1DFvt6r3PP6AAi2t6pi3m7aufUPP/v1GzT/oSAVb2xR7a73uv+pSubw+7fqOYxqe2yEp6Np+A84wDHm9Xi1atEiLFi1SLpfTSy+9pFdeeUWtra2aNWvWTl+rtP3ms2VZ/YaFBxIoLhQKymQydfexBnBzuWS4w8Sl7QSKAQAAdt7OjqG716zSM3dcr4WHHqNAtFUbXn1Rt/7w65q9z8GatmCPhud2Gob2WDBPe+/5wapARTwe1/r16/Xyyy8rnU5X7RMIBKqCv72DwOFwuOqDcQAAAEDaXu20crxZK8ibz+fL7Q3DUDgcLo8zp02bVjXufDrr14sxc4fH0WahoLau2brhu5/TSZ/5pgItrXrxvtu18rH7dc5Prml4LZX3ojF4xWKx3wq7lduz2WyfYzgcjqqQbigU0pQpU6req3zt9/t36vcUy7LkcDhULBa1bNkyFQoFud1uff/739fy5cs1adIkTZkyRR0dHTvzpQEAAADQBAR9AQATTkfApWe6d3x/l9enVcsf1T//8Atl4j0KtU3WrH0O1seuuk2hSZMb7mu9ff5avF6v9t57b+2999473rkaDMOQ0+mU0+mUz+cb0mP3ZppmzRDwYMPEhUKhXKG41p9SRYyBqAwDNwoG19s20LAxQREAADCe7ewY2un26LXH7tc//3CFCpm0WqZO155HvVNHXvDZfve1JM2MBjSzfVLdNo0CGatWreo3kFGrKnAgEOChMQAAgHHEsiwlEomaY8bSstEDZLNnzx70A2Rvbcnq+Vhyh/vsdLt13mV/1B2Xflu/+/T7lUun1NY1W2d886da+I5jG1+v6t+LnmhKs+vVq7ZbCu5Wrlf+/lDidrurgrmtra2aMWNGVbXdyqXX6x3R3ylK/xaj0aj++7//u/x+NBrVkUceOWL9AAAAADD0DHugc3kDADBObEwX9ZtXepp2/vN2jXKDdSdZltUnGNxfmHhHAsjFYnHAfXI6nTtchXgw+zhrTHsNAAAw3Mb6GLpyiuXeYY7KCm2VD5S5XK6qEHDvUEdLS4u8Xu9QXB4AAAB2km3bSqfTDcd7iURClR+LejyePuO73mM+l2vn7uOO9XH0aGXbtjKZzIACu6VlreIRPp+vT1XdWoHd0mu3292EqwUAAAAAKvoCACagyX6nfE5DWXPkn3XxOQ1N9hPU3FkOh0Mej0cej2dYz2PbdlUYeGfCxLlcTslksu72gT575XA4+g0G1woPDzaA7HQ6qWAHAADKxvoY2jAM+Xw++Xw+TZ06tWYb27aVSqVqVnjr7u7W66+/rkQiUbWP1+utGQypXO5sOAQAAABSNpvtM0brvV4Z5HQ6neUxWVtbW81qvMM9+5k09sfRI8U0zYYh3VpB3t73Uw3DkN/vrwrpTpo0qWF4l6IKAAAAAMYKKvoCACak+9en9OimjEbyh6Ah6aCpfi2dHhzBs2IssG1bpmnucJi4v/1K2/L5/IADxZKGtTJx5XsEigEAGBsYQ28PICQSiYYhk0wmU7VPMBhsWBU4FAo1nO4ZAABgvCsWi3Wr8JbGWPl8vtzeMAyFw+G6D1u1tLQoEAiMmntOE3EcXSgUBhTYLb3OZrN9juF0OgdVbdfn8zGuBgAAADBuUVIEADAh7d3u0yObMv03HEL22+cFejMMQy6Xa0SqvZmmucNh4t7bShWKa7WvNRVePfUCwoOtStyojcvl4kY/AAA7iTH09rBBNBpVNBqt26ZQKNQNqrz++uuKxWIqFArl9oZhVIWAawVV/H7/qAmqAAAADIZlWf0+KJVOp6v2CQQC5fHQrFmz+jwoFQ6Hx9R9nrE+jrZtW7lcbkCB3dKycrxb4na7+1Tb7ezsrBneDQaD8ng8jIEBAAAA4G1U9AUATFi3v5nQs925EamkYEha1ObViTPDI3A2oPksyxpwYHgg2xtVMh4op9M5bJWJK/+MpQ+aAAAYLMbQO8+27QFNPW1ZVnkfl8tVsxpw5dLr9TbxqgAAwERk27bS6XSf6ruVY5tEIlE1w5TH46k7nikt3W53E69qeIymcbRt28pkMn3CuZXB3d7rtR7q9/l8VVV16wV2S9vG498rAAAAAIwUgr4AgAkrZ1r65YvblCraw3qD1ZAUdBm6cPdWeZ0EAIGhZNt2wxDwUISJS38GyuFwDLjK8I6GiV0ul5xOJ1VNAAAjjjH0yLBtW6lUqios03uZSCSq9vH5fA2rAofD4RGZQQIAAIwfuVyuZoi3Msxb+RC20+msGofUelDJ5xs9szWMpJEaR0u2vLJ0QH618ulUzaq7mUxGvT8eNgyjT1i33utgMCi/3y+n0zmsVwIAAAAA+DeCvgCACW1VPK9rX4sP+3nOmhvR7Ihn2M8DYHjYti3TNIc9TFwoFPp80FKPYRg7FRoeaOVil8tFoBgAUIUx9OhgmqYSiUTDCnqZTPUU0cFgsCps0zt8EwqFmJ0AAIAJolgs9nmYqPdYIpfLldsbhqFQKNRwLBEMBrmH0MBIjaPzj/xNjq3ra1bVrVdt1+/383cHAAAAAKMYQV8AwIT31OaM7lqbGrbjH9cZ1D6T/cN2fADjS+9A8VCHiUvba025WM9ggsEDDRLXasMHSgAwdjCGHhvy+XxVWKdWdeDKmQscDofC4XDD6bQJgQAAMPpZlqVkMtlwdoBUqnosFwgEGs4OEAqFqOC6A2zbVi6XK1fTfS5m6tlCaNjO945JhvbvCMnj8TBmAwAAAIBxhKAvAAD6d1DBkIZk6rTScQgoABitLMva4TBxf/tUbqucwrM/Tqdz2MPEbrebSoUAMEQYQ499tm0rm83WDQCVlpZllfdxuVwNK/m1tLTI46ESMwAAw8W2baXT6bo/u2OxmBKJRNWMQR6Pp2GINxKJyO12N/Gqxg7LspTJZMrB3XQ6XX5d+V7leuVYSpIcs/aUe9FSybYkY+fvUTCOBgAAAIDxj6AvAABvWxXP69bVCaWK9k4FFQxJQZehZbuEmWoYwIRn23a/QeLBBIcbvTdQDodjyMLEjbY7HA6q5wAY9xhDj3+2bSuZTNad0jsWiymZTFbt4/P5GgaBI5EIFQEBAKgjl8s1/Lkbj8erHqp1Op1VP3NrBXm9Xi+/n9ZRLBYHHNhNpVLKZDJ9jmEYhgKBgILBYNWy0evVySLjaAAAAADAgBH0BQCgQta0dO+6lFZ05wZdmazUfnGbV0fNCMrrpGIkAIwU27ZlmuYOh4lrba/XfqC/QhmGMexhYrfbLafTyQe2AJqKMTRM01QikWg4PXjvUEwoFKpbUbA0PTg/3wAAO6NQKGjTpk3lEOxoUCwWawZ3K9dzuVzVPuFwuOEDNMFgkJ+Zb7NtW4VCoWZgt14F3nw+3+c4LperT3DX7/f3CfKWlj6fb4f+DhhHAwAAAAAGiqAvAAA1xPKmntmS1fItWWXN7T8qHZIqJ1mrXPc5DS1p92nvdp9aPFSmAoDxyrZtWZY17GHiQqHQZ2rPRgYSDm4UGO4vTFxqw4fHw2vlypV6//vfrxNPPFFf/epX5Xa79YMf/EDPPvusDMPQCSecoHe/+91yuVzN7ipQE2NoNJLP52tOLV75XmWFfofD0W91wh0N1eyol19+WXfeeafe8573aMqUKSN2XgBAYxs2bNDvfvc7nXLKKVq4cKFWrlypD37wg0qn07IsSwcffLC+//3vKxwOD2s/LMuqWQW/cplKpar28fv9dX/ORSIRhcPhCV0F37ZtZbPZmtV261Xdrax2XOL1ehtW2O39ntvtHtExBuNoAAAAAEB/+HQQAIAaWjxOLZ0e1DumBbQ5Y2pjuqiN6aJSRUtFy5bLYSjocqgj4FJHwKXJfqechJ8AYNwzDENOp1NOp1M+n29Yz1UrUNxfkLhemDiVStVtb5rmgPtUGQgebHB4MJWLHY6JWYnoRz/6kd544w1J28Pb3/rWt7R+/XodffTRcjgcuuKKKzRp0iQdf/zxze0oUAdjaDTi8XjU3t6u9vb2mttLQZ56wag1a9YoHo9XPQjjdrsbBoEjkYg8nqGZwrq7u1sXXnihHn/8ce255546+uijddNNN+nb3/62PB6PWltb9bWvfU0HH3zwkJwPADBwP/rRj/TDH/5QU6ZM0cKFC/XlL39Z55xzji688EJJUjQa1RlnnKGjjjpqh89h27YymUzNB1ZK64lEos/PqdLPpKlTp2rBggV9fl653e6dvv6xxLKsmlV1awV2S8ta9Yp6V9eNRqMNw7uj/WFJxtEAAAAAgP6M7t9sAQBoMqdhlG+gAgAwkhwOh7xer7xe77Cex7KsqnDwjoaJC4WCMplMuSJjre0D5XQ6Bx0O3pH2o6EylmVZcjgc+shHPqKjjjpKPT095RD5P/7xDx1//PE699xzJUnf/e53y0FgYDRjDI0dYRiG/H6//H6/Ojo6araxLEupVKpmyGrz5s1auXKlkslk1T4+n6/PFOeVy0gk0u/Pg9WrV+uSSy7Rfvvtp46ODs2YMUMvvfSSvvKVr+iqq67SnDlz9Je//EXf/va39be//W3Uh4kAYDxZsWKF4vG4jjnmGOVyOUnSm2++qe7ubiWTSW3evLn8/buRfD5f92GT0rKyUmyp8nxLS4ui0ahmzpzZ52GTka483wylB0sbhXcrX2cymT7HcDgcfQK6kydP7hPYLS39fv+4fTiUcTQAAAAAoB5+UwQAAACACczhcMjj8QxZxcN6bNsuB353JExc+V4ul1MymazbvlbFp1oMw2gYDB6KMHEpUFzvA36Hw6G//OUvsixLJ598sm6//XYZhqFCoaDLLrtMX/jCF/TPf/5TuVxORxxxhE4++eSh/GsBgDHF4XAoHA43nHrdNM2q6oqV1RbXrFmj559/XtlstmqfUCikzs5OnXXWWX2Ot2HDBl1++eXq6urSoYceqq9//esKBoPavHmzJk2apFAopMmTJ6urq0svvPDCqHiIBAAmAtu2ZRiGvvGNb+iiiy7S1VdfrTfffFO5XE7XXXed/vM//1OXXnqpEomEzjzzzJqVc+PxuK655hrF4/E+PxvC4XA5uDt16tQ+VeODweC4C/Hatq18Pj+oarv5fL7PcVwuV1U4t7W1VTNmzKiqsFu53ev1jruvJQAAAAAAQ42gLwAAAABg2FWGaoeTbdsyTbPfMHGj7ZXb0ul03X0qp+Xtj9vt1uTJk8vTB5ds27ZNl19+uX71q18pEAgon89r6tSpcrvdevrppzVr1iwdcMAB2rRpk5544olylbLeCoWCXC4XH5ADmPCcTqdaW1vV2tpat02pamNlpcZ6VXivuOIKtbW16XOf+5xuvfVWTZs2Ta2trerq6tIxxxyjpUuXyuPxaK+99tKvfvUrGYZRDp8BAIaPYRi68cYbtddee2m//fbTQw89pA0bNsjr9WrlypWaOXOmrrjiCk2fPl0f+9jH9N3vflc//vGPFY1Gy8cIBAKaOXNmn8rv4XB4XDy4Ydu2MplMwwq7vYO7pmn2OY7X660K6U6ePFmzZs2qWW03EAgM+0OkAAAAAABMRAR9AQAAAADjhmEYcrlccrlc8vl8w3qu/gLFvbfVCjk/8sgjevXVV3XUUUcpGAxqzZo1uueee5RIJPTtb39bDz74oBYsWCBJOv7443XnnXfqwx/+cJ+pav/v//5P27Ztq1txeCgqE1duG69T5QKYGDwejyZPnqzJkyc3bPfmm2/q1ltv1ZYtW/TGG2/omWeeUaFQ0Ouvv65bbrlFW7Zs0UMPPaRgMKjPfvazWrdunST1Cfl2d3crEokM+8MuADDelIKqhUJBkUik6vurbdu69dZbFQgE9NJLL+nBBx/UU089JZ/PpyeffFJz587V9OnTJUknnHCCfvOb32jz5s1VQV+Xy6Vly5aN9GXtMNM0lclk+oRz61XdTafTNWc76V1Vt7W1tW613UAgMC5CzwAAAAAAjHUEfQEAAAAA2AFOp1NOp1Ner3eHj3HSSSdp5cqVSiQScjgcOv3003XkkUfqjDPO0H/9139VTSGczWbrVog89thjyyGI/ioU1wsnF4vFQV37QMLB/QWG+wsbEyoA0EwzZ87ULbfcopdeeknd3d1avny5tm3bpnvuuUc//vGP9dOf/lQLFy6UJC1cuFBPPvmkTj/9dIVCofIxTNPUT3/6U0mS3+8vV4ysnP59vFWQBICBqlVhvfeyUCho7ty5ev/731+1byqVkmEYuv/++/Xaa6/Jtm253W7ts88+CoVC5WBvS0uLnnnmGfl8Ps2fP79JV1pbaXzeqMJu5evK3w1KHA5HVTA3FAppypQpNQO7wWBQPp+Ph/YAAAAAABiDCPoCAAAAANBEHo9HbW1tkraHeefPn6+Ojg5ddtll+sxnPqPOzk7Ztq1gMKhly5bV/GB+t9122+l+2LZdMwTcqGpxvTa5XE7JZLJu+4FyOBwDCgcP9v1ageJ6IWoAE9vUqVM1depUSdLVV1+t97znPfrEJz6hu+66S6+99lq53fLly7XvvvvW/F5y7rnnlkNrpeDam2++qXg83ie0FQ6Hy8Hf3suWlhYFg0G+XwEYE0zTVDwe7/P9r3K99/fAUChU/r43f/788ve/0li5d9tf/OIX5fU333xTZ5xxhvbee2+deOKJKhaLOvzww+X3+7XLLrvo29/+9rBer23byuVyAwrsll7XGhe73e6qcO6kSZPU2dlZ9V7la6/Xy88FAAAAAAAmAMOuNW8PAAAAAAAYcRs2bFAwGFQkElGhUNCDDz6o7u5updNpHXLIIaOuCtmOsG1bpmnudJh4IPsM9JaHYRg7XIV4oGHi0pIgBjD22LYtwzB09dVXa5dddtGhhx6q1atX64ILLlBPT49cLpdmzZql733ve5ozZ86gjl2qZtmoomVlxXWHw9GnGnDvdZ/Px/caAMPKtm0lk8mq71W9g7zJZLJqH5/P1/B7VyQS2aGq5qZpyul0auvWrbrtttt03HHHacqUKTJNU4Zh7HD1Wtu2lclkBhTYLb02TbPPcXw+X5+Qbr1qu4FAQG63e4f6CwAAAAAAxjeCvgAAAAAAYFyqDBQPR5i4tL1WqKOegYSDe28fTJi49IeQHzAyEomE1q1bp9bW1nLl36FUCpo1CtPF4/GqBxvcbndVeK7WkiAZgHps21Y2m234EEI8HpdlWeV93G53w2rkkUhEHo+niVdVm2VZeuONN/Tiiy+Ww7ql8G4mk+nz0JhhGDXDurUCu6U/OxJeBgAAAAAA6I2gLwAAAAAAwE6wLGuHw8T97Ve5rbKqZ3+cTuewh4ndbvcOV8kDMHQsy1IymewTBK5cplKpqn38fn/DQF44HCacNk6Ztq3NGVMb00VtTBeVLFoyLVtOh6GQy6GOgEsdAZcm+51y8tDIuJTP5xt+v4jH4yoUCuX2pUri9YK8kUhEfr9/zD5kdPvtt+vNN98cUNXdsXydAAAAAABgbCPoCwAAAAAAMAbYtr3DYeLBBo0HyuFwDHuYuBQoJlgD7LhisdinCnDvKsG5XK7c3jAMhUKhcoivdxC4paVFwWCQ/5djSCxv6pktWS3fklXW3P6RgEOSVdGmct3nNLSk3ae9231q8RD6HitM01QikWgY4s1kMlX7hEKhhtV4g8HgsD/YY9u2crmcUqlUVVXdyuUBBxyg6dOnD9n3ndJHY3wfAwAAAAAAYwFBXwAAAAAAAJTZti3TNHc4TFxre732A70tZRjGsIeJ3W63nE4ngR9MWLlcrk+Vz97rlZXFnU5nwyqfLS0t8nq9/J9qsqxp6d51Ka3ozsmQNJgPA0rtF7d5ddSMoLxOqrg3k23bNat3V64nk8mqfXw+X8PAfiQSGZbq3ZZlKZPJ1AzsplIpZTKZPu9bltXnOD6fr1xNd99999WiRYv4ngIAAAAAACYkgr4AAAAAAAAYcbZty7KsYQ8TFwqFmuGhegYSDO4vUDyQ7QSVMNbYtq1MJtOwUmg8Hq8K8Hs8noZB4EgkIrfb3cSrGt9WxfO6ZXVC6aI9qIBvb4akoMvQsl3Cmh3xDFX3UMG2bWWz2T6VtntX4q78eeZyuar+L9UK8no8Q/P3ZZpmn2BuvdelIG9vhmEoEAiUg7ulP6X13ku/3z8sIWQAAAAAAICxiKAvAAAAAAAAxrV6geKhDBMXCgWZpjngPlWGgRsFg+ttG2jYeLinWwcqWZalZDLZMAycSqWq9gkEAg3DwOFwmH/HO+CpzRndtTY16Cq+9ZSOc2xnUPtO9g/BESeWQqHQ8P9FLBZToVAotzcMo+7/i9LS7/fv0EMjtm2rUCjUrbZbCu5WrudyuT7HcTqdfcK59V4Hg0H5fD4ecgEAAAAAANhBBH0BAAAAAACAIWBZ1qDDwYNtX2ozUE6nc4erEA9mH6ouYqCKxWKfgGPvyqWVoULDMBQKhRpWLg0GgwQIK5RCvsOFsG810zSVSCQa/pvuXeE2GAw2/DcdCoUGHHAvVQMeSGC3tKz1c8Tj8dQM7taruut2u/l/BwAAAAAAMEII+gIAAAAAAABjiG3bVYHgwYaJB7PPQG8dOhyOYQ8TlwLFBMvGv1wu1zA0GYvFqipoO53OqmqnvUOTLS0t8nq9Y/bfTi6Xk9frHVDbVfG8rn0tPsw9ks6aG9HsiKffdqUHIDye/tuORrZtK5VKNazGm0gkqvbx+Xz9Vql2uVx1z2lZVsOQbq0gr2VZfY7j9/sbVtjt/V6jPgEAAAAAAKC5CPoCAAAAAAAA6MO2bZmmucNh4oG+n8/nBxwoljTsYeLSe2M1FDoR2LatdDpdN3gZi8WUSCSq/l15PJ6awcvKpdvtbuJV1RaPx3XJJZdo77331vHHHy+fz1e3bda09MsXtyldtDWcN/0NSUGXoQt3b5XXWb/q7KZNm3TTTTcpm83qk5/85Kj7P1WqhNsoUB6Px6tCtC6Xq2aQvHLZO5RdLBZrBnbrVd3tXf1X2v4wRe9gbqNqu36/f8AVgQEAAAAAADD6EfQFAAAAAAAA0FSmae5wmHgwVYsrq8D2p15AeKjCxKX3CeMND8uylEgkGoY40+l01T6BQKBmBdbS63A4POJ/Xz09PXrhhRf0wAMPyOPxaNmyZVq4cGHNtre/mdCz3blhDfmWGJIWtXl14sxwn23FYlEPPvigHnzwQRmGIcMw9NnPflaBQGAEevZvhUKh38rQhUKh3N4wjKqK0LX+Lfh8PhUKhYYVdnsHefP5fJ++uVyumlV161Xd9fl8oy4oDQAAAAAAgJFD0BcAAAAAAADAhGBZ1qADwzsSKC4WiwPuk9PpHNYwcekPgeK+isVinxBo72BoZUjTMAyFw+GGQdBAIDCkgczrrrtOL730khYvXqyenh69/vrr2mOPPXTiiScqGAyW2/XkTF3+4rYhO+9AfWyPVrV4nOX1devW6frrr9fWrVslSbNmzdJJJ52kyZMnD+l5TdOsGeSuXPaujBsMBst/X5V/dz6fTy6XS5KUyWQaVttNpVI1Hxjwer11A7u1wrsej2dIvx4AAAAAAAAY3wj6AgAAAAAAAMAQsm27bmh4qMLEpT8D5XA4BlxleEfDxC6XS06nc1xVHs1ms30CpL3DpZXBT6fT2acacO91n8834PPn83k9/PDDevjhh+VwOLRgwQKtXLlSknTCCSdor732kmEYun99So9uytSt5nv35RfrH7/436r3Js+ap89e/4gk6fHrfqdn7rhO619+VrlUUv99/0r5wy0N+2ZIOmiqX0unB1UoFPSPf/xDjz32mAzDkN/v14knnqg99thj0P8ebNtWKpVqWI03mUyq8qMNr9dbrrocDAbl9Xrl8XjK/x4tyyqHeHsHeWt9RFIK6A6k2m4gECgHhQEAAAAAAIDhQNAXAAAAAAAAAMYg27Zlmuawh4kLhULNMGQthmHsVKB4oJWLXS7XqAgU27atdDpdt6psPB5XIpGo+vp5PJ6GQeCWlpY+wdFkMqn77rtPTz/9dLmq8Nq1azV//nyduGyZfru6qKxZ/+/o7ssv1vP/uFnn/99fy+85nC4FW9skSQ9dc7mK+Zwk6c7LvjOgoK8k+ZyG/iOc0A3XX6dkMinDMHTAAQfoyCOPlNfrrfn1yuVyDb9evcPTDodDoVBIfr9fXq9XLpdLDoej6t9/NptVKpVSNpvtc06Hw9EwpNv7fb/fTwVsAAAAAAAAjCoEfQEAAAAAAAAADfUOFA9HmLhYLFYFPPuzo1WIBxomLv3Z2UCxZVlKJBINK9Sm0+mqfQKBQFXwt7S0LEsrVqzQ66+/rtbWVmWzWVmhVung0xr24e7LL9aL992mT/3pvobtXn/yn/rlh08dcNBXkvL3Xys7tkXTpk3TSSedJL/fXzPI29PTo3g83qcSdWX1XenfFbFzuZyKxWKf87nd7gEFdktLr9c7KkLhAAAAAAAAwI5iPikAAAAAAAAAQENOp1NOp1M+n29Yz2NZ1pCFiVOpVN3ttQKk9TidzobB4Frh4Hph4nA4rEmTJvXZLm2v2ts7CByLxbRq1SrFYjHl8/lynwzDKFe+dU+bJ8O2+w2zbnlzlf7nuD3l8vo0c9F+OuETX1N0WueO/UW9zbZtOaJT5C2ktWXLFv3qV7+q2u5wOMrVcU3TrFsZulZ4t9brYDBY/noBAAAAAAAAEwVBXwAAAAAAAADAqOBwOOT1euX1eof1PLZt73CYuPe2TCbTcJ+BcjgcNcPBwWBQ0WhUhmHItm3Zti3TNJXP59XT06NcaJIM25IMZ91jd+21j979zUvVvss8JbZs0j9+8QNdcf7J+vRfHpQ3GNqJL6Qlo2Wy0qtfLL/l8/kUCAQUCoUUCoXk9/vrVtsNBALlSr4AAAAAAAAAaiPoCwAAAAAAAACYUAzDkMfjkcfjGdbzlEK5OxomrrU9m80qlUopk8nIsiy5vEHJcDTsx66HHlN+PW3BHuraa199f9kSPXvXjdr/1Pfv+AUaDskbkCRNnz5d+++/v3bfffdh/7oCAAAAAAAAEwlBXwAAAAAAAAAAhoFhGHK5XHK5XPL7/Tt8nFwup5deekkrVqzQW2+9JZfLpcmTJ6unp0eW0ynDMAZ1PH+4Re0z56p7zaod7pO0/fpaWicp7nZr/fr1uummm3TLLbdot9120957763Zs2fL4WgcQgYAAAAAAADQGEFfAAAAAAAAAABGGdu29eqrr+qpp57Sa6+9JtM01dLSokgkokQioU2bNsnlckmmKdu2BxX2zaWT2rr2DYWXvXun+zlt6hR99Itf1IsvvqjHHntM69ev1wsvvKDnn39ewWBQixcv1uLFizVlypSdPhcAAAAAAAAwERH0BQAAAAAAAABghNm2rXQ6rVgsplgspng8XrXs7u5WJpOp2icWi8kwDEWjUXV1dWnSpElaG5mstZLsBue67ZL/p4WHH6fWaV2Kb96ouy+/WA6HU4tPeJckKbFlkxLdb6l7zeuSpI2vvihvMKRoR6cCLa11j2vYtuxsSlJAixYt0qJFi/TWW2/pqaee0jPPPKNUKqVHH31UjzzyiD7/+c8rEAjs5FcNAAAAAAAAmHgM27Yb3f8DAAAAAAAAAACDlM1my6HdUoC397ppmuX2TqdTkUhELS0tamlpUTAYVDwe18aNG7VlyxZFo1EdeuihWrx4sdxud3m/Z7ZkdceaZMO+/PHLF2rV048oHdumYGubZu19oI77+FfV1jVbknT35RfrH7/43z77nfGNS7Xvf7yn7nFt21ZxxX3S2pc1bdo0dXV1qbOzU11dXfL7/XrhhRf01FNP6a233tIXv/hFOZ3OQX4VAQAAAAAAABD0BQAAAAAAAABgEIrFYs0qvJVB3nw+X25vGIbC4XA5yNt72dLSokAgIMMwyvskk0n98Ic/1MyZM3XwwQdr1113rdpesjFd1G9e6RmJy65p2aSCMpvWaO3atVqzZo16erb3JRKJlIO/nZ2dmjZtGkFfAAAAAAAAYAcQ9AUAAAAAAAAA4G2WZSmRSDSsxptOp6v2CQQCDUO84XBYDodj0H3JZrPy+XwN25i2rcue26qsOfK3+n1OQ5/ca5KcFQHkRCJRDv2uXbtW69evl2macrlcmj59ernib1dXl4LB4Ij3GQAAAAAAABhrCPoCAAAAAAAAACYE27aVTqf7VN+tDPImEglV3jb3eDzl4G5leLcy0Ot2u5t4VdL961N6dFNGI3mz35B00FS/lk5vHNYtFovauHFjOfi7Zs0aJRIJSVJra2u56m9XV5emTJmyQ4FoAAAAAAAAYDwj6AsAAAAAAAAAGBdyuVxVeLf3Mh6Pq1gslts7nc6qwG6tIK/X65VRUbF2NIrlTf3fC9tG/Lwf26NVLR7noPaxbVvxeFxr1qwph383btwoy7Lk8Xg0Y8aMcvC3s7NTfr9/mHoPAAAAAAAAjA0EfQEAAAAAAAAAo16xWOwT3u1djTeXy5XbG4ahUCjUp/puZZA3GAyO+hDvQN3+ZkLPdudGpKqvIWlRm1cnzgwPyfEKhYLWr19fVfU3nU5Lktrb28vB366uLrW3t4+bvzMAAAAAAABgIAj6AgAAAAAAAACayrIsJZPJhtV4U6lU1T5+v78qtNs7xBsOh+V0Dq7a7FiWMy398sVtShXtYQ37GpKCLkMX7t4qr9MxLOewbVvbtm2rCv6+9dZbsm1bPp9PnZ2d5fDvjBkz5PV6h6UfAAAAAAAAwGhA0BcAAAAAAAAAMGxs21Y6na5bhTcWiymRSKjyVrXH4+lThbd3kNftdjfxqkanVfG8rn0tPuznOWtuRLMjnmE/T6VcLqd169aVg79r165VNpuVJE2dOrUc/O3s7NSkSZOo+gsAAAAAAIBxg6AvAAAAAAAAAGCH5XK5PiHe3stisVhu73A4agZ4K5c+n4+g5g56anNGd61N9d9wBx3XGdQ+k/3DdvyBsm1bW7ZsqQr+bt68WZIUCASqgr8zZswgGA4AAAAAAIAxi6AvAAAAAAAAAKCmYrHYp/pu7/VcLle1TzgcbliNNxgMEuIdZqWwryFpKD4AKB1ntIR868lkMlq3bl05+Lt27Vrl83k5HA5NnTq1HPzt6upSS0sL/w4BAAAAAAAwJhD0BQAAAAAAAIAJyLIsJZPJquq7vYO8qVR1ZVi/318O7laGd0uvw+GwnE5nk64IlVbF87p1dUKpor1TYV9DUtBlaNkuYc2OeIaqeyPCsixt3ry5HPxds2aNtm7dKkkKhUJVwd9p06bJ5XI1uccAAAAAAABAXwR9AQAAAAAAAGCcsW1bmUymKrzbe5lIJGRZVnkft9tdtwpvKdjr8YytoOdElzUt3bsupRXduR2o7ru99eI2n46aEZTX6RiGHo68VCpVDv2uXbtW69atU7FYlNPp1LRp08rB366uLoXD4WZ3FwAAAAAAACDoCwAAAAAAAABjTS6XqxnerVwWi8Vye4fD0SfA23vp8/lkGEYTrwrDJZY39cyWrJZvySprbv9IwCHJqmhTue5zGlrS7tPe7T61eMZ3hWbTNLVp06aqqr+xWEyS1NLSUlX1d+rUqVSsBgAAAAAAwIgj6AsAAAAAAAAAo0ixWFQikWhYjTebzVbtEwqF+lTfrVwPhUKEeCHTtrU5Y2pjuqiN6aJSRUtFy5ZZyMvMJLVH51RND3k02e+UcwL/e0kkElqzZk05/LthwwaZpimXy6UZM2aUg7+dnZ0KBoPN7i4AAAAAAADGOYK+AAAAAAAAADBCLMtSMpksh3ZLwd3K9VQqVbWP3++vW4W3paVF4XCYKqPYYX/605/0kY98RNOmTdO0adP0ta99TWeffbYsy9LVV1+tk046qdldbLpisagNGzZUVf1NJpOSpEmTJlUFf6dMmSKHw9HkHgMAAAAAAGA8IegLAAAAAAAAAEPAtm1lMpk+Id7KZSKRkGVZ5X3cbnfN8G7lex6Pp4lXhfFu0aJF+vOf/6yFCxfqn//8p0499VTdcMMNam1t1TnnnKOnnnqq2V0cdWzbViwWK4d+S1V/bduWx+PRjBkzysHfzs5O+f3+ZncZAAAAAAAAYxhBXwAAAAAAAAAYgHw+XxXarVWNt1gslts7HA5FIpGG1Xh9Pp8Mw2jiVWGiW7JkiZYvX15enzVrlt54442a21BfoVDQ+vXrq6r+ptNpSVJ7e3s5+NvV1aX29nb+3wMAAAAAAGDAXM3uAAAAAAAAAAA0m2mafarv9g7yZrPZqn1CoVA5uDtv3rw+1XiDwaAcDkeTrggYGMuytHLlSs2bN09PPvmkenp69Oyzz6qlpUWmaTa7e2OG2+3WLrvsol122UXS9qq/27Zt05o1a8rh32eeeUa2bcvn85VDv52dnZoxY4a8Xm+TrwAAAAAAAACjFRV9AQAAAAAAAIxrtm0rmUzWDPGWlslksmofn89XtwpvqUqv0+ls0hUBQ+faa6/Vxz/+cc2ZM0dr167V73//e5177rnasmWLrrjiCp1zzjnN7uK4kcvltG7dunLwd+3atcpmszIMQ1OmTCmHf7u6utTa2krVXwAAAAAAAEgi6AsAAAAAAABgDLNtW9lstmZ4t7Iir2VZ5X1cLlef0G7varwej6eJVwWMrLVr1+qVV17RkiVLNGnSJBWLReVyOQWDwWZ3bVyzbVtbtmypqvq7ZcsWSVIgEChX/O3q6tL06dPldrub3GMAAAAAAAA0A0FfAAAAAAAAAKNWPp+vW4W3tCwUCuX2DodD4XC4YZDX7/dTKRNooLu7W21tbc3uxoSUyWS0du3acvB33bp1yufzcjgc6ujoqKr6G4lE+F4GAAAAAAAwARD0BQAAAAAAANAUpmmWK+7WCvHGYjFls9mqfUKhUDm423vZ0tKiYDAoh8PRpCsCxp5vfetb+vCHP6yOjg4999xzOuWUU7Rhwwa1t7fr+uuv1/7779/sLk5olmXprbfeKgd/16xZo23btkmSwuFwVdXfjo4OuVyuJvcYAAAAAAAAQ42gLwAAAAAAAIAhZ9u2kslkw2q8yWSyah+fz9cwxBsOhwmxATvBtG1tzpjamC5qY7qoZNHSfQ88oCMOP1whl0N/vvLnOmq/RXrPycfrgfvu09e//nU99NBDze42ekmlUlXB3/Xr16tYLMrpdGr69Onl4G9nZ6fC4XCzuwsAAAAAAICdRNAXAAAAAAAAwKDYtq1sNtun+m7v6ryWZZX3cblcNQO8lUFej8fTxKsCxq9Y3tQzW7JaviWrrLn9IwGHJKuijUPbg8CGYcjnNLSk3aevfOA0PfyPvzejyxgE0zS1cePGcvB37dq1isVikqRoNFoV/J06daqcTmeTewwAAAAAAIDBIOgLAAAAAAAAoEqhUKhbhbe0LBQK5faGYVQFdyvDu6XXfr9fhmE08aqAiSdrWrp3XUorunMyJA3mwwBDtizL1t6T/TpqRlBep2O4uolhEI/Hq4K/69evl2VZcrvdmj59ejn429XVpUAg0OzuAgAAAAAAoAGCvgAAAAAAAMAEYpqmEolEzWq8pWUmk6naJxgM1q3CG4lEFAqF5HAQAgRGk1XxvG5ZnVC6aA8q4NubISnoMrRsl7BmR6i6PVYVi0Vt2LChHPxds2aNksmkJGnSpElVwd/JkyfzPR0AAAAAAGAUIegLAAAAAAAAjBO2bSuVSjWsxptIJKr28Xq9VaHd3iHeSCQil8vVpCsCsCOe2pzRXWtTg67iW0/pOMd2BrXvZP8QHBHNZtu2YrGY1qxZUw7/bty4UbZty+PxqLOzsxz87ezslM/na3aXAQAAAAAAJiyCvgAAAAAAAMAYYNu2stlsnyq8vdctyyrv43K5agZ3K9e9Xm8TrwrAUCuFfIcLYd/xK5/Pa/369VVVf0sV3idPnlwO/nZ1damtrU2GYTS5xwAAAAAAABMDQV8AAAAAAABgFCgUCnWr8JaW+Xy+3N4wjKrgbu9lS0uL/H4/QSxgAlkVz+va1+LDfp6z5kY0O+IZ9vOguWzb1tatW6uq/r711luSJL/fX1X1d8aMGfJ4+DcBAAAAAAAwHAj6AgAAAAAAAMPMNE0lEomG1XhLVRNLgsFgwxBvKBSSw+Fo0hUBGG2ypqVfvrhN6aKt4bzpb0gKugxduHurvE6+B0002WxW69atKwd/165dq1wuJ8MwNHXq1Kqqv9FolIdNAAAAAAAAhgBBXwAAAAAAAGAn2LatVCpVVX23d5A3mUyq8jac1+stB3crw7uVgV6Xy9XEqwIw1tz+ZkLPdueGNeRbYkha1ObViTPDI3A2jGa2bWvz5s3l4O+aNWvU3d0tafsDK11dXeXw77Rp0+R2u5vcYwAAAAAAgLGHoC8AAPj/2bvv6MbuOv//r6tuVduyx316MslMpqSRBgnJpjcglLC79F0goS/LssAG9kdZWLKUBRYICSXABgidkMYmIYVMeptJb9Ncxh53yZLV7r2/P+arizVynRlbtuf5OMfHlnQl3TsE+2P5qfcFAAAAMAHbtpXNZkvi3X0/JxIJmabp3MftdpeEu+OFvH6/v4JHBWCxGcqauuqZwTl/3svX1Sjmc8/582J+S6fTzrTf9vZ2dXZ2Kp/Py+VyqbGxsST+jcVild5dAAAAAACAeY/QFwAAAAAAAIesfD5fFu/uG/Lmcjlne8MwFIlEyqbvjv0cDAY5VTmAOXV3V0oP9IxOOM339quu1B1X/1fJdfXLV+ujv71fkvS7L/yzXnroHiV6u+WvCmnpxuN17oc+oyUrDpvwOQ1JJzZU6bTm0EE6CixWlmVpz549JVN/Bwf3humRSERtbW1O/NvU1CS3m3gcAAAAAABgLEJfAAAAAAAAzJpCoSDDMJxoZ3BwUF/4whf04osvyjRNfelLX9KGDRtm5bkty1IymZx0Gm86nS65TzAYnHQabyQSkcvlmpX9BYD9Ydq2vvXkgDLmxC/1337VlXrqjj/qH777a+c6l9ujUE1ckvTQb36i+uWrVd3UqvTwoO743n+p64Wn9PE/PirXJNFlwG3og+tr5ebNDZihkZERJ/rt6OhQV1eXCoWC3G63mpubS6b+hsPhSu8uAAAAAABARRH6AgAAAAAAYL91d3dr9+7dOvzwwxUK7Z3q+Nxzz+kDH/iAhoeHlcvl9Pa3v10f/ehHJUn/8i//ItM0ddFFFymfz+t973ufHnnkEVVXV8/oeW3bViqVKpvCO/byyMiIxr705fP5SqLdsZ+LX3s8noP2bwMAc6E7XdC1zw9Nus3tV12pZ+66WR/6xV3TeszdLzytb7751frYHx5SvG3FpNu+Y021GoN878SBMU1T3d3dJVN/E4mEJKm6urok/G1oaOBNNwAAAAAA4JDCq28AAAAAAADYLx//+Md1ww036IUXXtDdd9+tV73qVZKkD3/4w3r729+uCy+8UF6vV9FoVBdccIHWrFmjb3/723rqqae0cuVKSVJzc7N++tOf6vLLLy+LbE3T1LZt2yacxmuaprOt2+12ot14PK4VK1aUBb2BQGDu/nEAYI50pwvT2q5v13Z98eyj5PEHtHTDcTr3A1eouqm1bLvcaEqP3vBz1bQsU6yxZVrPT+iLA+V2u9XS0qKWlr/+N5dIJNTe3u7Ev08//bQsy5LX61VLS4sT/ra2tioYDFZw7wEAAAAAAGYXr74BAAAAAABgv1x66aW68sorddJJJ2lwcFCWZcnlcukvf/mL3vve96qmpkZ9fX06/vjjncm6dXV12rx5sxP69vT06MEHH9Rb3/rWsqm+LpdLv/jFL2TbtiKRiBPtNjU1lU3jDQaDMjh1PIBDUHe6IJcka5Jt2tYfozd+9puqW7Zayb4e3XH1V/S9f7hIH/nVX+QPhSVJ9//yh7r1G59VbjSt+uWr9Q/f+ZU8Xt+kz+3S9ENjYKai0ajWrVundevWSZLy+bx2797thL+PP/647r33XklSPB4vmfpbX1/PugAAAAAAACwahj32/IUAAAAAAADANBXD3rPOOkuvfe1r9f73v1+S9Oc//1lf+MIX9NJLL6mnp0f/+q//qg996EOqq6vTtddeqz/96U9KJpOKxWLq6+vTqlWr9IlPfEJLly4te45EIqFwOMwpugFgAr/eltBLw7kZ3Wc0OawvX3C0Lvjo53T8a98iScokExoZ7FWyt0d/+el3NLxnty770U3y+iefhn5YzKfXr4zu9/4D+8u2bQ0NDTnhb3t7u3p6emTbtvx+v1pbW53wt6Wlhcn+AAAAAABgwWKiLwAAAAAAAA5Ia2urOjs7Zdu2DMPQ0NCQ1q5dqx/+8Idqa2vT6173On3hC1/Qf//3f+sd73iHjj76aL388ss666yz9I1vfEPPPfecGhsbx33saJR4DAAmY1ozn+VRFYmpbukq9bdvd64LRKIKRKKqW7pKbRuO0+dOO0xP33mzNp17yaSPVdiP5wcOBsMwVFNTo5qaGm3YsEGSlMvl1NnZ6YS/Dz30kO6++25J0pIlS5zwt7W1VfF4nKm/AAAAAABgQSD0BQAAAAAAgCQpm81qeHhYw8PDSiQSJZ9dLpfe+ta3jnu/pUuXatu2bcrn8/L5fLrrrrtUU1Oj5cuXS5Iuvvhi3XTTTUokEopGo9q4caM2btwoSXrhhRe0YsUK+Xw+maYpt9s9V4cLAIuC2zXzUDGbHtFAxw5FLnjj+BvYtiRbZi475WN59uP5gdni8/m0YsUKrVixQtLeqb/9/f1O+NvR0aHHHntMklRVVVUS/ra0tMjn81Vy9wEAAAAAAMZF6AsAAAAAAHAIKBQKTrQ7XsibSCSUzf416DIMQ+FwWLFYTLFYTNXV1WWPWZyCd+SRR+qxxx5z4phgMKh77rnH2a6jo0Nut1vRaFQ9PT36/ve/rwceeEB79uzRiSeeqM985jOybZvIFwD2Q9jjkkuSNck2N3/933XEqWerpqlNid5u3X7VlXK53Np47iUa6Nihrf/3ex124ukK1cQ1vKdLd//om/L4A1rzyjMnfW6XpJDHdTAPBzioDMNQXV2d6urqtGnTJklSJpNRZ2enE/5u3rxZ2WxWhmGooaHBCX/b2tpUXV3N1F8AAAAAAFBxhL4AAAAAAAALnGVZSiaTZSHv2MvpdLrkPsFgUNFoVLFYTMuXL1csFnMux2IxhcPhKcPbYvgyMjKihx9+WJ/97GfV2tqqj3/84/roRz+qo446Si6XS62trfrGN74hSQqHw9qwYYPWrFmjVatW6fDDD5fX652dfxgAOAQ0Bj16on/ybYZ7uvSLT75X6eFBhWriWr7pBF3+41sUrqlTolDQ9scf0OafXa3RxJDC8XotP+YkXf6jmxWurZ/0ca3/9/zAQhIIBLRq1SqtWrVK0t51VF9fnxP+btu2TQ8//LAkKRQKlYS/zc3N8nj4bx4AAAAAAMwtw7Ztu9I7AQAAAAAAgPHZtq10Oj3pNN5kMqmxL/H4fD4n2h0b74697mDEtaZp6s1vfrOeeuopLVu2THV1dTrhhBP0wQ9+UMPDw0qlUmpsbJTLxbRHAJgt3emCrn1+qGLP/4411cS+WHTS6bQ6Ojqc+Lezs1P5fF4ul0tNTU1O+NvW1qZoNFrp3QUAAAAAAIscoS8AAAAAAEAFZbPZkmh332m8iURChULB2d7tdisajZaFvGODXr/fz2mmAeAQYdq2vvXkgDLm3L/UH3Ab+uD6Wrn5mYNFzrIs9fT0OOFve3u7hoaGJEnRaLRk6m9jY+OUZ0UAAAAAAACYCUJfAAAAAACAWVIoFMqm7+77OZvNltwnEok44e5403hDoRARLwCgxN1dKT3QM6q5fLHfkHRiQ5VOaw7N4bMC88fIyIja29ud+Lerq0umacrj8ai5udkJf1tbWxUOhyu9uwAAAAAAYAEj9AUAAAAAANgPlmVpZGRk0mm8qVSq5D5VVVUTTuGNRqOKRCJMgAMAzNhwztR3nx6c8+e9fF2NYj5+bgGSZJqmdu/eXTL1N5lMSpJqampKpv4uWbJELperwnsMAAAAAAAWCkJfAAAAAACAfdi2rdHR0ZJ4d9/PiURCY19W8Xq9ZdN39/3s9XoreFQAgMXsll1Jbe3PzslUX0PShrhf5y2NzMGzAQvX8PBwSfjb3d0ty7Lk9XrV2tpaMvW3qqqq0rsLAAAAAADmKUJfAAAAAABwyMlmsxNO4S1eLhQKzvYul6ts+u6+lwOBgAzDqOBRAQAOZVnT0jXPDCpVsGc19jUkhTyG3r22Rn43E0mBmcjn8+rq6nLC346ODucMEHV1dSXhb319PWtLAAAAAAAgidAXAAAAAAAsMoVCQclkctJpvJlMpuQ+kUhkwim8sVhMoVCI0AIAMO9tT+R0/cuJWX+eS1dFtSLqm/XnARY727Y1ODhYEv729PTItm35/f6S8Le1tVV+v7/SuwwAAAAAACqA0BcAAAAAACwYlmVpZGRk0mm8xaloRVVVVePGu8WvI5GI3G53hY4IAICD69HeUd3WkZp6w/10dmtIx9RXzdrjA4e6bDarrq4uJ/xtb2933qS2ZMkSJ/xta2tTbW0tb0YDAAAAAOAQQOgLAAAAAADmBdu2NTo6WjJ9d9+QN5lMyrIs5z5er9eJdseLeKPRqHw+Jg4CAA4txdjXkHQw/gBQfBwiX2Du2bat/v5+tbe3O/Fvb2+vJCkYDDrTftva2tTc3MzaFwAAAACARYjQFwAAAAAAzIlcLjduxDv2c6FQcLZ3uVwlwe54IW8gEGCKGQAA49ieyOmmnUmlCvYBxb6GpJDH0AXLIloRJSAE5oNMJuNM++3o6FBHR4dyuZwMw1BjY6MT/ra1tSkWi7FeBgAAAABggSP0BQAAAAAAB8w0zbJod99pvMVTDheFw+Gy6btjQ95wOEyUAADAAciYlu7sTGlLf3bG032L22+M+3VGS0h+t2t2dhLAAbMsS729vU74297eroGBAUl719xtbW1O/NvU1CSPxzPj57BtW1/72tckSWeeeaY2btx4UI8BAAAAAABMjNAXAAAAAABMyrZtjYyMTDiFN5FIaGRkpOQ+gUCgbPruvtN53W53hY4IAIBDy3DO1BN9GT3el1HG3PsnAZcka8w2Yy/7XdIx9VXaVBdQzMfPa2AhSqVSzrTf9vZ2dXV1KZ/Py+12q6mpyQl/W1tbFY1Gp3y8TCaj73//+/rBD36gPXv26Mknn1Rtba0kaXBwUJZlKR6Pz/ZhAQAAAABwSCL0BQAAAADgEGbbtkZHR8eNd8dO5LWsv6ZAXq933Hh3bNjr83FqbwAA5hvTttU7aqo7XVB3uqDNjzymw9YcoVBVQInebv302/+tzJ4OvfT4Q/rJj6/VueeeW+ldBnCQmKapnp4eJ/zt6OjQ0NCQJCkWi5WEv83NzWVn1igUCvJ4PPr617+uxx57TNdcc40CgYDuuusu/eQnP9GDDz6oqqoqnXvuufrUpz6lYDBYgaMEAAAAAGBxIvQFAAAAAGARy+VyTrQ7Ucibz+ed7V0ulzNxd6KQNxAIlP3hHwAALDxHHnmknn32WUnSq1/9av3nf/6nTjzxRD333HN661vfqocffrjCewhgNiWTyZLwt6urSy0tLXrnO99Ztq1t2zIMQ+eee67OOussfeQjH5Hb7dZJJ52kk08+WV/96lfV0dGhyy67TG9/+9v1xje+UZlMRrfccosef/xxnXzyyTrttNNUVVVVgSMFAAAAAGBh81R6BwAAAAAAwP4xTdOZuDs25B17OZPJlNwnHA470e7q1atLpvDGYjGFQiG5XK4KHREAAJhLpmk6X6dSKZ144omSpCOOOKLkjUAAFqdIJKIjjzxSRx55pKS9U3tHRkacqHes4uVt27bp2GOPldvtliRdfPHFGh4eVjabVWtrqx5++GFdcsklkqR3vvOd8vl8am1t1de+9jXdeeed+vznP8/ZPwAAAAAAmCFCXwAAAAAA5iHbtjUyMjLhFN7h4WGNjIyU3CcQCDjRbmtrq9atW1c2lbf4B3kAAICTTjpJV1xxhT7zmc/opJNO0g033KCLL75Y9957r4LBYKV3D8Ac83g8qq6unvD25557TrZta9WqVZL2hsHhcFjf//73df3118uyLH3sYx/Tm9/8ZknSDTfcoKeeekorVqyQJK1du1Z/+7d/q02bNs32oQAAAAAAsKgQ+gIAAAAAMMds21YmkymJdvedxptIJGRZlnMfj8fjTN+tr6/XqlWryqbxMhkLAADMxLe+9S39wz/8gxobG9XS0qJvf/vbCofDWrp0qX72s59VevcAzDMvvviiVq9erZaWFknSD3/4Q9144416+eWXJUlXXHGFstmsgsGgent7FQwGnd9RstmsvF6v+vr6Krb/AAAAAAAsVIS+AAAAAAAcZPl8viTeHS/kHXs6bJfLpUgk4oS7ra2tTrxbDHmrqqrKTp8LAABwIDwej66//nrt2LFDzzzzjAqFgpYtW6ajjz660rsGYB6566679J3vfEcPPPCAjj76aKVSKUUiEf3xj3/UMccc42y3YsUK/eIXv9AVV1yheDyuz3zmM7r88sv1hje8Qdu2bdPLL7+sbDZbwSMBAAAAAGBhIvQFAAAAAGAGTNNUMpkcN+Itfh4dHS25TygUcqLd4iTeYsgbjUYVDoflcrkqdEQAAOBQddppp+mmm27SypUr5ff79Za3vMW5zbZt3XXXXZXbOQDzxgknnKBkMqnly5frvvvuU1tbm5544gmdfvrpevrpp9Xe3q62tjb97ne/0/r165XJZBQIBPS2t71NwWBQ3d3d2rZtmy688ELF43FJe7/HGIbhfAYAAAAAABMzbNu2K70TAAAAAADMB7ZtK5VKjRvvFj8nk8mS+wQCgZJod+znWCymSCQij4f32QIAgPln48aN2rJli3N57dq1+tKXviSXy6UPf/jD2rZtWwX3DsB8NzAwoE984hPasmWLRkZGdNJJJ+mTn/ykVq1apd27d6upqcnZ9pJLLtGaNWv0iU98QrFYzLnesixt2bJFqVRKbW1tam5ultfrrcThAAAAAAAwb/GXRgAAAADAIcG2bWUymbIpvPtetizLuY/H43HC3fr6+nGn8fr9/goeFQAAwP7bd4qm1+vVa17zGknSv//7v1dilwAsILW1tbr66qslSf39/fL7/QqHw5Kka665Rrfccos2bNggj8ejoaEhffjDHy6JfCXJ5XKpu7tbTzzxhHK5nFwulxobG9Xa2qq2tja1trYqFosx9RcAAAAAcEhjoi8AAACABcm0bfWOmupOF9SdLmikYMm0bLldhsIelxqDHjUGPaqvcsvNHwQPCfl8fsIpvMWQN5/PO9sbhqFoNDruFN7i11VVVfxBGQAALBr7rqFvu+deLVuxUs1Njdr5/DPatuVhffpDl6u+yq3jjz1Wjz32WKV3GcAC9uCDD2rz5s3yeDy6/PLLJ53Ua1mW9uzZo46ODrW3t6ujo0MDAwOSpEgkUhL+NjU1cdYUAAAAAMAhhdAXAAAAwIIynDP1RF9Gj/dllDH3/jrjkmSN2Wbs5YDb0NF1AW2qCyjmc8/x3uJgMU1TyWRy0mm8o6OjJfcJhUJOtDtexBsOh+VyuSp0RAAAAHNn4jW0LcmQbduyzYJcHo8kQwG3ocL2J/Xu817FGhpAxaRSqZLwt7OzU4VCQW63W01NTU7429bWpkgkUundBQAAAABg1hD6AgAAAFgQMqalOztT2tKflSFpJr/IFLffGPfrjJaQ/G7izvnEtm2lUqmy6btjQ96RkRGN/fXV7/eXhLv7hrzRaJQJTwAA4JDHGhrAYmKapnp6epzwt729XcPDw5KkWCxWEv42NDTI7eaNCgAAAACAxYHQFwAAAMC8tz2R0407k0oX7BnFCfsyJIU8hi5YFtGKqO9g7R4mYdu2stlsSby77+dEIiHTNJ37eDweJ9zd93Pxa7/fX8GjAgAAmP9YQwM4FCQSiZKpv7t375ZpmvJ4PGppaXHC37a2NgWDwUrvLgAAAAAA+4XQFwAAAMC89mjvqG7rSM14AtlEio9zVmtIx9ZXHYRHPLTl8/myeHffaby5XM7Z3jAMRSKRkmh338/BYFCGYVTwqAAAABY21tAADlWFQkG7d+8umfo7MjIiSaqtrS2Z+ltfXy+Xi2nlAAAAAID5j9AXAAAAwLxVDBRmC6HC5CzLUjKZnHQabzqdLrlPKBSadBpvOBzmD6kAAACziDU0APyVbdsaHh4uCX+7u7tl27Z8Pp9aW1ud8Le1tVWBQKDSuwwAAAAAQBlCXwAAAADz0vZETte/nJj157l0VfSQPAWxbdtKpVITTuEdHh7WyMiIxv7K6Pf7nXB3bLw7Nuj1eDwVPCoAAIBDG2toAJhaLpdTV1dXSfw7OjoqSaqvr3fC37a2NsXjcc44AwAAAACoOEJfAAAAAPNOxrR0zTODShfsg3Kq4YkYkkIeQ+9eWyO/e+Ips729vXruued0yimnLJhptJlMpizi3fezaZrO9m63e8IpvMWv/X5/BY8IAAAAk5lva2gAWChs29bAwIAT/nZ0dKinp0eSFAgEnGm/bW1tamlpkc/HGx0AAAAAAHOL0BcAAADAvHPLrqS29mdnNVAoMiRtiPt13tJI2W2maWrz5s265557VFtbq/e85z3zYmJtPp8vm7677+VcLudsbxiGIpHIuCFv8XMwGGRKEQAAwAI2X9bQALAYZLNZdXZ2lkz9zWazMgxDDQ0NTvjb2tqqmpoafp8GAAAAAMwqQl8AAAAA88pQ1tRVzwzO+fNevq5GMZ/bubx7927dcMMN6unp0cknn6zTTjtNXq931vfDsiwlk8kJp/AODw8rnU6X3CcYDJZM3913Gm8kElkwk4gBAAAwc/NlDQ0Ai5Vt2+rr61N7e7sT//b19UmSQqFQSfjb3Nw8J68fAAAAAAAOHYS+AAAAAOaVu7tSeqBndE4mkRUZkk5sqNJpzSEVCgXdfffd2rx5s5YsWaKLL75Yzc3NB+V5bNtWOp0uiXb3ncabTCY19tc0n89XEu2O/Vz8ej5MGQYAAEDlVHoNDQCHotHRUWfab0dHhzo6OpTP5+VyudTY2OiEv21tbYrFYpXeXQAAAADAAkboCwAAAGDeMG1b33pyQBlz/F9Tbr/qSt1x9X+VXFe/fLU++tv7lR4e1O1XfVkvPnCXhro7FaqJa+2rz9PZl39SgUh0yucOuA29rjqtG/94gwYHB3XqqafqlFNOkds9/Qll2Wy2JN4d77Npms72bre7LNrd93MgEJj28wMAAODQM9UaWpp8HT2Wbdu69oNv1gv3/Vlv+eqPte708yd97oDb0AfX18rNKesBQJZlac+ePU74297ersHBvdPWI5FISfjb2NjIm3YBAAAAANPGb5AAAAAA5o3eUXPSQEGSGlYdoX/47q+dyy733l9rEr3dSvR26/yPfFZLVh6uod0d+t0XP6Zkb7f+/r9+NOVzZ0xbP/7tDWoO+/Xe975X9fX1JbcXCoWyKbz7fs5ms872hmEoEok40W5TU1PZNN5gMCiDKAIAAAAHYDpraGnidfRYm6/7njSD9WnGtNU7aqoxyJ8aAKA4ybexsVHHH3+8JGlkZKRk6u+f//xnFQoFud1uNTc3O+FvW1ubwuFwhY8AAAAAADBf8eobAAAAgHmjO12YchuX261IXUPZ9Y2rj9RbvnKtcznetkLnvP9Tuv6K98ksFOSeYlKObdtauekV2hgP6MUXX9QjjzxSEvGmUqmS7YPBoBPuLl++vGwqbyQSkcvlmt6BAwAAAPtpOmtoaeJ1dFHX80/qL//7HX3gf2/TF88+akbPT+gLAOMLh8M64ogjdMQRR0iSTNNUd3e3E/4+/fTTuv/+vdPVq6urS6b+NjQ08LoCAAAAAEASoS8AAACAeaQ7XZBLkjXJNn27tuuLZx8ljz+gpRuO07kfuELVTa3jbpsZSSgQikwZ+UqSbEs7B1N6+e6b5fP5nGi3qalJa9asKQl5o9GovF7vfh0jAAAAcDBNZw0tTb6Ozo2mdf2nLtNrPvHlSWPgfbk0/dAYACC53W61tLSopaXFuS6RSDjhb3t7u55++mlZliWv16uWlhYn/G1tbVUwGKzg3gMAAAAAKsWwbXvqc3oBAAAAwBz49baEXhrOTXj785tvVy6dUt2y1Ur29eiOq7+ixJ7d+siv/iJ/qPQUl6nBfv3P35+pTee/Qed84N+mfG7bthVK9em8Ro9Wr14tYwanLAYAAAAqZao1tDT1Ovp3X/hnWZap13/mvyVJnzymXm/56o+17vTzp3z+w2I+vX5l9GAcCgBAUqFQUFdXlxP+tre3O2cZisfjJeFvfX09U38BAAAA4BDARF8AAAAA84ZpTf4+xDWnnOl83XT4OrWtP1ZfvuBobb3t9zr+tW9xbsuMJHXth/9OS1YerjPf+/FpPbdhGMrk8vrZz36p6upqrV+/Xhs3blQ8Ht+/gwEAAADmwFRraGnydXSopk4vP/wXffDnf96v5y9M4/kBANPn8Xi0dOlSLV26VNLeNyYPDQ054W9HR4e2bt0q27bl9/vV0tLihL+tra0KBAIVPgIAAAAAwMFG6AsAAABg3nC7ZjZFtyoSU93SVepv3+5cl02N6EcfuFT+YFhv+eqP5fZ6p/14q5Yv03Gr36EtW7booYce0l/+8he1tLRow4YNOuqoozhFJgAAAOadma6hpdJ1dPeLz2qgY4c+d9rqkm2u+5d3avnRJ+o91/xh0sfy7MfzAwCmzzAM1dTUqKamRuvXr5ck5XI5dXV1OeHvQw89pLvvvluSVF9f74S/bW1tisfjnLUIAAAAABY4Ql8AAAAA80bY45JLkjXN7bPpEQ107FDkgjdK2jvJ94fvf5M8Pp/e9vWfyuufwRQby1THtp3yZbpUV1eniy++WIlEQtu2bdOtt96qP/3pTzr88MN1wQUXKBwOz/jYAAAAgNkw0zW0VLqO3nDWa3T8695Scvs33nSqLvjnz+vIU8+Z9HFckkIeThkPAHPN5/Np+fLlWr58uaS9U38HBgbU3t7uxL+PPfaYJKmqqsqZ9tvW1qaWlhb5fL4K7j0AAAAAYKYIfQEAAADMG41Bj57on/j2m7/+7zri1LNV09SmRG+3br/qSrlcbm0895K9ke/73qh8ZlSXfuE7yqaSyqaSkqRQTZ1cbvfkT264FLYy6urq0pNPPql8Pr/3asNQdXW1PB6Pdu/erYcffljLly9XPB5XJBJhKg4AAAAqwjRNdXV1aaRrSJavUZpkXTrZOjpcU6dIXUPZfaobW1XbsmzSfbC0dw0PAKgswzAUj8cVj8e1adMmSVImk1FnZ6cT/t53333KZrMyDEMNDQ1O+NvW1qbq6mpe3wAAAACAeYxX4AAAAADMG1NFAsM9XfrFJ9+r9PCgQjVxLd90gi7/8S0K19Rp2yOb1f7Uo5Kkr7zmFSX3+/iNj6qmeenkT24YuuBVJ6jxnFNk27aSyaT6+/vLPv7yl7/onnvukSR5vV7nD2n7fgQCM5gmDAAAAEwhn8+rs7NTO3fu1M6dO9XR0aF8Pi9vvEmuUy6Z9L6TraMPFKEvAMxPgUBAq1at0qpVqyTtnfrb29vrhL/bt2/XI488IkkKhUJqa2tz4t+mpiZ5vd5K7j4AAAAAYAzDtm270jsBAAAAAJJk2ra+9eSAMubc/5oScBv64PpauaeYYGOapgYHB8eNgEdGRpztQqFQWfxbV1enmpoauaeaLgwAAIBDXjabVXt7uxP2dnZ2yrIsBQIBLV26VMuWLdOyZctU39Cg7zwzPK/X0ACA+SmdTqujo8OJfzs7O5XP5+VyudTU1FQy9TcajVZ6dwEAAADgkEXoCwAAAGBeubsrpQd6RjWXv6gYkk5sqNJpzaEDepxsNjtuANzf369cLrf3uQxD1dXVqqurU21trRMAx+NxRSIRTpUJAABwiEqn09q1a5cT9nZ3d8u2bYVCISfqXbZsmZYsWVK2ZlzIa2gAwPxhWZZ6enqc8Le9vV1DQ0OSpGg0WjL1t7GxkTcyAwAAAMAcIfQFAAAAMK8M50x99+nBOX/ey9fVKOabnT9Q2batkZGRcQPgwcFBWZYlSfJ6vc7039raWicAjsfjCgQCs7JvAAAAqIxEIlES9vb29kqSYrFYSdhbW1s75ZvBFuMaGgAwP4yMjJSEv11dXTJNUx6PR83NzU7429raqnA4XOndBQAAAIBFidAXAAAAwLxzy66ktvZn52QimSFpQ9yv85ZG5uDZypmmqaGhISf87evr08DAgPr7+5VMJp3tQqHQuAFwTU2NPB5PRfYdAAAA02PbtoaGhpyod+fOnRoc3BvmxuNxJ+pdunSpqqur9+s5DqU1NACgckzT1O7du53wt7293Xn9oqampiT8bWhokMvlqvAeAwAAAMDCR+gLAAAAYN7JmpaueWZQqYI9q6GCISnkMfTutTXyu+ffH56y2awT/Y4NgPv6+pTL5SRJhmGourraCX/HfkSj0SmnvwEAAODgs21bfX19JWFvMYJqaGgoCXsP1vRD1tAAgEoZHh52wt+Ojg7t3r1blmXJ6/WqpaXFCX9bW1sVDAYrvbsAAAAAsOAQ+gIAAACYl7Yncrr+5cSsP8+lq6JaEfXN+vMcTLZtK5VKOdFvf3+/BgYG1NfXp8HBQVmWJUnyeDzjBsDxeFxVVVUVPgoAAIDFw7Is9fT0OFHvrl27lE6n5XK51NTU5IS9bW1ts7oOYw0NAJgP8vm8du/e7YS/7e3tSqVSkvZOsi+Gv21tbaqvr+dNygAAAAAwBUJfAAAAAPPWo72juq0jNWuPf3ZrSMfUL67g1bIsDQ0NOQHw2Ai4OEVOkoLB4LgBcG1trTweTwWPAAAAYP4zTVNdXV1O2Nve3q5sNiu3263W1lYn7G1tbZXPN7dBLGtoAMB8Y9u2hoaG1N7e7sS/PT09sm1bfr/fmfZbDID9fn+ldxkAAAAA5hVCXwAAAADzWjFUMKSDcgri4uMcioFCLpdzot+xAXB/f7+y2ayzXXV1daHgcQAA2aNJREFU9bgRcCwWY8oOAAA4JOXzeXV0dDhhb0dHhwqFgnw+n9ra2pywt7m5eV68aYo1NABgvsvlcurs7HTC346ODo2OjkqSlixZ4oS/bW1tqq2t5fUIAAAAAIc0Ql8AAAAA8972RE437UwqVbAPKFQwJIU8hi5YFuFUw2PYtq10Ol0yBXjsNGDLsiRJHo9HtbW1ZQFwXV3drJ6CGgAAYK5lMhm1t7c7YW9XV5csy1JVVZWWLl3qhL2NjY1yuVyV3t1xsYYGACwktm2rv7/fCX/b29vV29srSaqqqnKm/ba1tam5uXnOJ+YDAAAAQCUR+gIAAABYEDKmpTs7U9rSn53xZLLi9hvjfp3REpLfPT9jjPnIsiwNDQ2VBcD9/f1KJBLOdlVVVU70W4yB6+rqVFNTI6/XW8EjAAAAmFoqldKuXbucsLe7u1uSFA6Hnah32bJlqq+vX1ATBVlDAwAWskwm40z7bW9vV2dnp7LZrAzDUGNjY8nUX85CBAAAAGAxI/QFAAAAsKAM50w90ZfR430ZZcy9v864JFljthl7OeA2dHRdQJvqAor53HO8t4tbLpfTwMDAuBFwJpNxtovFYmUBcDweVzQanbcT8AAAwPxXKBT05z//WbfffruOPfZYvf71r5fH45Ft21OGPolEwol6d+7cqb6+PklSdXV1SdhbU1OzKKIh1tAAgMXAsiz19vY64W97e7sGBgYk7X1zztipv01NTfJ4PBXeYwAAAAA4OAh9AQAAACxIpm2rd9RUd7qg7nRBqYKlgmXL4zIU8rjUGPSoMehRfZVb7kUQZywktm0rnU6PGwAPDAzINE1JktvtVjweVzweV21trRMAx+NxBYPBCh8FAACYr4oh7zXXXKNrrrlGZ5xxhvbs2SPbtvWjH/2oLPS1bVuDg4MlYe/Q0JAkqa6uzol6ly5dqlgsVqGjmhusoQEAi00qlSqZ+tvV1aV8Pi+3262mpiYn/G1tbVU0Gq307gIAAADAfiH0BQAAAADMGcuyNDw8PG4EPDw87GxXVVU1bgRcW1srr9dbwSMAAABzxTRN3XnnnfrBD36gTCaja6+91glxe3t7dckll+jqq6/WkUceqa6uLh1zzDG6++67tWbNmrLH+sEPfqCOjg41NjaWhL2hUGiuDwsAAMwi0zTV09NTEv8W3+ATi8VKwt/Gxka53UyuBwAAADD/EfoCAAAAAOaFfD6vgYGBsgC4r69PmUzG2S4Wi407BTgWi8nlclXwCAAAwIHYvn27tmzZojPOOEPRaFSJREKf+tSn5PF49NOf/lT33nuvjjzySElSoVDQkiVL9OKLLyoej0uSLrzwQp133nl6z3veU/LGINu21d/fr3A4rEAgUJFjAwAAlZNMJp3ot6OjQ11dXTJNUx6PR83NzU7429bWxpuAAAAAAMxLnkrvAAAAAAAAkuT1etXQ0KCGhoay29LpdEn4OzAwoF27dunxxx+XaZqSJLfbrdraWif8HfsRDAZLTuENAADml49+9KO64YYbtG3bNm3evFknnXSSotGoPvrRj2rlypV68MEH9fjjjzuhbz6f11FHHaXNmzfr4osvliQdd9xxevLJJ2VZVsljG4ahurq6OT8mAAAwP0QiER155JElbxjq7u52wt+tW7dq8+bNkqSampqS8HfJkiW8qRgAAABAxTHRFwAAAACwYFmWpUQi4QTA/f39zlTg4qk5JSkQCIwbANfW1srn81XuAAAAgCTpvvvu08knn6wLLrhAF110kS677LKS2y+77DJ5vV5985vflGEYymaz+ud//me5XC5985vflCT94Q9/0H/8x3/ooYcekmVZRDkAAGBabNtWIpFQe3u7E/92d3fLsiz5fD61tLQ44W9ra6uqqqoqvcsAAAAADjGEvgAAAACARSmfz2twcLAkAC5+PTo66mwXjUbHjYCrq6sJhAAAmCOFQkEej0ef+tSn1N7erh//+MdyuVzO9b/+9a/19a9/Xbfccoui0agk6aabbtL73vc+7dy5U5L0+9//Xt/+9rd12223VfJQAADAIpDP59XV1eWEv+3t7Uqn05Kkuro6J/xta2tTXV0dZxECAAAAMKsIfQEAAAAAh5x0Oq3+/v6yj4GBARUKBUmSy+VSbW3tuBFwKBTij3gAAMyCP//5z/rnf/5n/fnPf1ZNTY1s25ZhGOrq6tIpp5yie+65R21tbc72r3/961VbWyuv16t7771X//M//6NTTz21gkcAAAAWI9u2NTg4WBL+7tmzR7ZtKxAIqLW11Yl/W1pa5Pf7K73LAAAAABYRQl8AAAAAAP4f27Y1PDw8bgQ8NDTkbOf3+8cNgOPxuHw+X+UOAACABWBkZEThcHjc29LptNauXavf/OY3OvbYY0tuO/744/Wud71LPp9PZ555ppYtW6bR0VH94Ac/0OjoqM4880wdffTRc3EIAAAAymaz6uzsdMLfjo4OZTIZGYahJUuWlEz9ramp4Q3DAAAAAPYboS8AAAAAANNQKBQ0MDAwbgRcPH2nJEUikbL4t66uTtXV1XK5XBU8AgAA5p5t2xoYGNDOnTudj2QyqU984hPyer0l21qWJZfLpbPOOkvvf//79drXvlb5fF4vvfSSvvGNb+jqq6/W0qVLtXTpUn3jG98g6gUAAPOKbdvq6+srCX97e3slScFgUG1tbc7k35aWlrK1EAAAAABMhNAXAAAAAIADNDo6Om4A3N/fr0KhIElyuVyqqalRXV2damtrnQA4Ho8rFAox2QcAsCjYtq09e/aUhL2pVEqGYaixsVHLli3TsmXLdNhhh8ntdpfdd3h4WGeccYZ27Ngh0zT1ta99Teedd55uv/12nXLKKVq1alWFjgwAAGDmRkdH1dnZ6YS/HR0dyuVycrlcamhocOLftrY2xWIxXhsAAAAAMC5CXwAAAAAAZolt20okEuMGwENDQyr+Su73+53pv7W1tU4AXFtbK7/fX+GjAABMh2nb6h011Z0uqDtd0EjBkmnZcrsMhT0uNQY9agx6VF/llnsRBRymaaq7u9uJenft2qVMJiOXy6WWlhYn7G1ra5vyZ9rg4KDe+ta3KhaL6eKLL9bJJ5+stra2OToSAACA2WdZlnp7e53wt729XQMDA5KkcDhcEv42NTXJ4/FUeI9n36G6jgYAAABmgtAXAAAAAIAKKBQKGhwcHDcCTqVSznaRSKQsAI7H46quri6bhAgAmHvDOVNP9GX0eF9GGXPvS60uSdaYbcZeDrgNHV0X0Ka6gGK+hfd9vFAoqLOz0wl729vblc/n5fF41NbW5oS9nI4aAABgelKplBP9dnR0qLOzU4VCQW63W01NTU7429bWpkgkUundPWgOtXU0AAAAcCAIfQEAAAAAmGcymcy4AXB/f7/y+bwkyeVyqaamxgl/x36Ew2FO9wkAsyxjWrqzM6Ut/VkZkmbyImtx+41xv85oCcnvds3OTh4E2WxWHR0dTtjb2dkp0zTl9/u1dOlSJ+xtamriDSgAAAAHgWma6unpKZn6Ozw8LEmKxWIlU38bGhoW3BrsUFlHAwAAAAcToS8AAAAAAAuEbdtKJpNO9NvX16eBgQH19/drcHBQxV/xfT7fuAFwPB6f8rTpAICpbU/kdOPOpNIFe0Zhwr4MSSGPoQuWRbQi6pv2/UZGRhQOhw/gmSc2OjqqXbt2OWHv7t27Zdu2gsGgE/UuW7ZMS5YskctFWAEAADAXksmk2tvbnfh39+7dMk1THo9HLS0tTvjb2tqqUChU6d2dUKXX0QAAAMBCRegLAAAAAMAiYJqmBgcHnQC4v79fAwMD6uvrUyqVcrYLh8PjBsA1NTULbgoQAFTCo72juq0jNePpYxMpPs5ZrSEdW1816ba2beuee+7RXXfdpcsvv1xLliw54OdPJpMlYe+ePXskSdFotCTsjcfjTIsHAACYJwqFgnbv3l0y9XdkZESSVFtbWzL1t76+/qC/QevPf/6zPB6PXvWqV017jVjJdTQAAACw0BH6AgAAAACwyGUyGSf6HRsA9/f3K5/PS5IMw1BNTc24EXAkEiHuAgD9NU6YLZNFCoVCQTfccIOefPJJnX766TOKKops29bw8LAT9e7cuVMDAwOS9gYhY8PeWCzG934AAIAForjOGxv+dnd3y7Zt+Xw+tba2lkz9DQQCB/R8jzzyiG666SatWbNGr3vd66Y8e1Al19EAAADAYkDoCwAAAADAIcq2bY2MjIw7BXhwcFDFlwy8Xu+4AXA8Hj/gPw4CwEKxPZHT9S8nZv15Ll0VLTv9cCqV0i9+8Qt1d3frta99rdatWzetx7JtW/39/SVhbyKx9xiWLFniRL1Lly5VJBI56McCAACAysnlcurq6nLC346ODqXTaUlSfX19SfhbV1c34zd5vfDCC/rtb3+raDSqN7/5zaqtrR13u0quowEAAIDFgtAXAAAAAACUMU1TQ0NDTgA89qN4OlBJCoVCZfFvXV2dampq5Ha7K3gEAHDwZExL1zwzqHTBPiinGZ6IISnkMfTutTXyu/eeXnnPnj36+c9/rnw+r7/9279VS0vLhPe3LEt79uwpCXvT6bQMw1BTU1NJ2FtVxcQzAACAQ4lt2xoYGCgJf3t6eiRJgUCgJPxtaWmZckqvJPX29uoXv/iF0um03vjGN2rlypUlt1dyHQ0AAAAsJoS+AAAAAABgRrLZbFn8W/zI5XKSJMMwVF1drbq6OtXW1joBcDweVyQS4XTwABaUW3YltbU/O6txQpEhaUPcr/OWRvTiiy/q17/+tWpqavS3f/u3isViJduapqndu3c7Ue+uXbuUzWbldrvV0tLihL2tra3TCjUAAABwaMlms+rs7HTC3/b2dmWzWRmGoSVLljjhb1tbm2pqasb9XX50dFS/+c1vtG3bNp1zzjl6xSte4WxXqXU0AAAAsNgQ+gIAAAAAgIPCtm2NjIyMGwAPDg7KsixJktfrdab/1tbWOgFwPB5XIBCo8FEAQKmhrKmrnhmc8+c9KbdTd//pJh122GG65JJL5Pf7lc/n1dnZ6YS9HR0dyufz8nq9amtrc8LelpYWeTyeOd9nAAAALGy2bauvr0/t7e1O/NvX1ydp7xl9WltbnfC3ublZXq9X0t4zS9x+++26//77tWnTJl1wwQUaMY2KrKMvX1ejmI8zDAEAAGBxIfQFAAAAAACzzjRNDQ0NjRsBJ5NJZ7tQKDRuAFxTUzOr0dro6Ki2bNmiI488smxiJoBD291dKT3QMzruFLLbr7pSd1z9XyXX1S9frY/+9n5J0tXvfo22P3pfye2veP3b9bp/+8rkT2rbKrz4qI6JWFq9erXa29u1c+dOdXZ2yrIsBQIBLV261Al7Gxsb5XYTMwAAAODgGx0ddab9dnR0qLOzU7lcTi6XS42NjU7429bWpu3bt+vGG29UU1OTlv7NJXps0NyvdbQk7dzysP7v219U+1OPyeV2qenwo/Sub/9S3kDVhPtqSDqxoUqnNYcO0tEDAAAA8wNjHQAAAAAAwKxzu91OtLuvXC5XFv/u2bNHzz77rLLZrCTJMAxVV1c7jzH2IxqNjnv60OmwLEsul0v/+Z//qc9//vP63Oc+pyuuuEJXXHGFnnvuOR155JE6/PDDdcopp2jlypUH9G8AYOExbVuP92UmPdVww6oj9A/f/bVz2eUufcn1+Ne9VWdd/q/OZW8gOPUTG4Y8K9brkT/9SA8//LBCoZCWLVumc845R8uWLdOSJUv2+/seAAAAMBNVVVU67LDDdNhhh0na+3v0nj17nPD3xRdf1EMPPSRJikQiWrp0qbp271bvnrTk9U/4uJOto3dueVg/+uClevU7P6yL//VLcrk92v3CUzJcrkn31Zb0eF9Gr2wKys16GQAAAIsIoS8AAAAAAKgon8+npqYmNTU1lVxv27ZSqVRZBPzyyy/r4YcflmVZkiSPxzNuAByPx1VVNfGkH0lyuVz63Oc+pz179uhv/uZvtHbtWknSvffeq6OOOkqBQEC33367+vv79b73vU8+n292/hEAzEu9o6Yy5uQnRHO53YrUNUx4uzdQNentE9/Rr5Ubj9XRq5ZqzZo1szrVHAAAAJiu4iTfxsZGHX/88ZKkVCql9vZ27dixQ9u3b1c+EJV3kshXmnwdfdNXP62T3/xuvfqdH3auq1++elr7lzFt9Y6aagyyfgYAAMDiweoWAAAAAADMS4ZhKBwOKxwOa9myZSW3WZaloaEhJ/7t6+vTwMCAtmzZokQi4WwXDAYVj8d1zjnnqLm5uWQCZjab1U9/+lM9++yz+u///m+9/vWvV0NDg0ZGRuR2u/Wxj31My5cvn6vDBTAPdacLU27Tt2u7vnj2UfL4A1q64Tid+4ErVN3U6ty+5Zbf6Ilbfq1IfImOOPVsnfGP/yxf1TSm+tq2dg2l9fKvfy2Px6OWlhbnlMhtbW1TvpEBAAAAmG25XM4JfHfu3KnOzk5ZlqXAYZtk27Y0yVTdidbRIwO9an/qUW06//X67jvO10DHDtUvX62z3/8pLT/6xGntV3e6QOgLAACARcWwbXvykRQAAAAAAAALSC6X08DAQEkAfNppp6m2trZku+uuu04PPPCAvvWtb6m9vV3vete7dPXVV8s0TZ1++ulau3atTjvtNJ1//vnatGlTZQ4GQEXdumtEW/szsia4/fnNtyuXTqlu2Wol+3p0x9VfUWLPbn3kV3+RPxTWQ7/5iaqbWhWtb9TuF5/Rrd/8nNrWHaO3fPXaKZ/bJWl9rU/r3Qm1t7ervb1du3btUiqVkiTV1dWpra1N69ev14oVKw7aMQMAAAATyWaz2rVrl3bu3KmdO3eqq6tLlmUpFApp2bJlWrZsmZYvX67HMlXa2p/dr3V0z8vP6bvvOE9VsRqd/5H/T81rjtJjN/5SD/zqR/rIr+5R3dJVk+6jS9KGeEDnLg0f9OMHAAAAKoW3sQEAAAAAgEXF5/M5pxGdyODgoH7yk5/o6aef1urVq/XUU0+pUCgom81qxYoV+slPfqKRkRHdfvvt+s53vqNPf/rTamtrm8OjADAfjBSsCeMESVpzypnO102Hr1Pb+mP15QuO1tbbfq/jX/sWveL1b3NubzxsraJ1Dfr+ZZeov3274m2Tx7mWpLQptS5rVWtrq0466STZtq2hoSHt2rXLiX9HRkYIfQEAADDrhoaG9O1vf1uFQkHhcFjLly/Xxo0btWzZMtXV1ckwDJmmqWw2q8GBtCzZksaf6DvZOnrJisMlSSdc8jYd95q/kyQ1H7FBLz/0Fz3yh5/p3A9+etL9tCSlCpOt4gEAAICFh9AXAAAAAAAccmpqavT9739f999/v7Zt26ZHHnlE27Zt02c/+1l96Utf0umnny5Juuiii3T++efr6quv1uc//3lZliWXy+U8Tnt7u3w+n2pra+X1eit1OABmiWnN7GRoVZGY6pauUn/79nFvb1t/jCRNK/SVpMI+z28YhmpqalRTU6ONGzfOaN8AAACAidi2rXw+r0wmo2w2q2w2W/J1NpvV6OioVq5cKbfbLdu2lUql9Pjjj+uBBx5wti0UCpIk74kXybVk6bSff+w6etXxr5IkLVm5pmSb+hWHaai7c1qPt+86GgAAAFjoCH0BAAAAAMAhqa2tzZnS+9JLL+nNb36zPvrRj8o0zZLthoeHVV1dLUklka8k/fGPf1Rvb68kKRaLKR6Pl3zU1dUpGo2W3Q/AwuB2jT+BbCLZ9IgGOnYocsEbx7296/mnJEmRuoZpPZ5nhs8PAACAQ09xiu54ge5k4e6+19n2xHGsz+eT3+9XIBCQ3++X3+9XMBhUTU2Nc3ns7Q8XqtVVmHii777GrqNrmpcqWt+o3p0vlWzTt+tlrTn5b6b1eKyjAQAAsNgQ+gIAAAAAgEOWaZpyu91asWKFli1bJq/Xqze96U0aGhrS+vXrZVmWQqGQXvOa15Td17ZtveMd71BfX5/6+/udjx07duixxx5zgmG3263a2lrV1dWptrbWCYDj8biqqqpkGPwBEpivwh6XXNp7+t/x3Pz1f9cRp56tmqY2JXq7dftVV8rlcmvjuZeov327nrj1tzrilDMVrK7R7hef0U1f/bRWHHOSmg5fN+VzuySFPLxJAAAAYLEqTtE9kDg3k8k4U3TH43K5SuLc4tfV1dVl1030tc/nm/GbV3fuGlF3f2a/1tGGYehVb3u/bv/elWo6fJ2aDj9Kj914vXp3vKS/v/KHUz4362gAAAAsRoY92VvzAAAAAAAADjF9fX164YUX9Oyzz6q/v1/vete7VFdXN6PHsCxLw8PDJQFw8WN4eNjZLhAIONFvMQYufu31eg/2oQGYoSf6Mrq1fWTC23/+iXdr+2P3Kz08qFBNXMs3naCz3/8pxdtWaKi7U7+84nJ1v/yc8qNpxRqate70C3T6P35UgXBkWs9/bltYm+oCB+twAAAAcJBYljWtODeTySiXy014+0yn6AYCAfl8vinj3OLXbre7Im8uPZB1dNFdP/qGHvjlD5UeHlLT4et03oc/o+VHnzit52cdDQAAgMWG0BcAAAAAAGAO5fN5DQwMjBsBj46OOtvFYrGyADgejysWi814mhKA/dOdLuja54cq9vzvWFOtxiAnZQMAADhYJpqiO9Uk3X0v5/P5CZ/D5XJNGuBO57b9maI7n7COBgAAAA4uVrcAAAAAAABzyOv1qqGhQQ0NDWW3pdPpsvh3165devzxx2WapiTJ7XartrbWCX/HfgSDwYpMawIWq/oqtwJuQxlz7mclBNyG6qvcc/68AAAA85VlWVNOzx0b4050+3Sm6I4NcAOBgGKx2JTTc4tfezyeQ/73MtbRAAAAwMFF6AsAAAAAADBPBINBBYNBtbW1lVxv27aGh4fLIuCnn35aQ0NDznaBQGDcALi2tlY+n2+OjwZY+NyGoaPrAnqgZ1RzmSgYko6uC8h9iAciAABgcRg7RfdAQt39maJbXV09rUm6i2GK7nzCOhoAAAA4uAx7srcsAgAAAAAAYF4rFAoaGBgoi4D7+/uVTqed7aLR6LgRcHV1NX/MBiYxnDP13acH5/x5L19Xo5iPSWQAAKCyppqiO9Xl/Z2iO904lym68xfraAAAAODgIfQFAAAAAABYpEZHR53ot6+vryQILhQKkvZOvqqtrR03Ag6FQvyxHJB0y66ktvZn52QamSFpQ9yv85ZG5uDZAADAYmXbtgqFwrSm5042SXc6U3QnC3CncztvPFy8WEcDAAAABwehLwAAAAAAwCHGtm0lEgknAO7v79fAwID6+vo0NDTkbOf3+8cNgOPxuHw+X+UOAJhjWdPSNc8MKlWwZzVSMCSFPIbevbZGfjfBCwAAh6riFN39jXOLH5ZlTfgcXq93v+Pc4tdM0cVUWEcDAAAABwehLwAAAAAAAByFQkGDg4NOADw2Ak6n0852kUikLP6tq6tTdXU1E7mwKG1P5HT9y4lZf55LV0W1IkpIDwDAQjTTKbq5XG7c2yebomsYhhPa7hvf+ny+KeNcpuhirrGOBgAAAA4coS8AAAAAAACmZXR01Il+xwbA/f39KhQKkvaevrempkZ1dXWqra11AuB4PK5QKMTELyxoj/aO6raO1Kw9/tmtIR1TXzVrjw8AACY20RTdqSbpznSK7lQB7mSXA4EAU3SxILGOBgAAAA4MoS8AAAAAAAAOiG3bSiaTJVOAix9DQ0Mqvvzk8/mc8HdsBFxbWyu/31/howCmpxgpGNJBOf1w8XGIEwAA2D/FKbpTTc8dG+OOd/t0p+iOF+NOFu+O/ZopujiUsY4GAAAA9h+hLwAAAAAAAGZNoVDQ4OBgWQDc39+vVOqvE53C4fC4U4Crq6vldrsreARAue2JnG7amVSqYB9QpGBICnkMXbAswmmGAQCHpLFTdKcKdXO53IS3788UXZ/PN604lym6wMHDOhoAAADYP4S+AAAAAAAAqIhMJjNuANzf3+9MVHO5XKqpqVE8Hi/7CIfDBBeomIxp6c7OlLb0Z2c8lay4/ca4X2e0hOR3M90PALCwTGeK7lSXZzpFd7xJukzRBRYe1tEAAADAzBH6AgAAAAAAYF6xbVvJZHLcAHhwcFDFl7N8Pt+4AXA8Hpff76/wUeBQMZwz9URfRo/3ZZQx9/636ZJkydbeFKF4ea+A29DRdQFtqgso5mNaNQDMpZdfflmpVEobNmzQ9u3bdeutt6q/v199fX2qq6vT3/3d32nlypWV3s1ZZ1nWpNNxpxvrTmeK7lRx7mSBrtfr5U1dwCI28Tr6r1hHAwAAAHsR+gIAAAAAAGDBME1Tg4OD40bAIyMjznbhcHjcALimpkZuN38UxsFn2rZ6R011pwvqThd08x136rhXnKBQVUAhj0uNQY8agx758ym9+U1v0p/+9KdK7zIAHBJs25ZhGHrhhRd09tlna8mSJbrvvvt03XXX6dOf/rTe8IY3aMWKFVq6dKlOPfVU1dTUVHqXJzR2iu5kce6+Ye6+1+VyuQmfwzCMSePb6UzS9fl8rLcATNu+6+hUwVLBsuVxGSXr6Poqt9zE/wAAADhEeSq9AwAAAAAAAMB0ud1u1dXVqa6uruy2bDZbFv/u3r1bTz31lBO0GIahmpqacSPgSCTC1DjsN7dhOBGCJP3rf1+hb27Z4tz+9re/XT/+8Y8lxdTT01OhvQSAQ49hGDJNUzfffLOWLFmi4447Tul0WtXV1Tr77LP1ta99bU72Y6ZTdCe6fX+m6EYikSnjXKboAqiUfdfRAAAAAMqxWgYAAAAAAMCi4Pf71dzcrObm5pLrbdvWyMiIE//29fVpYGBAL774oh566CEnmPF6veMGwPF4XIFAoBKHhAVs30jqzjvvnPA2AMDs+uUvf6mdO3fq85//vL7+9a8rm80qEono3nvv1fve9z5VV1frVa96lc4777yy+042RXeqWHemU3T3jW6j0eiEU3THu8wUXQAAAAAAFidCXwAAAAAAACxqhmEoEokoEolo+fLlJbeZpqmhoSEnAO7v79fAwIB27typkZERZ7tQKDRuAFxbW0tUg3EtWbJEv//97/Xa175WP/3pT2UYhq699lpVV1crGo1WevcA4JCxY8cOPfjgg3rXu94lv98vwzDkdru1bt06nX/++WpublYmk9G1116r559/Xh/5yEdk27bzpoxUKqWvfvWrEz6+x+MZdzpucYrudCbpMkUXAAAAAABMxrBt2670TgAAAAAAAADzTTab1cDAQEkAXPy6OJXPMAxVV1eXBcB1dXWKRCJEO4ewrVu36sILL1RfX59OP/10XXnllXrrW98qy7J07bXXatOmTZXeRQCYt2zblmmaE07L3ffrXC6nmpoa/c3f/E3ZY/3oRz/Sb37zG91444267rrr9JWvfEXvec97dNFFF6m1tdXZ7pe//KU+9alP6aWXXioJfU3T1NNPP80UXQAAAAAAUDFM9AUAAAAAAADG4ff71dTUpKamppLrbdtWKpVyot/ix0svvaSHH35YlmVJkrxer2pra1VXV6fa2lonAI7H4woEApU4JMyhDRs2aNeuXert7VV7e7uy2az+9Kc/qb6+vtK7BgCzyrbtacW5xa8nur3483Q8+07R9fv9qq6uLtvOsixt27ZNTz/9tDZs2CCXy6UdO3bohhtu0LHHHlsS+oZCIWUyGecYiqGv2+3Whg0bDu4/EgAAAAAAwAww0RcAAAAAAAA4SCzL0uDgYEkAXPxIJpPOdsFgcNwAuKamRh4P781fDF544QVddtllevTRR9XU1CTDMNTV1aXjjjtO3/ve97R69epK7yIAlCkUCmUR7mSB7niXi1Pvx2MYRkmcu2+sO9nlsV/v7xRdy7L0yle+Utdcc42OPPJIff7zn1cgENCePXu0bds2XXrppXrzm9+8v/98AAAAAAAAs4K/GgAAAAAAAAAHicvlUjweVzweL7stl8uVxb979uzRs88+q2w2K2lvAFVdXa14PF4WAUejUWe6IOa/d7zjHXrve9+r22+/XS6XS9LewOy6667T29/+dm3evLnCewhgMRk7RXeqSbq5XG7C203TnPA5PB7PuPFtJBKZVpwbCATk9Xor8rOsOKE3lUpp06ZNyuVySiaTSiQSMgxDy5Yt05lnnqnzzjtvzvcNAAAAAABgKkz0BQAAAAAAACrItm2lUqlxpwAPDAw4py73eDxORLzvR1VVVYWPAvtas2aNnn/++RnfBuDQUygUpoxzx0a8E8W7E5lqiu5Uce6BTtEFAAAAAADAgSH0BQAAAAAAAOYpy7I0NDQ0bgScSCSc7YLB4LgBcG1trTweTuo1F0zbVu+oqe50Qd3pgm6+406tOnyNWpoaFfa41Bj0qDHo0b233KD/uvLLevDBByu9ywAOUKWm6E51ed/bfD4fE+EBAAAAAAAWMEJfAAAAAAAAYAHK5XIaGBgoC4D7+vqUzWad7aqrq8eNgGOxGOHXQTCcM/VEX0aP92WUMfe+1OqSZMmWZMi2bdmmKcPtlmEYyqWSWhd168wjWhTzMR0TqJTxpuhONUl3vMm6k5kqwJ1OrMsUXQAAAAAAABD6AgAAAAAAAIuIbdtKp9PjTgEeGBhwJkd6PB7V1taOGwEHg8EKH8X8lzEt3dmZ0pb+rAxJM3mRtbj9xrhfZ7SE5He7ZmcngUXItu1Jp+OOF+OOd/t0puiOF9/6fL4J492xXzNFFwAAAAAAAAcLoS8AAAAAAABwiLAsS8PDwyXTf4tTgYeHh53tqqqqxg2Aa2tr5fV6K3gE88P2RE437kwqXbBnFPjuy5AU8hi6YFlEK6K+g7V7wLxVnKI7WZw7Vah7oFN0J7udKboAAAAAAACYjwh9AQAAAAAAACifzzvR79gAuK+vT5lMxtkuFouNGwHHYjG5XIt/Mu2jvaO6rSM14ym+Eyk+zlmtIR1bX3UQHhE4+Co5RXe6cS5TdAEAAAAAALBYEfoCAAAAAAAAmJBt2xodHXWi3/7+fg0MDDgxcDHcc7vdqq2tLQuA6+rqVFVVtSjiu2LkO1uIfTEbJpqiO1WsO9MpulNN0p3sciAQYIouAAAAAAAAMAFCXwAAAAAAAAD7xbIsJRIJJwAe+zE8POxsFwgEnOi3GAMXv/Z6vRXZ9z179uiWW27RGWecoba2tim3357I6fqXE7O+X5euimpF1Dfrz4P5rzhFd7IgdzqTdCebout2uyeNc6czSZcpugAAAAAAAMDsIvQFAAAAAAAAcNDl83kNDAyUBcD9/f0aHR11totGo2UBcDweVywWk8vlmrX9Gx0d1c9+9jN1dnbqVa96lU499dQJJ4pmTEvXPDOodMHWbL6YakgKeQy9e22N/O7ZO3bMPtM0pxXnZjIZ5XK5CW+fzETxrc/nmzLOLX54PJ45+hcBAAAAAAAAsL8IfQEAAAAAAADMqXQ6PW4APDAwoEKhIGnvpNFi/FtbW+sEwPF4XMFg8KBMELUsS3/5y1909913q7m5Wa973esUj8fLtrtlV1Jb+7OzGvkWGZI2xP06b2lkwm1s29aTTz6pZDKpU045ZQ726tDBFF0AAAAAAAAA8w2hLwAAAAAAAIB5wbZtDQ8PjxsBDw0NOdsFAgEn+h37UVtbK5/PN+Pn7ejo0O9+9zslk0mdc845OuaYY5yIcihr6qpnBg/WIU7b5etqFPOVTxju6OjQrbfeqs7OTh177LG68MIL53zf5qvJpuhOdXmmU3THC3Qni3fHXmaKLgAAAAAAAICZIPQFAAAAAAAAMO8VCgUNDAyMGwGn02lnu2g0Om4EXF1dLZfLNeHj53I5/elPf9Jjjz2mNWvW6KKLLlIoFNLdXSk90DM67jTf26+6Undc/V8l19UvX62P/vZ+DXbt0pUXHjvuc/3dl7+v9We9ZsJ9MSSd2FCl05pDznWJREJ33HGHtm7dqoaGBp1zzjlasWLFhI+xkIydonsgk3SL06DH43a7p4xxp5qkyxRdAAAAAAAAAJVA6AsAAAAAAABgQRsdHR03AO7v73fiT5fLpdra2nEj4FAo5ASczz33nP74xz/KMAxddPFrdEumVhlz/JdQb7/qSj11xx/1D9/9tXOdy+1RqCYuyzSVGuwr2f6h3/5U9/zkf/Sp/3tK/mB40mMKuA19cH2trEJB9913nzZv3iyv16szzjhDRx999KTR8lwyTfOA4tzi15OZbIruVHEuU3QBAAAAAAAALHS8ugkAAAAAAABgQauqqlJra6taW1tLrrdtW4lEoiz+ffbZZzU0NKTiDAS/318S/p5++unaunWrrr/5NvlOe9Okz+1yuxWpa5jW9U/feZM2nPWaKSNfScqYth546nk9fMetSiaTOuGEE3TqqacqEAhMed/pmMkU3VwuN+Ht+zNFt7a2lim6AAAAAAAAADBNhL4AAAAAAAAAFiXDMBSLxRSLxbRy5cqS2wqFggYHB534t6+vTwMDA3r55ZeVTqclSa5la2Xb9qShad+u7fri2UfJ4w9o6YbjdO4HrlB1U2vZdp3PbNHu55/Saz7x5entvG3rz488qcMaG/XWt75V8XjcuelgTNHN5XKa7GRv403NDQaDqqmpmTTOHXuZKboAAAAAAAAAcOAMe7JXcwEAAAAAAADgENLf36+tW7fq6aef1nDLUXItPVKGyz3uts9vvl25dEp1y1Yr2dejO67+ihJ7dusjv/qL/KHSqb2//9LHtf2Rzfqn32ye3o5YpgID7ard/UxZrDudKbpTxbhT3c4UXQAAAAAAAACYHxipAAAAAAAAAOCQZdu2ent79cwzz+jZZ5/Vnj175PV6ddhhhym0YrV67PEjX0lac8qZztdNh69T2/pj9eULjtbW236v41/7Fue2fGZUW275jc549z9Pf78Mlwour3w+n6qrq50Qd6I4lym6AAAAAAAAALA48aovAAAAAAAAgEOKbdvq7u524t7+/n75/X4dfvjhevWrX63Vq1fL6/XqFy8NS8n8tB+3KhJT3dJV6m/fXnL9k7f/UfnMqI6+8E3TfizDMJQrFPT8889Lklwul7xerzwej7xe74Qf490+k/u43W6m+QIAAAAAAADAPELoCwAAAAAAAOCQcu2112rXrl3y+/1avny5jjrqKIVCIY2MjOj555/Xww8/rOHhYY0cdpK0ZNm0w9dsekQDHTsUueCNJdc/8ofrdORp5yhcUzftfbRtWy5Jfr9f2WxWkhQOh7VkyRIFg0G5XC6ZpqlCoaB8Pq98Pq90Ou18nc/nndtyuZxs257W8xqGMWUYPF48PNMA2ePxEBQDAAAAAAAAwDQQ+gIAAAAAAABYdAqFghKJhBKJhIaHhzU8POxcHhoaktfrVTab1fPPP6/nn39ehmEoHA4rHA7L6/UqFAopL1M525IM97jPcfPX/11HnHq2apralOjt1u1XXSmXy62N517ibNO3a5t2PHa/3v7Nn89o/12SasNViq5YoYGBAQ0ODqq/v1/9/f3ONlVVVYrFYorFYqqpqVEsFlM0GnU+RyIRud179900zZL4d6KPiW4fe30mk5nwNtM0p32M+xMH7880Y5fLNaN/ewAAAAAAAACYTwh9AQAAAAAAACwolmVpZGTEiXf3DXmHh4eVSqVK7hMMBp0Ids2aNYrFYvL5fMrlchoZGdHAwIC6u7u1e/duSVIgEFC0Pq2cMXEkOtzTpV988r1KDw8qVBPX8k0n6PIf31IyuffRP/xM0YZmHXbS6TM6RtswdPyaldp0ylrnunQ6rYcffliPP/64hoeH5XK5VF1dLdM0tXPnTg0PDzvTfyU58fK+AXAxDo7FYgqFQgd1sq5lWfsdE+9729gJxfvep1AoTHuf3G73rMbExQ+CYgAAAAAAAACzwbCne842AAAAAAAAAJhltm1rdHS0JN7d93MikdDYlzV9Pt+4IevY6zKZjLq6urR7927nI5lMStob9TY3N6upqUlNTU1qbm5WdXW1ekZNXfv8UIX+JaR3rKlWY7B8VoNt29q+fbsee+wxrV+/XmvWrHFuy2azE/67FT+PjWTdbnfJv9N4/35+v/+gxsAHg23b0w6Gp7vNRPeZLpfLNesxcTEonm//ewAAAAAAAACYPYS+AAAAAAAAAOZMNpudMEKdLETdN+QdG6SODVFt21YymSyLekdGRiRJVVVVZVFvLBYbN5w0bVvfenJAGXPuX0INuA19cH2t3Ac56LRtW+l0esJJyMPDw0omk2Uh9WQhcDQaldfrPaj7OV/Yti3TNGc9Js7n85ruS/WGYUwrDp4sGJ4qJvZ6vXK73QTFAAAAAAAAwDxA6AsAAAAAAADgoCgUCkomk5NO481kMiX3iUQik0akoVBowtjQtm0lEomyqDeVSkmSgsFgWdQbjUZnFC/e3ZXSAz2jmssXUQ1JJzZU6bTm0Bw+619ZlqWRkZFJ/3cs/hsXBYPBSacqRyIRuVyuihzPQmDbtizLmvWYOJ/Py7Ksae/XdOLgAwmKi7cTFAMAAAAAAAATI/QFAAAAAAAAMKVi/DnZJNh948+qqqoJp/BGo1FFIhG53e5pPb9t2xoeHi6LetPptCQpFAqVRb2RSOSAA8LhnKnvPj14QI+xPy5fV6OYb3r/NpVQKBQmnMhcvJzNZp3tDcNQJBKZdDJzMBgk+JwD+xMUzzQmLhQKJZO5p1IMfqcbBu9PTOz1eonNAQAAAAAAsCAR+gIAAAAAAACHONu2NTo6Omm0mUwmSyaBer3esqmt+372er37vT9DQ0NlUe/o6KgkKRwOl0W94XB41iLRW3YltbU/OydTfQ1JG+J+nbc0MgfPNruy2ey4/02N/WyaprO92+0ui8H3vRwIBCp4RJgJ27YPKCae6j5jb5sut9s9ZRg8Xjw80wB5um9gAAAAAAAAAKaD0BcAAAAAAABY5HK53JTB5djpmy6Xa1rB5cEIa23b1uDgYFnUm8lkJEmRSKQk6m1qalIkMrcRbNa0dM0zg0oV7FmNfQ1JIY+hd6+tkd+9+CeP2ratdDo97n+PYwPzsS9h+3y+Sf+7jMVi8ng8FTwqzDXbtp3od39i4pkExdP9c4phGLMeExeDYqZgAwAAAAAALH6EvgAAAAAAAMACZppmWRy57zTeYjRbFIlEJpzCG4vFFAqFZiUes21bAwMDZVFvNpuVJEWj0bKoNxwOH/T92B/bEzld/3Ji1p/n0lVRrYj6Zv15FgrLspRMJif8b3t4eFjpdLrkPsFgcML/tqPRqCKRiFyuxR9S4+CybVumae53TDyT0Hjs9PSpzHZMXLyeoBgAAAAAAKByCH0BAAAAAACAecqyLKVSqQmn8CYSCY2MjJTcp6qqasLAMRaLKRKJzMlp5W3bVn9/f1nUm8vlJEmxWKws6g2FQrO+Xwfi0d5R3daRmrXHP7s1pGPqq2bt8RerQqEw6bTq4eFh5787ae+01UgkMulU4GAwSNiIipkqKN6f2Hi860zTnPY+TRYBH4yYuHgbET4AAAAAAEA5Ql8AAAAAAACgAmzb1ujo6KSTSpPJZMlkR6/XO+6k0rGffb65nwZrWVZZ1Nvd3e3EldXV1WVRbzAYnPP9PBiKsa8h6WC8sFp8HCLf2ZXJZMYN5cf+f29s9OjxeEoi4PHieb/fX8EjAg6cZVnTnjI8nW0me6zpcrvd04qDpwqGp4qN5+INLwAAAAAAAAcLoS8AAAAAAAAwC3K53IRTeIuf8/m8s73L5SqJCcebMhoIBCo+ZdSyLPX19ZVFvcVjqampKYt6q6oWV8C6PZHTTTuTShXsA4p9DUkhj6ELlkW0Ijr3gTb+yrZtpdPpSadnJ5NJjX053e/3TxoCR6NReTyeCh4VMD/Ytj3tKcP7GxMXP6bL5XJNKw4+GEFxpX9uAwAAAACAhY/QFwAAAAAAAJgh0zTLpu/uezmTyZTcJxwOlwSA+waB4XB43sVAlmWpt7e3LOotTmesra0ti3oDgUCF93puZExLd3amtKU/O+PpvsXtN8b9OqMlJL+bU9UvBJZlKZlMjjsNuHg5nU6X3CcUCk0aA4fDYblc/O8PHAy2bcs0zVmPifP5vKb7pzXDMA4oGp5OTFz8PN/WEAAAAAAA4OAh9AUAAAAAAMC809nZqS9+8Ytqb29XIBDQV7/6VbW1tc3Jc9u2rZGRkUljvpGRkZL7VFVVTRjzFaPe+X6acNM0y6Lenp4eJ+qNx+NlUa/f76/wXlfecM7UE30ZPd6XUcbc+1KrS5I1ZpuxlwNuQ0fXBbSpLqCYb37/N4GZy+fzU74JIJfLOdsbhqFIJDLpmwCCweCcBHwf+9jHdN9996mhoUHf/e531djYKEnq6upSVVWVampqZn0fgIVipkHxTGPi4u2maU57n2YSBu9PTFz8ICgGAAAAAGDuEfoCAAAAAABg1nV3d2v37t06/PDDFQqFZFmWvv71r+tnP/uZdu3apbvuukvr1q2TtHdq5rve9S6tWLFCp556qrq6uvT1r39d999/v7xe7wHth23bymQyJQHevp8TiYQs66+ZptfrnXQiZzQalc/nO6D9mmumaWrPnj1lUW8xKKqrqyuJehsbG4l6p2DatnpHTXWnC+pOF5QqWCpYtjwuQyGPS41BjxqDHtVXueUmkjqkFb8Hjff9p/h5bNzn8XjK3jgw9vtPLBY74P9/2rat//u//1NnZ6f+6Z/+SU888YRWrFihdDqtD33oQ7r55puVzWb1+OOPa+nSpc79hoaGtGXLFjU3N6utre2QmegNzBXLsvY7Jp7JfYpv6pkOt9s9aRg8Xhy8PwEy087/6q677tInPvEJPfTQQ7rqqqv07ne/W4Zh6IYbbtD//u//ateuXbriiit04YUXOvexLEs33nijurq6FIlEdOaZZ6qhoaGCRwEAAAAAOBCeSu8AAAAAAAAAFrePf/zjuuGGG/TCCy/o7rvv1qte9Sq5XC7V1tbqK1/5it7xjneor6/P2T6RSOjmm2/WU089pSVLlkiSPvnJT+qGG27Q61//+kmfK5fLlUVz+07UzOfzzvYul6sknGtraysLeQOBwIKeXlcoFMaNei3LkmEYTtS7YcMGJ+pdaOHyfOA2DCfmBSYTCAQUCAQmDK5s21YqlRr3e1h/f7+2bdumkZERjZ3h4ff7J30zQjQalccz8X+bhmHonHPO0ZYtW7R69WpVV1c713/2s5/VZZddpre97W0lIW9nZ6c+/elPq6OjQyMjI4pGo7r22mudScAADpzL5ZLf75/1N9vYtr3fMfG+t42Ojk56n+lyuVyzHhMXg+L5vs5rbm7W7373O73hDW9QNpt19tfn8+ktb3mLLr/8cj3//PO68MILZdu2DMPQf/7nf2rr1q1asmSJOjo69PTTT+tf//VfFYvFKnw0AAAAAID9wavOAAAAAAAAmFWXXnqprrzySp100kkaHBx0rn/DG96gSCSilpYWdXV1Ode7XC7FYjE98sgjOv/88zU0NKRMJqOHH35YF154YVnsksvl9MMf/lCJREKjo6Mlt4XDYSd0W7VqVdkUzFAotKgmxhUKBfX09JREvXv27HGi3vr6ejU3N2vTpk1O1HugU5IBHFyGYSgcDiscDqu5uXncbUzT1MjIyLjTyTs7O/Xss88qnU6X3CcUCmnJkiV629veVvZ4xTDs2WefVSQSUTAYlLQ3Sm5padFjjz2m6upqhUIh5z6/+93v9NRTT+mhhx6SJP3P//yPPvzhD+v666+XZVmL6nsrsNgZhiGfzzfrb/SxbVumae53TDz29lwup1QqNeF9pntCU8MwZj0m9nq9crvd+x0Ur169Wi6XS4FAwPn+LEmnnnqqgsGgrrrqqpI3aGQyGf34xz/W9773Pb361a+WJK1fv16nnXaazjnnnP3aBwAAAABAZRH6AgAAAAAAYFYdffTRkvZGt+3t7c714XBYklRfX6/Ozk5JewOQaDSq9773vU6g0NDQoJUrVzrT5vYNfX0+n5YtW1YS9RY/u93uOTrKuZfP58eNem3blsvlUn19vZqamnTMMceoqalJDQ0NRL3AIuF2u503Lkwkn8+XTTifKnzbsWNHyRsATNOUx+PRjh07VF9fX/L9t6OjQ6tXr3Yu+/1+7dixQ5KIfAGMyzAMeTweeTweVVVVzdrz2LYty7L2Oybed5vR0dEJ72NZ1rT3a6o4uLW1Va985SsnvH86nS6ZrF78NxwaGir5/mwYhvL5fMm6L51O69lnnyX0BQAAAIAFitAXAAAAAAAAc6K1tdUJeqW902eLUUNHR4ckOZPOPvaxj+nBBx/Url27dPHFF+tjH/uYent7nTh4X+edd97sH0AF5XK5sqi3t7fXiXqXLFmi5uZmHXfccU7U6/Hw0h9wKPN6vYrH44rH41NuW5zou23bNjU1NTkTeYth8I4dO9TS0lLyfeWYY47Rc889pzvvvFMNDQ36xS9+Ib/fr4GBAdXW1s7acQHAVAzDkNvtltvtLgljZ4NpmuNGwDONiYuXJ5PL5Uom+lqWJbfbXXa93+/XG97wBv34xz/Ws88+q1wup2QyqVwup0KhUPK9PJvN6r777pvR5OLiNrypAwAAAADmDq/2AwAAAAAA4IDk83lnYmQ6ndZRRx017nZLly7V9u3byyaMLVu2TI888ohzuRiYnXDCCTrhhBOUy+W0e/dunXnmmSW3L1a5XE7d3d0lUW9fX59s25bb7daSJUvU2tqqV7ziFWpqatKSJUuIegEckOL31EQioZNPPtn5nlL8Xt3R0aH169eXfP9905vepFQqpc9+9rM65phjVCgUdMwxx5Q9tmVZevLJJ50JxJFIhO9ZABaNYlC87xknZkMul5PP53PenFF8M0Y2m5XX65Vpms7ZLL7whS/oqquu0kMPPaTTTz9dS5YsUUtLS9nZLjKZjJ544olpx8Zjud3uacXB4902VUw89vbFfIYOAAAAAJguXk0DAAAAAADAhEzTVDKZLDn1e/Hr4uXR0VFne8MwtG7dOmcyb/E6STryyCP12GOPOeFY8fPGjRt18803a9euXTJNUytWrFB7e7u+9a1v6YUXXtDu3bt1zjnn6LLLLnMm2C4W2Wx23KhX2htPNDQ0aOnSpTrxxBOdqJfYAcDBdtVVV+maa67R448/rpdeeklPPPGEvvSlL6mzs1P19fXauXOnXvva15Z9/33nO9+pd77znZKkE088UYcddljZNN9EIqHf//73JdeFQiEn/I1Go4pGoyWXw+HwovpeDwAHYuz3w8bGRmdtPfZNGStXrixZI/p8Pn3oQx+SJKXTaf3Lv/yLjj766JI1uiTFYjH90z/9k3PZtu1xJw3PdDJxPp9XNpvVyMjIuNvncrkZHf9M4+D92d7tdpf9+wAAAADAfGHYxbd7AgAAAAAA4JBi27ZSqVRJvLvv52QyWXKfQCDgBFn7fp5qUuP3v/99XXHFFXrf+96nxsZGvf3tb9d73vMe3XrrrRoeHlZNTY3OPPNM/fSnP9Xg4KBuueUW+f1+rVq1SmvWrFFVVdVc/LPMmkwmUxb19vf3S9obajQ0NKipqUnNzc1qampSfX09US+AOZHP57Vz5051dXXpxRdf1PPPP68vfvGL+sY3vqEf/vCH2rlzp8LhsKqrq3XfffeptrZW1113nUzT1Nq1a3XDDTfo0Ucf1dVXX62WlpZxH3+inzPFn0H5fN7Z3uVyKRKJTBgCx2IxVVVVEWQBOCR84hOf0PXXX6+dO3eqqalJ1dXVevLJJ/Uf//Efuuuuu3TnnXfqxBNP1IoVK/SjH/1IPp9P11xzjQYGBhQOh3XPPfdo/fr1+rd/+7d5833Ttm2ZpjmtkHiibSa7X/G2XC6nmfwpfLIw+GDExMXr5sv/DgAAAAAWDkJfAAAAAACARci2bWWz2Ukj3kQiIdM0nft4PJ5xA96xgZXP55vxvpimqTe/+c166qmntGzZMtXV1emkk07S+9//fj355JOqrq5WS0vLopremMlktHv37pKod2BgQNLef+fGxsayqHcxHT+AxSeRSKijo0Nr166VJP3v//6vbrnlFrW3t2vt2rX64he/WDbNd7ps21Ymk5lwcnzxsmVZzn0m+pk19uv9+ZkFAPPR6OiostmsUqmU0um0DjvsML3wwgvasWOH8vm8hoaGlEql9J73vEeS9POf/1yPPPKIhoeHtWnTJn3gAx+o8BFUjmma+x0Tz+T6sb9XTWWiQHiiMHimMXHxen6/AAAAABYPQl8AAAAAABYI07bVO2qqO11Qd7qgkYIl07LldhkKe1xqDHrUGPSovsotNxOCFr18Pl8WQO37eewpcQ3DKImhmI548IyOjpZFvYODg5L2TgXbN+qtq6vjj+4AMEP7O4V+sp970WiUyemHCNbRAGabZVlTBsXTmUI8neumy+12z2pMXPzgdxsAWLxYRwPA/EHoCwAAAADAPDecM/VEX0aP92WUMff+Gu+SZI3ZZuzlgNvQ0XUBbaoLKOYjXlmITNNUMpmc9BTno6OjJfcJhUKTTuMNh8P8AfYgSKfTZVHv0NCQJMnn85VFvfF4nH93AJgjxZ+f+/7MHPtzdN+fn+FweNJJ9uFwmDfBLGCsowEsNrZtzzgYnuz2ybafLpfLNe0pw/sTEhe3cbvd/EwGgDnCOhoA5h9CXwAAAAAA5qmMaenOzpS29GdlSJrJL/DF7TfG/TqjJSS/m9BwvihOJJxsGu/IyIjGvmTj9/tLphDuO5UwGo3K4/FU8KgWp1QqVRb1Dg8PS9ob9TY1NZVFvfzhGQDmt1wuN+4baBKJhHN5bNzkcrlKfvaO95mJ+PMP62gAODC2bcs0zVmPifP5vKabKxiGMa04eH+mFo/dxuPx8HMdwCGLdTQAzF+EvgAAAAAAzEPbEznduDOpdMGe0Quq+zIkhTyGLlgW0Yqo72DtHiZg27ay2eyk8VAikZBpms59PB7PuOHu2Mt+v7+CR3VoGBkZKYt6E4mEpL2h9b5Rb21tLX/8BYBFyLZtZTKZKX+WW9ZfZ1l5vd5JpwJHo1H5fKzD5grraABYOGzblmVZsx4T5/P5kp/dU5lOHLzv7TPd3uv18jslgHmFdTQAzG+EvgAAAAAAzDOP9o7qto7UjKcmTKT4OGe1hnRsfdVBeMRDVz6fL5sCuO/nXC7nbG8YhiKRSEnos+/nYDDIH/fmWDKZLIt6k8mkJCkQCJRFvTU1NfxvBABw2LatkZGRKafzjxUIBKaczu92c4rbA8U6GgAwkX2D4tmIiQuFggqFwrT3ye12z3pM7PV65XIxVRPA5FhHA8D8R+gLAAAAAMA8UnxRdbbw4urELMtSMpmcdIJfOp0uuU8oFJp0gl84HOYPahVk2/a4UW8xvqqqqiqLequrq4l6AQAHzDTNkjXEvmuK4eFhZTKZkvuEw+EJ3xhUXFfwM2pirKMBAPOBbdv7HRNP535jb5sul8s16zFxMShmrQIsPKyjAWBhIPQFAAAAAGCe2J7I6fqXE7P+PJeuih5yp02zbVvpdHrCqXuJRELJZFJjXybx+/0TTt0rfvZ4PBU8Koxl27YSiURZ1JtK7f1DRTAYLIt6Y7EYf4QEAFRMLpebdCpwIpEoiXhcLlfJOmS89UkgEDgkf7axjgYAHGps23YmCO9PTDyT0Hi6SYlhGNMKgw8kJvZ6vXK73YfkegeYDayjAWDhIPQFAAAAAGAeyJiWrnlmUOmCfVBOjzYRQ1LIY+jda2vkd088aTadTuvuu+/WihUrdMQRR8ziHh0cmUxm0ol5iURCpmk627vd7gmn8Ba/9vv9FTwiTMa2bQ0PD5dFvcWJy6FQqCzqjUaj/CEQALCg2Lat0dHRcQPgsesdy7Kc+3i93infqOTzzf8/sD/00ENKpVJ65StfKa/XO+m2820dDQDAYmLbtizL2u+YeKLbx7tu7JpmKtMJgycLhqcbG/M6AhYz1tEAsLAQ+gIAAAAAMA/csiuprf3ZWX1RtciQtCHu13lLI2W32batZ555RjfffLMsy9Kll16q5cuXz8FeTaxQKEwYtxQ/Z7NZZ3vDMBSJRCaNXILBIH+sWSBs29bQ0FBZ1Ds6Oipp72nO9416I5EI//sCAA4JlmUplUpNOhV4ZGSk5D5VVVVlb3Yau16KRCJyu90VOqK9tm7dqhtuuEGxWEwXX3yxli1bNuG282UdDQAADoxpmtOeMjydbSa6z9g3gk+lGPzOdArxVNvvu43LRfyIucc6GgAWFkJfAAAAAAAqbChr6qpnBuf8eS9fV6OY768RRzKZ1M0336znnntORx55pM4//3yFw+FZ3QfLspRMJiedxluc0loUDAZLwt19Q95IJMIfSBYo27Y1ODhYFvVmMhlJUiQSGTfqBQAAEysUCkomkyUB8L5rruLP2qJIJDJpDBwKhWb9TTV9fX264YYb1N7eruOOO05nnnlm2RkX5ss6GgAALByWZU17yvD+xsTF26bL7XbPekzs9Xor/mYuzK5nn31Wmzdv1itf+UqtWbNm0vU662gAWHgIfQEAAAAAqLC7u1J6oGd0TqYnFBmSTmyo0mnNIdm2rSeeeEL/93//J7fbrfPPP19r16494OewbVvpdHrSqCSZTGrsSxM+n2/cU0yPvc7j8RzwvqHybNvWwMBAWdRbnM4cjUbLot7ZDs8BADhU5XK5Sddsw8PDJbGKy+UqW6PtezkQCBxwDGxZlh5++GHdcccdqqqq0kUXXaTVq1c7t1d6HQ0AADAR27ZnFAbvT0xc/JguwzAOakw80e1ut5szLVVAIpHQH/7wB23btk1Lly7VWWedpdbW1nG3ZR0NAAsPoS8AAAAAABVk2ra+9eSAMub4v57fftWVuuPq/yq5rn75an30t/dLkvrbt+vm//7/tPPxB1XIZ3X4yWfooo9/SZH4kimfO+A29NY2l26+8UZt27ZNGzdu1Nlnn61gMDitfc9ms+MGIWPDkLFBiNvtnlYQgsXHtm319/eXRL3d3d1O1BuLxcqi3lCIF/0BAJgvbNvW6Oho2Xpv389j/+Tk9XonfANX8bPX653W8w8NDemPf/yjs2Y955xz5AsEJl1HS9Lwnt269Ruf0/P33aF8ZlTxthV6w//3TbWu3SQzn9f/fedLen7z7Rro2KlAOKLVJ5ymcz/0aUXrGyfdn4Db0AfX18pNwAIAACrMtm2ZpjmrMXGhUFAul9NM8qLZjomLtxEUl3v55Zd12223qaenR2vXrtXf/M3fqLa21rl9qtejpcnX0ZL0yWPqx73feR/+d5369g9M+LisowFg/xH6AgAAAABQQd3pgq59fmjC22+/6ko9dccf9Q/f/bVzncvtUagmrtxoSt+49NVqOmydzrzs45Kk2777n0r0duvyH98ql8s15fNbm3+jqnxaF154oQ477DDn+kKhUBZv7DvZrRhpSnsngkx1iudgMMiL74cAy7LGjXpzuZwkqbq6uizqnW5cDgAA5i/LsjQyMjLpVOBUKlVyn6qqqknfBBaJRJxTTBfPQvGnP/1JHo9HJ597se7J1463K5Kk0cSQvvm3Z2jVcafohDe+U6GauPp2bVO8dbnibSuUSSZ03cffpeNf9xY1HX6URhND+uNX/k22aeoD190+5fG+Y021GoOcaQIAABw6ikHx/sTEU91v7G2maU57n8YLgad73Uxi4+m8zjqfWJalrVu36s4779TIyIiOO+44nXbaaQoGg1O+Hj3VOlqSkn09Jfd5fvMd+u3nPqKP/eEh1bYun3TfWEcDwP4h9AUAAAAAoIKe6Mvo1vaRCW+//aor9cxdN+tDv7ir7LYX7r9T137wzfrMXS8pEI5IkjLJhD736tV613d+pdUnnDbpc9u2rZqup7Q26lYqlSoJe/eNMILB4LjxbvHrSCSy4F7wxoGzLEt9fX1lUW/xtJE1NTVlUW9VVVWF9xoAAFRKoVBQMpkc92wQxc+ZTMbZ3jAMhcPhkhDY7/frxRdfVLe3Wt4Nr5YmeCPZrd/8nHY+8ZDe+8Mbp71/7U8/ru+89Wz9602Pq7pp/NMcF53bFtamOs5GAQAAcLBZlrXfMfFMrh97JrKpuN3uA4qGpzu5uPgmt4Mln8/rwQcf1L333itJOuWUUxQ8/Bjd1jU64X32Zx3904++TdnUiP7xe7+dclvW0QCwf3iLBAAAAAAAFdSdLsglyZpkm75d2/XFs4+Sxx/Q0g3H6dwPXKHqplaZuZwMw5DH53O29fj9Mlwu7Xj8wSlDX9mW+vOGNm/e7MQTjY2NWrNmTdlU3umeVhmLl2VZ6u3tLYt6i38Uqa2tVVNTk9asWaPm5mY1NjYS9QIAgBIej0c1NTWqqamZcJtsNjvhVODu7m4lEgkVCgV5Nhwm27ZkGOPHEM/e/ScddtLpuu7j79L2R+9XdEmjTnzju/SKS9468XOPJGQYhgKR2KTH4dLedTwAAAAOPpfLJZ/PJ9+Y1zxng23bUwbF0709k8komUxOuP10uVyuGYXB04mJDzvsMK1YsUKPPPKI7rrrLvmHXTJaDpet8d8wN9N1dLJ/j5679za98bP/M/XxiXU0AOwvQl8AAAAAACpopGBNGvm2rT9Gb/zsN1W3bLWSfT264+qv6Hv/cJE+8qu/qG3DsfJWBXXLNz6ncz7wb5Js3frNz8syzbLTp43LcMkdjGj9hg3auHGjWlpaZEwwEQ2HFtM0y6Lenp4eJ+qNx+NqamrSkUce6US9gQCTOAAAwIHz+/2qr69XfX19yfWWZWn79u3asmWLnnvuOdn+kAxj4jNKDHTu1IO/vlav/PvLdPq7PqKOp5/QH//rU3J7vTr2ojeXbZ/PZnTLNz6nDede4pwtYyKWpFRhslU8AAAA5jvDMJwYdjbZti3TNA84Js7n88rlckqn0xNuO52TuuddPrnsCU+MMeN19GN/vF7+YFjrzrhgyudmHQ0A+4/QFwAAAACACjKtyV98XXPKmc7XTYevU9v6Y/XlC47W1tt+r+Nf+xb93Zd/oD986eO6/xfXyHC5tOGcS9R8xAYZromjhyLDMBStrtHzm+/WI488otraWm3YsEEbNmyYdMoaFhfTNLVnz56yqNc0TUlSXV2dmpqatG7dOifq9fv9Fd5rAABwqOjp6dGWLVv05JNPamRkRHV1dXrVq16lnfUr1DHxGYdlW5Za1m7SOR+8QpLUfMQGdb/8rB789Y/LAgUzn9fP//UfJdl67Sf/a1r7VZhiHQ8AAABIe1+D9Xg88ng8s3r2K9u2ZVnWuAHw6OioXnjhBT377LPKud2TDnuYyTpakh694WfadN7r5fVPbwgA62gA2D+EvgAAAAAAVJDbNbMJulWRmOqWrlJ/+3ZJ0uEnna5/ueFhpQb75fJ4VBWJ6T/OWqvalmXTeryG+jq97iMf0Y4dO7R161Zt3rxZd911l5YuXaoNGzZo3bp1TGpdRAqFQlnUu2fPHpmmKcMwnKh3/fr1TtQ726dJBAAA2FcymdSTTz6prVu3qqenR8FgUEcddZQ2btyopqYmGYahnm0JaTQ34WNE6hq0ZOXhJdctWXG4nr7jxpLrzHxeP/vEP2pwd4f+8Xu/nXKab5Fnhut4AAAAYDYZhiG32y232+28njsyMqKHHnpIjzzyiDKZjNauXatMa4s6Jl5GT3sdLUnbH7tfvTte0t/+5zXT3k/W0QCwfwh9AQAAAACooLDHJZf2nrZsOrLpEQ107FDkgjeWXB+qiUuSXn7oL0oN9OnI086d8rFckkIel1wul1auXKmVK1fq/PPP13PPPaetW7fqpptu0i233KKTTz5ZZ5xxxswODBVXKBTU09NTFvValiXDMFRfX6+mpiZt3LhRzc3NamhoIOoFAAAVZdu2fve73+mpp56Sy+XSmjVrdPrpp2v16tVyu90l2061jl626RXq2/FSyXV9O19WdVObc7kY+fbv2qZ/vPp3ClXXTms/i+toAAAAYD7q7e3V/fffr61bt8rlcumYY47RiSeeqOrqat26a0Rd/ZkDWkcXPfKH69Ry5EY1HX7UtPaLdTQA7D9CXwAAAAAAKqgx6NET/RPffvPX/11HnHq2apralOjt1u1XXSmXy62N514iSXrkDz/TkhWHK1QT166tj+iPX/k3nfL3l6l++eopn9v6f88/ls/n04YNG7RhwwZnkhoTfee/fD5fFvX29vbKsiy5XC4n6j366KOdqNfr9VZ6twEAAEoUzzBwwQUXTHlmianW0af8/WW66p3n684ffF3rz3qNOp5+XA/99qd63RVflbQ38r3u4+9S13Nb9fZvXCfbNJXs65EkVcVq5PFO/Aao8dbRAAAAQCXZtq2dO3fq/vvv1wsvvKBwOKxXv/rVOvbYY1VVVeVsd6Dr6KLMSFJP3vZHXfDRz057H1lHA8D+M2zbtiu9EwAAAAAAHKq60wVd+/zQhLf//BPv1vbH7ld6eFChmriWbzpBZ7//U4q3rZAk3frNz+nRP/5Co8NDqm5u0wlveIde+feXyTCmdwq0d6yp5sXVBSafz6u7u1u7d+92wt7e3l7Zti2Xy6UlS5aoqalJTU1NTtTr8fC/MQAAWFymWkdL0rP3/J/+9D9fUP+ubappXqpXvuVyveKSt0qSBrt26coLjx33fu+++vdaedwpkz4262gAAADMJ7/61a/0zDPPqL6+XieffLKOOuqocV8TPNB1dNFDv/mJbvzqFfrUn55SIBKd9n6yjgaA/UPoCwAAAABABZm2rW89OaCMOfe/ngfchj64vlbuaUbBmHu5XK4s6u3r63Oi3oaGhpKod8mSJUS9AADgkMA6GgAAAPirp59+Wj6fT6tXr550CATraABYmPjLDwAAAAAAFeQ2DB1dF9ADPaOay5dWDUlH1wV4UXUeyWaz40a9kuR2u9XQ0KClS5fqhBNOcKJet9td4b0GAACoDNbRAAAAwF+tW7duWtuxjgaAhYnQFwAAAACACttUF9D9PaNz+pz2/3teVEY2m3WC3mLU29/fL0nyeDxqaGjQ8uXLddJJJ6m5uVn19fVEvQAAAPtgHQ0AAADMHOtoAFh4CH0BAAAAAKiwmM+tjXG/tvZn52SKgiFpQ9yvmI9wdC5kMpmyqHdgYEDS3qi3sbFRK1eu1CmnnKLm5mbV1dUR9QIAAEwD62gAAABg5lhHA8DCQ+gLAAAAAMA8cEZLSC8P55Qq2LP64qohKeQxdEZLaBaf5dA1OjpaFvUODg5KkrxerxobG7V69Wo1NTU5Ua/L5arwXgMAACxcrKMBAACAmWMdDQALi2Hb9ly8OQMAAAAAAExheyKn619OzPrzXLoqqhVR36w/z2KXTqfLot6hoSFJks/nU2Njo5qampyoNx6PE/UCAADMAtbRAAAAwMyxjgaAhYPQFwAAAACAeeTR3lHd1pGatcc/uzWkY+qrZu3xF6tUKlUW9Q4PD0vaG/UWg95i1FtbW0vUCwAAMIdYRwMAAAAzxzoaABYGQl8AAAAAAOaZ4ourhnRQTptWfBxeVJ2ekZGRsqg3kdg72cLv948b9RqGUeG9BgAAAOtoAAAAYOZYRwPA/EfoCwAAAADAPLQ9kdNNO5NKFewDenHVkBTyGLpgWYTTo40jmUyWRb3JZFKSFAgEyqLempoaol4AAIB5jHU0AAAAMHOsowFgfiP0BQAAAABgnsqYlu7sTGlLf3bG0xSK22+M+3VGS0h+t2t2dnKBsG173Kh3ZGREklRVVVUW9VZXVxP1AgAALECsowEAAICZYx0NAPMXoS8AAAAAAPPccM7UE30ZPd6XUcbc+2u8S5IlW3tfQi1e3svvkjbW+nRsQ0gxn7sSu1xRtm0rkUiURb2pVEqSFAwGy6LeWCxG1AsAALDIsI4GAAAAZq64jn6gc1i2Z+9U3rHr5n0vB9yGjq4LaFNdgHU0AMwSQl8AAAAAABYI07bVO2qqO11Qd7qgn/3md1q3foNWr1yhkMelxqBHjUGPHr/nDl39vav0u9/9rtK7POts29bw8HBZ1JtOpyVJoVCoLOqNRqNEvQAAAIcQ1tEAAADAzORyOX35yv/SKedepNrlh6s7XVCqYKlg2fK4jJJ1dP3/z96dxzda1vv/f99JmqRN031L22ln7cw0YWaYgWEVHGTHBRAQFTmCKHiUL+LxiHD0ePR4fsrhuCEqbggqB1EUlEW2gUEQGBQZIJl9a2frdN/SpGly378/xuZMp1s60zZdXs/HI49Jk+u+r889DO3V+37nc2faZed8KwBMKIK+AAAAAABMU4sWLVJubq6uvPJKfe5znxvw3pIlS7R58+Y0VTYxLMtSe3v7oFBvJBKRJGVnZw8K9Xq9XkK9AAAAGGC2raMBAACAsdq5c6d++ctf6p//+Z9VXFyc7nIAYNZzpLsAAAAAAABwdLxer9auXatzzjlHsVhMt912W/K9zMzMNFZ27CzLUltb24BQ74EDB5KhXq/XK5/Pp9WrVw8I9QIAAACjmcnraAAAAGA81NXVKSsrS0VFRekuBQAggr4AAAAAAExblmUpNzdXa9eu1fnnn6/Nmzfrpptu0quvvqqSkpJ0l5cyy7LU2to6KNQbjUYlSTk5OfL5fDrppJOSod7s7Ow0Vw0AAIDpaqasowEAAICJUldXp+rqau6WBgBTBEFfAAAAAACmKbfbLen/OpLddtttuvzyy1VdXa2f/exnaa5uaJZlqaWlZVCot7e3V5KUm5srn8+nU045JRnq9Xg8aa4aAAAAM8l0XEcDAAAAkyUej2vv3r06++yz010KAOAfDMuyrHQXAQAAAAAAxi4ajcrhcMjhmJqf4zVNc8hQbywWkyTl5eXJ5/MNeBDqBQAAwESb6utoAAAAIJ3q6+v185//XJ/4xCfk8/nSXQ4AQHT0BQAAAABg2jr77LN13333acGCBQNe7+zs1Gc+8xndc889k1aLaZpqbm4eFOrt6+uTJOXn58vn8+kd73hHMtSblZU1afUBAAAA/abSOhoAAACYanbv3i2Xy6XS0tJ0lwIA+AeCvgAAAAAATFOdnZ0Dwgm33nqrvv71rysnJ0evv/76hM1rmqaampoGBHobGhqSod6CggL5fD7V1NQkQ72ZmZkTVg8AAAAwFulaRwMAAADTQX19vaqqqmSz2dJdCgDgHwj6AgAAAAAwTdnt9gFf//a3v9XXv/51SRq3k7CJRGLIUG88HpckFRYWyufzacmSJclQr9vtHpe5AQAAgIkwGetoAAAAYDoyTVP19fU644wz0l0KAOAwBH0BAAAAAJimsrOz9dprr2n16tV67rnn1N7ernXr1ikvL09Op3PM+0skEmpsbBwU6k0kEpKkoqIi+Xw+1dbWJkO9LpdrvA8LAAAAmFDjvY4GAAAAZooDBw6or69Pc+fOTXcpAIDDGJZlWekuAgAAAAAAjC5hWWqKJNTQE1dDT1x1DY36+4Y3ZTekeLhLZ69eoa/8y41q3LFZD/76AZ111lnD7isejw8K9R48eFCJREKGYSRDvf2PsrIyQr0AAACYlsZzHQ0AAADMZC+//LLWrVunW265ZdCdMAAA6UPQFwAAAACAKa4jltCG5qjeaI4qmjj0a7xNkpkcYckmI/m1227o+CK3VhS5leu0Kx6P6+DBg4NCvaZpyjAMFRcXDwr10skMAAAA092xrqMBAACA2ebXv/61YrGYrr766nSXAgA4jCPdBQAAAAAAgKFFE6ae3xfWmy29MiQd/kldc8BIY8DX0YSlVw9G9MrBiJYXuvT6//5Aid6oDMNQSUmJfD6fVqxYkQz1ZmRkTMbhAAAAAJNivNbRZ1V45LLbJqNkAAAAIO0sy1JdXZ1OPvnkdJcCADgCQV8AAAAAAKagXZ0xPVbXpZ74oVjCWG/H0z/+rZZeZZ37Tzo9z9Txc4oJ9QIAAGBGG8919I6OmC6q9mpeDne7AAAAwMzX2NioaDSq6urqdJcCADgCH0MGAAAAAGCKeb0pogd3dKonbo05mHAkS1Kf4dBzHU691R4fj/IAAACAKWm819HhuKUHd3Tq9abIeJQHAAAATGl1dXWy2+2qqKhIdykAgCMQ9AUAAAAAYAp5vSmiZ/aGJY29+9hw+vfzzN4wIQUAAADMSKyjAQAAgGNTV1eniooK7goHAFOQI90FAAAAAAAwm/X29urAgQM6cOCAtrdHta/suAmd75m9YRW47Nx+GAAAADPGrs5YMuQ7UVhHAwAAYCazLEt1dXU6/vjj010KAGAIBH0BAAAAAJgk0Wg0Gertf7S0tEiSHO4sZaz5oGRZkmFMWA2GpMfruvTx2ny57NzoBwAAANNbNGHqsbouGRq/Tr5DYR0NAACAmaylpUXhcFjV1dXpLgUAMASCvgAAAAAATIBIJDIo1Nva2ipJysjIUFlZmRYsWKDTTz9dPp9Pr0cz9XZrbMLrsiSF45ae2xfWBVXeCZ8PAAAAmEjP7wurJ25NaMhXYh0NAACAma2urk6GYWjOnDnpLgUAMASCvgAAAACAWSkajcrtdo/LviKRiPbv3z8g1NvW1ibpUKjX5/Np0aJF8vl88vl8Kioqks32f13A2nsTemtj27jUkgpL0pstvTq1LEu5TvukzQsAAACMp/behN5s6Z20+VhHAwAAYKaqr6+Xz+eTy+VKdykAgCEQ9AUAAAAAzBptbW265ZZb9Pbbbysej+vmm2/Whz70oTHto6enZ1Cot729XZLkdDrl8/m0ePHiZKi3sLBwQKh3KG+2REe81XBH4wE9+d2vasvLa9UXjahwzjxd9h93qrJ2hSTJsiw9e/ft+uvDv1Skq1PVy1fr4tv+W0VVC4ad05C0oTmqM8s9Yzp+AAAAYKo41nX0s3f/t956+mG1N+yXPSNDFUuX69xP3aaq41YNOyfraAAAAMxEdXV1Wrp0abrLAAAMg6AvAAAAAGBG6e3t1auvvqoXX3xRF198sQKBQPK973znO8rNzdWDDz6ojIwMnXfeeXK73br00kuH3Fc4HB4U6u3o6JAkuVwu+Xw+LV26dECo1zCMMdWbsCy90RwdNpwQ6WzX3ddcpAUnnKZrvvdrefIL1Vy/U5ne3OSYP9/3Pb38wE90+VfvUn55lZ754Td0z6c+oJsfekkZrqG7FluS3miO6nRfluxjrBkAAABIt/FYRxdVL9B7b/mGCiqq1dcb1Uv33617PnW5PveH15SdXzTkfllHAwAAYKZpb29XR0eH5s6dm+5SAADDIOgLAAAAAJi22tvb9dprr2nevHlatGiRJOnuu+/W448/rmeffVYul2tA0Hft2rX62Mc+pqqqKknSqlWrdO+99+rcc89Vdnb2oP3//Oc/V0tLi9xut3w+n/x+fzLUW1BQMOZQ71CaIglFE8PFE6QX7r1TeaXluuwr30u+VlBRnXxuWZb+8r8/0prrPqvad14gSbriq9/Xf51Tq43r/qTl510y7L6jCUtNkYTKsjg9AAAAgOnlWNfRkrTigvcP+Pqiz/6n/vbI/WrYulELTzpj2H2zjgYAAMBMUldXJ0nJ8+YAgKmHMxAAAAAAgGnpxRdf1Oc+9zn99a9/1Wc/+1ndcccdMgxD5557rm666Sb913/9l7Zs2SLTNGWz2WRZlo4//nj98Y9/1DXXXKNYLKZIJKK9e/eqvr5etbW1g+a4+OKLlZWVpfz8/HEJ9Q6loSc+4vubXnhKi05Zo/s/f612vf6KckrKdPLl12r1pR+RJLXtq1NXc+OAIILbm6M5gZWqf+uvIwZ9++cnoAAAAIDp5ljX0UeK98X02u9/IXd2jnw1/pTmZx0NAACAmaCurk4lJSXKzMxMdykAgGHY0l0AAAAAAABHY8mSJXrsscf0gx/8QHV1dUokEpKkmpoaSVJtba1CoZB6enokSYZh6IYbblBubq7OPPNMnX/++aqqqlIsFpPDMfQF+srKynHr3Duchp74iL+ct+6r0/qH7lXRnPm69vsP6uTLrtGjd9ym1x/9tSSpq6VRkpRdUDxgu+zCYnU1N444t02jByQAAACAqehY19H9Nv35aX35tGr9+8mV+sv9d+vaHz4kT37hiHOzjgYAAMBMUldXp+rq6tEHAgDSho8aAwAAAACmpaKiIhmGoeOOO04/+MEP1NnZqYKCAtlshy73n3DCCWpsbFRLS4uys7MlSX6/X3fddZe2bdumJUuWyOVy6Ze//KVyc3PTdhzdcVPmCO9bpqmK2hU678YvSpLKlyxTw45NWv/QfVr1niuPaW5TUjg+0uwAAADA1DRe6+gFJ56mGx94Xj3trfrrw7/UA7dcp3/+xZODPkh3ONbRAAAAmCm6urrU2tqqs846K92lAABGQEdfAAAAAMC01N9ld8WKFerq6lJDQ8OA1+fMmSO73a7t27cP2C47O1vHH3+8MjMzdfvtt+uKK66Q1+ud3OIPkzCtEd/3FpWqZH7NgNdK5tWoo2HvofcLSyRJ3a1NA8Z0tzTJW1Qy6vzxUeYHAAAApqJjXUf3c2Z6VFQ1X1XLTtD7v/xd2ex2/e2R+0edn3U0AAAAZoL6+npJUlVVVZorAQCMhKAvAAAAAGBKsyxLbW1tamtrk2mag97zeDzKyclRKBQa9L7f79f+/fslSb29vZKkP/3pT3rPe96jmpoaPfvss7r++uuVlZU1OQczBLvNGPH96hWr1bx7YFi5uW6H8nxzJEn5FdXyFpVox2svJt+PdndpT/Dvqlp24qjzO0aZHwAAAJiKjnUdPRzLshSPxUadn3U0AAAAZoK6ujoVFBSktRkGAGB0jnQXAAAAAABAv/5Q7/79+3XgwIHkIxqN6oQTTtCFF144aLxhGFq5cqX27t0rm+3Q51m7u7u1YcMGvfXWW1q7dq0+/elP66tf/apuuukmLVq0SP/6r/+qJUuWqKSkZMB+0iHbYZNNGva2w6d9+Abdfc2Fev5n39Zx57xPe0Nv6LXf/1KXfPGbkg51MD7tQ9fruZ9+S4VV81VQXqVnfvgNeYvLVPvOC0ac2ybJ4+AzwAAAAJh+jnUdHYuE9fxPv62lZ54vb1Gpetpb9cpvfqbOxgM67pz3jjg362gAAADMFHV1daqurk53GQCAURiWZXFvIQAAAADApLMsS62trYNCvf2dd3NyclReXi6fzyefz6eKiopBnXcty1JfX5+uvPJKvfjiiyouLtbVV1+tj370o7rllltUVVWlNWvW6LjjjlNxcXFaA73D2dAc1ZN7ukccs+nPT+upu76mlvqdyi+v0ulXfVKrL/1I8n3LsvTs3bfrtd//QtGuTlWvOEnvu/W/VVy9YNT5z5+TrRVF7mM+DgAAAGAyHes6uq83qgdvu0F7gq8r3N6qrNx8VfqP15rrPqs5/uNHnZ91NAAAAKa7np4e3XHHHbr44ou1fPnydJcDABgBQV8AAAAAwISzLEstLS0DQr0NDQ3JUG9ubu6AUK/P55PH4xl1v+FwWFdeeaVisZjWrFmj5cuX67TTTlNOTs5EH9K4aeiJ694t7Wmb/6OL81SWxQ1/AAAAML2wjgYAAACOzebNm/Xggw/qpptuUl5eXrrLAQCMgDMQAAAAAIBxZZrmkKHeWCwmScrLy1N5eblOP/30ZKj3yE69qfJ4PHr00UfHs/xJV5xpl9tuKJqY/M/huu2GijPtkz4vAAAAcKxYRwMAAADHpq6uTrm5uYR8AWAaIOgLAAAAADhqpmmqubl5UKi3r69PkpSfn6/y8nLV1NQkQ72ZmZlprnpqsRuGji9y69WDEU1mRMGQdHyRW3bDmMRZAQAAgPHBOhoAAAA4NvX19aqurk53GQCAFBD0BQAAAACkxDRNNTU1DQr1xuNxSVJBQYHKy8u1ZMmSZKjX7XanuerpYUWRW68cjEzqnNY/5gUAAACmK9bRAAAAwNHp7e3VgQMHtHLlynSXAgBIAUFfAAAAAMAgiURiUKj34MGDyVBvYWGhysvLVVtbmwz1ulyuNFc9feU67Vpe6NJbLb2T0o3MkLSs0KVcJ7cbBgAAwPTFOhoAAAA4Onv27JFlWZo7d266SwEApICgLwAAAADMcolEQo2NjYNCvYlEQpJUVFSk8vJyBQIB+Xw+lZWVEeqdAGdVeLSjI6Zw3JrQkIIhyeMwdFaFZwJnAQAAACYH62gAAABg7Orq6uTxeFRQUJDuUgAAKSDoCwAAAACzSDweHzLUa5qmDMNIhnqXLVuWDPU6nc50lz0ruOw2XVTt1YM7Oid0HkvSRdVeuey2CZ0HAAAAmAysowEAAICxq6urU3V1tQzDSHcpAIAUEPQFAAAAgBkqHo/r4MGDA0K9jY2NyVBvcXGxysvLtWLFimSoNyMjI91lz2rzcpw6p9KjZ/aGJ2yOcys9mpdDeBsAAAAzB+toAAAAIHV9fX3at2+fzjvvvHSXAgBIEUFfAAAAAJgB+vr6BoV6m5qaZJqmbDabiouL5fP5tHLlSvl8PpWWlhLqnaJWFWdKkp7ZG5Yhjcvth/v3c26lRyv/sX8AAABgJmEdDQAAAKRm3759Mk1T1dXV6S4FAJAigr4AAAAAMM3EYrEhQ72WZclms6mkpETl5eU64YQTkqFeh4Nf/6aTVcWZKnDZ9Xhdl8Jx65hCCoYkj8PQRdVeOpABAABgRmMdDQAAAIxu9+7dcrvdKikpSXcpAIAUGZZljceHmgEAAAAAEyAWi6mhoWFAqLe5uVmWZclut6ukpEQ+n0/l5eXy+XwqKSkh1DuDRBOmnt8X1pstvWPuStY/fnmhS2dVeOSy2yamSAAAAGCKYR0NAAAADO8Xv/iFnE6nrrzyynSXAgBIEUFfAAAAAJgient7hwz1SpLdbldpaemgUK/dbk9z1ZgMHbGENjRH9UZzVNHEoV/jbZISliXDMJJfm/8Ybzfjqv/LU/raDVcp18m/EQAAAMxOrKMBAACAgRKJhL7xjW9ozZo1OvXUU9NdDgAgRQR9AQAAACANotHooFBvS0uLJMnhcAwK9RYXFxPqhRKWpaZIQg09cTX0xPWHJ5+SK9MjX2mJli+pUVmWQ2VZDhVn2uVfulSbN29Od8kAAABA2rGOBgAAAA7Zs2eP7rnnHl133XWqqKhIdzkAgBRxP1cAAAAAmGDRaFQHDhwYEOptbW2VdCjUW1ZWpvnz5+v0009PhnptNm4Pi8HshpEMIUjSbXf/l55//nmdc845Slx8sW677bbk2MzMzHSVCQAAAEwprKMBAACAQ+rq6pSRkSGfz5fuUgAAY0DQFwAAAADGUSQSGRTqbWtrk6TkybOFCxcmO/UWFRUR6sVRsyxLubm5Wrt2rc4//3xt3rxZN910k1599VWVlJSkuzwAAABgSmIdDQAAgNmqvr5eVVVVXJcAgGmGoC8AAAAAHKWenp5Bod729nZJktPplM/nU01NTTLUW1hYyMkzjCu32y1J8nq9Wrt2rW677TZdfvnlqq6u1k9/+tM0VwcAAABMTSOto3/2s5+luToAAABgYpimqfr6ep166qnpLgUAMEaGZVlWuosAAAAAgKkuHA4PCvV2dHRIklwul3w+n8rKygaEeg3DSHPVmE3a2trkcDjk9XrTXQoAAAAwpUWjUTkcDjkc9MMBAADA7HHgwAH9+Mc/1jXXXKOqqqp0lwMAGAPOYAAAAADAEbq7uweFejs7OyUdCvWWl5ertrY2GeotKCgg1Iu0aG1t1W233aYHHnhAXV1dcjgcKi0t1ec+9znddNNN6S4PAAAAmJLOPvts3XfffVqwYMGA1zs7O/WZz3xG99xzT5oqAwAAACZOXV2d7Ha7ysvL010KAGCMCPoCAAAAmNW6uroGhXq7urokHbqda3l5uQKBQDLUm5+fT6gXU8Y111yj888/X1/4whd0//33y+Vy6eKLL9YXvvAFtbW16T/+4z/SXSIAAAAw5XR2dg4I+d566636+te/rpycHL3++utprAwAAACYOHV1daqsrOTOFgAwDRmWZVnpLgIAAAAAJpplWUOGeru7uyVJmZmZKi8vV1lZWTLUm5eXR6gXU9pxxx2nt99+O/n1ySefrFdffVWJREK1tbXasmVLGqsDAAAApqbjjz9eb7zxRvLrhQsXavv27UO+BwAAAMwElmXpjjvu0Iknnqg1a9akuxwAwBjxEQ0AAAAAM45lWers7BwU6g2Hw5KkrKwslZeXa8WKFclQb25uLqFeTDuGYai1tVUFBQWqq6tL/hu22+1yuVxprg4AAACYmrKzs/Xaa69p9erVeu6559Te3q5169YpLy9PTqcz3eUBAAAA466pqUmRSETV1dXpLgUAcBQI+gIAAACY1izLUkdHx6BQb09PjyTJ4/GovLxcq1atks/nk8/nU05ODqFeTEsJy1JTJKGGnrgaeuL6p+/8Sl985CXleDzas2OrPvblO9TQE5e6WlVcXJzucgEAAIAp4ch19FXfvE8/2/Cm7n3zYcXDXfrBH5/Tp/7lRjXu2KwHf/1AussFAAAAxl1dXZ1sNpsqKyvTXQoA4CgYlmVZ6S4CAAAAAFJhWZba29sHhXojkYikQ12Z+jv09j+8Xi+hXkx7HbGENjRH9UZzVNHEoV/jbZLM/gGWJcOQLB36t+62Gzq+yK0VRW7lOu1pqRkAAABIt1HX0bJkk5H8mnU0AAAAZqqNGzdq9+7duvDCC9NdCgDgKBD0BQAAADAlWZaltra2QaHeaDQqSfJ6vSovL1dZWVky3Ov1etNcNTC+oglTz+8L682WXhmSxvILfP/45YUunVXhkctum5giAQAAgCmGdTQAAADwfyzLkmVZstlY2wLAdEXQFwAAAEDaWZal1tbWQaHe3t5eSVJOTs6gUG92dnaaqwYm1q7OmB6r61JP3BpTMOFIhiSPw9BF1V7Ny3GOV3kAAADAlMQ6GgAAAAAAzDQEfQEAAABMKsuy1NLSMiDU29DQkAz15ubmDgr1ejyeNFcNTK7XmyJ6Zm94zN3HhtO/n3MqPVpVnDkOewQAAACmHtbRAAAAAABgJiLoCwAAAGDCmKY5ZKg3FotJkvLy8pJh3v5HVlZWmqsG0qs/nDBRCCkAAABgJmIdDQAAAAAAZipHugsAAAAAMDOYpqnm5uZBod6+vj5JUn5+vsrLy1VTU5MM9WZmcpEUONyuztiEhhMk6Zm9YRW47Nx+GAAAADMG62gAAAAAADCT0dEXAAAAwJiZpqmmpqZBod54PC5JKigoGNSp1+12p7lqYGqLJkz9ZGObeuLWuNxmeDiGJI/D0Mdr8+Wy2yZwJgAAAGDisY4GAAAAAAAzHUFfAAAAACNKJBKDQr0HDx5MhnoLCwsHhHrLysoI9QJH4U/1XXqrpXdCwwn9DEnLCl26oMo7CbMBAAAAE4d1NAAAADDQli1b1NPTI9M05fF4VF1dzR0WAWCac6S7AAAAAABTRyKRUGNj46BQbyKRkCQVFRWpvLxcgUAgGep1uVxprhqY/tp7E3qzpXfS5rMkvdnSq1PLspTrtE/avAAAAMB4Yh0NAAAADHTnnXfqueee06uvvqqWlhadccYZWr58uT7+8Y9r6dKlsixLhmGku0wAwBjR0RcAAACYpeLx+KBQb2NjoxKJhAzDSIZ6D+/U63Q60102MCO9sD+sVw9Ghu1C1tF4QE9+96va8vJa9UUjKpwzT5f9x52qrF0hSQqufUzrf3ef9m16U5GONt34wHMqX3zciHMakk4uzdSZ5Z5xPRYAAABgshzrOvpwD//X5/Ta7+7TRf/ynzr9wzcMOyfraAAAAExViURCgUBAzz77rCoqKvTjH/9Yjz76qOx2uxoaGvTQQw+psrIy3WUCAI4CHX0BAACAWSAej+vgwYODQr2macowDBUXF6u8vFwrVqyQz+dTaWkpoV5gkiQsS280R4cNJ0Q623X3NRdpwQmn6Zrv/Vqe/EI11+9Upjc3OSYW6dHcFSdp2Tnv1e//87MpzWtJeqM5qtN9WbLTwQEAAADTzHiso/uFnntce97+m3KKy0adl3U0AAAApqpXXnlFpaWlqqiokCSdf/75+stf/qL77rtPX/nKV/Sd73xH//M//5PmKgEAR4OgLwAAADDD9PX1DQr1NjU1yTRN2Ww2FRcXy+fzaeXKlclQb0ZGRrrLBmatpkhC0cTwN9t54d47lVdarsu+8r3kawUV1QPGrHz3FZKktv31Y5o7mrDUFEmoLIvTAwAAAJhexmMdLR3q+vvH/75V137/N7r3/30opblZRwMAAGAqKigoUGFhodauXatTTjlFDz30kCKRiCRp9erVuvPOO9NcIQDgaHEGAgAAAJjG+vr61NDQoAMHDiSDvU1NTbIsSzabTSUlJSovL9cJJ5yQDPU6HPwaAEwlDT3xEd/f9MJTWnTKGt3/+Wu16/VXlFNSppMvv1arL/3IuM1PQAEAAADTzXiso03T1G+++M864+pPqXTBkjHPzzoaAAAAU0ltba1OOOEEffrTn9a+fft05ZVX6ktf+pIk6emnn9ZJJ52U5goBAEeLMxAAAADANBGLxQaFepubm2VZlux2u0pKSlRZWanVq1fL5/OppKSEUC8wDTT0xGWTZA7zfuu+Oq1/6F6d/uEbtObaz2hvaIMeveM22TMytOo9Vx7T3DaNHpAAAAAApqLxWEf/+d47ZXM4dOoHPzGmuVlHAwAAYKq69dZbdc0110iSsrKylJOTo97eXhmGoUsvvTTN1QEAjhZX/QEAAIApqLe3d8hQryTZ7XaVlpaqqqpKJ598cjLUa7fb01w1gKPRHTeHDSdIkmWaqqhdofNu/KIkqXzJMjXs2KT1D913zEFfU1I4PtLsAAAAwNR0rOvofRvf1F8e+LFu/N/nZBjGmOZmHQ0AAICprKysbMDXLpdL3/rWt9JUDQBgPBD0BQAAANKst7c3GejtD/W2tLRIkhwOh0pLSzV37lydeuqp8vl8Ki4uJtQLzCAJ0xrxfW9RqUrm1wx4rWRejUJrHxuX+eOjzA8AAABMRce6jt71xisKtzbr9gtXJN83Ewk98e0v6y//+2Pd8vjfR9w/62gAAABMJd3d3XI4HHK73YPe6+npUVZWlkzTlM1mS0N1AIBjRdAXAAAAmETRaHRQqLe1tVXSoVBvWVmZ5s+fr9NPPz0Z6uWkCzCz2W0jdw+rXrFazbu3D3ituW6H8nxzxmV+xyjzAwAAAFPRsa6jj7/oCi086cwB7//8U1fo+Isu16r3fmjU+VlHAwAAYCq59tpr1dTUpLPOOkurV69WbW2t8vPzlZ2drVtvvVV5eXn6yle+ku4yAQBHiaAvAAAAMEEikcigUG9bW5skKSMjQ2VlZVq4cKHKy8vl8/lUVFREqBeYhbIdNtmkYW87fNqHb9Dd11yo53/2bR13zvu0N/SGXvv9L3XJF7+ZHNPT0ab2hr3qbGqQpGSgwVtYIm9R6bBz2yR5HHzfAQAAwPRzrOtoT16BPHkFA7axOTKUXVii4rkLR5ybdTQAAACmmueee07XX3+93n77bd1///1KJBKqrq7W2Wefrccee0x33313uksEABwDgr4AAADAOOjp6UmGeRsaGrR//361t7dLkpxOp8rKylRTU5MM9RYWFhLqBSBJKstyaEPL8O/P8R+vq/7nPj1119f03E++qfzyKr37c1/T8Rdelhyz6YUn9dB//L/k1w/c+glJ0rs+8a86+4bPD7tv8x/zAwAAANPNeKyjjxbraAAAAEwl+/bt0znnnKMvfelLcrvdkqTt27dr3bp1Wrt2rerq6nTmmWeOshcAwFRmWJZlpbsIAAAAYDoJh8ODQr0dHR2SDoV6fT6ffD7fgFCvYXBLTwBDa+iJ694t7Wmb/11ZXVq5sEp2uz1tNQAAAABjle519EcX5xH2BQAAwJSxd+9eud1uFRUVybKs5HWpHTt26Morr9Rf//rXNFcIADgWnIEAAAAARtDd3T0o1NvZ2SlJcrlc8vl8qq2tTYZ6CwoKCPUCGJPiTLvcdkPRRBo+h9vXqyce/JXWZbq1dOlSBQIBVVVV0XEcAAAAU14619Fuu6HiTD4oBwAAgKmjsrIy+dwwDJmmKZvNppaWFn3mM59JX2EAgHFBR18AAADgH7q6ugaFeru6uiRJbrd7UKfe/Px8Qr0AxsUL+8N69WBEk/kLuiHp5NJM1RidCgaDCoVC6ujokNfrVW1trQKBgCoqKvg+BwAAgCkrnevoM8s9kzgrAAAAMLxdu3apuLhY2dnZg96rq6tTdXV1GqoCAIwngr4AAACYdSzLGjLU293dLUnKzMwcFOrNy8sj7AZgwnTEEvphqG3S5/2kP1+5zkOdyCzL0t69exUKhRQKhdTd3a28vDz5/X4FAgGVlpbyfRAAAABTylRYRwMAAADptHnzZtXW1mrNmjVatmyZTj31VC1btkyVlZXyeDzKycnR/v37hwwBAwCmD4K+AAAAmNEsy1JnZ6cOHDiQfOzfv1/hcFiSlJWVNSjUm5ubS5gNwKT7U32X3mrpnZRuZIakZYUuXVDlHfJ90zRVX1+vYDCojRs3KhKJqLCwUIFAQH6/X8XFxZNQJQAAADC6qbSOBgAAACbbj370Iz3wwAP6l3/5Fz3yyCP6+9//rvb2dlVVVSkvL0/19fV644030l0mAOAYEfQFAADAjGFZljo6OgaFent6eiRJHo9nUKg3JyeHUC+AKaE3YeonG9sUjlsTGlIwJHkchj5emy+X3Tbq+EQioV27dikUCmnTpk3q7e1VaWlpstNvfn7+BFYLAAAAjGyqrqMBAACAyXD//ferqalJn/nMZ5KvNTQ0aOvWrfrEJz6hNWvW6Ic//GH6CgQAjAuCvgAAAJiWLMtSe3t7Mszb0NCg/fv3KxKJSJKys7MHhXq9Xi+hXgBT2q7OmB7c0Tnh83xgQY7m5TjHvF08Htf27dsVCoW0ZcsW9fX1qaKiQn6/X36/Xzk5ORNQLQAAADCynR29+s3Orgmf52jX0QAAAMBEMk1TkpLXwPr/vOqqq3TxxRfrsssuS1ttAIDxQdAXAAAAU55lWWpraxsQ6j1w4EAy1Ov1eocM9QLAdPR6U0TP7A1P2P7PrfRoZXHmMe8nFotp69atCoVC2rZtmxKJhKqqqhQIBFRbWyuPxzMO1QIAAACje/755/VSfasylp05YXOM1zoaAAAAmCwvv/yyVqxYoaysrHSXAgA4RgR9AQAAMKVYlqXW1tZBod5oNCpJysnJGRTqzc7OTnPVADC++sO+hjQutx/u389EhROi0ai2bNmiYDConTt3yrIszZs3T4FAQEuWLFFmJoEIAAAATJwXX3xRhmEoc/GqabWOBgAAAAAASAVBXwAAAKSNZVlqaWkZFOrt7e2VJOXm5g4K9dIhEsBssaszpsfruhSOW8cUUjAkeRyGLqr2Tspthnt6erRp0yaFQiHt2rVLNptNCxculN/v1+LFi+VyuSa8BgAAAMxe03UdDQAAAByrSCRC0wUAmKEI+gIAAGBSmKY5ZKg3FotJkvLy8gaFermVEIDZLpow9fy+sN5s6R1zV7L+8csLXTqrwiOX3TYxRY6gq6tLGzduVCgU0p49e+RwOFRTUyO/369FixYpIyNj0msCAADA9HPXXXdp5cqVOvXUU1MaP93X0QAAAMDReOCBB2Sz2fSBD3wg3aUAAMYZQV8AAACMO9M01dzcPCjU29fXJ0nKz88fFOrlE8YAMLyOWEIbmqN6ozmqaOLQr/E2SeZhYw7/2m03dHyRWyuK3Mp12ie52qG1t7crFAopFArpwIEDcjqdWrx4sQKBgBYsWCC7fWrUCQAAgKnl9ttv1+9+9zvdc889CgQCY9p2JqyjAQAAgFRYlqX//u//1sknn6wzzzwz3eUAAMYZQV8AAAAcE9M01dTUNCDU29DQkAz1FhQUDAj1lpWVEeoFgKOUsCw1RRJq6ImroSeucNxU3LTksBnyOGwqy3KoLMuh4ky77IaR7nKH1dLSolAopGAwqKamJrndbi1dulSBQEBz586VzUbXNAAAAEjr16/Xpz71Ka1bt07Z2dlqbW1VLBZTWVnZmPYzU9bRAAAAwHAOHjyou+++W//0T/+kuXPnprscAMA4c6S7AAAAAEwfiURiyFBvPB6XJBUWFqq8vFxLlixJhnrdbneaqwaAmcNuGMkQwnRWWFioM844Q2eccYYaGxsVDAYVDAb1xhtvyOPxqLa2Vn6/X1VVVTIIWgAAAMxalmWpsrJS2dnZeuyxx3TXXXepsbFRK1eu1NVXX60zzjgjpf3MlHU0AAAAMJzdu3fLZrOpoqIi3aUAACYAZzQAAAAwpEQiocbGxkGh3kQiIUkqKipSeXm5amtrk6Fel8uV5qoBANNNSUmJzjrrLK1Zs0YHDhxQMBhUKBTSX//6V3m9Xvn9fgUCAZWXlxP6BQAAmGUKCwsViURUX1+vn//85/rSl76k8vJyfe1rX9N9992XctAXAAAAmOnq6+tVUVGhjIyMdJcCAJgABH0BAACgeDw+INR74MABNTY2KpFIyDCMZKi3P2hVVlYmp9OZ7rIBADOIYRgqLy9XeXm5zjnnHO3Zs0fBYFBvv/22Xn31VeXn5ydDvyUlJYR+AQAAZqjHHntMO3fuVDgc1q233qqcnBydccYZuuqqq3TaaadJkr785S/r+uuvV3t7u/Ly8tJbMAAAAJBmlmWprq5Oxx9/fLpLAQBMEMOyLCvdRQAAAGDyxONxHTx4cFCo1zRNGYah4uLiZJi3vLxcpaWlhHoBAGljmqbq6uoUDAa1ceNGRaNRFRUVKRAIyO/3q6ioKN0lAgAAYJz85je/0Te+8Q29//3v17p161RSUqKf/vSnuvjii/X3v/9db7/9tsrKyvTVr35VGzZs0O9+9zs+AAYAAIBZr7m5Wd///vf14Q9/WAsXLkx3OQCACUDQFwAAYAbr6+sbEOptaGhIhnptNpuKi4vl8/nk8/mSoV5u6QMAmKoSiYR27typYDCozZs3KxaLqaysLNnpl25uAAAA09eLL76oj3/843r00Ue1aNEibd68WTfeeKN+//vfy+v16pJLLpEkuVwutba26pFHHlFWVlaaqwYAAADS7/XXX9fjjz+uW265RS6XK93lAAAmgCPdBQAAAGB89PX1qaGhQQcOHEg+GhsbZVmWbDabSkpK5PP5tHLlymSo1+FgOQgAmD7sdrsWLVqkRYsWqa+vT9u3b1coFNILL7ygtWvXqrKyUn6/X36/X16vN93lAgAAYAwyMjJ0ww03aNGiRZKkefPmqaWlRa+99pre9a536eGHH1Z9fb3a29u1cOFCQr4AAADAP9TV1cnn8xHyBYAZjGQHAADANBSLxQaFepuammRZlux2u0pKSlRRUaETTjhB5eXlKikpIdQLAJhRMjIytHTpUi1dulSxWExbtmxRKBTSs88+q6eeekpz586V3+/X0qVL5fF40l0uAAAARnHyySfL7/dLkuLxuFwuV/KDypL0wAMP6IILLlBVVVU6ywQAAACmFMuyVFdXp9ra2nSXAgCYQKQ9AAAAprhYLDYg0HvgwAE1NzcnQ72lpaWaM2eOVq9enQz12u32dJcNAMCkcTqdOu6443TccccpGo1q8+bNCgaDeuKJJ/TEE09o/vz5CgQCWrJkidxud7rLBQAAwDD678pgs9kkHVrn5ebm6mc/+5m+853v6Nxzz01neQAAAMCU09HRoc7OTlVXV6e7FADABDIsy7LSXQQAAJiZEpalpkhCDT1xNfTE1R03lTAt2W2Gsh02lWU5VJblUHGmXXbDSHe5U0Jvb++QoV5JcjgcKi0tlc/nk8/nU3l5uYqLiwn1AgAwjHA4rE2bNikYDKqurk52u10LFy5UIBBQTU2NnE5nuksEAACYEY7lHJBpmslg75E+8pGPqLGxUZ2dnXrooYdUUVExGYcDAAAATBtvvvmmHnnkEf3rv/6rsrKy0l0OAGCCEPQFAADjriOW0IbmqN5ojiqaOLTUsEkyDxtz+Nduu6Hji9xaUeRWrnP2hFaj0eigUG9LS4ukQ6HesrKyAaHeoqIiQr0AABylrq4uhUIhhUIh7d27Vw6HQ4sXL5bf79eiRYvkcHDTIwAAgLE61nNAsVhMHR0dKioqknFYALj/0tWaNWu0fft2vfrqq6qsrJyUYwIAAACmkz/+8Y/at2+fPvnJT6a7FADABCLoCwAAxk00Yer5fWG92dIrQ9JYFhn945cXunRWhUcu+9CdXKarSCQyINC7f/9+tbW1SZIyMjKGDPUO180GAAAcm7a2tmTot6GhQU6nU0uXLpXf79f8+fP5YA0AAMAoxuscUEX3Pj352B910003KSMjY9C5kCeffFJz587VkiVLxrF6AAAAYOb43ve+pwULFujCCy9MdykAgAlE0BcAAIyLXZ0xPVbXpZ64NaaLO0cyJHkchi6q9mpezvS8nXZPT8+gUG97e7skyel0JkO95eXl8vl8KiwsJNQLAECaNDc3KxgMKhQKqbm5WZmZmVq6dKkCgYCqq6v5GQ0AAHCE8TwHZIv3KmPLK8roOKjLLrtMJSUlAzr7AgAAABheV1eXvvWtb+myyy6T3+9PdzkAgAlE0BcAAByz15siemZveMwdXIbTv59zKj1aVZw5DnucOD09Pdq/f/+AUG9HR4ekQ6Hew7v09od6uWAFAMDUY1mWGhsbFQwGFQwG1d7eLo/HI7/fL7/frzlz5vAzHAAAzHrjfQ7IMk0ZNpscW9er1mto+fLl8vl8fNgKAAAASEEwGNTvfvc7ffazn5XX6013OQCACUTQFwAAHJP+CzwTJZWwbzQa1VNPPaXy8nKdeOKJE1ZLOBweFOrt7OyUJLlcrkGh3oKCAgJBAABMQ5Zlaf/+/clOv11dXcrJyZHf71cgEJDP5+NnPAAAmHUm+hyQbcurWlHg1BlnnCGXy8V6CwAAABjF448/rp07d+rGG29MdykAgAnmSHcBAABg+trVGZvQCzyS9MzesApcds3LcQ75/sGDB/Wb3/xG4XBYK1asGLd5u7u7B4V6u7q6JElut1s+n0+BQCAZ6s3Pz+cCFAAAM4RhGKqoqFBFRYXOPfdc1dfXKxgM6s0339Qrr7yigoKCZOi3pKQk3eUCAABMuMk4B2QuPlmLFuTI7R76HBAAAACAgerr61VdXZ3uMgAAk4COvgAA4KhEE6Z+srFNPXFrXG7VOBxDksdh6OO1+XLZB9628c0339Rjjz2mwsJCXXHFFSooKDiqObq6ugaFeru7uyVJmZmZgzr15uXlEeoFAGAWMk1Tu3btUigU0qZNmxSNRlVcXKxAICC/36/CwsJ0lwgAADDupsI5IAAAAAAD9fT06I477tDFF1+s5cuXp7scAMAEI+gLAACOyp/qu/RWS++EXuDpZ0haVujSBVVeSVI8HteTTz6p119/XcuXL9dFF12kjIyMUfdjWdagUO+BAweSod6srKxBod7c3FxCvQAAYJBEIqEdO3YoGAxqy5YtisViyY7/fr9fubm56S4RAABgXKTzHBAAAACAoW3evFkPPvigbrrpJuXl5aW7HADABHOkuwAAADD9tPcm9GZL76TNZ0l6s6VXp5ZlSZFu/fa3v1VDQ4Pe/e53a+XKlUMGcS3LUmdn56BQbzh86DaTHo9HPp9Pxx9/fDLUm5OTQ6gXAACkxG63q6amRjU1Nerr69O2bdsUDAb1/PPP65lnntGcOXPk9/vl9/uVnZ2d7nIBAACOSjrPAeU67ZM2LwAAADDd1NXVKTc3l5AvAMwSdPQFAABj9sL+sF49GBmyk8uzd/+31v74jgGvFc9dqM/+/hVJUlfzQT3xna9o+/p16g2HVTx3gdZ87GYF3vWeEec0JC12RrX18f+V0+nU5ZdfroqKCkmHQr0dHR2DQr09PT2SpOzs7EGder1eL6FeAAAw7np7e7VlyxaFQiFt375dlmVp7ty58vv9Wrp0qbKystJdIgAAQMpGOgckSR2NB/Tkd7+qLS+vVV80osI583TZf9ypytoVkqTffvnT+vujDw7YZtEpa3Tt938z7JyGpJNLM3VmuWd8DgIAAACYgX784x+ruLhYl1xySbpLAQBMAjr6AgCAMUlYlt5ojo54u8bSBUv0sR8+lPzaZv+/Jcdv/v3TinZ16Opv/0qevAJtePJ3+t9brtOnf/WMypcsG3aflqRN3VJleYXeddYatbW1adOmTclQbyQSkSR5vV75fD6deOKJA0K9AAAAk8HlcmnZsmVatmyZIpGINm3apFAopMcff1xPPPGEFixYIL/fryVLlsjlcqW7XAAAgGGNdg4o0tmuu6+5SAtOOE3XfO/X8uQXqrl+pzK9uQPG1Zx6li77jzuTXzucI6+BLElvNEd1ui9Ldj6kDQAAAAzS29urhoYGrVq1Kt2lAAAmCUFfAAAwJk2RhKKJkW8IYLPb5S0qHfK9+jdf0/tuvUNzAislSWdd9y966f4fad+mN0cM+kqS4XRrX0ePfvKTn0iScnJy5PP5dNJJJyVDvdwaGwAATBWZmZlauXKlVq5cqe7ubm3atEnBYFCPPPKI7Ha7Fi1apEAgoEWLFsnpdKa7XAAAgAFGOwf0wr13Kq+0XJd95XvJ1woqqgeNczhdw54nGk40YakpklBZFpexAAAAgCPt2bMneScxAMDswBkSAAAwJg098VHHNNfv0v93bkAOl1tVy07Q+Z/+ovJ8lZKkquWr9dbTj2jJO86R25urt5/5g+K9vZq36rTRJ7csFS1YqpPOOFnz58+Xx8MtHAEAwPSQnZ2tE088USeeeKI6Ojq0ceNGBYNBPfTQQ8rIyNDixYvl9/u1cOFCORycrgEAAOk32jmgTS88pUWnrNH9n79Wu15/RTklZTr58mu1+tKPDBi3829/0dfetVSZOblacOI7dM4/3ypPXkFK8xP0BQAAAAarq6uTx+NRQcHo62oAwMxgWJY1cks+AACAwzxZ3623WqIyh3l/y1+eVawnrKLqhepqPqi1P/4fdTYe0Gd++6JcnmxFujr0wC3Xadur62RzOJThztSHbv+Zak5ZM/rkpqlE/UbF33pBpaWlmj9/vhYsWKCqqiplZGSM63ECAABMhtbWVoVCIYVCIR08eFAul0tLly6V3+/XvHnzZLfb010iAACYpUY7B/Slkw99qPv0D9+g4855r/aGNujR//k3XXzbHVr1nislSW8+9bAy3JkqKK9Sy97devqu/5Izy6NP3vsn2UZY59gkLSt06/wq7twEAAAAHOmee+6R1+vV5Zdfnu5SAACThI9CAwCAMemOm8Ne4JGkxaednXzuq/FrznGrdPtFx+utZx7RiRdfpWd+8HVFujv1sR/+Tp78AoWe/5MeuOU6Xf+zR1W2qHbkyW02LfQvU+3CQu3cuVPBYFCvvPKKHA6HqqurtWDBAi1YsEDFxcUyDGN8DhgAAGACFRQU6B3veIfe8Y53qKmpScFgUKFQSBs2bFBWVpaWLl2qQCCgqqoq2Wy2dJcLAABmkdHOAVmmqYraFTrvxi9KksqXLFPDjk1a/9B9yaDv8vMuSY4vW1Qr36Ja3fHeE7Xzb3/RwpPOGHbfpqRwfKTZAQAAgNmpr69P+/bt03nnnZfuUgAAk4igLwAAGJOEObabAWR6c1VUtUAte3apZc8uvfLgz/SZ376o0gVLJEm+moB2v/GqXvnNPbrk3/5n9B3a7DruuON03HHHybIsNTU1aceOHdqxY4eee+45Pf3001q2bJkuueSS0fcFAAAwhRQXF2vNmjV65zvfqYMHDyoYDCoYDOr1119Xdna2/H6/AoGAKioq+FATAACYcKOdA/IWlapkfs2A10rm1Si09rFhtymonCtPXqFa9uwaMegrSfExnoMCAAAAZoO9e/fKNE1VV1enuxQAwCQi6AsAAMbEbhtbqKS3p1ute3fLe9Hl6otGJEmGMbAbnc1mk2WO3qXFsizt3LZV3338ZXm9Xnm9XmVnZ8vr9SoQCGj16tXq6upSfn6+LMsiAAMAAKYlwzBUVlamsrIyvetd79K+ffuSnX7Xr1+v3NxcBQIB+f1+lZWVseYBAAATYrRzQNUrVqt59/YBrzXX7VCeb86w23Qc3K+ejlZ5i0tHnd8xxnNQAAAAwGxQV1cnt9utkpKSdJcCAJhEBH0BAMCYZDtssknD3rrxiW9/WUvOOFf5vjnqbGrQs3f/t2w2u5aff6kys3NVOGeeHv6vf9GFN39FWbn52rjuT9q+/gVd/d37R53bZkhlxQWqyPCrq6tL3d3dampqUldXl6LR6ICxdrs9GQI+PBB85GtZWVmEYwAAwJRlGIYqKytVWVmpc889V/X19QoGg/r73/+uv/zlLyosLEx2+i0uLk53uQAAYAYZ7RzQaR++QXdfc6Ge/9m3ddw579Pe0Bt67fe/1CVf/KakQx/+Xvuj/1HgXe+Wt6hELXt260/f/YoK5sxTzSlrRpzbJsnjsI04BgAAAJiN6uvrVV1dzfVNAJhlDMuyuPcRAABI2YbmqJ7c0z3s+w984ePa9fdX1NPRJk9+oeauOEnnfuo2Fc6ZJ0lqrt+hJ+/8T9VteE29PWEVzpmnd3zkn7Xy3VekNP/5c7K1osg96PV4PJ4M/3Z1dQ14fvhrkUhkwHY2my2lQLDH4+EXZgAAMGUkEgnt2rVLoVBImzZtUm9vr0pLS5Oh3/z8/HSXCAAAprnRzgFJ0qY/P62n7vqaWup3Kr+8Sqdf9UmtvvQjkqS+aES//OzV2r8lqGhXh7zFZVp08jt1zj9/Qd7C0buPDXcOCAAAAJitEomEvvGNb2jNmjU69dRT010OAGASEfQFAABj0tAT171b2tM2/0cX56ks6+hvShCPx9Xd3T1qILinp2fAdjabTR6PJ6VAsM1GxxkAADB54vG4tm/frlAopC1btqivr0/l5eUKBALy+/3KyclJd4kAAGAamu7ngAAAAICZZs+ePbrnnnt03XXXqaKiIt3lAAAmEWdIAADAmBRn2uW2G4omJv+zQm67oeJM+zHtw+FwKC8vT3l5eSOOSyQSIwaC9+3bp66uLoXD4QHbGYaRUiA4OzubQDAAABgXDodDS5Ys0ZIlSxSLxbRt2zYFg0GtXbtWTz/9tKqqquT3+1VbW6vs7Ox0lwsAAKaJ6X4OCAAAAJhp6urqlJGRIZ/Pl+5SAACTjI6+AABgzF7YH9arByOazEWEIenk0kydWe6ZxFlHZ5qmwuFwMgw8XIfgcDisI5ddqQaC7XYubAEAgLGLRqPasmWLQqGQduzYIcuyNG/ePPn9fi1dulSZmZnpLhEAAExxnAMCAAAApo77779flmXpqquuSncpAIBJRtAXAACMWUcsoR+G2iZ93k/685XrnJ6h1/5A8HAdgg9/7cjlWVZWVkqBYIeDmzUAAICh9fT0aNOmTQqFQtq9e7cMw9DChQvl9/u1ePFiuVyudJcIAACmIM4BAQAAAFODaZq6/fbbdfrpp+sd73hHussBAEwy0iAAAGDMcp12LS906a2W3knp6GJIWlbomtYXeGw2WzKYO9LtdCzLGjEQ3NTUpJ07d6q7u1umaQ7YNjMzc9RAsNfrJRAMAMAslJWVpVWrVmnVqlXq7u7Wxo0bFQwG9fDDD8vhcGjRokUKBAJatGiRMjIy0l0uAACYIjgHBAAAAEwNBw8eVCwWU3V1dbpLAQCkAR19AQDAUelNmPrJxjaF49aEXugxJHkchj5emy+X3TaBM00vlmUpEokkw8AjdQhOJBIDtnW73SkFggn5AAAw83V0dCgUCikYDOrAgQNyOp1avHixAoGAFixYILudkA0AALMd54AAAACA9HvllVe0du1afeELX6CpDwDMQgR9AQDAUdvVGdODOzonfJ4PLMjRvBznhM8zE1mWpWg0mlIgOB6PD9jW5XKlFAh2OvlvAwDATNDa2qpgMKhQKKTGxka53W4tWbJEgUBA8+bNk81G4AYAgNmKc0AAAABAej344IOKRCL66Ec/mu5SAABpQNAXAAAck9ebInpmb3jC9n9upUcrizMnbP84xLIs9fb2phQI7uvrG7Ct0+kcEP49PAx8eCDY5XKl6egAAMBYNTY2JkO/ra2tysrKUm1trQKBgKqqqmQYRrpLBAAAk+jtt9/WH97YJsdxZ0zYHJwDAgAAAIZmWZbuuOMOnXjiiVqzZk26ywEApAG93AEAwDFZ9Y8LMM/sDcuQxuUWjv374QLP5DEMQ263W263W8XFxcOOsyxLsVhsxEDw/v371d3drVgsNmDbjIyMlDoEu1wuwkMAAKRZSUmJzjrrLK1Zs0YHDhxIhn7/9re/yev1yu/3KxAIqLy8nJ/bAADMcIlEQuvXr1egqEhzKjx6Zh/ngAAAAIDJ1NTUpEgkourq6nSXAgBIEzr6AgCAcbGrM6bH67oUjlvHdKHHkORxGLqo2sutGqe53t7eQd2Ah+oQ3NvbO2A7h8ORUodgt9tNsAgAgElkWZb27t2bDP2Gw2Hl5eUpEAgoEAiopKSEn80AAMxApmnKNE3ZbDbZbDbOAQEAAACT7K9//auefPJJ3XLLLXI6WTsDwGxE0BcAAIybaMLU8/vCerOld8ydXfrHLy906awKj1x228QUiSknFoulFAiORqMDtrPb7SkFgjMzMwkdAQAwzkzTVF1dnYLBoDZt2qRIJKKioqJkp9+ioqKU92VZFj+rAQBIs7vuuksrV67UqaeeOuT7R/685hwQAAAAMHl+97vfqb29XR/72MfSXQoAIE0I+gIAgHHXEUtoQ3NUbzRHFU0cWmrYJJmHjTn8a7fd0PFFbq0ocivXaZ/kajFd9PX1pRQIjkQiA7az2+3J0O9IgeCsrCxCRgAAHIVEIqGdO3cqFApp06ZNisViKisrS4Z+8/LyRtz+1Vdf1fXXX6/Vq1friiuu0DnnnDM5hQMAAEnS7bffrt/97ne65557FAgExrQt54AAAACA8bN161bZbDYtXLgw+ZplWfrWt76lZcuWcd4MAGYxgr4AAGDCJCxLTZGEGnriauiJKxw3FTctOWyGPA6byrIcKstyqDjTLjsBS4yTeDyeUiC4p6dnwHY2my3lQLDNRrchAACGEo/HtW3bNoVCIW3ZskXxeFwVFRW64oor5PV6h/1QzZ49e/TEE0/oV7/6ld7znvfo85///CRXDgDA7LR+/Xp96lOf0rp165Sdna3W1tbkh3bGgnNAAAAAwLF7+OGH1dLSouuuuy75Wmtrq773ve/pgx/8oGpqatJYHQAgnRzpLgAAAMxcdsNIXsgBJovD4VBeXt6o3QMTicSQgeD+53v37lV3d7fC4fCA7QzDSCkQ7PF4CAQDAGYdh8OhpUuXaunSpYrFYtq6dau2b98+YshXkubMmaPrr79eZ555pj72sY/p+uuvV2dnp370ox+pvb1dV111lU4++eRJPBIAAGYHy7JUWVmp7OxsPfbYY7rrrrvU2NiolStX6uqrr9YZZ5yR0n44BwQAAAAcu8rKSgWDQfX19SkjI0OSVFdXJ0mqqqoaMNayLO5UCQCzCGdcAAAAMCvZ7Xbl5uYqNzd3xHGJRELhcHjYQPD+/fuTgeDDb5ZhGIY8Hk9KgWC7nduVAgBmHqfTqUAgoEAgoJFuKPXWW2/p3//937Vw4UIZhqGenh5lZGTo3e9+ty6//HKVlJToE5/4hH76059q9erVk3gEAADMfIWFhYpEIqqvr9fPf/5zfelLX1J5ebm+9rWv6b777ks56AsAAADg2M2ZM0emaWrfvn2aO3eupENB37KyMrnd7uS4zs5O/eIXv9B5552nRYsWpalaAMBkIugLAAAAjMButysnJ0c5OTkjjjNNc8RAcENDg7Zv367u7u5BYadUAsHZ2dkEggEA09ZI3UWWLVumf/u3f9PNN9+sd77znXr22Wf1rW99SyUlJfriF78oSSotLdX3v/99gr4AAIyDxx57TDt37lQ4HNatt96qnJwcnXHGGbrqqqt02mmnSZK+/OUv6/rrr1d7e/uod8wBAAAAMD5KSkrkdDq1Z8+eAUHfxYsXJ8fEYjE98MAD6uvrk8/nS1OlAIDJRtAXAAAAGAc2my0Zzh2JaZrq6ekZNhDc2NionTt3qru7W6ZpDtg2KytrUPh3qECww8EyHwAw9fX29srlckmSTjzxRD300EO66qqrtGfPHj399NO69dZbk2N3796teDwu6dDPUpvNlpaaAQCY7n7zm9/oG9/4ht7//vdr3bp1CgaD+sUvfqGLL75YP/rRj/TpT39aZWVluvfee5WZmTnqXXAAAAAAjB+bzabKykrt2bNHktTR0aH29nZVV1dLkizL0sMPP6zW1lZde+21ys7OTme5AIBJRAIAAAAAmEQ2my3ZuXekT1pbljViILi5uVm7du1SV1fXoEBwZmZmSoHgjIyMiT5cAACG9Yc//EEZGRm65JJLJEmbNm3Stm3b5Ha7tWfPHl1wwQXJsRs2bND73/9+SSLkCwDAUXrxxRf17//+73r00Ue1aNEivf/979eNN96oeDyup556Spdccok++clPyuVyqbW1VY888siIXfkBAAAAjL85c+Zo/fr1sixLdXV1kqSqqipJ0rPPPqstW7boyiuvVGlpaTrLBABMMoK+AAAAwBRkGIY8Ho88Ho/KysqGHWdZliKRyKAwcP/Xra2tqqurU1dXlxKJxIBt3W73kIHgI4PBTqdzog8XADALWZalb37zm7r99tu1ePFi7d+/X//v//0/vf3228lbE0rS5s2b1dbWpmXLlqWvWAAAZoCMjAzdcMMNWrRokSRp3rx5amlp0WuvvaZ3vetdevjhh1VfX6/29nYtXLhQWVlZaa4YAAAAmH2qqqr0wgsvqLm5WXV1dSoqKpLH49Hf//53vfzyyzrvvPNUU1OT7jIBAJOMoC8AAAAwjRmGoaysLGVlZY346W3LshSNRocNBLe3t2vPnj3q6upK3hq9n8vlGrYrcP9rXq+XQDAAYEw+8IEP6AMf+IB2796tp556SmeeeaZqamq0du3a5O0IJemOO+7QokWLtGLFigHbHzhwQGVlZXQaBAAgRSeffLL8fr8kKR6Py+Vyqby8PPm75AMPPKALLrgg2S0MAAAAwOSrqKiQYRjas2eP6uvrVV1drd27d+vxxx/XqlWrdNJJJ6W7RABAGhiWZVnpLgIAAADA1GBZlnp7e4cNBB/+Wl9f34BtnU7nkIHgI587nU5CWQCAYYXDYV1xxRVqaGjQ/Pnz1dnZqe9+97tasmSJpEM/q9ra2vS9731POTk58vv9CgQC8vl8/HwBACBFpmnKZrPp0ksv1Xe/+109/fTT+s53vqN169apsLAw3eUBAAAAs9qPfvQjFRYWKhQK6ZxzztGLL76o8vJyfehDH5Ldbk93eQCANCDoCwAAAGDMLMtSLBZLKRAci8UGbJuRkZFSh2CXy0VgCwBmsQ0bNujNN9/UZZddJo/HM+A9y7JUX1+vYDCoTZs2KRwOKz8/X4FAQIFAQCUlJWmqGgCAiZGwLDVFEmroiauhJ67uuKmEacluM5TtsKksy6GyLIeKM+2yH/F7lGVZw/5u9ZGPfESNjY3q7OzUQw89pIqKisk4HAAAAAAafp3f0tSo7pZG9TbvV3YiqozeLl137bVyu93pLhkAkCYEfQEAAABMqFQDwb29vQO2czgcKQWC3W43gWAAmMVM09Tu3buTod9oNKri4mIFAgH5/X66EgIAprWOWEIbmqN6ozmqaOLQ5RybJPOwMYd/7bYbOr7IrRVFbuU67err65PNZpPNZhvwe1P/paE1a9Zo+/btevXVV1VZWTkpxwQAAADMdqOv8y1ZpikZh9bxLpu0sjgzuc4HAMw+BH0BAAAATAl9fX0pBYKj0eiA7ex2e0qB4MzMTALBADDDJRIJ7dixQ8FgUFu2bFEsFpPP55Pf75ff71deXl66SwQAICXRhKnn94X1ZkuvDEljuZDTP355oUu+zj0KvfmGPvShD8myLNlstgFjn3zySc2dO1dLliwZx+oBAAAADGW81vlnVXjksttG2wQAMIMQ9AUAAAAwrfT19Q0K/w4VCI5EIgO2s9lsKQWCs7KyCAQDwAzQ19enbdu2KRQKaevWrYrH45ozZ04y9JudnZ3uEgEAGNKuzpgeq+tST9wa04X/IxmSbPFeubat14Jcl8477zzZ7XZ+3wEAAADSYDzX+R6HoYuqvZqX4xyv8gAAUxxBXwAAAAAzUjweTykQ3NPTM2A7m80mj8eTUiD4yG5YAICpqbe3V1u2bFEoFNL27dtlmqbmzp2rQCCgpUuXKisrK90lAgAgSXq9KaJn9obH3N1rOJZpyrDZpI1/0XtWLNTixYtls9n4XQYAAACYROO9zu/fzzmVHq0qzhyHPQIApjqCvgAAAABmtUQikVIgOBwOD9jOMIyUAsEej4eL6AAwhUQiEW3evFnBYFC7du2SYRiaP3++AoGAFi9eLLfbne4SAQCzVP/F/4nS99YLCuTY9N73vlc2m43OvgAAAMAkmOh1PmFfAJgdCPoCAAAAQApM0xwU/u1/fmQg+Mhfs1INBNvt9jQdHQDMTuFwWBs3blQoFFJdXZ3sdrsWLVokv9+vmpoaOZ3c/hAAMDl2dcb04I7OCZ/nAwtyuL0vAAAAMElY5wMAxgtBXwAAAAAYR6ZpKhwOj9ohuLu7e1AgOCsra9RAcHZ2NoFgAJgAnZ2dCoVCCoVC2rdvnzIyMrR48WL5/X4tXLhQDocj3SUCAGaoaMLUTza2qSdujcttfIdjSPI4DH28Nl8uO3cdAQAAACYS63wAwHgi6AsAAAAAaWCapnp6ekbtENzd3S3TNAdsm5mZOWIguP85oTQAODptbW0KBoMKhUI6ePCgXC6XlixZokAgoHnz5vGBCwDAuPpTfZfeaumd0Iv//QxJywpduqDKOwmzAQAAALMX63wAwHgi6AsAAAAAU5hlWSkHghOJxIBt3W53SoHgjIyMNB0dAEx9TU1NCoVCCgaDamlpUWZmpmpraxUIBFRVVSWbjU4pAICj196b0N0b2yZ93k/685Xr5IMrAAAAwERgnQ8AGG8EfQEAAABgBrAsS5FIJKVAcDweH7Cty+VKKRDsdDrTdHQAkH6WZengwYMKBoMKBoPq6OhQdnZ2MvRbWVkpwzDSXSYAYJp5YX9Yrx6MTEqXr36GpJNLM3VmuWcSZwUAAABmD9b5AIDxRtAXAAAAAGYRy7IUjUZHDQR3dXUNCgQ7nc6UAsEulytNRzfQunXr9Nxzz+mmm25SXl6edu/erby8PBUWFqa7NADTnGVZ2rdvn4LBoEKhkLq7u5Wbmyu/369AIKCysjJCvwCAUSUsS997u1XRxPCXaToaD+jJ735VW15eq75oRIVz5umy/7hTlbUrkmMad27Vk3d+VTv//rLMeEIl82t01R0/V56vctj9uu2GbjyuQHZ+XgEAAADjajzW+b093Xryzv/UxnV/Uk9HmwrKq3TqBz+uky776Ihzs84HgJnLke4CAAAAAACTxzAMZWZmKjMzU8XFxcOOsyxLvb29IwaC9+/fr66uLvX19Q3YNiMjI+VA8EQF4TZt2qTrr79e3d3d+uAHP6iOjg6dfvrpysnJUWZmpvLz83XzzTfrve9974TMD2BmMwxDlZWVqqys1Lnnnqv6+noFg0Ft2LBBL7/8sgoLC5Oh35G+1wIAZremSGLEi/+Rznbdfc1FWnDCabrme7+WJ79QzfU7lenNTY5p2bNLd3/s3TrxfR/W2Td8Xi6PVwd3bpFjlA/fRROWmiIJlWVxmQgAAAAYT+Oxzn/8m/+uHX99UR/42g+VXz5H215Zpz984/PyFpep9szzh90363wAmLn4zg4AAAAAGMQwDLndbrndbhUVFY04drRAcENDg7q7u9Xb2ztgO4fDkVIg2O12jykQ/Nprr+nXv/61LrroIjU1NSk3N1d1dXU65ZRT9P3vf18+n0+tra3KyMg4qr8bADiczWbT3LlzNXfuXF1wwQXatWuXQqGQ1q9frz//+c8qKSlRIBCQ3+9XQUFBussFAEwhDT3xEd9/4d47lVdarsu+8r3kawUV1QPGPP39/0+LTztbF3zmy8nXCufMS3l+AgAAAADA+BqPdX79W3/VyvdcqfknnCZJWv3+q7X+d/dpb/DvIwZ9++dnnQ8AMw/f2QEAAAAAx8TlcsnlcqmwsHDEcbFYbMRAcGNjo7q7uxWNRgdsZ7fbB4V/8/PzdfLJJw+aY8eOHfrVr36lU045RV6vVz/60Y/k9Xp14MABtbe3q6GhQT6fj7AdgAlht9u1cOFCLVy4UBdddJF27NihYDCoF198Uc8995zKy8vl9/vl9/uVm5s7+g4BADNaQ09cNknmMO9veuEpLTplje7//LXa9foryikp08mXX6vVl35EkmSapja/9IzO+Kcbdc8/X679W4LKr6jSO6+5Sf41F444t02jBxAAAAAAjN2xrvMlqWrZidr0wpM64X0fUk5xmXb+7S9qrt+hd//Lf444N+t8AJi5CPoCAAAAACaF0+lUQUHBqCHbvr6+EQPBzc3NamhoGBT0tSxLd911l5YtW6YPfvCDuu+++1RVVSWv16ucnBxFo1F97GMfk8vl0s0336wrrrhiIg8XwCzncDi0ePFiLV68WLFYTNu2bVMwGNRzzz2nZ555RlVVVfL7/aqtrVV2dna6ywUApEF33Bz24r8kte6r0/qH7tXpH75Ba679jPaGNujRO26TPSNDq95zpcKtTYr1hPXCz+/Uuf98q86/6d+19eXndP/nPqrrfvyw5q86bdh9m5LC8ZFmBwAAAHA0jnWdL0nvveXr+v3XPqtvnL9MNodDhmHTpV/6luatOnXEuVnnA8DMRdAXAAAAADClZGRkKD8/X/n5+WPabtu2bXruuef0hz/8QS+88ILeeustOZ1OPfroozrrrLP08ssvS5Jee+013XzzzcrPz9c555wzYB+WZamhoUFer1cej0eGYYzbcQGYvZxOZ7KTb29vrzZv3qxQKKSnnnpKTz75pObOnatAIKClS5cqMzMz3eUCACZJwrRGfN8yTVXUrtB5N35RklS+ZJkadmzS+ofu06r3XCnLOrR97TvP1+lX3XBozOLjVP/mX7X+oftGDPpKUnyU+QEAAIDZwrIsJRIJ9fX1DXrEYrEhXx/u0VCxQsopGX6uUdb5kvTyr3+qPW+/rqu//Svl+Sq16++v6A/fuEU5xWVaeNKZIx4L63wAmJkI+gIAAAAAZoSamhqtXbtW27dvV1dXl/7zP/9TsVhMO3bs0Nlnny1JSiQSWr16taLRqPbv3z9oH9FoVD/+8Y8lSYZhKDs7W16vd9Cfhz/3eDyy2WyTeqwApi+Xy6Xly5dr+fLl6unp0aZNmxQKhfTYY4/p8ccf14IFCxQIBLR48WK5XK50lwsAmCCWZclKxCVZkob+cJm3qFQl82sGvFYyr0ahtY9JkrLyCmRzOAaNKZ5Xo7oNr45ag8PGh9oAAAAw9VmWpXg8PubAbaqP/v2myuFwKCMjY/iH3aaYZUnDNJEYbZ3fF43o6bv+S1d9814tece5kiRfjV8Htgb15198f9SgL+t8AJiZCPoCAAAAAGaMoqIiFRUVSZK+9a1v6aqrrtInPvEJPffccyorK9OCBQv09ttva//+/QoEAoO2dzqduu6669TV1aXu7m51dXUln+/bt0/d3d3q7u4esI1hGPJ4PKMGgrOzswkEAxggKytLq1at0qpVq9Td3a2NGzcqGAzq4YcflsPh0KJFi+T3+1VTU6OMjIx0lwsAGCPLshQOh9XS0pJ8tLa2Jv80/KfLVrVUhs0+5PbVK1areff2Aa811+1Qnm+OJMmR4VRl7fFq2r1j4Jj6/xszHJskj4O1KQAAAI6NaZpHHazt6+tTPB4ftXtuPB5PuZ4jQ7dOp3PA11lZWcmg7pHvpfoY7S5wT9Z3662WqMxh3h9tnZ+Ix5WI98k44lyyzWZP3tVjOKzzAWDmIugLAAAAAJhRLMuSYRi64YYbVFFRoXg8rnvvvVdbt25VPB6Xy+XSj370Ix1//PGDtrXb7aqoqBhx/6ZpKhwODwgBH/78wIEDyUDwkSdeUw0E2+1Dhz0AzFzZ2dlavXq1Vq9erY6ODoVCIYVCIT300EPKyMjQkiVL5Pf7tWDBAjkcnNIDgKkkGo0OGeZtaWlRLBZLjsvLy1NBQYHmzp2rlStXqiPHpzd6h1/3nfbhG3T3NRfq+Z99W8ed8z7tDb2h137/S13yxW8mx5xx9af0wBc+rnkrT9H8E07T1pef0+Y/P6WP//iREWs2JZVl8fMEAABgJkskEikHbo/2kUgkUqrFMIwRg7Uul0vZ2dljDt0evk+73T5qCHcylGU5tKFl+PdHW+e7s72at+pU/ek7X1GGK1N5vkrtev1l/f3x3+iiz351xLlZ5wPAzGVYo33cAwAAAACAGSQej09KSM40TfX09AwbCD78zyN/Nc/KykopEEzYD5j5WltbFQwGFQqF1NjYKLfbrSVLligQCGjevHl0CgeASdLX1zcgwHv4856enuS47OxsFRYWqqCgQIWFhcnnBQUFg9ZuDT1x3bulfcR5N/35aT1119fUUr9T+eVVOv2qT2r1pR8ZMOZvj9yvdT//rjoaD6i4eoHOvuEW1b7zglGP6aOL8wgBAAAApIFlWYNCuOMRuj3yYZrD9ZQdyG63H1Vn29G65x7+mE2NDcZjnd/VfFBPfe9r2vbqOvV0tivfV6kTL71ap3/4hlHDzKzzAWBmIugLAAAAAEAaWZaVciD4yJPzmZmZowaCvV4vgWBghmhsbEyGfltbW5WVlaXa2loFAgFVVVVNia41ADCdJRIJtbW1DRno7ezsTI5zu90DQryHP3e5XKnPZ1n63tutiiYm/zKN227oxuMKZOdnBwAAwACWZR11sDYWiykej6fUPTdVDodj1FDtkWNGCtwO9eBDxOOLdT4AYCIQ9AUAAAAAYBqwLEuRSCSlQPCRt8xzu90pBYIzMjLSdHQAxsKyLDU0NCgYDCoYDKqzs1Ner1d+v1+BQEDl5eWEfgFgGJZlqaOjY1CQt7W1VW1tbck7LTgcjiHDvIWFhcrMzBy377Mv7A/r1YMRTeaFGkPSyaWZOrPcM4mzAgAAHDvTNFMO3A71en8Id6TuufF4POV6jjZYm2p3XIfDwe/30xTrfADAeCPoCwAAAADADGJZlqLRaEqB4CMvXLhcrpQCwU6nM01HB+BIlmVp7969yU6/4XBYeXl5ydBvaWkpFwUBzDqWZSkcDifDvEcGevs/FGWz2ZSfnz9kmNfr9U7K98+OWEI/DLVN+DxH+qQ/X7nO2XP7ZAAAMLEsyxo2hDtSqHasjyM/3D4cwzDGNXw71L7sdju/b2NYrPMBAOONoC8AAAAAALOQZVnq7e1NKRB85O0EnU5nyoFgLngAk8c0TdXV1SkYDGrTpk2KRCIqKipKhn6LiorSXSIAjKtoNDpkmLelpUWxWCw5Li8vb0CQt/95Xl7elLhN8Z/qu/RWS++kdPsyJC0rdOmCKu8kzAYAAKYCy7KUSCTGNXA7VJA31eiJ3W5PqZPtWEK3Q4VwgXRjnQ8AGE8EfQEAAAAAwLAsy1IsFkspEHx4oEY6dPvCVALBLpeLQDAwzhKJhHbu3KlQKKRNmzYpFouptLRUgUBAfr9f+fn56S4RAFLS19c3IMB7+POenp7kuOzs7EGdeQsKClRQUCCHw5HGIxhdb8LUTza2KRy3JjQEYEjyOAx9vDZfLnv6A84AAODQeZejCdX2P+LxeErdc1N1ZMB2qFBt/5ij7Zg7FT5oBUwG1vkAgPFE0BcAAAAAAIyL3t7eQeHfoQLBvb29A7ZzOBwpBYLdbjeBYOAoxONxbdu2TaFQSFu2bFE8HldFRYUCgYBqa2uVk5OT7hIBzHKJREJtbW1DBno7OzuT49xu96CuvP3PXS5XGo/g2O3qjOnBHZ2jDzxGH1iQo3k5zgmfBwCAmcA0zTGFbo/mEY/HU67naIO1o3XPPTzAy3kXYHyxzgcAjBeCvgAAAAAAYFLFYrGUAsHRaHTAdna7PaVAcGZmJhemgGHEYjFt3bpVwWBQ27dvVyKRUHV1tfx+v2pra+XxeNJdIoAZyrIsdXR0DArytra2qq2tLXmr54yMjGSI9/Awb2Fh4Yz/Gf96U0TP7A1P2P7PrfRoZXHmhO0fAIDJYlnWgBDueARuh3okEomU6jEMY1xCuCPtw263z+h1EDCTsc4HAIwHgr4AAAAAAGBK6uvrSykQHIlEBmxnt9uVnZ09aiA4KyuLi2SY1aLRqDZv3qxgMKidO3dKkubPny+/36+lS5fK7XanuUIA041lWQqHw8kw75GB3v6wjM1mU35+/pDdeb1e76z++dwfAjCkcbm9b/9+uPgPAJgslmUpHo8fVbA2FosNu+2RYd5UYw52uz2lTrapBm6HC+ECwEhY5wMAjhVBXwAAAAAAMK3F4/GUAsE9PT0DtrPZbCkHgm02W5qODpgc4XBYmzZtUigU0u7du2Wz2bRw4UIFAgEtXrxYTie3fwTwf6LR6JBh3paWFsViseS4vLy8ASHe/ud5eXn8bB3Brs6YHq/rUjhuHVMIwJDkcRi6qNrLbXwBAJIOhXBTDdwO9Xo8Hk+pe26qHA7HuHTCHenBmgPAVME6HwBwLAj6AgAAAACAWSGRSKQUCA6HB95KzzCMlALBHo+HC4iYEbq6uhQKhRQKhbR37145HA7V1NQoEAho4cKFysjISHeJACZBX1/fgADv4c8P//BMdnb2oK68hYWFys/Pl8PhSOMRTG/RhKnn94X1ZkvvmLt+9Y9fXujSWRUeueysTwBgOjBNc0yh26N5xOPxlOsZzwDuUPtyOByzuos/gNmJdT4A4GgR9AUAAAAAADhMIpFQOBxOKRB8+GkVwzDk8XhSCgRzW09MF+3t7QqFQgoGg2poaJDT6dSSJUvk9/u1YMEC/i0D48w0TW3cuFGhUEilpaV65zvfOaHzJRIJtbW1DQjy9v/Z2dmZHOd2uwd15e1/7nK5JrTG2a4jltCG5qjeaI4qmji07rBJMg8bc/jXbruh44vcWlHkVq6T79EAMB4sy5JpmuMauB0qyGua5ujF6NDdaVIJ1TocjpRDt0c+7HY7IVwAmECs8wEAY0XQFwAAAAAA4CiYpjlkILj/68ODwUeefkklEJydnU2IElNKc3NzMvTb3Nwst9utpUuXKhAIaO7cuXS0BsZg+/bt2rZtmzZu3Kji4mJdddVVstlsuv/++/X1r39dCxYskNPp1JlnnqlPf/rTMk3zqP8fsyxLHR0dQ3bmbW9vT/6MysjISIZ4j+zOm5mZSdgnzRKWpaZIQg09cTX0xBWOm4qblhw2Qx6HTWVZDpVlOVScaZed/1bAlJJIJNTT0yPLspSTkyPp0B0U3nrrLUUiEXV0dMjtduukk05SUVFRmqudfizLUjweH3Oo9vAOt6l0z031krrdbk+pk22qgdvhQrgAgJmBdT4AIFUEfQEAAAAAACaQaZrq6elJKRB8ZAenrKysIYPAR77GrdExmSzLUmNjo4LBoEKhkNra2uTxeFRbW6tAIKA5c+YQCARGsG3bNn30ox9VRUWFysvLFY1GlZmZqa9//es688wz9fOf/1y1tbV66aWXdOWVV2rHjh2jds21LEvhcDgZ4D2yQ28ikZB0qANgfn7+kN15vV4v/+8CwDjr6urSBz/4QT3xxBNauXKlnn/+eXm9Xv3xj3/UxRdfrPe9733KyMhQTU2NrrvuOs2dOzfdJY8r0zRHDOGOV4fcVB1NqHa0x+FhXYfDwYffAAAAAEwIgr4AAAAAAABTgGVZQwaCDw8C9792ZCA4MzMzpUBwRkZGmo4OM5VlWdq/f7+CwaA2btyozs5O5eTkyO/3KxAIyOfzERwERvGnP/1JH//4x/Xmm29qwYIFam9vVyKRkN1u13HHHac777xTa9asGbBNMBhUU1PTgO68sVgs+X5eXt6gIG9BQYHy8vIIIAHAJIrFYtq9e7e2bt2qb3zjG3riiSeUk5OjZ555RrfffrueffbZtNVmmua4B26PfMTj8ZRqMQxj3EO3Q3XRZV0KAAAAYLqi3QsAAAAAAMAUYBiGPB6PPB7PiOMsy1IkEhk2ENza2qq6ujp1dXUlOzj2c7vdKQWCnU7nRB4qZhDDMFRRUaGKigqde+652rNnj4LBoN566y298sorys/PT4Z+S0pKCFcAh/nb3/6mdevW6YknntCdd96prq4ulZeXa//+/SovL5ckzZ8/X7t27dKZZ545IKD78ssvq6urS4WFhSorK5Pf708GevPz8+n0DgBThNPpVE1NjZqamhQOh5Pr86ysLG3ZskW//e1vlZGRoUWLFsnv9w+5j/b2dkWj0ZSCtbFYbNgOukeGeY/88OBwbDbbiKHazMxM5eTkyOFwpBS4Hepht9tZJwIAAADACDjbBwAAAAAAMI0YhqGsrCxlZWWptLR02HGWZSkajQ4bCG5vb9eePXvU1dU1qNOWy+UaNRDs9XoJBGMAwzBUVVWlqqoqnX/++dq9e7eCwaD+9re/6aWXXlJxcXEy9FtYWJjucoG0sSxLhmFo/fr1qqurU1lZmZ5//nn5fD6VlZVp27ZtyaCv0+lUS0vLoC6811xzDV3aASANLMsaNkhbVlY27PrY4/Gor68vGfT1+XyaN2+e/vCHPygSicjj8eiGG27QqaeeOmjbRx55RHV1dUPu1263jxiq9Xg8x9Qd1+FwyG63j99fIAAAAADgqBiWZVnpLgIAAAAAAADpYVmWent7hw0EH/5aX1/fgG2dTmfKgWA6dM1eiURCO3bsUCgU0ubNmxWLxeTz+eT3++X3+5WXl5fuEoEJYVmWTNNMKSD17ne/W+9973v12muvqaKiQl/5ylckSe9///u1cuVK/du//VsyIAwAGJppmoNCuEd2sR2Px3A+8YlPyOfzDfne1q1b9Z73vEd//vOfVVpaqv7Ls/3f12+//Xb9/ve/1/r162Wa5oAPeBw8eFCJRGJQENfhcAz6IAgAAAAAYGaioy8AAAAAAMAsZhiG3G633G63iouLRxw7VCC4/+vu7m4dOHBAXV1disViA7bLyMhIKRDscrkIsc1AdrtdNTU1qqmpUV9fn7Zt26ZQKKR169bp2WefVWVlpQKBgGpra+X1etNdLjAmlmUpHA6rpaUl+WhtbU3+efHFF6u2tnbUIJbH41F9fb2uuuoq3XHHHfrpT3+q5uZmZWRk6NJLL5Ukvj8CmNZM05yQ0O3hYd7+brmjMQxjxE62/Xe3cDgcQ3a5HW67kT68lJOTI8uy5HA4kjUcbtWqVfrBD34w5LYj3cUDAAAAADA7EPQFAAAAAABASlwul1wul4qKikYcF4vFRuwQfPDgQXV1dam3t3fAdg6HI6VAsNvtJvA2TWVkZKi2tla1tbXq7e3Vli1bFAqF9PTTT+vJJ5/U3Llz5ff7VVtbq6ysrHSXCyRFIpFkgPfwMG9LS8uADzfk5eWpsLBQc+fO1apVq1ReXj7o+5VlWdqzZ4+CwaC6urr0yiuvyDAMfeQjH9HixYuVSCT07W9/Wz6fT1dffbWWLl062YcLYBaxLEuJRGLModr+R6oddE3TTKkem802Yqg2MzNTOTk5cjgcI4ZuR3rY7fZJX0v29vYqHA5r48aN8vl8ys/P1/r16+V2u9Xc3Kw//OEPuvnmm5N/BwAAAAAAHM6w+u8NAwAAAAAAAEyivr6+EQPB/a9Fo9EB29nt9pQCwZmZmQSCp4lIJKLNmzcrGAxq165dkqQFCxbI7/dryZIlcrvdaa4Qs0EsFlNra+uAjrz9Yd6enp7kuOzsbBUWFqqgoECFhYXJR35+frJT42hefPFFffnLX9bChQtVU1Ojd77znTrhhBMm6tAATFOWZQ0K0qYSqh3rI9VLhUN1uD3Wx+FhXYfDIbvdPsF/q5Pvox/9qNauXau+vj5lZ2ervLxc999/vz7xiU8oKytLbrdbq1ev1k033ZTuUgEAAAAAUxRBXwAAAAAAAExpfX196u7uHjUQHIlEBmxns9lSCgRnZWURCJ5C+rvdhUIh1dXVyW63a+HChQoEAqqpqZHT6Ux3iZjGEomE2traBgV5W1tb1dnZmRzndruTAd7DA70FBQVyuVxpPAIAU4VpmskQ7ngFbod6pGq8Q7dHPhwOB51mAQAAAABIE4K+AAAAAAAAmBHi8XhKgeDDO3NKhwLBHo8npUAwAZfJ1dnZqVAopFAopH379ikjI0M1NTUKBAJauHBhyt1TJ0PCstQUSaihJ66Gnri646YSpiW7zVC2w6ayLIfKshwqzrTLTrB8Qpmmqc7OzgEh3v7n7e3tyc6VGRkZyRDvkd156QgOTG+JRGLMgdrDw7pDddE9MsybSCRSqsUwjJRCtYd3yx0pcDtcCJfvWQAAAAAAzFwEfQEAAAAAADCrJBKJlALB4XB4wHaGYaQUCPZ4PASCJ0BbW5uCwaBCoZAOHjwol8ulJUuWyO/3a/78+Ud9q2/LstTQ0CCfz3dU23fEEtrQHNUbzVFFE4dOtdokmYeNOfxrt93Q8UVurShyK9c5825PPlksy1I4HE4GeA8P9La2tiYDeDabTQUFBYO68hYWFsrr9RKMAyaZZVkphXCH65Abj8dT6p5rmuboxejQ94ixhmrH2h3XZrPxvQYAAAAAABwTgr4AAAAAAADAEEzTTDkQfOQptlQDwUcbTp3tmpqaFAqFFAwG1dLSoszMTC1dulSBQEDV1dVjClofOHBAP/7xj3XWWWfpHe94R8rbRROmnt8X1pstvTIkjeUka//45YUunVXhkctOMHw4kUhkQEfew5/HYrHkuLy8vEGdeQsKCpSXl0fwHkiRZVmDOtmmEqod6yPVy1KHd7gdj8DtUF1w+TkMAAAAAACmA4K+AAAAAAAAwDEwTVPhcHjUQHB3d/egcFNWVtaogeDs7GyCSMOwLEsHDx5UMBhUMBhUR0eHsrOzVVtbq0AgoMrKypS6KL7wwgtat26dzj77bJ122mmjjt/VGdNjdV3qiVtjCvgeyZDkcRi6qNqreTnOY9jT9BaLxdTa2jpkoLenpyc5Ljs7e1CYt7CwUPn5+XI4HGk8AmDimaZ51MHaWCw2KMA7VJg3Ho+nXE8qwdqhgrpj6Z5LF1wAAAAAAIBDCPoCAAAAAAAAk8A0TfX09KQUCD7yluOZmZmDwr9DBYJnc9jRsizt27dPwWBQoVBI3d3dys3Nld/vVyAQUFlZ2Yihseeee04vvviizj33XJ1yyinDjnu9KaJn9obH3MV3OP37OafSo1XFmeOwx6kpkUiora1tUFfe1tZWdXZ2Jse53e4BHXkPf+5yudJ4BMDwEonEmEK3R77WH8IdqXtuIpFIqRbDMI4qVDuWh8PhIIQLAAAAAAAwiQj6AgAAAAAAAFOIZVkpB4KPDH653e6UAsEZGRlpOrrJYZqm6uvrFQwGtWnTJvX09KigoECBQECBQEDFxcWDtrEsS2vXrtVf/vIXnX/++TrppJMGjekP+U6UsYR9Y7GYnM6p1QXYNE11dnYmQ7yHh3rb29uTHa0zMjIGhXj7n2dmZhIgxLixLGvYEO5IodqxPo78cMZw7Hb7uIdujwzz2mw2/h8CAAAAAACYYQj6AgAAAAAAANOQZVmKRCIpBYKPvB27y+VKKRA81YKkR8M0Te3atSsZ+u3t7VVJSUmy029BQUFyrGVZeuaZZ/TKK6/owgsv1Iknnph8b1dnTA/u6BxqinH1gQU5mpcz/N97X1+fnnnmGf3tb3/TzTffLK/XO+E1Hc6yLIXD4SHDvK2trcnwuc1mU0FBwZCBXq/XSxARsiwrpU62x/pI9RKIw+EY18DtUA+bzTbBf6sAAAAAAACYiQj6AgAAAAAAADOYZVmKRqOjBoK7uroGBYKdTmdKgWCXy5WmoxubeDyuHTt2KBgMauPGjTJNU8XFxVqxYoX8fr9yc3NlWZaeeuoprV+/Xu9+97u1atUqRROmfrKxTT1xSxN5MtWQ5HEY+nhtvlz2wYHA/fv36+GHH1Z7e7vOPvvsIbsOj5dIJJIM8B4e5m1paVEsFkuOy8vLG9SVt6CgQHl5eYQapzHTNMccqD08rNsf4B2pe+6R329Gkkqo9vCgbiqh2yMfhM8BAAAAAAAwVRH0BQAAAAAAACDLstTb25tSILivr2/AthkZGSkHgqdKmK6urk4PPfSQuru7ZRiGLMvSnDlzFAgEtHTpUr344ov661//qve+971qKFyot1p6JzTk28+QtKzQpQuq/q9Tr2maeumll/TCCy+otLRUl1xyiWKxmPbu3avVq1cf9d9pLBZTa2vrkIHenp6e5Ljs7OxBYd7CwkLl5+fL4XAc6yFjjBKJRMqB26N99HdmHo1hGEcVqh1Lh1y73T5lvm8AAAAAAAAA6UDQFwAAAAAAAMCYpBII7u7uVm9v74DtHA5HSoFgt9s9KcG+eDyul156SS+++KIyMzOVl5enAwcOyLIsVVdXy7Is1TW2ynXOR3Qogjt5PunPV67TrtbWVj3yyCPau3evTj/9dC1btkzr1q1TKBRSZWWlrrnmmhE75yYSCbW1tQ3Zmberqys5zu12D+jIe/jz6dKxOd0syxoUwh2P0O2RD9M0U6rHbrePa+B2qIfNZiOECwAAAAAAAEwwgr4AAAAAAAAAJkQsFkspEByNRgds53A4BgSAhwsEZ2ZmjkvIsLm5WY899pjq6urk9/tVWVmpLVu2aPfu3bIvOVn2hcfLGCZM29F4QE9+96va8vJa9UUjKpwzT5f9x52qrF0hSepqadSTd35V215Zp2h3p+Yef7Lee8vXVVS1YNh6DEknl2bK27BFTz31lLKysnThhRdq586deu211+TxeLRmzRotX75cNptNpmmqs7MzGeA9PNDb3t6u/lPAGRkZg0K8/c+zsrKO+e9xKrMs66iDtbFYTPF4PKXuualyOByjhmqHGjOW7rkjBcABAAAAAAAATB8EfQEAAAAAAACkVV9fX0qB4EgkMmA7u92eUiA4KytryEBwNBpVW1ub2tra1Nraqm3btmnv3r3JYKwlQ87zrpHhdA9Zd6SzXXd+8CwtOOE0nXT5NfLkF6q5fqcKK+eqcM48WZalH370QtkdDl342a/K7fHqpV/9UFtffk43/+4lOTM9w/6d2BJ9ijzxUy07LqDCwkK98sorSiQSCgQCKisrU0dHRzLM29raqkQicWg7m00FBQVDBnq9Xu+U7L5qmuaYQrdHvtYfwh2pe248Hk+5nqMJ1Y71MRX/OwAAAAAAAACYmgj6AgAAAAAAAJgW4vF4SoHgnp6eAdvZbLYBAeDm5ma1t7cPCH86nU4VFBTI6/Wqra1Nzc3NKpq/RF2Bdw1bz5N3flV1G17T9fc8NuT7TXU79K1LTtZnfvuiShcskXQo1Pr/nePXeZ++TSde8pERjzdv4/Nqrdumvr6+ZOfe5Ht5eYO68hYUFCgvL2/cOrlaljVsCHekUO1YH/0h5dEYhjGu4duh9mW32wnhAgAAAAAAAJhSHOkuAAAAAAAAAABS4XA4lJeXp7y8vBHHJRKJIQPB/c9jsdigMGcsFtPBgwcVDofl9XpVWVmpRjklyxo2+Lnphae06JQ1uv/z12rX668op6RMJ19+rVZfeijAm4j1Hqrb6UpuY7PZ5HA6tXvD+hGDvpZlqSkmuRwOLVy4UBUVFclAb35+vux2uxKJxIDAbW9vr/bu3Tsu4dv+/abaJ8Jut48YqvV4PHI4HGMK3Q4VwgUAAAAAAACA2YagLwAAAAAAAIAZxW63Kzc3V7m5uSOOSyQSCofDgwLBHR0dOnjwoFRUKFmmZAwdMG3dV6f1D92r0z98g9Zc+xntDW3Qo3fcJntGhla950oVz12kvLJKPXXX13TJv31TGZlZ+sv9d6vj4H51NR0c+SAsU7a8YlmNO7V//341NjYqHo8PCOOm6siA7ZGhWrfbnRxztB1zx6uLMAAAAAAAAABgIIK+AAAAAAAAAGYlu92unJwc5eTkyLIsNTQ06I033tCWLVsUjUblrTlVMWP4AKtlmqqoXaHzbvyiJKl8yTI17Nik9Q/dp1XvuVL2jAxd9T/36ndfvUlffeci2ex2LVh9hmpOe5c0Sqdcw7ApIztXhs2mjo4OSVJeXp7mzJmj8vJyeTyelLrjOhyOYTsSAwAAAAAAAACmPoK+AAAAAAAAAGatnp4evf3223rjjTd08OBBZWdna9WqVVqxYoXWtmdoV9fwnXO9RaUqmV8z4LWSeTUKrX0s+XVF7XL9v1+vU7SrU/F4TNn5Rfr+1eepcunykQszDMVNUzmZmTr11FPlcDi0ZcsWbd26VVu3btXcuXO1dOlSLVy4UFlZWcf0dwAAAAAAAAAAmLoI+gIAAAAAAACYVUzT1I4dO7RhwwZt2bJFlmVp8eLFOuuss7Rw4ULZbIe6+No7O0fcT/WK1WrevX3Aa811O5TnmzNorNubc+j9+h3at3GDzvnkF0ats6qyUq7OUq1du1aZmZk68cQTdf7552vPnj3atGmT/vSnP2nr1q368Ic/nOqhAwAAAAAAAACmGYK+AAAAAAAAAGaV3/zmN9qyZYtKSkr0rne9S8uWLZPH4xk0Ltthk02SOcx+TvvwDbr7mgv1/M++rePOeZ/2ht7Qa7//pS754jeTY95+5g/y5Bcpr6xCDds36dE7/k2177xANaesGbFGm6Qir0fnX3652tra9Oqrr+rll1/WSy+9pOXLl+v888+nky8AAAAAAAAAzAKGZVlWuosAAAAAAAAAgMmyd+9e2Ww2+Xw+GYYx7LgNzVE9uad7xH1t+vPTeuqur6mlfqfyy6t0+lWf1OpLP5J8/y8P/Fgv/uL76m5pkreoVMe/+wqd9fF/kSPDOWqd58/J1ooid/LrSCSiv/3tb3rttdfU3d2tmpoaXXjhhcrNzU3hqAEAAAAAAAAA0xFBXwAAAAAAAAAYQkNPXPduaU/b/B9dnKeyrME3ZYvH43r77bf1xhtv6LTTTtPixYvTUB0AAAAAAAAAYDIQ9AUAAAAAAACAISQsS997u1XRxOSfQnXbDd14XIHsI3QcBgAAAAAAAADMfLZ0FwAAAAAAAAAAU5HdMHR8kVuTHbU1JB1f5CbkCwAAAAAAAAAg6AsAAAAAAAAAw1lR5NZk9/O1/jEvAAAAAAAAAAAEfQEAAAAAAABgGLlO+//f3t2kWHWEARj+Tt9L/3hRB22D0IK4AvOzAyFOXG/GWUKSFYQMAkLMIAmajnT3zUAMQsTE6NW35XlmBw711bh4qZr7xwcf7FbfZWbuHx/Mzf3VB5oIAAAAAECZ0BcAAAAA4A0enG5ms152HvsuM7NZL/PgdLPjSQAAAAAAXBVCXwAAAACANzhY7c2ju9dnu+M525l5dPf6HKwc2wIAAAAA8IITYwAAAACAf3Hvxv58dWe3N+0+vLOZezf2dzoDAAAAAICrRegLAAAAAPAffHly9Hfsu7ynNV+u8/DOZr44OXpPqwIAAAAA8KlYttvtrl+cAwAAAAD4ZPzw2/P5+sff5+n5dt7lcHWZmc16mUd3r7vJFwAAAACA1xL6AgAAAAC8pbOLy/nmp6fz/S9/zjLzVsHvy//vHx/Mg9PNHKw8vAYAAAAAwOsJfQEAAAAA/qdfn1/Md0/O5tsnZ3N28eKodW9mLl/559Xvw9Uyn986nM9uHc7N/dUH3i0AAAAAAFeN0BcAAAAA4B1dbLfz8x8X8/jZ+Tx+dj5Pzy/n/HI7671lNuu9uX1tPbevrefkaDWrZfnY2wUAAAAA4IoQ+gIAAAAAAAAAAABA0N7H3gAAAAAAAAAAAAAA8E9CXwAAAAAAAAAAAAAIEvoCAAAAAAAAAAAAQJDQFwAAAAAAAAAAAACChL4AAAAAAAAAAAAAECT0BQAAAAAAAAAAAIAgoS8AAAAAAAAAAAAABAl9AQAAAAAAAAAAACBI6AsAAAAAAAAAAAAAQUJfAAAAAAAAAAAAAAgS+gIAAAAAAAAAAABAkNAXAAAAAAAAAAAAAIKEvgAAAAAAAAAAAAAQJPQFAAAAAAAAAAAAgCChLwAAAAAAAAAAAAAECX0BAAAAAAAAAAAAIEjoCwAAAAAAAAAAAABBQl8AAAAAAAAAAAAACBL6AgAAAAAAAAAAAECQ0BcAAAAAAAAAAAAAgoS+AAAAAAAAAAAAABAk9AUAAAAAAAAAAACAIKEvAAAAAAAAAAAAAAQJfQEAAAAAAAAAAAAgSOgLAAAAAAAAAAAAAEFCXwAAAAAAAAAAAAAIEvoCAAAAAAAAAAAAQJDQFwAAAAAAAAAAAACChL4AAAAAAAAAAAAAECT0BQAAAAAAAAAAAIAgoS8AAAAAAAAAAAAABAl9AQAAAAAAAAAAACBI6AsAAAAAAAAAAAAAQUJfAAAAAAAAAAAAAAgS+gIAAAAAAAAAAABAkNAXAAAAAAAAAAAAAIKEvgAAAAAAAAAAAAAQJPQFAAAAAAAAAAAAgCChLwAAAAAAAAAAAAAECX0BAAAAAAAAAAAAIEjoCwAAAAAAAAAAAABBQl8AAAAAAAAAAAAACBL6AgAAAAAAAAAAAECQ0BcAAAAAAAAAAAAAgoS+AAAAAAAAAAAAABAk9AUAAAAAAAAAAACAIKEvAAAAAAAAAAAAAAQJfQEAAAAAAAAAAAAgSOgLAAAAAAAAAAAAAEFCXwAAAAAAAAAAAAAIEvoCAAAAAAAAAAAAQJDQFwAAAAAAAAAAAACChL4AAAAAAAAAAAAAECT0BQAAAAAAAAAAAIAgoS8AAAAAAAAAAAAABAl9AQAAAAAAAAAAACBI6AsAAAAAAAAAAAAAQUJfAAAAAAAAAAAAAAgS+gIAAAAAAAAAAABAkNAXAAAAAAAAAAAAAIKEvgAAAAAAAAAAAAAQJPQFAAAAAAAAAAAAgCChLwAAAAAAAAAAAAAECX0BAAAAAAAAAAAAIEjoCwAAAAAAAAAAAABBQl8AAAAAAAAAAAAACBL6AgAAAAAAAAAAAECQ0BcAAAAAAAAAAAAAgoS+AAAAAAAAAAAAABAk9AUAAAAAAAAAAACAIKEvAAAAAAAAAAAAAAQJfQEAAAAAAAAAAAAgSOgLAAAAAAAAAAAAAEFCXwAAAAAAAAAAAAAIEvoCAAAAAAAAAAAAQJDQFwAAAAAAAAAAAACChL4AAAAAAAAAAAAAECT0BQAAAAAAAAAAAIAgoS8AAAAAAAAAAAAABAl9AQAAAAAAAAAAACBI6AsAAAAAAAAAAAAAQUJfAAAAAAAAAAAAAAgS+gIAAAAAAAAAAABAkNAXAAAAAAAAAAAAAIKEvgAAAAAAAAAAAAAQJPQFAAAAAAAAAAAAgCChLwAAAAAAAAAAAAAECX0BAAAAAAAAAAAAIEjoCwAAAAAAAAAAAABBQl8AAAAAAAAAAAAACBL6AgAAAAAAAAAAAECQ0BcAAAAAAAAAAAAAgoS+AAAAAAAAAAAAABAk9AUAAAAAAAAAAACAIKEvAAAAAAAAAAAAAAQJfQEAAAAAAAAAAAAgSOgLAAAAAAAAAAAAAEFCXwAAAAAAAAAAAAAIEvoCAAAAAAAAAAAAQJDQFwAAAAAAAAAAAACChL4AAAAAAAAAAAAAECT0BQAAAAAAAAAAAIAgoS8AAAAAAAAAAAAABAl9AQAAAAAAAAAAACBI6AsAAAAAAAAAAAAAQUJfAAAAAAAAAAAAAAgS+gIAAAAAAAAAAABAkNAXAAAAAAAAAAAAAIKEvgAAAAAAAAAAAAAQJPQFAAAAAAAAAAAAgCChLwAAAAAAAAAAAAAECX0BAAAAAAAAAAAAIEjoCwAAAAAAAAAAAABBQl8AAAAAAAAAAAAACBL6AgAAAAAAAAAAAECQ0BcAAAAAAAAAAAAAgoS+AAAAAAAAAAAAABAk9AUAAAAAAAAAAACAIKEvAAAAAAAAAAAAAAQJfQEAAAAAAAAAAAAgSOgLAAAAAAAAAAAAAEFCXwAAAAAAAAAAAAAIEvoCAAAAAAAAAAAAQJDQFwAAAAAAAAAAAACChL4AAAAAAAAAAAAAECT0BQAAAAAAAAAAAIAgoS8AAAAAAAAAAAAABAl9AQAAAAAAAAAAACBI6AsAAAAAAAAAAAAAQUJfAAAAAAAAAAAAAAgS+gIAAAAAAAAAAABAkNAXAAAAAAAAAAAAAIKEvgAAAAAAAAAAAAAQJPQFAAAAAAAAAAAAgCChLwAAAAAAAAAAAAAECX0BAAAAAAAAAAAAIEjoCwAAAAAAAAAAAABBQl8AAAAAAAAAAAAACBL6AgAAAAAAAAAAAECQ0BcAAAAAAAAAAAAAgoS+AAAAAAAAAAAAABAk9AUAAAAAAAAAAACAIKEvAAAAAAAAAAAAAAQJfQEAAAAAAAAAAAAgSOgLAAAAAAAAAAAAAEFCXwAAAAAAAAAAAAAIEvoCAAAAAAAAAAAAQJDQFwAAAAAAAAAAAACChL4AAAAAAAAAAAAAECT0BQAAAAAAAAAAAIAgoS8AAAAAAAAAAAAABAl9AQAAAAAAAAAAACDoLw6U802IYWiLAAAAAElFTkSuQmCC",
"text/plain": [
"<Figure size 3600x2400 with 1 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Set parameter Username\n",
"Set parameter LicenseID to value 2631888\n",
"Set parameter TimeLimit to value 1200\n",
"Set parameter LogFile to value \"gurobi.log\"\n",
"Set parameter Threads to value 20\n",
"Using license file /home/sfischer/Software/gurobi12.0.1_linux64/gurobi1201/gurobi.lic\n",
"Academic license - for non-commercial use only - expires 2026-03-06\n",
"\n",
"Gurobi Optimizer version 12.0.1 build v12.0.1rc0 (linux64 - \"Ubuntu 24.04.2 LTS\")\n",
"Copyright (c) 2025, Gurobi Optimization, LLC\n",
"\n",
"Read LP format model from file /tmp/30b17f419b0f4284b398e37052664ac5-pulp.lp\n",
"Reading time = 0.07 seconds\n",
"OBJ: 123791 rows, 45084 columns, 334004 nonzeros\n",
"\n",
"Using Gurobi shared library /home/sfischer/Software/gurobi12.0.1_linux64/gurobi1201/linux64/lib/libgurobi.so.12.0.1\n",
"\n",
"CPU model: Intel(R) Core(TM) i7-14700KF, instruction set [SSE2|AVX|AVX2]\n",
"Thread count: 28 physical cores, 28 logical processors, using up to 20 threads\n",
"\n",
"Non-default parameters:\n",
"TimeLimit 1200\n",
"Threads 20\n",
"\n",
"Optimize a model with 123791 rows, 45084 columns and 334004 nonzeros\n",
"Model fingerprint: 0x217dfde5\n",
"Variable types: 2689 continuous, 42395 integer (41835 binary)\n",
"Coefficient statistics:\n",
" Matrix range [1e+00, 2e+05]\n",
" Objective range [1e+00, 1e+00]\n",
" Bounds range [1e+00, 1e+00]\n",
" RHS range [1e+00, 5e+05]\n",
"Presolve removed 121060 rows and 44745 columns\n",
"Presolve time: 0.02s\n",
"Presolved: 2731 rows, 339 columns, 5778 nonzeros\n",
"Variable types: 189 continuous, 150 integer (150 binary)\n",
"Found heuristic solution: objective 102.0000000\n",
"Performing another presolve...\n",
"Presolve removed 1064 rows and 91 columns\n",
"Presolve time: 0.00s\n",
"\n",
"Root relaxation: cutoff, 147 iterations, 0.00 seconds (0.00 work units)\n",
"\n",
" Nodes | Current Node | Objective Bounds | Work\n",
" Expl Unexpl | Obj Depth IntInf | Incumbent BestBd Gap | It/Node Time\n",
"\n",
" 0 0 cutoff 0 102.00000 102.00000 0.00% - 0s\n",
"\n",
"Explored 1 nodes (147 simplex iterations) in 0.05 seconds (0.13 work units)\n",
"Thread count was 20 (of 28 available processors)\n",
"\n",
"Solution count 1: 102 \n",
"\n",
"Optimal solution found (tolerance 1.00e-04)\n",
"Best objective 1.020000000000e+02, best bound 1.020000000000e+02, gap 0.0000%\n",
"\n",
"Wrote result file '/tmp/30b17f419b0f4284b398e37052664ac5-pulp.sol'\n",
"\n",
"objective: 102.0\n",
"[(0, 4), (4, 10), (4, 11), (11, 17), (10, 11), (17, 35), (35, 53), (53, 62), (62, 53)]\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAACvoAAAdiCAYAAABe0agZAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAA/ohJREFUeJzs3XuY5Fdd4P/Pt6q6rl3dc0+AQDJJICImE1EIgshFMYaAIjGKv6Ambn5ZLiGrIOtC1qjoykUuRhRwFdGfOEi4SICYhASIsAs+uBhCWOSHJjOZzExmMpdMpr7Vl5qq+u4foXu7pnt6eibp6W/3vF7Pc56nuvqc+p4zQydh8n5OkizLsgAAAAAAAAAAAAAAcqWw1BsAAAAAAAAAAAAAAGYT+gIAAAAAAAAAAABADgl9AQAAAAAAAAAAACCHhL4AAAAAAAAAAAAAkENCXwAAAAAAAAAAAADIIaEvAAAAAAAAAAAAAOSQ0BcAAAAAAAAAAAAAckjoCwAAAAAAAAAAAAA5JPQFAAAAAAAAAAAAgBwS+gIAAAAAHIOtW7dGkiTxzne+c9Gfdccdd0SSJHHHHXcs+rOOdR+XX355nHHGGSd8L0v1XAAAAACApSD0BQAAAAByacuWLXH11VfHU57ylKjX61Gv1+P7v//747WvfW1885vfXOrtHZdrrrkmkiSJf//3fz/inGuvvTaSJFm2Z3ws7Ny5M37nd34nvvGNbyz1VgAAAAAAllRpqTcAAAAAAHC4z372s/ELv/ALUSqV4rLLLotNmzZFoVCI73znO/HJT34y3v/+98eWLVvi9NNPX+qtHpPLLrss3vve98bmzZvjuuuum3PORz7ykTj33HPjvPPOi36/H+Pj41Eul0/wTo/uz//8z6Pf7y/KZ+/cuTN+93d/N84444w4//zzT9hzAQAAAADyRugLAAAAAOTKPffcE694xSvi9NNPj89//vPxuMc9buD7b3/72+N973tfFArz/wfL2u12NBqNxdzqMbvgggvi7LPPjo985CNzhr5f/epXY8uWLfG2t70tIiIKhUJUq9UTvc0FGRoaOqmeCwAAAACwFOb/k3AAAAAAgBPsHe94R7Tb7fjQhz40K/KNiCiVSnHNNdfEE5/4xOn3Lr/88hgeHo577rknXvziF0ez2YzLLrssIiK+/OUvx6WXXhpPetKTolKpxBOf+MT49V//9RgfHx/43KnPuPfee+PCCy+MRqMRj3/84+Mtb3lLZFk2517/+3//73HWWWdFpVKJZzzjGfHP//zPRz3fZZddFt/5znfiX/7lX2Z9b/PmzZEkSfziL/5iRETccccdkSRJ3HHHHdNz/u3f/i0uueSSOPXUU6NarcZpp50Wr3jFK+Lhhx+OiIitW7dGkiTxV3/1V7M+P0mS+J3f+Z3pr++77754zWteE+ecc07UarVYu3ZtXHrppbF169ajnuPyyy+PM844Y/rr5z//+ZEkyZxjai/79++P3/iN34hzzz03hoeHY2RkJC666KK46667pj/njjvuiGc84xkREXHFFVfM+ozDnxvxSNT9hje8IZ74xCdGpVKJc845J975znfO+n1LkiSuvvrq+NSnPhU/8AM/EJVKJZ72tKfFLbfcctTzAgAAAAAsBTf6AgAAAAC58tnPfjbOPvvsuOCCC45pXbfbjQsvvDB+9Ed/NN75zndGvV6PiIiPfexjMTY2Fq9+9atj7dq18bWvfS3e+973xvbt2+NjH/vYwGf0er34qZ/6qXjWs54V73jHO+KWW26J3/7t345utxtvectbBuZu3rw5Wq1W/Mf/+B8jSZJ4xzveES9/+cvj3nvvnffW2csuuyx+93d/NzZv3hxPf/rTB559ww03xHOf+9x40pOeNOfaTqcTF154YUxOTsbrXve6OPXUU2PHjh3x2c9+Ng4cOBCjo6PH9Gv2z//8z/GVr3wlXvGKV8Rpp50WW7dujfe///3x/Oc/P7797W9P/xouxLXXXhtXXnnlwHsf/vCH49Zbb40NGzZERMS9994bn/rUp+LSSy+NjRs3xu7du+PP/uzP4nnPe158+9vfjsc//vHx1Kc+Nd7ylrfEddddF1dddVU897nPjYiIZz/72XM+N8uy+Omf/un44he/GP/hP/yHOP/88+PWW2+NN77xjbFjx454z3veMzD/f/yP/xGf/OQn4zWveU00m8344z/+47jkkkti27ZtsXbt2mP55QMAAAAAWHRCXwAAAAAgNw4ePBg7d+6Ml73sZbO+d+DAgeh2u9NfNxqNqNVq019PTk7GpZdeGm9961sH1r397W8fmHfVVVfF2WefHW9+85tj27ZtA1HtxMRE/NRP/VT88R//cUREvOY1r4mXvvSl8fa3vz2uueaaWLdu3fTcbdu2xb/927/F6tWrIyLinHPOiZ/5mZ+JW2+9NV7ykpcc8YxPfvKT4xnPeEZ89KMfjXe84x1RKDzyH167/fbb48EHH4zf+73fO+Lab3/727Fly5b42Mc+Fj/3cz83/f511113xDXzufjiiwc+JyLipS99afzIj/xIfOITn4hf+qVfWvBnvehFLxr4+itf+Up84QtfiF/91V+NF7/4xRERce6558Z3v/vd6TNHRPzSL/1SfN/3fV988IMfjN/6rd+KU045JS666KK47rrr4kd+5Efila985bzP/fSnPx1f+MIX4vd///fj2muvjYiI1772tXHppZfG9ddfH1dffXWcddZZ0/P/9V//Nb797W9Pv/eCF7wgNm3aFB/5yEfi6quvXvB5AQAAAABOhMLRpwAAAAAAnBgHDx6MiIjh4eFZ33v+858f69evnx5/+qd/OmvOq1/96lnvzYx82+127N27N5797GdHlmVx5513zpo/M/ZMkiSuvvrq6HQ6cfvttw/M+4Vf+IXpyDcipm+evffee492zHjlK18Z27dvjy996UvT723evDnK5XJceumlR1w3dWPvrbfeGmNjY0d9ztHM/LU5dOhQ7Nu3L84+++xYtWpV/Mu//Mtxf+6uXbvi537u5+L888+P973vfdPvVyqV6ci31+vFvn37Ynh4OM4555zjft4//MM/RLFYjGuuuWbg/Te84Q2RZVncfPPNA+//xE/8xED4e95558XIyMiCft8AAAAAAE40oS8AAAAAkBvNZjMiItI0nfW9P/uzP4vbbrstPvzhD8+5tlQqxWmnnTbr/W3btsXll18ea9asieHh4Vi/fn0873nPi4iIhx9+eGBuoVCIM888c+C9pzzlKRERsXXr1oH3Z94EHBHT0e9DDz10pONNe8UrXhHFYjE2b94cEY/cJPz3f//3cdFFFw3Ew4fbuHFjvP71r4+/+Iu/iHXr1sWFF14Yf/qnfzrrHAs1Pj4e1113XTzxiU+MSqUS69ati/Xr18eBAweO+zO73W78/M//fPR6vfjkJz8ZlUpl+nv9fj/e8573xJOf/OSB533zm9887ufdd9998fjHP376fztTnvrUp05/f6bDf98iHvm9W8jvGwAAAADAiSb0BQAAAAByY3R0NB73uMfFt771rVnfu+CCC+InfuIn4jnPec6ca2feFjul1+vFi170orjpppviN3/zN+NTn/pU3HbbbfFXf/VXEfFIeHq8isXinO9nWXbUtRs2bIgXvehF8YlPfCIOHToUn/nMZ6LVasVll1121LXvete74pvf/Ga8+c1vjvHx8bjmmmviaU97Wmzfvj0iHrmFeC69Xm/We6973eviv/23/xY///M/HzfccEN87nOfi9tuuy3Wrl173L82b3zjG+OrX/1q3HDDDbPC6z/4gz+I17/+9fFjP/Zj8eEPfzhuvfXWuO222+JpT3vao/q9OBaP5vcNAAAAAOBEKy31BgAAAAAAZrr44ovjL/7iL+JrX/taPPOZz3xUn3X33XfHd7/73fjrv/7r+OVf/uXp92+77bY55/f7/bj33nunb/GNiPjud78bERFnnHHGo9rL4S677LK45ZZb4uabb47NmzfHyMhIvPSlL13Q2nPPPTfOPffc+K//9b/GV77ylXjOc54TH/jAB+L3f//3p28EPnDgwMCaw2+2jYj4+Mc/Hr/yK78S73rXu6bfm5iYmLV2of7u7/4u/uiP/ij+6I/+aPrW5MOf94IXvCA++MEPDrx/4MCBWLdu3fTXR4qV53L66afH7bffHq1Wa+BW3+985zvT3wcAAAAAWK7c6AsAAAAA5Mp//s//Oer1evzqr/5q7N69e9b3j+Xm1anbW2euybIsrr/++iOu+ZM/+ZOBuX/yJ38SQ0ND8eM//uMLfu5CvOxlL4t6vR7ve9/74uabb46Xv/zlUa1W511z8ODB6Ha7A++de+65USgUYnJyMiIiRkZGYt26dfGlL31pYN773ve+WZ9XLBZn/Xq+973vnfP236P51re+FVdeeWW88pWvjP/0n/7TnHPmet7HPvax2LFjx8B7jUYjImbHynN58YtfHL1eb+D3LSLiPe95TyRJEhdddNExnAIAAAAAIF/c6AsAAAAA5MqTn/zk2Lx5c/ziL/5inHPOOXHZZZfFpk2bIsuy2LJlS2zevDkKhUKcdtppR/2s7/u+74uzzjorfuM3fiN27NgRIyMj8YlPfCIeeuihOedXq9W45ZZb4ld+5VfiggsuiJtvvjluuummePOb3xzr169/TM85PDwcL3vZy2Lz5s0R8cgNv0fzhS98Ia6++uq49NJL4ylPeUp0u934m7/5mygWi3HJJZdMz7vyyivjbW97W1x55ZXxwz/8w/GlL31p+mbimV7ykpfE3/zN38To6Gh8//d/f3z1q1+N22+/PdauXXvM57niiisiIuLHfuzH4sMf/vDA95797GfHmWeeGS95yUviLW95S1xxxRXx7Gc/O+6+++7427/92zjzzDMH5p911lmxatWq+MAHPhDNZjMajUZccMEFsXHjxlnPfelLXxoveMEL4tprr42tW7fGpk2b4nOf+1zceOON8Wu/9mtx1llnHfNZAAAAAADyQugLAAAAAOTOz/zMz8Tdd98d73rXu+Jzn/tc/OVf/mUkSRKnn356XHzxxfGqV70qNm3adNTPGRoais985jNxzTXXxFvf+taoVqvxsz/7s3H11VfPub5YLMYtt9wSr371q+ONb3xjNJvN+O3f/u247rrrFuOYcdlll8XmzZvjcY97XLzwhS886vxNmzbFhRdeGJ/5zGdix44dUa/XY9OmTXHzzTfHs571rOl51113XezZsyc+/vGPxw033BAXXXRR3HzzzbFhw4aBz7v++uujWCzG3/7t38bExEQ85znPidtvvz0uvPDCYz7Lnj17ot1ux1VXXTXrex/60IfizDPPjDe/+c3Rbrdj8+bN8dGPfjSe/vSnx0033RT/5b/8l4H5Q0ND8dd//dfxpje9KV71qldFt9uND33oQ3OGvoVCIT796U/HddddFx/96EfjQx/6UJxxxhnxh3/4h/GGN7zhmM8BAAAAAJAnSXYs/507AAAAAIAV6vLLL4+Pf/zjkabpUm8FAAAAAAAiIqKw1BsAAAAAAAAAAAAAAGYT+gIAAAAAAAAAAABADgl9AQAAAAAAAAAAACCHkizLsqXeBAAAAAAAAAAAAAAwyI2+AAAAAAAAAAAAAJBDQl8AAAAAAAAAAAAAyCGhLwAAAAAAAAAAAADkkNAXAAAAAAAAAAAAAHJI6AsAAAAAAAAAAAAAOST0BQAAAAAAAAAAAIAcEvoCAAAAAAAAAAAAQA4JfQEAAAAAAAAAAAAgh4S+AAAAAAAAAAAAAJBDQl8AAAAAAAAAAAAAyCGhLwAAAAAAAAAAAADkkNAXAAAAAAAAAAAAAHJI6AsAAAAAAAAAAAAAOST0BQAAAAAAAAAAAIAcEvoCAAAAAAAAAAAAQA4JfQEAAAAAAAAAAAAgh4S+AAAAAAAAAAAAAJBDQl8AAAAAAAAAAAAAyCGhLwAAAAAAAAAAAADkkNAXAAAAAAAAAAAAAHJI6AsAAAAAAAAAAAAAOST0BQAAAAAAAAAAAIAcEvoCAAAAAAAAAAAAQA4JfQEAAAAAAAAAAAAgh4S+AAAAAAAAAAAAAJBDQl8AAAAAAAAAAAAAyCGhLwAAAAAAAAAAAADkkNAXAAAAAAAAAAAAAHJI6AsAAAAAAAAAAAAAOST0BQAAAAAAAAAAAIAcEvoCAAAAAAAAAAAAQA4JfQEAAAAAAAAAAAAgh4S+AAAAAAAAAAAAAJBDQl8AAAAAAAAAAAAAyCGhLwAAAAAAAAAAAADkkNAXAAAAAAAAAAAAAHJI6AsAAAAAAAAAAAAAOST0BQAAAAAAAAAAAIAcEvoCAAAAAAAAAAAAQA4JfQEAAAAAAAAAAAAgh4S+AAAAAAAAAAAAAJBDQl8AAAAAAAAAAAAAyCGhLwAAAAAAAAAAAADkkNAXAAAAAAAAAAAAAHJI6AsAAAAAAAAAAAAAOST0BQAAAAAAAAAAAIAcEvoCAAAAAAAAAAAAQA4JfQEAAAAAAAAAAAAgh4S+AAAAAAAAAAAAAJBDQl8AAAAAAAAAAAAAyCGhLwAAAAAAAAAAAADkkNAXAAAAAAAAAAAAAHJI6AsAAAAAAAAAAAAAOST0BQAAAAAAAAAAAIAcEvoCAAAAAAAAAAAAQA4JfQEAAAAAAAAAAAAgh4S+AAAAAAAAAAAAAJBDQl8AAAAAAAAAAAAAyCGhLwAAAAAAAAAAAADkkNAXAAAAAAAAAAAAAHJI6AsAAAAAAAAAAAAAOST0BQAAAAAAAAAAAIAcEvoCAAAAAAAAAAAAQA4JfQEAAAAAAAAAAAAgh4S+AAAAAAAAAAAAAJBDQl8AAAAAAAAAAAAAyCGhLwAAAAAAAAAAAADkkNAXAAAAAAAAAAAAAHJI6AsAAAAAAAAAAAAAOST0BQAAAAAAAAAAAIAcEvoCAAAAAAAAAAAAQA4JfQEAAAAAAAAAAAAgh4S+AAAAAAAAAAAAAJBDQl8AAAAAAAAAAAAAyCGhLwAAAAAAAAAAAADkkNAXAAAAAAAAAAAAAHJI6AsAAAAAAAAAAAAAOST0BQAAAAAAAAAAAIAcEvoCAAAAAAAAAAAAQA4JfQEAAAAAAAAAAAAgh4S+AAAAAAAAAAAAAJBDQl8AAAAAAAAAAAAAyCGhLwAAAAAAAAAAAADkkNAXAAAAAAAAAAAAAHJI6AsAAAAAAAAAAAAAOST0BQAAAAAAAAAAAIAcEvoCAAAAAAAAAAAAQA4JfQEAAAAAAAAAAAAgh4S+AAAAAAAAAAAAAJBDQl8AAAAAAAAAAAAAyCGhLwAAAAAAAAAAAADkkNAXAAAAAAAAAAAAAHJI6AsAAAAAAAAAAAAAOST0BQAAAAAAAAAAAIAcEvoCAAAAAAAAAAAAQA4JfQEAAAAAAAAAAAAgh4S+AAAAAAAAAAAAAJBDQl8AAAAAAAAAAAAAyCGhLwAAAAAAAAAAAADkkNAXAAAAAAAAAAAAAHJI6AsAAAAAAAAAAAAAOST0BQAAAAAAAAAAAIAcEvoCAAAAAAAAAAAAQA4JfQEAAAAAAAAAAAAgh4S+AAAAAAAAAAAAAJBDQl8AAAAAAAAAAAAAyCGhLwAAAAAAAAAAAADkkNAXAAAAAAAAAAAAAHJI6AsAAAAAAAAAAAAAOST0BQAAAAAAAAAAAIAcEvoCAAAAAAAAAAAAQA4JfQEAAAAAAAAAAAAgh4S+AAAAAAAAAAAAAJBDQl8AAAAAAAAAAAAAyCGhLwAAAAAAAAAAAADkkNAXAAAAAAAAAAAAAHJI6AsAAAAAAAAAAAAAOST0BQAAAAAAAAAAAIAcEvoCAAAAAAAAAAAAQA4JfQEAAAAAAAAAAAAgh4S+AAAAAAAAAAAAAJBDQl8AAAAAAAAAAAAAyCGhLwAAAAAAAAAAAADkkNAXAAAAAAAAAAAAAHJI6AsAAAAAAAAAAAAAOST0BQAAAAAAAAAAAIAcEvoCAAAAAAAAAAAAQA4JfQEAAAAAAAAAAAAgh4S+AAAAAAAAAAAAAJBDQl8AAAAAAAAAAAAAyCGhLwAAAAAAAAAAAADkkNAXAAAAAAAAAAAAAHJI6AsAAAAAAAAAAAAAOST0BQAAAAAAAAAAAIAcEvoCAAAAAAAAAAAAQA4JfQEAAAAAAAAAAAAgh4S+AAAAAAAAAAAAAJBDQl8AAAAAAAAAAAAAyCGhLwAAAAAAAAAAAADkkNAXAAAAAAAAAAAAAHJI6AsAAAAAAAAAAAAAOST0BQAAAAAAAAAAAIAcEvoCAAAAAAAAAAAAQA4JfQEAAAAAAAAAAAAgh4S+AAAAAAAAAAAAAJBDQl8AAAAAAAAAAAAAyCGhLwAAAAAAAAAAAADkUGmpNwAsjl6WxZ7xXuwa68ausW6k3X70+lkUC0kMlwpxar0Up9ZLsb5WjGKSLPV2AQAAAAAAAAAAgMMkWZZlS70J4LHzcKcX39g7EXfunYiJ3iM/3oWI6M+YM/PrajGJH1xXjfPXVWO0XDzBuwUAAAAAAAAAAACOROgLK8RErx9f3NGOu/ZNRhIRx/KDPTV/09pKvPAJjagUC4uzSQAAAAAAAAAAAGDBhL6wAmw52InP3teKsW52TIHv4ZKIaJSSuPj0ZmwcKT9W2wMAAAAAAAAAAACOg9AXlrmv7xmP27a3j/kW3yOZ+pwXndaIH1pfeww+EQAAAAAAAAAAADgehaXeAHD8piLfiMcm8p35Obdtb8fX94w/Rp8KAAAAAAAAAAAAHCuhLyxTWw52piPfxXLb9nZsOdhZ1GcAAAAAAAAAAAAAcxP6wjI00evHZ+9rRbLIz0ki4qb7WjHZ6y/ykwAAAAAAAAAAAIDDCX1hGfrijnaMdbPIFvk5WUS0u1l8Ycfi3hwMAAAAAAAAAAAAzCb0hWXmwGQv7to3ueiR75QsIu7aNxkPd3on6IkAAAAAAAAAAABAhNAXlp279k1EcoKfmUTEN/ZOnOCnAgAAAAAAAAAAwMlN6AvLSC/L4s69E8d1m+9XP/rBePvFT4/fetZp8ae/fGHc/61/WfDaLCLu3DsRvexE3SMMAAAAAAAAAAAACH1hGdkz3ouJ3rHHtt+89e/jpndfFz9+1W/E1Zs/H4978tPiL1/785Hu37Pgz5joZbFnvHfMzwYAAAAAAAAAAACOj9AXlpFdY93jWvflv/1APONnXxk//DP/T5xy5jnxsmvfGeVqLf7XjZtPyPMBAAAAAAAAAACAYyf0hWVk11j3mH9ou4c6sfNf74qzL3je9HuFQiHOuuDHYts3/9eCP6cQQl8AAAAAAAAAAAA4kYS+sIyk3X70j3HN2IH90e/1YnjN+oH3m2s2RGvfgwv+nH5EtLvH+nQAAAAAAAAAAADgeAl9YRnp9bMlfX53iZ8PAAAAAAAAAAAAJxOhLywjxUJyzGvqq9ZEoViMdP+egfdb+x+M5toNx/RZpeN4PgAAAAAAAAAAAHB8hL6wjAyXCsf8Q1saKsfjn7op7vnal6bf6/f7cc/XvhxPOu+HF/w5hYholPwlAwAAAAAAAAAAAE4U1R4sI6fWS9E/jnXPvexV8c9//+H4+mf+Lh6897tx4x+8MTrjY/FDP/2LC/6M/veeDwAAAAAAAAAAAJwYqj1YRo43tD3vwp+N9KF9cfv73x6tfQ/G4875gbjiTz4azbUbTsjzAQAAAAAAAAAAgGOXZFmWLfUmgIXpZVm89+79MdE78T+21WISrzt3TRST5IQ/GwAAAAAAAAAAAE5GhaXeALBwxSSJH1xXjROd2iYR8YPrqiJfAAAAAAAAAAAAOIGEvrDMnL+uGif6Pt/se88FAAAAAAAAAAAAThyhLywzo+VibFpbOWG3+iYRsWltJUbLxRP0RAAAAAAAAAAAACBC6AvL0guf0IhGKVn02DeJiEYpiRc+obHITwIAAAAAAAAAAAAOJ/SFZahSLMTFpzcjW+TnZBFx8enNqBT9pQIAAAAAAAAAAABONPUeLFMbR8rxotMW96bdnzytERtHyov6DAAAAAAAAAAAAGBuQl9Yxn5ofW069k0eo8+c+pyfPK0RT19fe4w+FQAAAAAAAAAAADhWSZZl2VJvAnh0thzsxE33taLdzeLR/EAnEdEoJXHx6U03+QIAAAAAAAAAAMASE/rCCjHR68cXd7Tjrn2TkUQcU/A7NX/T2kq88AmNqBRd9g0AAAAAAAAAAABLTegLK8zDnV58Y+9E3Ll3IiZ6j/x4FyKin2URSfJ/v/7e/GoxiR9cV43z11VjtFxckj0DAAAAAAAAAAAAswl9YYXqZVnsGe/FrrFu7Brrxr3bd8bYZCc2nv6kaJQKcWq9FKfWS7G+Vozi9wJgAAAAAAAAAAAAID9KS70BYHEUk2Q65o2IuOnuf4sdO3bEJS/4gSXeGQAAAAAAAAAAALAQhaXeAAAAAAAAAAAAAAAwm9AXAAAAAAAAAAAAAHJI6AsAAAAAAAAAAAAAOST0BQAAAAAAAAAAAIAcEvoCAAAAAAAAAAAAQA4JfQEAAAAAAAAAAAAgh4S+AAAAAAAAAAAAAJBDQl8AAAAAAAAAAAAAyCGhLwAAAAAAAAAAAADkkNAXAAAAAAAAAAAAAHJI6AsAAAAAAAAAAAAAOST0BQAAAAAAAAAAAIAcEvoCAAAAAAAAAAAAQA4JfQEAAAAAAAAAAAAgh4S+AAAAAAAAAAAAAJBDQl8AAAAAAAAAAAAAyCGhLwAAAAAAAAAAAADkkNAXAAAAAAAAAAAAAHJI6AsAAAAAAAAAAAAAOST0BQAAAAAAAAAAAIAcEvoCAAAAAAAAAAAAQA4JfQEAAAAAAAAAAAAgh4S+AAAAAAAAAAAAAJBDQl8AAAAAAAAAAAAAyCGhLwAAAAAAAAAAAADkkNAXAAAAAAAAAAAAAHJI6AsAAAAAAAAAAAAAOST0BQAAAAAAAAAAAIAcEvoCAAAAAAAAAAAAQA4JfQEAAAAAAAAAAAAgh4S+AAAAAAAAAAAAAJBDQl8AAAAAAAAAAAAAyCGhLwAAAAAAAAAAAADkkNAXAAAAAAAAAAAAAHJI6AsAAAAAAAAAAAAAOST0BQAAAAAAAAAAAIAcEvoCAAAAAAAAAAAAQA4JfQEAAAAAAAAAAAAgh4S+AAAAAAAAAAAAAJBDQl8AAAAAAAAAAAAAyCGhLwAAAAAAAAAAAADkkNAXAAAAAAAAAAAAAHJI6AsAAAAAAAAAAAAAOST0BQAAAAAAAAAAAIAcEvoCAAAAAAAAAAAAQA4JfQEAAAAAAAAAAAAgh4S+AAAAAAAAAAAAAJBDQl8AAAAAAAAAAAAAyCGhLwAAAAAAAAAAAADkkNAXAAAAAAAAAAAAAHJI6AsAAAAAAAAAAAAAOST0BQAAAAAAAAAAAIAcEvoCAAAAAAAAAAAAQA4JfQEAAAAAAAAAAAAgh4S+AAAAAAAAAAAAAJBDQl8AAAAAAAAAAAAAyCGhLwAAAAAAAAAAAADkkNAXAAAAAAAAAAAAAHJI6AsAAAAAAAAAAAAAOST0BQAAAAAAAAAAAIAcEvoCAAAAAAAAAAAAQA4JfQEAAAAAAAAAAAAgh4S+AAAAAAAAAAAAAJBDQl8AAAAAAAAAAAAAyCGhLwAAAAAAAAAAAADkkNAXAAAAAAAAAAAAAHJI6AsAAAAAAAAAAAAAOST0BQAAAAAAAAAAAIAcEvoCAAAAAAAAAAAAQA4JfQEAAAAAAAAAAAAgh4S+AAAAAAAAAAAAAJBDQl8AAAAAAAAAAAAAyCGhLwAAAAAAAAAAAADkkNAXAAAAAAAAAAAAAHJI6AsAAAAAAAAAAAAAOST0BQAAAAAAAAAAAIAcEvrCSaJer0ez2VzqbQAAAAAAAAAAAAALlGRZli31JgAAAAAAAAAAAACAQW70BQAAAAAAAAAAAIAcEvoCAAAAAAAAAAAAQA4JfQEAAAAAAAAAAAAgh4S+AAAAAAAAAAAAAJBDQl84SWzZsiXGxsaWehsAAAAAAAAAAADAAgl94SRxySWXxKFDhyIiYvv27bFx48bYuHFjnHnmmXHGGWcs7eYAAAAAAAAAAACAWYS+cJLo9/sxOjoaERGnnXZajI6Oxo033hg33nhj1Gq1Jd4dAAAAAAAAAAAAcLjSUm8AODGyLJt+3ev1IsuyOO+88yIiolqtLtW2AAAAAAAAAAAAgCNwoy+cJM4888x497vfHbt27Yprr702nvnMZ05/L0mSJdwZAAAAAAAAAAAAMBehL5wkrr/++vj0pz8d55xzTtx9993xtre9bfp7b3rTm5ZwZwAAAAAAAAAAAMBckizLsqXeBLD4tmzZEqeeemrUarWl3goAAAAAAAAAAACwAG70hZPEJZdcEp1OJyIitm/fHhs3boyNGzfGmWeeGWecccbSbg4AAAAAAAAAAACYRegLJ4l+vx+jo6MREXHaaafF6Oho3HjjjXHjjTe65RcAAAAAAAAAAAByqLTUGwBOjCzLpl/3er3IsizOO++8iIioVqtLtS0AAAAAAAAAAADgCNzoCyeJM888M9797nfHrl274tprr41nPvOZ099LkmQJdwYAAAAAAAAAAADMRegLJ4nrr78+Pv3pT8c555wTd999d7z1rW+d/t6b3vSmJdwZAAAAAAAAAAAAMJcky7JsqTcBAAAAAAAAAAAAAAxyoy+cZD7wgQ/Et771raXeBgAAAAAAAAAAAHAUbvSFk8wTnvCEOP300+OSSy6J17/+9ZEkyVJvCQAAAAAAAAAAAJiDG33hJFOpVOLLX/5ytNvt+Mmf/Mm47777lnpLAAAAAAAAAAAAwBzc6AsnmY0bN8aWLVsiIuLOO++Mq6++Oq688sq44oorlnhnAAAAAAAAAAAAwExCXzhJvPCFL4wsy+Kf/umf4lnPetb0+51OJ7761a9Gv99fwt0BAAAAAAAAAAAAhyst9QaAE+PXfu3XIiLiqquuil//9V9f2s0AAAAAAAAAAAAARyX0hZPET//0T0dExAMPPDD9GgAAAAAAAAAAAMivJMuybKk3AQAAAAAAAAAAAAAMKiz1BgAAAAAAAAAAAACA2YS+AAAAAAAAAAAAAJBDQl8AAAAAAAAAAAAAyCGhL5wkbrnllvjLv/zLpd4GAAAAAAAAAAAAsEBCXzhJ9Hq96Ha7S70NAAAAAAAAAAAAYIGEvgAAAAAAAAAAAACQQ0JfAAAAAAAAAAAAAMghoS8AAAAAAAAAAAAA5JDQFwAAAAAAAAAAAABySOgLAAAAAAAAAAAAADkk9AUAAAAAAAAAAACAHBL6AgAAAAAAAAAAAEAOCX0BAAAAAAAAAAAAIIeEvgAAAAAAAAAAAACQQ0JfAAAAAAAAAAAAAMghoS8AAAAAAAAAAAAA5JDQFwAAAAAAAAAAAABySOgLAAAAAAAAAAAAADkk9AUAAAAAAAAAAACAHBL6AgAAAAAAAAAAAEAOCX0BAAAAAAAAAAAAIIeEvgAAAAAAAAAAAACQQ0JfAAAAAAAAAAAAAMghoS8AAAAAAAAAAAAA5JDQFwAAAAAAAAAAAABySOgLAAAAAAAAAAAAADkk9AUAAAAAAAAAAACAHBL6AgAAAAAAAAAAAEAOCX0BAAAAAAAAAAAAIIeEvgAAAAAAAAAAAACQQ0JfAAAAAAAAAAAAAMghoS8AAAAAAAAAAAAA5JDQFwAAAAAAAAAAAABySOgLAAAAAAAAAAAAADkk9AUAAAAAAAAAAACAHBL6AgAAAAAAAAAAAEAOCX0BAAAAAAAAAAAAIIeEvgAAAAAAAAAAAACQQ0JfAAAAAAAAAAAAAMghoS8AAAAAAAAAAAAA5JDQFwAAAAAAAAAAAABySOgLAAAAAAAAAAAAADkk9AUAAAAAAAAAAACAHBL6AgAAAAAAAAAAAEAOCX0BAAAAAAAAAAAAIIeEvgAAAAAAAAAAAACQQ0JfAAAAAAAAAAAAAMghoS8AAAAAAAAAAAAA5JDQFwAAAAAAAAAAAABySOgLAAAAAAAAAAAAADkk9AUAAAAAAAAAAACAHBL6AgAAAAAAAAAAAEAOCX0BAAAAAAAAAAAAIIeEvgAAAAAAAAAAAACQQ0JfAAAAAAAAAAAAAMghoS8AAAAAAAAAAAAA5JDQFwAAAAAAAAAAAABySOgLAAAAAAAAAAAAADkk9AUAAAAAAAAAAACAHBL6AgAAAAAAAAAAAEAOCX0BAAAAAAAAAAAAIIeEvgAAAAAAAAAAAACQQ0JfAAAAAAAAAAAAAMghoS8AAAAAAAAAAAAA5JDQFwAAAAAAAAAAAABySOgLAAAAAAAAAAAAADkk9AUAAAAAAAAAAACAHBL6AgAAAAAAAAAAAEAOCX0BAAAAAAAAAAAAIIeEvgAAAAAAAAAAAACQQ0JfAAAAAAAAAAAAAMghoS8AAAAAAAAAAAAA5JDQF1aYbrcbH/nIR2L//v1HnXvo0KG44YYbYu/evSdgZwAAAAAAAAAAAMCxEPrCCpMkSezatSu++MUvHnXu17/+9fjOd74TxWLxBOwMAAAAAAAAAAAAOBZCX1hhisViPPe5z41vfetbsWfPniPOO3ToUPzP//k/Y9OmTbF69eoTuEMAAAAAAAAAAABgIYS+sAKdf/75MTIyEl/60peOOOfrX/96tNvteO5zn3sCdwYAAAAAAAAAAAAslNAXVqBSqTTvrb4zb/Nds2bNEuwQAAAAAAAAAAAAOBqhL6xQ893q6zZfAAAAAAAAAAAAyD+hL6xQR7rV122+AAAAAAAAAAAAsDwIfWEFm+tWX7f5AgAAAAAAAAAAwPIg9IUVbOatvuPj45Flmdt8AQAAAAAAAAAAYJkQ+sIKN3Wr7wMPPBBjY2Nu8wUAAAAAAAAAAIBlIsmyLFvqTQCPvV6WxZ7xXuwa68bd9z0Q23bvjaRYjJHhRpz9xCfEqfVSnFovxfpaMYpJstTbBQAAAAAAAAAAAA4j9IUV5uFOL76xdyLu3DsRE71HfrwL8Uj4m3wv6C1ERP9786vFJH5wXTXOX1eN0XJxSfYMAAAAAAAAAAAAzCb0hRViotePL+5ox137JiOJiGP5wZ6av2ltJV74hEZUioXF2SQAAAAAAAAAAACwYEJfWAG2HOzEZ+9rxVg3O6bA93BJRDRKSVx8ejM2jpQfq+0BAAAAAAAAAAAAx0HoC8vc1/eMx23b28d8i++RTH3Oi05rxA+trz0GnwgAAAAAAAAAAAAcj8JSbwA4flORb8RjE/nO/Jzbtrfj63vGH6NPBQAAAAAAAAAAAI6V0BeWqS0HO9OR72K5bXs7thzsLOozAAAAAAAAAAAAgLkJfWEZmuj147P3tSJZ5OckEXHTfa2Y7PUX+UkAAAAAAAAAAADA4YS+sAx9cUc7xrpZZIv8nCwi2t0svrBjcW8OBgAAAAAAAAAAAGYT+sIyc2CyF3ftm1z0yHdKFhF37ZuMhzu9E/REAAAAAAAAAAAAIELoC8vOXfsmIjnOtXd86Pp409PXx2f+8NpjWpdExDf2ThznUwEAAAAAAAAAAIDjIfSFZaSXZXHn3onjus33/v99Z3ztE/9fnPrkpx3z2iwi7tw7Eb3sRN0jDAAAAAAAAAAAAAh9YRnZM96Lid6xx7aTY2l89NpXxct/691RGxk9rmdP9LLYM947rrUAAAAAAAAAAADAsRP6wjKya6x7XOtufNtvxvf96Ivi7AuetyTPBwAAAAAAAAAAAI5daak3ACzcrrFuFCKifwxr7rr172Pnd+6O1/7N5x7Vswsh9AUAAAAAAAAAAIATSegLy0ja7R9T5Htg14747B9eG7/6vo/FUKX6qJ7dj4h291ieDgAAAAAAAAAAADwaSZZl2VJvAliYj/77w7GldWjB8//3F/8hPvyGX4lCsTj9Xr/XiyRJIikU4vf+acfA946mMfFQ/MDE9hgeHp41hoaGjuksAAAAAAAAAAAAwPyEvrCMfPzeg/HvD3cWPH+yncZDD9w/+Bm/c02sP+PJ8bzLXxennv3UhT88y2LowANRuOvzkaZp9PuDt/tWKpU5A+DDR71ej0KhsPDnAgAAAAAAAAAAwEmqtNQbABZuuFSIQkT0jzrzEZXG8KyYt1yrR3109bFFvhFRSJJ42tlnxk+98LzIsizGx8cjTdNI0zRardb063a7HWmaxu7duyNN05iYmBj4nCRJotFozBsDN5vNGB4ejnK5fEx7BAAAAAAAAAAAgJVE6AvLyKn1Unxj39I8u/+950c8EuvW6/Wo1+uxYcOGedd1u91ot9sDMfDMsWfPntiyZUukaRq9Xm9g7dDQ0ED4OzMQnnpv6n23BAMAAAAAAAAAALDSJFmWZUu9CWBhdo1146/+/wNL9vzLz1k1Hfs+1rIsi4mJiTlj4MPH2NjYrPWH3xLcaDQGYuCpUalUIkmSRTkDAAAAAAAAAAAAPJbc6AvLyPpaMarFJCZ6J77PrxaTWF8rLtrnJ0kStVotarVarF+/ft65vV4v2u32EUPg/fv3x7Zt26LVakW32x1YWyqVZsW/RxrF4uKdFwAAAAAAAAAAAI7Gjb6wzPzjznb80+7xOJE/uElEPOuUWjzv8Y0T+NRHL8uy6HQ6C7oluN1ux+F/OazVagsKgmu1mluCAQAAAAAAAAAAeMwJfWGZebjTi/f/74dO+HNf/bTVMVpeuTfc9vv9GBsbG4h/W63WdAQ8871OpzOwtlAoHDUGbjab0Wg0YmhoaIlOCAAAAAAAAAAAwHIj9IVl6OZtrfjmvskTcqtvEhHnra3ERU9qnoCnLQ+dTmc6/p2KgY90S3C/3x9YW6lUZsW/M7+eel2v190SDAAAAAAAAAAAcJIT+sIyNNnrx59/+6Fod7NFjX2TiGiUkvh/v391VIqFRXzSypRlWYyPj88bA0+NiYmJgbVJkkSj0ZiOf6eC4Jkx8NQol8tLdEIAAAAAAAAAAAAWk9AXlqktBzvx0XsOLvpzfuGskdg4IiRdbN1u96gx8NTo9XoDa8vl8qz4d67RaDSiUBBsAwAAAAAAAAAALBdCX1jGvr5nPG7b3l60z//J0xrx9PW1Rft8jl2WZTExMbGgIHhsbGzW+qmbgY82KpVKJEmyBCcEAAAAAAAAAABgitAXlrmp2DeJiMfih3nqc0S+y1+v14t2uz0rAG61WgPvt1qt6Ha7A2tLpdKCguDh4eEoFotLdEIAAAAAAAAAAICVTegLK8CWg5246b5WtLvZo4p9k4holJK4+PRmbBwpP1bbI+eyLItOpzMrBk7TdDoInvn14Wq12nT022w2Z90a3Gw2Y3h4OKrVqluCAQAAAAAAAAAAjoHQF1aIiV4/vrijHXftmzzm232n5m9aW4kXPqERlWJhcTbJstfv92NsbGw6/J1vdDqdgbWFQmEg/J0ZBE+9NzVKpdISnRAAAAAAAAAAACA/hL6wwjzc6cU39k7EnXsnYqL3yI93ISL6WRbxvdtUCxHR/978ajGJH1xXjfPXVWO0XFySPbMyHX5L8Hzj8L8VVavVgfC30WjMioGHh4ejXq+7JRgAAAAAAAAAAFixhL6wQvWyLPaM92LXWDd2jXXj3u07Y2yyExtPf1I0SoU4tV6KU+ulWF8rRlEoyRLKsizGxsYWFARPTEwMrE2SZFb8e6RRLpeX6IQAAAAAAAAAAADHR+gLJ4mbbropduzYEVddddVSbwWOW7fbnTMAbrVa0W63B97r9XoDa8vl8oKC4EajEYVCYYlOCAAAAAAAAAAA8H+VlnoDALBQpVIpVq1aFatWrZp3XpZlMTExMSsGTtN0Ogjes2dPpGka4+PjA2uTJIl6vX7UILjZbEa5XI7EjdgAAAAAAAAAAMAiEfoCsOIkSRK1Wi1qtVqsX79+3rm9Xm86/p2KgadGu92Offv2xX333Rdpmka32x1YWyqVBsLfRqMxKwaeuiW4WCwu5pEBAAAAAAAAAIAVSOgLwEmtWCzGyMhIjIyMzDsvy7LodDqzYuCZY//+/dOB8OFqtdp0+DsV/878empUq1W3BAMAAAAAAAAAABEh9AWABUmSJCqVSlQqlVi3bt28c/v9/vQtwXONAwcOxPbt2yNN0+h0OgNri8XirPj3SKNU8rdxAAAAAAAAAABYyRRCAPAYKxQK0Ww2o9lsHnVup9M5YhCcpmns3Llz+nWWZQNrq9XqgoLger3ulmAAAAAAAAAAAFiGhL4AsITK5XKsWbMm1qxZM++8LMtibGxsVgjcarWmbw/etWtXtFqtmJycHFhbKBSi0WgcNQhuNpsxNDS0mMcFAAAAAAAAAACOgdAXAJaBJEmi0WhEo9GIU045Zd65hw4dmo5/p2Lgqdftdjt2794d99xzT6RpGv1+f2BtuVw+agw8dUtwoVBYzCMDAAAAAAAAAMBJT+gLACvM0NBQrFq1KlatWjXvvCzLYmJiYlYMPHPs2bMn0jSN8fHxgbVJkkS9Xh+If6duDZ76emqUy+VIkmQRTwwAAAAAAAAAACuT0BcATlJJkkStVotarRbr16+fd26v15szBJ4ae/fuja1bt0aaptHtdgfWDg0NDYS/jUZjVgw89X6xWFzMIwMAAAAAAAAAwLIi9AUAjqpYLMbo6GiMjo7OOy/LspicnJw3Ct6/f3+kaRrtdnvW+qlbgo82qtWqW4IBAAAAAAAAAFjxhL4AwGMmSZKoVqtRrVZj3bp1887t9/vRbrdnhcCtViva7XYcOHAgtm/fHmmaRqfTGVhbLBYXFAQPDw9HqeQfdwAAAAAAAAAAWJ6ULwDAkigUCtFsNqPZbB51bqfTmRUDT71ut9uxc+fO6UA4y7KBtdVq9agxcLPZjFqt5pZgAAAAAAAAAAByRegLAOReuVyONWvWxJo1a+ad1+/3Y3x8fFYMPDMQfuCBByJN05icnBxYWygUotFoTIe/U69nxsBTr4eGhhbzuAAAAAAAAAAAEBFCXwBgBZmKdRuNRpxyyinzzj106NCsEHjm2L17d9xzzz2Rpmn0+/2BteVyeSD8nRkIz4yD6/V6FAqFxTwyAAAAAAAAAAArmNAXADgpDQ0NxerVq2P16tXzzsuybPqW4CONBx98MNI0jfHx8YG1SZLMuhn4SKNcLkeSJIt5ZAAAAAAAAAAAlhmhLwDAPJIkiXq9HvV6PTZs2DDv3G63G+12+4hB8N69e2Pr1q3RarWi1+sNrB0aGlpQENxoNKJYLC7mkQEAAAAAAAAAyAmhLwDAY6RUKsXo6GiMjo7OOy/LspicnJwVArdarelQeNu2bdFqtWJsbGzW+nq9vqAouFqtuiUYAAAAAAAAAGAZE/oCAJxgSZJEtVqNarUa69atm3dur9eLsbGxgRh46nW73Y6HHnoo7r///kjTNA4dOjSwtlgszhsCN5vN6VuCSyX/WAgAAAAAAAAAkDeKDgCAHCsWi9FsNqPZbB51bqfTmRUDzxw7duyYDoSzLBtYW61WZ8W/M7+eGrVazS3BAAAAAAAAAAAniNAXAGCFKJfLsWbNmlizZs288/r9/sAtwYePgwcPxs6dOyNN05icnBxYWygUBsLfRqMxKwaeGkNDQ4t5XAAAAAAAAACAFU/oCwBwkpkZ6x7NoUOHjhgEp2kau3fvjnvuuSfSNI1+vz+wtlKpzBkAHz7q9XoUCoXFOi4AAAAAAAAAwLIl9AUA4IiGhoZi9erVsXr16nnnZVkW4+Pjs0LgVqsV7XY70jSNBx98MNI0jfHx8YG1SZJEo9FYUBRcqVQW87gAAAAAAAAAALki9AUA4FFLkiTq9XrU6/XYsGHDvHO73e50/DsVA0+9brfbsXfv3tiyZUukaRq9Xm9g7dDQ0FFj4GazGY1Gwy3BAAAAAAAAAMCyJ/QFAOCEKpVKMTo6GqOjo/POy7IsJicnZ8XAU0Fwq9WKffv2RZqmMTY2Nmt9vV6fDn+Hh4cHbg2eem/qluAkSRbruAAAAAAAAAAAx03oCwBALiVJEtVqNarVaqxbt27eub1eb+CW4MPH/v37Y9u2bZGmaRw6dGhgbalUGrgReCoInhkDT41isbiYRwYAAAAAAAAAGCD0BQBg2SsWizEyMhIjIyPzzsuyLDqdzhGD4DRNY8eOHdO3BmdZNrC+VqvNin/nGrVazS3BAAAAAAAAAMCjJvQFAOCkkSRJVCqVqFQqsXbt2nnn9vv9GBsbO2IQfPDgwdi5c2ekaRqTk5MDawuFwoKC4OHh4RgaGlrMIwMAAAAAAAAAy5jQFwAA5jAz1j2aTqcT7XZ7IARutVrTNwPv2rUrWq1WtNvt6Pf7A2srlcpRY+Bmsxm1Wi0KhcJiHRcAAAAAAAAAyCGhLwAAPErlcjnK5XKsXr163nlZlsX4+PisGHgqCG61WrF79+5I0zQmJiYG1iZJEo1GY94YeOp1uVxezOMCAAAAAAAAACeI0BcAAE6QJEmiXq9HvV6PDRs2zDu32+1Ox78zbwqeGnv27IktW7ZEmqbR6/UG1g4NDQ3Ev1OB8MwYeOp9twQDAAAAAAAAQH4JfQEAIIdKpVKMjo7G6OjovPOyLIuJiYk5Y+CpsXfv3kjTNMbGxmatn++W4JmjUqlEkiSLdVwAAAAAAAAAYA5CXwAAWMaSJIlarRa1Wi3Wr18/79xerxftdvuIQfD+/ftj27Zt0Wq1otvtDqwtlUoLCoKHh4ejWCwu5pEBAAAAAAAA4KQh9AUAgJNEsViMkZGRGBkZmXdelmXR6XTmvSV4+/btkaZptNvtyLJsYH2tVltQEFyr1dwSDAAAAAAAAADzEPoCAAADkiSJSqUSlUol1q5dO+/cfr8fY2Nj0wFwq9Waft1ut+PgwYOxY8eOSNM0Op3OwNpCoXDUGLjZbEaj0YihoaHFPDIAAAAAAAAA5JLQFwAAOG4zY92j6XQ60W63B2LgmeOBBx6YDoT7/f7A2kqlMiv+nfn11Ot6ve6WYAAAAAAAAABWDKEvAABwQpTL5SiXy7F69ep552VZNnBL8Fxj165dkaZpTExMDKxNkmTgRuCpIHhmDDw1yuXyYh4XAAAAAAAAAB41oS8AAJArSZJEo9GIRqMRp5xyyrxzu93uvEHwnj17YsuWLZGmafR6vYG15XJ5Vvw712g0GlEoFBbzyAAAAAAAAAAwJ6EvAACwbJVKpVi1alWsWrVq3nlZlsXExMS8UfDevXsjTdMYGxubtX7qZuCjjUqlEkmSLNJpAQAAAAAAADjZCH0BAIAVL0mSqNVqUavVYv369fPO7fV60W63ByLgVqsVaZpGu92O/fv3x7Zt26LVakW32x1YWyqVFhQEDw8PR7FYXMwjAwAAAAAAALACCH0BAABmKBaLMTIyEiMjI/POy7IsOp3OrBh4KghO0zTuv//+6a8PV6vVpqPfZrM569bgZrMZw8PDUa1W3RIMAAAAAAAAcJIS+gIAAByHJEmiUqlEpVKJtWvXzju33+/H2NjYQAw8cxw4cCC2b98eaZpGp9MZWFsoFAbC35lB8NR7U6NU8n/xAAAAAAAAAFYS/xYYAABgkU3FusPDw0edO/OW4LnGAw88MP06y7KBtdVqdSD8bTQas2Lg4eHhqNfrbgkGAAAAAAAAWAaEvgAAADlSLpdjzZo1sWbNmnnnZVkWY2Nj80bBu3btijRNY2JiYmBtkiSz4t8jjXK5vJjHBQAAAAAAAGAeQl8AAIBlKEmSaDQa0Wg04pRTTpl3brfbnTMEbrVa0W6348EHH4x777030jSNXq83sLZcLi8oCG40GlEoFBbzyAAAAAAAAAAnHaEvAADAClcqlWLVqlWxatWqeedlWRYTExOzYuA0TaPdbkeaprFnz55I0zTGx8cH1iZJEvV6fd4YuNlsTt8SnCTJIp4YAAAAAAAAYGUQ+gIAABARj8S6tVotarVarF+/ft65vV5vOv6dioFnjn379sV9990XaZpGt9sdWFsqlQbi30ajMSsGnroluFgsLuaRAQAAAAAAAHJN6AsAAMAxKxaLMTIyEiMjI/POy7IsOp3OnDHw1Ni/f//0rcGHq9Vqs+LfmV9PjWq16pZgAAAAAAAAYMUR+gIAALBokiSJSqUSlUol1q1bN+/cfr8/fUvwXOPAgQOxffv2SNM0Op3OwNpisTgr/j3SKJX8X2EAAAAAAABgefBvNwEAAMiFQqEQzWYzms3mUed2Op05Y+BWqxXtdjt27tw5/V6WZQNrq9XqgoLger3ulmAAAAAAAABgSQl9AQAAWHbK5XKsWbMm1qxZM++8LMtibGxsVgycpun07cG7du2KVqsVk5OTA2sLhUI0Go2jBsHNZjOGhoYW87gAAAAAAADASUroCwAAwIqVJEk0Go1oNBpxyimnzDv30KFD0/HvVAw8NdrtduzevTvuueeeSNM0+v3+wNpyuTwQ/h4eCDebzelbgguFwmIeGQAAAAAAAFhBhL4AAAAQEUNDQ7Fq1apYtWrVvPOyLIuJiYlZMfDM8eCDD0aapjE+Pj6wNkmSqNfr0+Hv8PDwdBQ8873h4eEol8uRJMkinhgAAAAAAADIO6EvAAAAHIMkSaJWq0WtVosNGzbMO7fb7U7fEjzX2Lt3b2zdujXSNI1utzuwdmhoaCD8bTQas2LgqfeLxeJiHhkAAAAAAABYIkJfAAAAWCSlUilGR0djdHR03nlZlsXk5OQRg+A0TWP//v2Rpmm02+1Z6+v1+qwAeK5RrVbdEgwAAAAAAADLiNAXAAAAlliSJFGtVqNarca6devmndvv9+e8JbjVakW73Y4DBw7E9u3bo9VqxaFDhwbWFovFBQXBw8PDUSr5IwMAAAAAAABYav6tHQAAACwjhUIhms1mNJvNo87tdDqzYuCp1+12O3bs2DH9OsuygbXVavWoMXCz2YxareaWYAAAAAAAAFgkQl8AAABYocrlcqxZsybWrFkz77x+vx/j4+OzYuCZgfADDzwQaZrG5OTkwNpCoRCNRmM6/J16PfX1zDB4aGhoMY8LAAAAAAAAK47QFwAAAE5yU7Fuo9GIU045Zd65hw4dmhUCzxy7d++Oe+65J9I0jX6/P7C2XC4PxL+NRmNWDDw8PBz1ej0KhcJiHhkAAAAAAACWBaEvAAAAsGBDQ0OxevXqWL169bzzsiybviX4SOPBBx+MNE1jfHx8YG2SJAM3A883yuVyJEmymEcGAAAAAACAJSP0BQAAAB5zSZJEvV6Per0eGzZsmHdut9uNdrs9KwRutVrRbrdj7969sXXr1mi1WtHr9QbWDg0NLSgIbjQaUSwWF/PIAAAAAAAA8JgT+gIAAABLqlQqxejoaIyOjs47L8uymJycnBUDp2k6HQpv27YtWq1WjI2NzVpfr9ePGgQ3m82oVCpuCQYAAAAAACAXhL4AAADAspAkSVSr1ahWq7Fu3bp55/Z6vRgbGxuIgadGu92Ohx56KO6///5I0zQOHTo0sLZYLB41Bp66JbhU8kcrAAAAAAAALB7/NgoAAABYcYrFYjSbzWg2m/G4xz1u3rmdTmdWDDxz7NixYzoQzrJsYG21Wp0Of6fi35kx8NSo1WpuCQYAAAAAAOCYCX0BAACAk1q5XI61a9fG2rVr553X7/enbwmeaxw8eDB27twZaZrG5OTkwNpCoTAQ/jYajVkx8NQYGhpazOMCAAAAAACwjAh9AQAAABZgZqx7NIcOHTpiEJymaezevTvuueeeSNM0+v3+wNpKpTJnAHz4qNfrUSgUFuu4AAAAAAAA5IDQFwAAAOAxNjQ0FKtXr47Vq1fPOy/LshgfH58VArdarWi325GmaTz44IPRarViYmJiYG2SJNFoNBYUBVcqlcU8LgAAAAAAAItE6AsAAACwRJIkiXq9HvV6PTZs2DDv3G63Ox3/TsXAU6/b7Xbs2bMntmzZEmmaRq/XG1g7NDQ0bwjcbDZjeHg4Go2GW4IBAAAAAAByROgLAAAAsAyUSqUYHR2N0dHReedlWRaTk5OzYuCZY9++fZGmaYyNjc1aX6/XZ8W/M7+eeUtwkiSLdVwAAAAAAABC6AsAAACwoiRJEtVqNarVaqxbt27eub1eb+CW4MPH/v37Y9u2bdFqtaLb7Q6sLZVKA+Fvo9GYFQNPjWKxuJhHBgAAAAAAWLGEvgAAAAAnqWKxGCMjIzEyMjLvvCzLotPpHDEITtM0duzYEWmaRrvdjizLBtbXarU5A+DDR61Wc0swAAAAAADADEJfAAAAAOaVJElUKpWoVCqxdu3aeef2+/0YGxubFQK3Wq1ot9tx8ODB2LlzZ6RpGpOTkwNrC4XCgoLg4eHhGBoaWswjAwAAAAAA5ILQFwAAAIDHzMxY92g6nU602+2BGHjqdbvdjl27dk0Hwv1+f2BtpVI5agzcbDajVqtFoVBYrOMCAAAAAAAsKqEvAAAAAEuiXC5HuVyO1atXzzsvy7IYHx+fFQNPBcGtVit2794daZrGxMTEwNokSaLRaMwbA0+9LpfLi3lcAAAAAACAYyb0BQAAACDXkiSJer0e9Xo9NmzYMO/cbrc7EAIfPvbs2RNbtmyJNE2j1+sNrB0aGhqIf6cC4Zkx8NT7bgkGAAAAAABOBKEvAAAAACtGqVSKVatWxapVq+adl2VZTExMzBsF7927N9I0jbGxsVnr57sleOaoVCqRJMkinRYAAAAAAFjphL4AAAAAnHSSJIlarRa1Wi3Wr18/79xerxftdvuIQfD+/ftj27Zt0Wq1otvtDqwtlUoLCoKHh4ejWCwu5pEBAAAAAIBlSOgLAAAAAPMoFosxMjISIyMj887Lsiw6nc6sELjVak2Hwtu3b480TaPdbkeWZQPra7XagoLgWq3mlmAAAAAAADhJCH0BAAAA4DGQJElUKpWoVCqxdu3aeef2+/0YGxsbiIGnXrfb7Xj44Ydjx44dkaZpdDqdgbWFQuGoMXCz2YxGoxFDQ0OLeWQAAAAAAGCRCX0BAAAA4ASbGeseTafTiXa7PRADzxwPPPDAdCDc7/cH1lYqlenwd3h4OBqNxkAMPPW6Xq+7JRgAAAAAAHJI6AsAAAAAOVYul6NcLsfq1avnnZdl2cAtwXONXbt2RZqmMTExMbA2SZKBG4GnguCZMfDUKJfLi3lcAAAAAABgBqEvAAAAAKwASZJEo9GIRqMRp5xyyrxzu93uvEHwnj17YsuWLZGmafR6vYG15XJ5Vvw712g0GlEoFBbzyAAAAAAAsOIJfQEAAADgJFMqlWLVqlWxatWqeedlWRYTExPzRsF79+6NNE1jbGxs1vqpm4GPNiqVSiRJskinBQAAAACA5UvoCwAAAADMKUmSqNVqUavVYv369fPO7fV60W63ByLgVqsVaZpGu92O/fv3x3333Rdpmka32x1YWyqVjhoDN5vNaDQaUSwWF/PIAAAAAACQK0JfAAAAAOBRKxaLMTIyEiMjI/POy7IsOp3OQAg8NdrtdrRarbj//vunvz5crVabFf/O/HrqdbVadUswAAAAAADLntAXAAAAADhhkiSJSqUSlUol1q5dO+/cfr8/65bgmePAgQOxffv2SNM0Op3OwNpisRiNRmM6/p0KgmfGwFOjVPLHpAAAAAAA5JM/wQYAAAAAcqlQKESz2Yxms3nUuVO3BB9pPPDAA9OvsywbWFutVmfFv3ONer2+5LcE79ixIy6//PIYHh6OdevWxbOf/ey44oorBub0+/0oFApLtEMAAAAAAB5LQl8AAAAAYNkrl8uxZs2aWLNmzbzzsiyLsbGxeaPgXbt2RZqmMTExMbA2SZIFBcHDw8NRLpcX5Zxr166N3/u934uxsbH47ne/G//4j/8Yo6Oj8fKXvzwiIg4ePBhveMMb4uabb47Pf/7zcc4558TevXvjgx/8YHQ6nTj99NNj06ZNsWnT/2Hvz4MkTfPCzvP3+u3+ukdGZkZk5F0nNGqOPjhaQKNeDsFAMztIu4BooQUhAzS7jGSSZtdAMp0jWaMxSSZp0IIQhtEgk2iYZQHrFmrjEhJgI6TuomnuVXedWZWVlXV0+ft6ePj17h8td8WbHhkZVZWRHhH5+Zg9ZvG++T7h71NW2eTx5VdvOZT3AwAAAADg7hL6AgAAAAD3jSRJIk3TSNM0tra29n12MpksRcD9fj+yLIs8z+PGjRvxiU98IrIsi+l0WtrbaDQOFASnafqapu+2Wq34o3/0j0ZExJd92ZfFRz/60fjRH/3R+JN/8k/Gq6++Gj/5kz8Zv/IrvxJ/7I/9scU7vfjii3Hjxo3o9XrxC7/wC/GzP/uz8df/+l8X+wIAAAAAHANCXwAAAACAPdRqtVhfX4/19fV9nyuKIobD4VIMPA+CsyyLF154IbIsi+3t7dLeJEmi0+ksBcCf8RmfERcvXixFwEVRRJIk8e/+3b+Lf/bP/lm89NJLcfXq1fjLf/kvR0TE933f98V4PI7v+Z7viZ//+Z+PNE0jIuLKlSvx3ve+dzFl+Lu+67vive99b/z4j/94zGaz1xQaAwAAAABwbwl9AQAAAADegCRJot1uR7vdjs3NzX2fnU6nked5KQbevV588cV48sknY2NjIy5cuLD0ORERn/VZnxXf9V3fFT/1Uz8VERFf8AVfED/xEz8R/X4//upf/avxEz/xE9FoNKLZbEZERKfTKX2fl19++Y7TjAEAAAAAOBqEvgAAAAAA90i1Wo21tbVYW1vb97miKG77YxsbG/Gud70r3vWud8VXf/VXx9//+38/fuM3fiO+5Eu+JHq9Xvz+7/9+bG1tLaLj8Xgc9Xo9IiL+5t/8mzEYDOKbv/mbI+K/xcMAAAAAABxNQl8AAAAAgCNmrwB3OBzGZDKJbre7uPe7v/u78Y53vCM++7M/O378x388/uW//Jdx7dq1GA6HURRFfM/3fE+cPn06RqNR/LW/9tfisccei7/7d/9ufP7nf37pc2azWTz11FPx27/929HtdvdctZo/TgYAAAAAuNf8ySwAAAAAwDEwHo/jT//pPx2f/OQn49KlSzEej+Orvuqr4ru/+7uj1WrF937v90ZExDd+4zfG533e58V73vOeOH36dPT7/fgbf+NvxGQyiQ984APRarX2/P6DwSCeffbZyLIssixbmircarVuGwHvXp1Ox6RgAAAAAIC7ROgLAAAAAHAM9Hq9+MEf/MF49tln47nnnos8z+Nrv/Zro9VqxXQ6jaIoolarRZZlce7cubh06VJERLzrXe+K3/zN34z3vve98aEPfSjW19fji77oi6Jery++d6VSiTe/+c3x5je/OSI+NeF3e3t7Ef1mWRb9fj+yLIs8zyPLsnjuueciy7LY2dkpvWelUok0TfeNgXu9XnS73dI7AAAAAACwLCluHcsAnEgf/OAH49q1a/Ed3/Edq34VAAAAAA7ZZDKJWu1Tcx7e9773xWQyiT/8wz+M559/Pm7cuBHve9/7YnNz86581ng8XsS/8xj4dms2m5X2NhqNUvx7ayA8D4I7nU5UKpW78r4AAAAAAMeJib4AAAAAACfMPPKNiPiWb/mWQ/2ser0e6+vrsb6+vu9zRVHEcDjcNwa+ceNGZFkW29vbpb1JkkSn01mEv91uN9I0LV3PV6PRiCRJDvHEAAAAAAD3jtAXAAAAAIBDlyRJtNvtaLfbce7cuX2fnUwmiynBe62bN2/GE088EVmWxWQyKe2t1+tL8e9eK03TqFarh3lkAAAAAIA3TOgLAAAAAMCRUqvV4tSpU3Hq1Kl9nyuKInZ2dm4bBGdZFk899VRkWRZ5ni/t73Q6B4qCW62WKcEAAAAAwEoIfQEAAAAAOJaSJIlWqxWtVis2Njb2fXY2my1NCe73+4sI+JVXXolnnnkm+v1+jMfj0t5qtXqgILjb7Uat5o/dAQAAAIC7x584AgAAAABw4lUqlej1etHr9e747Gg0WoqB5yvP87h27dri66IoSntbrda+IXCv14tutxvtdtuUYAAAAADgjoS+AAAAAACwS6PRiDNnzsSZM2f2fW42m8X29vZSDLw7En7uueciy7LY2dkp7a1UKpGm6SL+nX+9Owaer3q9fpjHBQAAAACOMKEvAAAAAAC8DvNYN03TOz47Ho/3jIHn6/nnn4+Pf/zjkWVZzGaz0t5Go1GKf9M0XYqBu91udDqdqFQqh3VcAAAAAGAFhL4AAAAAAHDI6vV6nD59Ok6fPr3vc0VRxPb29r5R8I0bNyLLstje3i7tTZKkNBl4v9VoNCJJksM8MgAAAABwFwh9AQAAAADgiEiSJDqdTnQ6nTh37ty+z04mk8jzfCkE7vf7ked53Lx5M5544ono9/sxnU5Le+v1+oGC4DRNo1qtHuaRAQAAAIB9CH0BAAAAAOAYqtVqcerUqTh16tS+zxVFETs7O0sxcJZli1D4ySefjCzLYjAYLO3vdDp3DIJ7vV40m01TggEAAADgLhP6AgAAAADACZYkSbRarWi1WrGxsbHvs9PpNAaDQSkG3r1efvnlePrppyPLshiPx6W91Wr1jjHwfEpwreavJwAAAADgIPxJGgAAAAAAEBGfinV7vV70er24cOHCvs+ORqM9Y+D5unbt2mJqcFEUpb2tVmsR/s7j390x8Hy1221TggEAAAC4rwl9AQAAAACA16zRaMTZs2fj7Nmz+z43m80WU4L3Wq+++mo8++yzkWVZ7OzslPZWKpVS+Jum6VIMPF/1ev0wjwsAAAAAKyH0BQAAAAAADs3uWPdOxuPxbYPgLMvi+eefj49//OORZVnMZrPS3mazuWcAfOvqdDpRqVQO67gAAAAAcFcJfQEAAAAAgCOhXq/H6dOn4/Tp0/s+VxRFbG9vL4XA/X4/8jyPLMvixo0b0e/3YzgclvYmSRJpmh4oCm42m4d5XAAAAAC4I6EvAAAAAABwrCRJEp1OJzqdTpw7d27fZyeTySL+ncfA86/zPI8XXnghHn/88ciyLKbTaWlvvV7fNwTu9XrR7XYjTVNTggEAAAA4FEJfAAAAAADgxKrVanHq1Kk4derUvs8VRRE7OztLMfDu9eKLL0aWZTEYDJb2dzqdpfh39/XuKcFJkhzWcQEAAAA4YYS+AAAAAADAfS9Jkmi1WtFqtWJjY2PfZ6fTaWlK8K3rpZdeiqeeeir6/X5MJpPS3lqtVgp/0zRdioHnq1qtHuaRAQAAADgGhL4AAAAAAACvQbVajbW1tVhbW9v3uaIoYjQa3TYIzrIsrl27FlmWRZ7nURRFaX+73d4zAL51tdttU4IBAAAATiihLwAAAAAAwCFIkiSazWY0m804e/bsvs/OZrMYDAZLIXC/3488z+PVV1+NZ599NrIsi52dndLeSqVyoCC42+1GvV4/zCMDAAAAcJcJfQEAAAAAAFZsd6x7J6PRKPI8L8XA86/zPI/r168vAuHZbFba22w27xgD93q9aLfbUalUDuu4AAAAAByQ0BcAAAAAAOAYaTQa0Wg04vTp0/s+VxRFbG9vL8XA8yC43+/H888/H1mWxXA4LO1NkiTSNN03Bp5/3Wg0DvO4AAAAAPc1oS8AAAAAAMAJlCRJdDqd6HQ6ce7cuX2fnUwmpRD41vXCCy/E448/HlmWxXQ6Le2t1+ul+HceCO+Ogef3TQkGAAAAeG2EvgAAAAAAAPe5Wq0W6+vrsb6+vu9zRVHEcDjcNwq+efNmZFkWg8Fgaf9+U4J3r2azGUmSHNJpAQAAAI4PoS8AAAAAAAAHkiRJtNvtaLfbsbm5ue+z0+k08jy/bRD80ksvxVNPPRX9fj8mk0lpb61WO1AQ3O12o1qtHuaRAQAAAFZK6AsAAAAAAMBdV61WY21tLdbW1vZ9riiKGI1GSyFwv99fhMLPPPNMZFkWeZ5HURSl/e12+0BBcLvdNiUYAAAAOHaEvgAAAAAAAKxMkiTRbDaj2WzG2bNn9312NpvFYDAoxcDzr/M8j09+8pNx7dq1yLIsRqNRaW+lUrljDNzr9SJN06jX64d5ZAAAAIADE/oCAAAAAABwLOyOde9kNBpFnuelGHj3eu655xaB8Gw2K+1tNpuL8Lfb7UaapqUYeP51p9MxJRgAAAA4VEJfAAAAAAAATpxGoxGNRiNOnz6973NFUZSmBO+1rl+/HlmWxXA4LO1NkqQ0EXgeBO+Ogeer0Wgc5nEBAACAE0roCwAAAAAAwH0rSZJI0zTSNI2tra19n51MJvsGwS+88EI8/vjjkWVZTKfT0t5Go7EU/+610jSNSqVymEcGAAAAjhGhLwAAAAAAABxArVaL9fX1WF9f3/e5oihiOBzuGwXfvHkzsiyLwWCwtH8+GfhOq9lsRpIkh3RaAAAA4CgQ+gIAAAAAAMBdlCRJtNvtaLfbsbm5ue+z0+k08jwvRcD9fj+yLIs8z+Oll16KJ598MrIsi8lkUtpbq9UOFAR3u92oVquHeWQAAADgkAh9AQAAAAAAYEWq1Wqsra3F2travs8VRRGj0WgpBp4Hwf1+P55++unF9a3a7fYi+u31eqWpwb1eb/F1q9UyJRgAAACOEKEvAAAAAAAAHHFJkkSz2Yxmsxlnz57d99nZbBaDwaAUA+9er7zySjzzzDORZVmMRqPS3mq1GmmaLuLfeRC8Owaer1rNXzUCAADAYfO7bwAAAAAAADhBKpXKIsa9k91Tgvdazz333OLroihKe1ut1lL8u9fqdDqmBAMAAMDrJPQFAAAAAACA+1Sj0YgzZ87EmTNn9n2uKIoYDAb7RsHXr1+PLMtiOByW9iZJcqAguNvtRqPROMzjAgAAwLEj9AUAAAAAAAD2lSRJpGkaaZrG1tbWvs9OJpOlCLjf70eWZZHnedy4cSM+8YlPRJZlMZ1OS3sbjcaBguA0TaNSqRzmkQEAAOBIEPoCAAAAAAAAd02tVov19fVYX1/f97miKGI4HC7FwPMgOMuyeOGFFyLLstje3i7tTZIkOp3OvjFwr9dbTAlOkuQQTwwAAACHR+gLAAAAAAAA3HNJkkS73Y52ux2bm5v7PjudTiPP81IMvHu9+OKL8eSTT0aWZTGZTEp7a7VaKf5N03QpBp5PCa5Wq4d5ZAAAAHjNhL4AAAAAAADAkVatVmNtbS3W1tb2fa4oitjZ2dkzBp6vl156aTE1+Fbtdnsp/t19PV+tVsuUYAAAAO4JoS8AAAAAAABwIiRJEq1WK1qtVmxsbOz77Gw2izzPbxsEv/LKK/HMM89ElmUxGo1Ke6vV6lL8e7tVq/krWQAAAF4/v6sEAAAAAAAA7juVSiV6vV70er07PjsajfaMgfv9fuR5Hs8+++ziXlEUpb2tVutAQXCn0zElGAAAgCVCXwAAAAAAAIB9NBqNOHPmTJw5c2bf52azWWxvby/FwFmWLaYHX79+Pfr9fuzs7JT2ViqVSNP0jkFwr9eLer1+mMcFAADgCBH6AgAAAAAAANwF81g3TdPY2tra99nxeLyIf+cx8O71/PPPx8c//vHIsixms1lpb6PRKIW/twbCvV5vMSW4Uqkc5pEBAAA4ZEJfAAAAAAAAgHusXq/H+vp6rK+v7/tcURQxHA73jIHn68aNG5FlWWxvb5f2JkkSnU5nEf52u91FFLz7XrfbjUajEUmSHOKJAQAAeD2EvgAAAAAAAABHVJIk0W63o91ux7lz5/Z9djKZLKYE77Vu3rwZTzzxRGRZFpPJpLS3Xq+Xwt80TZdi4Pn9arV6mEcGAABgF6EvAAAAAAAAwAlQq9Xi1KlTcerUqX2fK4oidnZ2bhsEZ1kWL730UmRZFnmeL+3vdDpLAfBeq9VqmRIMAADwBgl9AQAAAAAAAO4jSZJEq9WKVqsVGxsb+z47m832nBLc7/cjz/N45ZVX4plnnol+vx/j8bi0t1qtHigI7na7Uav5q2sAAIC9+N0SAAAAAAAAAHuqVCrR6/Wi1+vd8dnRaFQKgXeHwXmex7Vr1xZfF0VR2ttqte4YA/d6vWi326YEAwAA9xWhLwAAAAAAAABvWKPRiDNnzsSZM2f2fW42m8X29vZSDLw7En7uueciy7LY2dkp7a1UKpGm6SL8nX89v94dBtfr9cM8LgAAwD0h9AUAAAAAAADgnpnHumma3vHZ8Xi8Zww8X88//3x8/OMfjyzLYjablfY2Go1S/Jum6VIM3O12o9PpRKVSOazjAgAAvCFCXwAAAAAAAACOpHq9HqdPn47Tp0/v+1xRFLG9vb1vFHzjxo3Isiy2t7dLe5MkKU0G3m81Go1IkuQwjwwAAFAi9AUAAAAAAADgWEuSJDqdTnQ6nTh37ty+z04mk8jzfCkE7vf7ked53Lx5M5544ono9/sxnU5Le+v1+oGC4DRNo1qtHuaRAQCA+4TQFwAAAAAAAID7Rq1Wi1OnTsWpU6f2fa4oitjZ2VmKgbMsW4TCTz31VPT7/RgMBkv7O53OHYPgXq8XzWbTlGAAAOC2hL4AAAAAAAAAcIskSaLVakWr1YqNjY19n51OpzEYDEox8HzleR4vv/xyPP3005FlWYzH49LearV6xxh4PiW4VvNX/AAAcL/xuwAAAAAAAAAAeAOq1Wr0er3o9Xpx4cKFfZ8djUZLMfDude3atUUgXBRFaW+r1VqEv/P4d3cMPF/tdtuUYAAAOCGEvgAAAAAAAABwjzQajTh79mycPXt23+dms9liSvBe69VXX41nn302siyLnZ2d0t5KpVIKf9M0XYqB56terx/mcQEAgDdI6AsAAAAAAAAAR8zuWPdOxuPxbYPgLMvi+eefj49//OORZVnMZrPS3mazuWcAfOvqdDpRqVQO67gAAMBtCH0BAAAAAAAA4Bir1+tx+vTpOH369L7PFUUR29vbSyFwv9+PPM8jy7K4ceNG9Pv9GA6Hpb1JkkSapgeKgpvN5mEeFwAA7itCXwAAAAAAAAC4DyRJEp1OJzqdTpw7d27fZyeTySL+ncfA86/zPI8XXnghHn/88ciyLKbTaWlvvV6/Ywzc6/UiTVNTggEA4A6EvgAAAAAAAABASa1Wi1OnTsWpU6f2fa4oitjZ2VmKgXevF198MbIsi8FgsLS/0+kswt9ut1uaGjy/N58SnCTJYR0XAACOLKEvAAAAAAAAAPC6JEkSrVYrWq1WbGxs7PvsdDotTQm+db300kvx1FNPRZZlMR6PS3trtVppIvA8CN4dA89XtVo9zCMDAMA9JfQFAAAAAAAAAA5dtVqNtbW1WFtb2/e5oihiNBrdNgjOsiyuXbsWWZZFnudRFEVpf7vdXop/91rtdtuUYAAAjjyhLwAAAAAAAABwZCRJEs1mM5rNZpw9e3bfZ2ezWQwGg6UQuN/vR57n8eqrr8azzz4bWZbFzs5OaW+lUjlQENztdqNerx/mkQEA4LaEvgAAAAAAAADAsbQ71r2T0WgUeZ6XYuD513mex/Xr1xeB8Gw2K+1tNpt3jIF7vV602+2oVCqHdVwAAO5DQl8AAAAAAAAA4MRrNBrRaDTi9OnT+z5XFEVsb28vxcDzILjf78fzzz8fWZbFcDgs7U2SJNI03TcGnn/daDQO87gAAJwQQl8AAAAAAAAAgP8qSZLodDrR6XTi3Llz+z47mUxKIfCt64UXXojHH388siyL6XRa2luv10vx7zwQ3h0Dz++bEgwAcP8S+gIAAAAAAAAAvA61Wi3W19djfX193+eKoojhcLhvFHzz5s3IsiwGg8HS/v2mBO9ezWYzkiQ5pNMCALAKQl8AAAAAAAAAgEOUJEm02+1ot9uxubm577PT6TTyPL9tEPzSSy/FU089Ff1+PyaTSWlvrVY7UBDc7XajWq0e5pEBALhLhL4AAAAAAAAAAEdEtVqNtbW1WFtb2/e5oihiNBothcD9fn8RCj/zzDORZVnkeR5FUZT2t9vtAwXB7XbblGAAgBUS+gIAAAAAAAAAHDNJkkSz2Yxmsxlnz57d99nZbBaDwaAUA8+/zvM8Xn311bh27VpkWRaj0ai0t1Kp3DEG7vV6kaZp1Ov1wzwyAMB9SegLAAAAAAAAAHCC7Y5172Q0GkWe56UYePd67rnnFoHwbDYr7W02m0vx7+7r+dedTseUYACAAxL6AgAAAAAAAAAQERGNRiMajUacPn163+eKoihNCd5rXb9+PbIsi+FwWNqbJElpIvA8CN4dA89Xo9E4zOMCABx5Ql8AAAAAAAAAAF6TJEkiTdNI0zS2trb2fXYymewbBL/wwgvx+OOPR5ZlMZ1OS3sbjcZS/LvXStM0KpXKYR4ZAGAlhL4AAAAAAAAAAByaWq0W6+vrsb6+vu9zRVHEcDjcNwq+efNmZFkWg8Fgaf98MvCdVrPZjCRJDum0AAB3l9AXAAAAAAAAAICVS5Ik2u12tNvt2Nzc3PfZ6XQaeZ6XIuB+vx9ZlkWe5/HSSy/Fk08+GVmWxWQyKe2t1WoHCoK73W5Uq9XDPDIAwB0JfQEAAAAAAAAAOFaq1Wqsra3F2travs8VRRGj0WgpBp4Hwf1+P55++unF9a3a7fYi+u31ektTg3u9XnS73Wi1WqYEAwCHQugLAAAAAAAAAMCJlCRJNJvNaDabcfbs2X2fnc1mMRgMSjHw7vXKK6/EM888E1mWxWg0Ku2tVCql8Hd3EDy/N1+1mlwHADg4v3IAAAAAAAAAAOC+N491u93uHZ/dPSV4r/Xcc88tvi6KorS31WqVwt80TZdi4G63G51Ox5RgAEDoCwAAAAAAAAAAr0Wj0YgzZ87EmTNn9n2uKIoYDAb7RsHXr1+PLMtiOByW9iZJshT/3m41Go3DPC4AsEJCXwAAAAAAAAAAOARJkkSappGmaWxtbe377GQyWYqA+/1+ZFkWeZ7HjRs34hOf+ERkWRbT6bS0t9FoHCgITtM0KpXKYR4ZALjLhL4AAAAAAAAAALBitVot1tfXY319fd/niqKI4XC4FAPPg+Asy+KFF16ILMtie3u7tDdJkuh0OvvGwL1ebzElOEmSQzwxAHAQQl8AAAAAAAAAADgmkiSJdrsd7XY7Njc39312Op1GnuelGHj3evHFF+PJJ5+MLMtiMpmU9tZqtVL8m6bpUgw8nxJcrVYP88gAcF8T+gIAAAAAAAAAwAlUrVZjbW0t1tbW9n2uKIrY2dnZMwaer5deemkxNfhW7XZ7Kf7dfT1frVbLlGAAeI2EvgAAAAAAAAAAcB9LkiRarVa0Wq3Y2NjY99nZbBZ5nt82CH7llVfimWeeiSzLYjQalfZWq9Wl+Pd2q1aTNQFAhNAXAAAAAAAAAAA4oEqlEr1eL3q93h2fHY1Ge8bA/X4/8jyPZ599dnGvKIrS3lardaAguNPpmBIMwIkm9AUAAAAAAAAAAO66RqMRZ86ciTNnzuz7XFEUMRgMlmLgLMsW04OvX78e/X4/dnZ2SnsrlUqkaXrHILjX60W9Xj/M4wLAoRD6AgAAAAAAAAAAK5MkSaRpGmmaxtbW1r7PjsfjRfw7j4HnK8/zeP755+PjH/94ZFkWs9mstLfRaJTC31sD4V6vt5gSXKlUDvPIAHBgQl8AAAAAAAAAAOBYqNfrsb6+Huvr6/s+VxRFDIfDpRh497px40ZkWRbb29ulvUmSRKfTWYS/3W53EQXvvtftdqPRaESSJId4YgDud0JfAAAAAAAAAADgREmSJNrtdrTb7Th37ty+z04mk8WU4L3WzZs344knnogsy2IymZT21uv1UvibpulSDDy/X61WD/PInGDToogXtqdxfTCJ64NJZJNZTGdFVCtJdGuVON+pxflOLTbb1agKz+HESYqiKFb9EsDh297ejul0Gt1ud9WvAgAAAAAAAABw7BRFETs7O7cNgnevPM+X9nc6naUAeK/VarVMCSYiIj45msZv3hzGYzeHMZx+KvOrRMRs1zO7r1vVJN620Yq3brTiVENYDieF0BcAAAAAAAAAAOAums1me04J7vf7pfv9fj/G43Fpb7VaPVAQ3O12o1bzH3Q/iYbTWfzytTw++uJOJBHxWgK/+fNvOduML7uURrNaOZyXBO4ZoS8AAAAAAAAAAMCKjEajpRh492Tg+XWe53Fr6tVqte4YA/d6vWi326YEHxOPvzqKDzzZj8GkeE2B762SiEhrSbz7gV48tNa4W68HrIDQFwAAAAAAAAAA4IibzWaxvb29FAPvtXZ2dkp7K5VKpGm6CH/nX++Ogedf1+v1FZ2QD7+wHT//TP6ap/jezvz7/PHLaXzuZvsufEdgFYS+AAAAAAAAAAAAJ8h4PN43BN69ZrNZaW+j0SiFv7sD4d1xcKfTiUqlsqITnjzzyPewiH3h+BL6wn3iz//5Px8/8AM/sHT/V3/1V+Mnf/In45/8k3+ygrcCAAAAAAAAAGBViqJYTAm+09re3i7tTZJkaTLw7Vaj0YgkSVZ0yqPv8VdH8f6Pv3ron/ONj6zFQ2uNQ/8c4O4S+sJ94sqVK/H0008v3X/22Wfji7/4i+Pxxx9fwVsBAAAAAAAAAHAcTCaTyPN8KQDu9/ul+/1+P6bTaWlvvV4/UBCcpmlUq9UVnfDu+cVf/MWIiPiSL/mSaDT2D2uH01n8i999OQaTIg4z5EsiIq0l8e1vPh3NqknMcJwIfeE+0Wg04tKlS0v3kySJJ554Yuk/wwAAAAAAAAAAAK9VURSxs7OzFANnWbYUBA8Gg6X9nU7njkFwr9eLZrN5ZKcEf/jDH46f+7mfi16vF1/zNV8Tn/Zpn3bbZ3/uqX781os7hxr5ziUR8Tlnm/HVV3v34NOAu0XoC/eJCxcuxIc+9KHb/vjnfM7n3MO3AQAAAAAAAADgfjedTmMwGJRi4PnK87x0bzwel/ZWq9U7xsDzKcG1Wu2en+2ll16KD37wg/GJT3wiPvMzPzO+6qu+Knq9cmD7ys40fuB3X77n7/Y/fubpONU4/pOT4X4h9IX7xKd/+qfHH/7hH676NQAAAAAAAAAA4DUbjUZLMfBeK8/zuDWJa7VaS/Hv7uv5arfbd3VKcFEU8bGPfSw+9KEPxXQ6jS//8i+Pz/u8z1t8xq88m8f/8fz2baf5Pv7hX49//6P/LK793kejf/P5+OZ/+L74zC/9mtL3/4Uf+Pvxn/6/Pxbb/Vfjgbd8QXzdX/1fY+PqI7d9pyQi/uhWO951Mb1r5wQOl9AX7hNPP/10rK2txalTp1b9KgAAAAAAAAAAcChms9liSvCd1s7OTmlvpVIphb9pmi7FwPNVr9cP/E7b29vxC7/wC/GRj3wkLl26FF/7tV8bm1tb8b997KUYTm+f7/3Br/1CPPmbvxGX/shb4l/+z9+6FPr+yo/80/h3P/xP4uv/zvfF6YtX4+e//3vj+n/5vfhL//uvRr3Zuu33bVWT+J8++0xU72LUDBweoS/cJ97xjnfET//0T8eFCxdK91999dX4+q//+vjQhz60ojcDAAAAAAAAAIB7bzweHygIzrIsZrNZaW+z2dwzAL51dTqdqFQqERHx1FNPxQc+8IG4efNmfM47vyx+//RnHPhdv+ftm6XQtyiKeO9XfVa885v/7/HH/m//j4iIGPZfjb/3x98c/9e//b/FW77qT+z7/b71TetxvlN7Lf+4gBXxMxXuE8PhsBT5fsu3fEu8733vi7W1tXj++edX+GYAAAAAAAAAAHDv1ev1OH36dJw+fXrf54qiiO3t7aX4t9/vR57nkWVZ3LhxI7Isi+3t7dLeJEkiTdNF+HvhwoXodDrx209fj9r6myJe51Tdl689Gf2bN+LRd/yxxb1Wby2ufNbb46nf+k93DH2vDyZCXzgm/EyF+0Ryyy8KfvmXf/m2PwYAAAAAAAAAAHxKkiTR6XSi0+nEuXPn9n12Mpks4t95DDz/Os/zeOmll+KVV16J5OEHoyhmkSTV1/VO/RdvRERE98xm6X737Gb0b97Yd28lPhX6AseD0BfuE+fOnYuf/umfjq/7uq+LH/uxH4skSeJHfuRHYn19PdbW1lb9egAAAAAAAAAAcOzVarU4depUnDp1qnR/e3s7Pvaxj8Vjjz0WWZZFK12LIqms5B1nEZFPZiv5bOC1E/rCfeIf/IN/EF/7tV8b73nPe+JLv/RL49/8m38Tf+bP/JmYzWbxIz/yI6t+PQAAAAAAAAAAOFGKoognnngiPvzhD8fv//7vx3Q6jYsXL8bb3/72ePrUerz6Bv4r3L2zn5osnL30Qqxtnl/cz158IS686bPuuH8yK173ZwP3ltAX7hOf8zmfE0899VS8/PLLcfr06YiI+MhHPrLitwIAAAAAAAAAgONnNptFnueRZdnSevnll+PGjRvR7/djNitPzn322Wfj+eefj8Y7Lkec7UW8ztj39KUHordxLj7+G/8hLr7psyMiYpj14+nf/ki84+v/7B331yqvPzIG7i2hL9xn5pHvbi+99FKcOXNmBW8DAAAAAAAAAABHQ1EUsbOzs2e8e+vK83xpf6fTiaIoYnt7O5IkiY2NjXjwwQfj8uXL0ev1otvtRrfbjVarFR96Oo/fenEYsz3eY25nkMWLTz++uH752lPx7B98LDprp2P9wuX44vd8Z/zSD/2jOHv14Thz8Wr8/Pd/b/Q2z8eb/09fve85KxGR1iqv858ScK8lRVGYwQ33ube97W3x2GOPrfo1AAAAAAAAAADgrptOp5HnefT7/TsGvJPJpLS3VqtFt9tdhLppmpau5ytN06hWq/HYY4/FbDaLz/qsz4pms3nbd/rNm8P4t09n+773J/7zr8W/+I6vW7r/9v/+G+Pr//b3RVEU8Qs/8PfjN37qR2PYfzUeeOs74n/4nv81Nh945I7/TP67K91460brjs8Bqyf0hfvEO9/5zvizf/bPxp/6U38q0jQt/djb3/72+MhHPrKiNwMAAAAAAAAAgNemKIoYDoeLQHd3xHtr1Lu9vb20fx7szqPdW6/nXzcajUiS5K6///XBJH7kD16569/3oL71TetxvlNb2ecDB+dnKtwnvuM7viN+6Id+KP7SX/pL8Q3f8A3xbd/2bfFFX/RFq34tAAAAAAAAAABYmEwmS1N259Funuel+9PptLS30WiUpuxubm6WrucRb6fTiUqlsqITfspmuxqtahLD6b2f09mqJrHZrt7zzwVeHxN94T7zh3/4h/HDP/zD8aM/+qOxvr4ef+7P/bn4wR/8wfiDP/iDVb8aAAAAAAAAAAAnUFEUMRgMlgLevdZwOCztTZJkKda93Wo0Gis64evzK8/m8X88vx33MuBLIuKPbrXjXRfTOz4LHA1CX7hPzWaz+OAHPxg/9EM/FD/3cz8Xo9Fo1a8EAAAAAAAAAMAxMhqNDhTvZlkWt2ZqrVbrQPFup9OJJElWdMLD9cnRNL7/d16+55/7P37m6TjVMNEXjguhLxCvvPJKrK+vr/o1AAAAAAAAAABYsdlsFnmeHyjevXWwXLVaLUW6aZpGt9uNXq+3FPDWarUVnfBo+bmn+vFbL+7ck6m+SUR8ztlmfPXV3j34NOBuEfoCAAAAAAAAAACcYEVRLKbv9vv9Uqyb53np3mAwWJq+2263S8HuPOC9NeJttVondvruYdmZzuJf/O7LkU+KQ419k4hIa0l8+5tPR7NaOcRPAu42oS8AAAAAAAAAAMAxNJ1OS9N3dwe78/vze5PJpLS3VqstTdm9dfV6vUjTNKrV6opOeH94/NVRvP/jrx7653zjI2vx0Frj0D8HuLuEvgAAAAAAAAAAAEdEURQxHA5LU3fnwe7uqHc+ffdWu6ft7reazabpu0fIh1/Yjp9/Jj+07/+Vl9N4+2b70L4/cHiEvgAAAAAAAAAAAIdsMpksxbu3W9PptLS30WgcKN5N0zQqlcqKTsgbNY99k4i4G1Hf/PuIfOF4E/oCAAAAAAAAAAC8DkVRxGAwOFC8OxwOS3uTJFmKdHu93p4Bb6PRWNEJudcef3UUH3yyH/mkeEOxbxIRaS2Jdz/Qi4fW/PsDx5nQF+4TH/7wh+PFF1+Mr/zKr1z1qwAAAAAAAAAAHGnj8TiyLIt+v79vvJvnecxms9LeZrMZ3W53Ee2maVq6nq92u236LnsaTmfxy9fy+OiLO695uu/8+becbcaXXUqjWfXvGBx3tVW/AHBvXL9+Pa5du7bq1wAAAAAAAAAAWInZbFaavrs74s3zvHQ9Go1KeyuVSinSvXDhQul6d9Rbr9dXdEJOila1El99tRdfdL4Tv3lzGI/dHMZw+qnctxIRu9Py3detahJv22jFWzdacapRvcdvDRwWoS8AAAAAAAAAAHAsFUURo9FoadJuv9+PPM9L14PBIG79j5+32+1FrHvq1Km4dOlSKeCdR7ytViuSJFnRKblfnWpU410X03jnhU68sD2N64NJXB9MIp/MYjIrolZJIq1V4nynFuc7tdhsV6Pq31M4cYS+AAAAAAAAAADAkTKdTkuh7n5rPB6X9tZqtVKoe/ny5aV4dz59t1aTT3H0VZNkEfMC9x8/8wEAAAAAAAAAgENXFEUMh8MDxbuDwWBpf5qmi0j3zJkzcfXq1T0D3mazafouACeG0BcAAAAAAAAAAHjdJpPJgeLdLMtiOp2W9tbr9ej1eotI9+zZs9Htdkv35tN3K5XKik4IAKsj9AUAAAAAAAAAAEqKoojt7e3Isiz6/X4p1s3zvHRvOByW9iZJspi+2+v1YnNzMx566KFFtLs74m00Gis6IQAcD0JfAAAAAAAAAAC4T4zH41K0uzvYzfN8cS/P85jNZqW9zWazNGV3a2urdD2PeNvttum7AHCXCH0BAAAAAAAAAOAYm81mMRgMSgHv7mB3972dnZ3S3kqlUgp1z58/H48++uhSwNvtdqNer6/ohABw/xL6AgAAAAAAAADAEVMURYxGo6V4d6+V53kURVHa3263F4Hu2tpaXLx4cc94t91uR5IkKzolAHAnQl8AAAAAAAAAALhHptPp0pTd263xeFzaW61Wo9frLSLdS5cula7nK03TqNVkQQBwEvi/6AAAAAAAAAAA8AYURRE7OzuRZVn0+/19493BYLC0v9PpRLfbjV6vF2fOnIkrV64srncHvM1m0/RdALjPCH0BAAAAAAAAAGAPk8mkNH13d8Sb53npejqdlvbW6/VSpHv27NnS9Tzi7XQ6Ua1WV3RCAOCoE/oCAAAAAAAAAHDfKIoitre3lybt9vv9pah3OByW9iZJEmmaLmLdzc3NeOihh0oB7zzibTQaKzohAHCSCH0BAAAAAAAAADj2xuPxUrx7uzWbzUp7m81mKdQ9d+7cUrw7n75bqVRWdEIA4H4k9AUAAAAAAAAA4EiazWYxGAwOFO/u7OyU9lYqlVKke/78+T3j3W63G/V6fUUnBADYn9AXAAAAAAAAAIB7ajQaRb/fv2O8m+d5FEVR2ttqtaLX60W32421tbW4cOHC4nr3arfbkSTJik4IAHB3CH0BAAAAAAAAAHjDZrNZ5HkeWZbdMeIdj8elvdVqdRHo9nq9uHTpUinanYe8aZpGrSZ3AQDuH37lAwAAAAAAAADAnoqiiJ2dnVKkO49451Hv/N5gMFja3+l0FrHu6dOn48qVK3sGvM1m0/RdAIA9CH0BAAAAAAAAAO4z0+l0z0m7/X6/FPBmWRaTyaS0t1arLQLdbrcbV69eLcW785WmaVSr1RWdEADgZBD6AgAAAAAAAACcAEVRxPb29p4B761re3u7tDdJkkjTdBHpbmxsxIMPPrhnwNtoNEzfBQC4R4S+AAAAAAAAAABH2Hg8PlC8m2VZzGaz0t5Go1Gavru5uVm6nq9OpxOVSmVFJwQA4HaEvgAAAAAAAAAA91hRFDEYDKLf798x3t3Z2SntrVQqkabpItjd2tqKRx55JLrdbiniTdM0Go3Gik4IAMDdIPQFAAAAAAAAALhLRqPRItC9NeLN83xxL8/zKIqitLfVai0i3V6vFxcuXChN3Z1HvO12O5IkWdEJAQC4l4S+AAAAAAAAAAD7mM1mked5KdrdHezuvjcej0t7q9VqKda9dOlS6Xr3qtVkHAAAlPkVIgAAAAAAAABw3ymKInZ2dkrx7u1WnudL+zudziLQXV9fj8uXL+8Z77ZaLdN3AQB43YS+AAAAAAAAAMCJMZ1ODxTvZlkWk8mktLdWq0Wv11tEulevXt0z3k3TNKrV6opOCADA/UToCwAAAAAAAAAcaUVRxHA4jH6/f8d4d3t7e2l/mqaLgHdjYyMeeOCBUtA7X41Gw/RdAACOFKEvAAAAAAAAALAS4/E48jyPLMvuGPHOZrPS3kajsQh0e71ebG5ulq7nX3c6nahUKis6IQAAvDFCXwAAAAAAAADgrimKIgaDQSnSnUe8t0a9Ozs7pb2VSiXSNF1EultbW/HII48sTd6dT98FAICTTugLAAAAAAAAANzRaDTac9Juv99fBLzzVRRFaW+r1SpFuufPn98z3u10OpEkyYpOCAAAR4/QFwAAAAAAAADuU7PZbCnSvd0ajUalvdVqtRTpXrx4cc94t9vtRq0mTwAAgNfDr6QBAAAAAAAA4AQpiiJ2dnYOFO/meb60v9PpLALd9fX1uHTpUvR6vaV4t9Vqmb4LAACHTOgLAAAAAAAAAMfAdDqNPM+j3+/fMeCdTCalvbVaLbrd7iLYvXLlyiLY3R3xpmka1Wp1RScEAABuJfQFAAAAAAAAgBUpiiKGw+Ei0N0d8eZ5Xrq3vb29tD9N00Wku7GxEQ888EBp6u484m00GqbvAgDAMST0BQAAAAAAAIC7bDKZLE3ZnQe784B3vqbTaWlvo9EoxbobGxul693TdyuVyopOCAAA3AtCXwAAAAAAAAA4gKIoYjAYLAW8e63hcFjamyRJKdI9d+5cPPzww3sGvI1GY0UnBAAAjhqhLwAAAAAAAAD3tdFodKB4N8uyKIqitLfVapUi3fPnz+8Z73Y6nUiSZEUnBAAAjiuhLwAAAAAAAAAnzmw2i8FgEP1+/47x7mg0Ku2tVCrR7Xaj1+tFt9uNCxculK7nK03TqNfrKzohAABwPxD6AgAAAAAAAHAsFEVRmr67O+LN87x0PRgMlqbvttvtRaS7vr4ely5dWlzvjnhbrZbpuwAAwJEg9AUAAAAAAABgpabTaeR5XpqyO4925/fn15PJpLS3VquVpuxeuXKldD2PeNM0jWq1uqITAgAAvD5CXwAAAAAAAADuuqIoYjgcluLd263BYLC0P03TRah75syZuHr16lLA2+12o9lsmr4LAACcWEJfAAAAAAAAAA5sMpkcKN7Nsiym02lpb6PRKEW6Gxsbe8a7aZpGpVJZ0QkBAACODqEvAAAAAAAAwH2uKIoYDAYHineHw2Fpb5IkpUh3c3MzHnrooej1eksBb6PRWNEJAQAAjiehLwAAAAAAAMAJNR6PI8uy6Pf7+8a7eZ7HbDYr7W02m9HtdhfB7tbW1iLY3R3xtttt03cBAAAOidAXAAAAAAAA4BiZzWal6bu7I948z0v3RqNRaW+lUilN2L1w4cLS1N1erxdpmka9Xl/RCQEAAJgT+gIAAAAAAACsWFEUMRqNlibt9vv9Rby7O+YtiqK0v91uL0LdtbW1uHjx4lLAO5++myTJik4JAADAayX0BQAAAAAAADgk0+l0KdS93RqPx6W91Wo1er3eItK9fPnynvFumqZRq/mrXwAAgJPI7/YAAAAAAAAAXoOiKGI4HB4o3h0MBkv70zRdRLpnzpyJq1ev7hnwNptN03cBAADuc0JfAAAAAAAAgIiYTCYHinezLIvpdFraW6/Xo9vtLibwnj17tnQ9X51OJ6rV6opOCAAAwHEj9AUAAAAAAABOrKIoYnt7O7Isi36/X4p18zwv3RsOh6W9SZKUpu9ubm7GQw89tLjeHfE2Go0VnRAAAICTTOgLAAAAAAAAHDvj8bgU7e4OdvM8X9zL8zxms1lpb7PZLE3Z3draKl3PI952ux2VSmVFJwQAAAChLwAAAAAAAHBEzGazGAwGpYD3dmtnZ6e0t1KplELd8+fPx6OPProU8Ha73ajX6ys6IQAAALw2Ql8AAAAAAADg0BRFEaPR6EDxbp7nURRFaX+73V4Eumtra3Hx4sU94912ux1JkqzolAAAAHA4hL4AAAAAAADAazadTiPP8wMFvOPxuLS3Wq1Gr9dbRLqXLl0qXc9XmqZRq/krTQAAAO5fflcMAAAAAAAARMSnpu/u7OxElmXR7/f3jXcHg8HS/k6nE91uN3q9Xpw5cyauXLmyuN4d8DabTdN3AQAA4ACEvgAAAAAAAHDCTSaT0vTd3RFvnuel6+l0Wtpbr9dLke7Zs2eXJu/2er3odDpRrVZXdEIAAAA4mYS+AAAAAAAAcAwVRRHb29tLk3b7/X4p6s2yLLa3t0t7kySJNE0Xoe7m5mY89NBDSwHvfPouAAAAsBpCXwAAAAAAADhCxuPxUrx7uzWbzUp7m81mKdI9d+7cnvFup9OJSqWyohMCAAAAByX0BQAAAAAAgEM2m81iMBgcKN7d2dkp7a1UKqVId2trKx599NE9A956vb6iEwIAAACHQegLAAAAAAAAr9NoNIp+v3/HeDfP8yiKorS31WpFr9eLbrcba2trceHCheh2u4t789VutyNJkhWdEAAAAFgloS8AAAAAAADsMpvNIs/zyLJsKeLN87x0bzwel/ZWq9VFoNvr9eLSpUulaHce8aZpGrWav6oDAAAA9udPDwAAAAAAADjxiqKInZ2dUrQ7D3bnUe/83mAwWNrf6XQWse7p06fjypUrpYB3HvE2m03TdwEAAIC7RugLAAAAAADAsTWdTkvx7u5gd3fAm2VZTCaT0t5arbaYsNvtduPq1atL8e58+m61Wl3RCQEAAID7mdAXAAAAAACAI6Uoitje3t4z4L11bW9vl/YmSRJpmi4i3Y2NjXjwwQf3DHgbjYbpuwAAAMCRJvQFAAAAAADgnhiPxweKd7Msi9lsVtrbaDRK03c3NzdL1/PV6XSiUqms6IQAAAAAd5fQFwAAAAAAgNetKIoYDAaRZVn0+/19492dnZ3S3kqlspi+2+v1YmtrKx555JHF9TzeTdM0Go3Gik4IAAAAsDpCXwAAAAAAAJaMRqNSpLs74s3zfHGd53kURVHa22q1FpFur9eLCxculKbuziPedrsdSZKs6IQAAAAAR5/QFwAAAAAA4D4xm80iz/OlSbv9fr90v9/vx3g8Lu2tVqulWPfSpUul692rVvNXUAAAAAB3gz9lAQAAAAAAOMaKooidnZ2leHevlef50v5Op7MIdNfX1+Py5ct7xrutVsv0XQAAAIB7TOgLAAAAAABwBE2n0wPFu1mWxWQyKe2t1WrR6/UWke6VK1dK1/OVpmlUq9UVnRAAAACAOxH6AgAAAAAA3CNFUcRwOIx+v3/HeHd7e3tpf5qmi2B3Y2MjHnjggeh2u0sRb6PRMH0XAAAA4AQQ+gIAAAAAALxB4/E48jyPLMuWIt48z0v3ZrNZaW+j0VgEur1eLzY3N0vR7jzi7XQ6UalUVnRCAAAAAFZB6AsAAAAAALCHoihiMBiUot15sDuPeuf3dnZ2SnsrlUqkabqIdbe2tuKRRx4pBby7p+8CAAAAwF6EvgAAAAAAwH1lNBqV4t3dwe7ugDfLsiiKorS31WqVIt3z58/vGe92Op1IkmRFJwQAAADgpBD6AgAAAAAAx95sNluKdG+3RqNRaW+1Wi1FuhcvXtwz3u12u1Gr+asVAAAAAO4dfxoFAAAAAAAcSUVRxM7OzoHi3TzPl/a32+3o9XrR7XZjfX09Ll26tLjevVqtlum7AAAAABxJQl8AAAAAAOCemk6ni+m7/X5/34B3MpmU9tZqtUWg2+v14sqVK6Xr+ddpmka1Wl3RCQEAAADg7hD6AgAAAAAAb1hRFDEcDkuR7jzivTXq3d7eXtqfpuki0j179mw88MADpam784i30WiYvgsAAADAfUPoCwAAAAAA3NZkMtlz0m6/318EvPM1nU5LexuNRinW3djYKF3vnr5bqVRWdEIAAAAAOLqEvgAAAAAAcJ8piiIGg8GeAe+tazgclvYmSVKKdM+dOxcPP/zwngFvo9FY0QkBAAAA4GQQ+gIAAAAAwAkxGo0OFO9mWRZFUZT2tlqtUqS7tbUVvV5vKd7tdDqRJMmKTggAAAAA9xehLwAAAAAAHGGz2SwGg0H0+/07xruj0ai0t1KpRLfbXQS7Fy5cWAS7uyPeNE2jXq+v6IQAAAAAwO0IfQEAAAAA4B4riqI0fXd3xJvneel6MBgsTd9tt9uLSHd9fT0uXbpUmro7j3hbrZbpuwAAAABwjAl9AQAAAADgLplOp5HneWnK7jzand+fX08mk9LeWq1WinWvXLlSut69qtXqik4IAAAAANxLQl8AAAAAANhHURQxHA5L8e7t1mAwWNqfpuki0D1z5kxcvXp1z3i32WyavgsAAAAAlAh9AQAAAAC4L00mkwPFu1mWxXQ6Le1tNBqlSHdjY2PPeDdN06hUKis6IQAAAABw3Al9AQAAAAA4MYqiiMFgcKB4dzgclvYmSVKKdDc3N+Ohhx6KXq+3FPA2Go0VnRAAAAAAuJ8IfQEAAAAAOPLG43FkWRb9fn/feDfP85jNZqW9zWZzEej2er3Y2toqXc+/brfbpu8CAAAAAEeK0BcAAAAA4IT6rd/6rXjmmWfiueeeixdeeCF+67d+K/7hP/yHceHChVW/WkREzGaz0vTd3RFvnuele6PRqLS3UqmUJuxeuHBhaepur9eLNE2jXq+v6IQAAAAAAG+M0BcAAAAA4Jh4+eWX4/r163Hx4sU4depURET803/6T+M//sf/GK+88koMh8P4O3/n78QXfuEXRpIk8b3f+70xHA7j6tWr8fLLL8fP/MzPxN/6W3/rUEPfoihiNBotTdrt9/uLeHd3zFsURWl/u91ehLpra2tx8eLFpYB3Pn03SZJDOwcAAAAAwFEg9AUAAAAAOAZ+7Md+LP7RP/pH8dGPfjR++Id/OL71W781IiK2trbi3e9+dzzyyCNx48aN+Ct/5a/E93//98fb3va2+Ff/6l8t9n//939/rK2txebm5uv6/Ol0uhTq3m6Nx+PS3mq1Gr1ebxHpXr58ec94N03TqNX8sTUAAAAAwJw/MQUAAAAAOAbe8Y53xH/+z/85vuEbviFeffXVxf1v/MZvXHx9/fr1GI1G8eKLL0ZExGQyiel0Gs1mM97//vfHu9/97jh9+nQURVGahlsURbz00kvx7LPP3jbeHQwGS++Upuki0j1z5kxcuXKlFPTOV7PZNH0XAAAAAOB1EPoCAAAAABwDjz76aFQqlTh16lQ8++yzpR/7t//238Y//sf/OD784Q/HX/yLfzG+/Mu/PCI+NUm3VqvFf/kv/yXa7XY8/PDDERFLoe9sNovf+73fi1/8xV+Mer0e3W53EeyePXt2Eezujng7nU5Uq9V79w8AAAAAAOA+JPQFAAAAADhGLl26FM8880zp3pvf/Ob4e3/v78X169fj/e9/f/zgD/5gfOd3fmeMx+NoNBrxq7/6q5EkSXzJl3xJRERUKpXS/kqlEp//+Z8fX/AFXxCNRuOenQUAAAAAgP0JfQEAAAAAVmg8HkeWZaV18eLFuHDhQinInU/gvXjxYjz22GMxHA6j1WpFRMTVq1fj6tWrERHxxBNPxI//+I/Hd37ndy4m7l67di2q1WqcO3cuZrPZUuibJEk0m817cVwAAAAAAF4DoS8AAAAAwF02m81iMBgsBbx7rZ2dndLeSqUSX/EVXxHnz5/f83s//PDDkWXZIvIdjUalKbzPPvtspGkaERHVajWeeuqp+A//4T/Eu9/97oj4b8EwAAAAAABHn9AXAAAAAOAAiqKI0Wh0oHg3z/MoiqK0v91uR7fbjW63G2tra3Hx4sXF9e7Vbrf3jHHn9/I8j9///d+PH/iBH4i1tbX43M/93Pju7/7uSJIkbty4ERcvXox//s//+WJfo9GIt73tbfEn/sSfKH0fAAAAAACOPqEvAAAAAHBfm06nkef5gQLe8Xhc2lutVqPX6y0i3UuXLkW32y3d63a7kaZp1Gpv7I9jZ7NZfNM3fVN85CMfiYcffjh+9md/Nt72trfF13zN18TXf/3Xx8WLF+PChQuLd5g7f/58vPe9731Dnw0AAAAAwGoIfQEAAACAE6coitjZ2Yksy6Lf7+8b7w4Gg6X9nU5nEeyeOXMmrly5soh2d0e8zWbznk3IrVQq8f73v3/PH3vPe95zT94BAAAAAIB7S+gLAAAAABwbk8mkNH13d8Q7vz+/N51OS3vr9Xppyu7Zs2dL1/OIt9PpRLVaXdEJAQAAAADgvxH6AgAAAAArVRRFbG9vL03a7ff7pag3y7LY3t4u7U2SJNI0XYS6Gxsb8eCDDy4FvPPpuwAAAAAAcJwIfQEAAACAQzEej5fi3dut2WxW2ttsNkuR7rlz5/aMdzudTlQqlRWdEAAAAAAADpfQFwAAAAA4sNlsFoPB4EDx7s7OTmlvpVIpRbpbW1vx6KOP7hnw1uv1FZ0QAAAAAACODqEvAAAAABCj0Sj6/f4d4908z6MoitLeVqsV3W43er1erK2txYULFxbXu+PddrsdSZKs6IQAAAAAAHD8CH0BAAAA4ISazWaR53lkWbYU8eZ5Xro3Ho9Le6vVainSvXTpUul6HvGmaRq1mj9mBAAAAACAw+BP4AEAAADgGCmKInZ2dpYm7fb7/UXUO78eDAZL+zudziLWPX36dFy5cqUU8M4j3mazafouAAAAAACsmNAXAAAAAI6A6XS6FO/ebk0mk9LeWq22mLDb7Xbj6tWrS/HufPputVpd0QkBAAAAAIDXSugLAAAAAIekKIrY3t4+ULy7vb1d2pskSaRpuoh0NzY24sEHH9wz4G00GqbvAgAAAADACST0BQAAAIDXaDweH3j67mw2K+1tNBql6bubm5vR7XZL97rdbnQ6nahUKis6IQAAAAAAcBQIfQEAAAAgPjV9dzAYRJZl0e/39413d3Z2Snsrlcpi+m6v14utra145JFHFtHuPOJN0zQajcaKTggAAAAAABw3Ql8AAAAATrTRaFSKdHdHvHmeL67zPI+iKEp7W61WKda9cOFCaeru/H673Y4kSVZ0QgAAAAAA4KQS+gIAAABw7Mxms8jzfGnSbr/fL93v9/sxHo9Le6vVainUvXTp0lK8O1+1mj8+AwAAAAAAVsffVAAAAABwJBRFETs7O0vx7l4rz/Ol/Z1OZxHorq+vx+XLl/eMd1utlum7AAAAAADAsSD0BQAAAOBQTafTA8W7WZbFZDIp7a3VatHr9RaR7pUrV0rX85WmaVSr1RWdEAAAAAAA4HAIfQEAAAB4zYqiiOFwGP1+/47x7vb29tL+NE2j2+1Gr9eLjY2NeOCBBxbXuwPeRqNh+i4AAAAAAHDfEvoCAAAAsDAejyPP88iybCnizfO8dG82m5X2NhqNUqS7ublZup5HvJ1OJyqVyopOCAAAAAAAcHwIfQEAAABOuKIoYjAYlKLdebA7j3rn93Z2dkp7kyQpxbpbW1vxyCOPlO7tnr4LAAAAAADA3SP0BQAAADimRqNRKd7dHezuDnizLIuiKEp7W61WKdI9f/78nvFup9OJJElWdEIAAAAAAID7m9AXAAAA4AiZzWZLke7t1mg0Ku2tVqulSPfixYt7xrvdbjdqNX8sBAAAAAAAcNT5Gx0AAACAQ1YURezs7Bwo3s3zfGl/u92OXq8X3W431tfX49KlS4vr3avVapm+CwAAAAAAcIIIfQEAAABep+l0upi+2+/39w14J5NJaW+tVlsEur1eL65cuVK6nn+dpmlUq9UVnRAAAAAAAIBVEvoCAAAA7FIURQyHw1KkO494b416t7e3l/anabqIdM+ePRsPPPBAaeruPOJtNBqm7wIAAAAAALAvoS8AAABwX5hMJntO2u33+4uAd76m02lpb6PRKMW6Gxsbpevd03crlcqKTggAAAAAAMBJI/QFAAAAjq2iKGIwGOwZ8N66hsNhaW+SJKVI99y5c/Hwww/vGfA2Go0VnRAAAAAAAID7mdAXAAAAOHJGo9GB4t0sy6IoitLeVqtVinS3trai1+stxbudTieSJFnRCQEAAAAAAODOhL4AAADAPTGbzWIwGES/379jvDsajUp7K5VKdLvdRbB74cKFRbC7O+JN0zTq9fqKTggAAAAAAAB3l9AXAAAAeN2KoihN390d8eZ5XroeDAZL03fb7fYi0l1fX49Lly6Vpu7OI95Wq2X6LgAAAAAAAPcdoS8AAACwZDqdRp7npSm782h3fn9+PZlMSntrtVop1r1y5UrpeveqVqsrOiEAAAAAAAAcfUJfAAAAuE8URRHD4bAU795uDQaDpf1pmi4C3TNnzsTVq1f3jHebzabpuwAAAAAAAHAXCH0BAADgmJtMJgeKd7Msi+l0WtrbaDRKke7Gxsae8W6aplGpVFZ0QgAAAAAAALg/CX0BAADgCCqKIgaDwYHi3eFwWNqbJEkp0t3c3IyHHnooer3eUsDbaDRWdEIAAAAAAADgToS+AAAAcA+Nx+PIsiz6/f6+8W6e5zGbzUp7m83mItDt9XqxtbVVup5/3W63Td8FAAAAAACAE0DoCwAAAG/QbDYrTd/dHfHmeV66NxqNSnsrlUppwu6FCxeWpu72er1I0zTq9fqKTggAAAAAAACsgtAXAAAA9lAURYxGo6VJu/1+fxHv7o55i6Io7W+324tQd21tLS5evLgU8M6n7yZJsqJTAgAAAAAAAEeZ0BcAAID7ynQ6XQp1b7fG43Fpb7VajV6vt4h0L1++vGe8m6Zp1Gp+yw0AAAAAAAC8Mf7WEQAAgGOvKIoYDocHincHg8HS/jRNF5HumTNn4urVq3sGvM1m0/RdAAAAAAAA4J4R+gIAAHBkTSaTA8W7WZbFdDot7a3X69HtdhcTeM+ePVu6nq9OpxPVanVFJwQAAAAAAAC4PaEvAAAA91RRFLG9vb0IdPv9/uLrPM9L18PhsLQ3SZLS9N3Nzc146KGHFte7I95Go7GiEwIAAAAAAADcHUJfAAAA7orxeLw0ZXce7eZ5vrjO8zxms1lpb7PZLE3Z3draKl3vnr5bqVRWdEIAAAAAAACAe0voCwAAwG3NZrMYDAZLAe9ea2dnp7S3UqmUIt3z58/Ho48+umfAW6/XV3RCAAAAAAAAgKNL6AsAAHCfKYoiRqPRgeLdPM+jKIrS/na7vQh019bW4uLFi3vGu+12O5IkWdEpAQAAAAAAAI4/oS8AAMAJMZ1OI8/zAwW84/G4tLdarUav11tEupcuXYput1u61+12I03TqNX8VhIAAAAAAADgXvC3swAAAEdYURSxs7MTWZZFv9/fN94dDAZL+zudziLYPXPmTFy5cmUR7e6OeJvNpum7AAAAAAAAAEeM0BcAAGAFJpNJafru7og3z/PS9XQ6Le2t1+ulKbtnz54tXc8j3k6nE9VqdUUnBAAAAAAAAOCNEvoCAADcJUVRxPb29tKk3X6/X4p6syyL7e3t0t4kSSJN00Wou7m5GQ899NBSwDufvgsAAAAAAADAySf0BQAAuIPxeLwU795uzWaz0t5ms1mKdM+dO7dnvNvpdKJSqazohAAAAAAAAAAcRUJfAADgvjSbzWIwGBwo3t3Z2SntrVQqpUh3a2srHn300T0D3nq9vqITAgAAAAAAAHDcCX0BAIATZTQaRb/fv2O8m+d5FEVR2ttqtaLb7Uav14u1tbW4cOHC4np3vNtutyNJkhWdEAAAAAAAAID7hdAXAAA48mazWeR5HlmWLUW8eZ6X7o3H49LearVainQvXbpUup5HvGmaRq3mt0gAAAAAAAAAHB3+FhsAAFiJoihiZ2enFO3Og9151Du/NxgMlvZ3Op1FrHv69Om4cuVKKeCdR7zNZtP0XQAAAAAAAACOJaEvAABwV02n01K8uzvY3R3wZlkWk8mktLdWqy0m7Ha73bh69epSvDufvlutVld0QgAAAAAAAAC4N4S+AADAHRVFEdvb23sGvLeu7e3t0t4kSSJN00Wku7GxEQ8++OCeAW+j0TB9FwAAAAAAAAD+K6EvAADcx8bj8YHi3SzLYjablfY2Go3S9N3Nzc3S9Xx1Op2oVCorOiEAAAAAAAAAHF9CXwAAOGGKoojBYBBZlkW/39833t3Z2SntrVQqi+m7vV4vtra24pFHHllcz+PdNE2j0Wis6IQAAAAAAAAAcH8Q+gIAwDExGo1Kke7uiDfP88V1nudRFEVpb6vVWkS6vV4vLly4UJq6O4942+12JEmyohMCAAAAAAAAALsJfQEAYIVms1nkeb40abff75fu9/v9GI/Hpb3VarUU6166dKl0vXvVan7pDwAAAAAAAADHjb/tBwCAu6woitjZ2VmKd/daeZ4v7e90OotAd319PS5fvrxnvNtqtUzfBQAAAAAAAIATTOgLAAAHNJ1ODxTvZlkWk8mktLdWq0Wv11tEuleuXCldz1eaplGtVld0QgAAAAAAAADgKBH6AgBwXyuKIobDYfT7/TvGu9vb20v70zRdBLsbGxvxwAMPRLfbXYp4G42G6bsAAAAAAAAAwGsi9AUA4EQaj8eR53lkWXbHiHc2m5X2NhqNRaDb6/Vic3OzFO3OI95OpxOVSmVFJwQAAAAAAAAATjqhLwAAx0ZRFDEYDEqR7jzivTXq3dnZKe2tVCqRpuki1t3a2opHHnmkFPDunr4LAAAAAAAAALBqQl8AAFZuNBrtOWm33+8vAt75KoqitLfVapUi3fPnz+8Z73Y6nUiSZEUnBAAAAAAAAAB47YS+AAAcitlsthTp3m6NRqPS3mq1Wop0L168uGe82+12o1bzS1oAAAAAAAAA4GRSRQAAcGBFUcTOzs6B4t08z5f2t9vt6PV60e12Y319PS5durS43r1arZbpuwAAAAAAAADAfU/oCwBATKfTyPM8+v3+HQPeyWRS2lur1RaBbq/XiytXrpSu51+naRrVanVFJwQAAAAAAAAAOH6EvgAAJ1RRFDEcDheB7u6IN8/z0r3t7e2l/WmaLiLds2fPxgMPPFCaujuPeBuNhum7AAAAAAAAAACHQOgLAHDMTCaTpSm782B3HvDO13Q6Le1tNBqlWHdjY6N0vXv6bqVSWdEJAQAAAAAAAACIEPoCABwJRVHEYDBYCnj3WsPhsLQ3SZJSpHvu3Ll4+OGH9wx4G43Gik4IAAAAAAAAAMBrJfQFADhEo9HoQPFulmVRFEVpb6vVKkW658+f3zPe7XQ6kSTJik4IAAAAAAAAAMBhEfoCALxGs9ksBoNB9Pv9O8a7o9GotLdSqUS3241erxfdbjcuXLhQup6vNE2jXq+v6IQAAAAAAAAAABwFQl8AgIgoiqI0fXd3xJvneel6MBgsTd9tt9uLSHd9fT0uXbq0uN4d8bZaLdN3AQAAAAAAAAA4EKEvAHCiTafTyPO8NGV3Hu3O78+vJ5NJaW+tVitN2b1y5Urpeh7xpmka1Wp1RScEAAAAAAAAAOCkEvoCAMdOURQxHA5L8e7t1mAwWNqfpuki1D1z5kxcvXp1KeDtdrvRbDZN3wUAAAAAAAAAYGWEvgDAkTGZTA4U72ZZFtPptLS30WiUIt2NjY094900TaNSqazohAAAAAAAAAAAcHBCXwDgUBVFEYPB4EDx7nA4LO1NkqQU6W5ubsZDDz0UvV5vKeBtNBorOiEAAAAAAAAAABwOoS8A8LqMx+PIsiz6/f6+8W6e5zGbzUp7m81mdLvdRbC7tbW1CHZ3R7ztdtv0XQAAAAAAAAAA7ltCXwBgYTablabv7o548zwv3RuNRqW9lUqlNGH3woULS1N3e71epGka9Xp9RScEAAAAAAAAAIDjQ+gLJ0xRFPG7v/u78aY3vSlqtf1/ihdFEX/wB38QDz74YLRarXv0hsC9VhRFjEajpUm7/X5/Ee/ujnmLoijtb7fbi1B3bW0tLl68uBTwzqfvJkmyolMCAAAAAAAAAMDJI/SFE2YymcRP/dRPxZd+6ZfGO9/5zn2ffeKJJ+L9739/fNu3fVtcuXLlHr0hcLdMp9OlUPd2azwel/ZWq9Xo9XqLSPfy5ct7xrtpmt7x/2kAAAAAAAAAAAA4HModOGHq9Xq8/e1vj1//9V+Pz//8z49ms7nnc0VRxK/8yq/EhQsX4vLly/f4LYHbKYoihsPhgeLdwWCwtD9N00Wke+bMmbh69eqeAW+z2TR9FwAAAAAAAAAAjjihL5xA73znO+MjH/lI/Kf/9J9uO9X3iSeeiCeffDK+6Zu+SewH98BkMjlQvJtlWUyn09Leer0e3W53MYH37Nmzpev56nQ6Ua1WV3RCAAAAAAAAAADgbhP6wgl06tSpfaf67p7m+2mf9mkreks4/oqiiO3t7ciyLPr9finWzfO8dG84HJb2JklSmr67ubkZDz300OJ6d8TbaDRWdEIAAAAAAAAAAGCVhL5wQu031dc0X9jfeDwuRbu7g908zxf38jyP2WxW2ttsNktTdre2tkrX84i33W5HpVJZ0QkBAAAAAAAAAIDjQOgLJ9StU33nTPPlfjWbzWIwGJQC3t3B7u57Ozs7pb2VSqUU6p4/fz4effTRpYC32+1GvV5f0QkBAAAAAAAAAICTRugLJ9juqb5zpvlykhRFEaPRaCne3WvleR5FUZT2t9vtRaC7trYWFy9e3DPebbfbfr4AAAAAAAAAAAD3XFLcWj0BJ8oHP/jB+J3f+Z34jM/4jHjuueei2WzGaDSKb//2bxcucmRNp9OlKbu3W+PxuLS3Wq1Gr9dbRLppmka32y3dm9+v1fz/uwAAAAAAAAAAAEeXwglOuPlU3xs3bsRoNIrr16+b5stKFEUROzs7kWVZ9Pv9fePdwWCwtL/T6SyC3TNnzsSVK1cW0e7uiLfZbPr3GwAAAAAAAAAAOBFM9IUTaloU8cL2NK4PJvEbv//xeDHbjqhUo1Grxmc++lCc79TjfKcWm+1qVEWRvAGTyaQ0fXd3xJvneel6Op2W9tbr9dKU3b1Wr9eLTqcT1Wp1RScEAAAAAAAAAABYDaEvnDCfHE3jN28O47GbwxhOP/XTuxKfCn8/NeW0iEokMfuvz7eqSbxtoxVv3WjFqYaQkk8piiK2t7eXJu32+/2lqHc4HJb2JkkSaZreMeCdT98FAAAAAAAAAABgb0JfOCGG01n88rU8PvriTnwq5z24+fNvOduML7uURrNaOZyXZOXG4/FSvHu7NZvNSnubzeaB4t1OpxOVin+HAAAAAAAAAAAA3iihL5wAj786ig882Y/BpHhNge+tkohIa0m8+4FePLTWuFuvxyGbzWYxGAwOFO/u7OyU9lYqlVKkm6Zp9Hq9PQPeer2+ohMCAAAAAAAAAADcn4S+cMx9+IXt+Pln8tc8xfd25t/nj19O43M323fhO/J6jUaj6Pf7d4x38zyPW/+nvNVqlYLdNE2j2+0uRbztdjuSJFnRCQEAAAAAAAAAANiP0BeOsXnke1jEvnffbDaLPM8jy7KliDfP89K98Xhc2lutVheBbq/XW8S7u+/No95arbaiEwIAAAAAAAAAAHC3CH3hmHr81VG8/+OvHvrnfOMja/HQWuPQP+c4K4oidnZ2StHuPNidR73ze4PBYGl/p9MpBbt7rV6vF81m0/RdAAAAAAAAAACA+4jQF46h4XQW/+J3X47BpIjD/AmcRERaS+Lb33w6mtXKbZ8riiJ+53d+JyaTSbz1rW89xDe6t6bTaSne3R3s7g54syyLyWRS2lur1RYTdvdbaZpGtVpd0QkBAAAAAAAAAAA4yvy33eEY+uVr+aFHvhERRUTkkyJ+6VoeX321t+czL730Unzwgx+MT3ziE/GFX/iFh/xGb1xRFLG9vb1nwHvr2t7eLu1NkiTSNF1EuhsbG/Hggw/uGfA2Gg3TdwEAAAAAAAAAAHhDhL5wzLyyM42Pvrhzzz6viIiPvrgTX3S+E6ca/23y7HQ6jV/7tV+Lf//v/330er14z3veE5/2aZ92z97rVuPx+EDxbpZlMZvNSnsbjUZp+u7m5uae03g7nU5UKrefbAwAAAAAAAAAAAB3k9AXjpmPvjiMJOK203wf//Cvx7//0X8W137vo9G/+Xx88z98X3zml37N4sd/+xc/EP/x//O+uPZ7H43tT74c/9O//qW4+KbP3vczk4j4zZvDeNfFNCIinnzyyfjABz4QL774YnzRF31RvOtd74p6vX53DrhLURQxGAyi3+/fMd7d2SnHz5VKZTF9t9frxdbWVjzyyCOL63m8m6ZpNBqNu/7uAAAAAAAAAAAA8EYJfeEYmRZFPHZzeNvINyJiNBzEhU//zPi8/+E98S//529d/vHtQTz41nfE5/zx/3P81P/ylw/0uUVEPHZzGJ+7nsQv/cIvxGOPPRaXL1+O7/zO74ytra3XfI7RaLQIdG+NePM8X9zL8zyKonzaVqu1iHR7vV5cuHChNHV3HvG22+1IkuQ1vxsAAAAAAAAAAAAcFUJfOEZe2J7GcLpf5hvxpi/+injTF3/FbX/87V/7DRER8fKzT72mzx5Oi/h//+iPx+yVG/Hud787PvdzP7cU0s5ms8jzvBTt7g52d98bj8el712tVkux7qVLl0rXu1et5n+2AAAAAAAAAAAAuD8o5uAYuT6YrOyzi6KIzvmr8dl/5JF45ZVX4md+5meWJvHeqtPpLALd9fX1uHz58p7xbqvVMn0XAAAAAAAAAAAAbiH0hWPk+mASlYiYreLDi1l8sqjFr/7qr0av11tEuleuXCldz1eaplGtVlfxpgAAAAAAAAAAAHAiCH3hGMkms9VEvhERSSUq7W78kc/8zHj7298eV65cMYUXAAAAAAAAAAAADpHQF46R6axY2WcnSRKnzp6NJ3/91+KjH/1onD17Nt72trfFW97yluh2uyt7LwAAAAAAAAAAADiphL5wjFQrq52ge+7s2fiTf+EvxOOPPx6PPfZY/PIv/3L80i/9Unz6p396vO1tb4tHH300KpXKSt8RAAAAAAAAAAAATgqhLxwj3VolKhEx2+eZnUEWLz79+OL65WtPxbN/8LHorJ2O9QuXY/DJl+OV68/Eqy9cj4iIm0/8l4iI6J09F72Nrdt+30pEpLVKJEkSDz/8cDz88MOxvb0dH/vYx+Kxxx6Lf/2v/3V0u91417veFZ/3eZ93F04LAAAAAAAAAAAA97ekKIpi1S8BHMxv3hzGv3062/eZT/znX4t/8R1ft3T/7f/9N8bX/+3viw//7L+O//1v/YWlH//y7/h/xlf8+f/Xvt/7v7vSjbdutPb8seeeey4+8pGPRL1ej6/8yq/c9/sAAAAAAAAAAAAAdyb0hWPk+mASP/IHr6zs87/1TetxvmMQOAAAAAAAAAAAANwLlVW/AHBwm+1qtKrJSj67VU1is11dyWcDAAAAAAAAAADA/UjoC8dINUnibRutuNepbxIRb9toRTVZTWQMAAAAAAAAAAAA9yOhLxwzb91oRXGPP7P4r58LAAAAAAAAAAAA3DtCXzhmTjWq8ZazzXs21TeJiLecbcapRvUefSIAAAAAAAAAAAAQIfSFY+nLLqWR1pJDj32TiEhrSXzZpfSQPwkAAAAAAAAAAAC4ldAXjqFmtRLvfqAXxSF/ThER736gF82q/6kAAAAAAAAAAACAe029B8fUQ2uN+OOXD3fS7ldeTuOhtcahfgYAAAAAAAAAAACwN6EvHGOfu9lexL7JXfqe8+/zlZfTePtm+y59VwAAAAAAAAAAAOC1SoqiKFb9EsAb8/iro/jgk/3IJ0W8kZ/QSUSktSTe/UDPJF8AAAAAAAAAAABYMaEvnBDD6Sx++VoeH31xJ5KI1xT8zp9/y9lmfNmlNJpVw74BAAAAAAAAAABg1YS+cMJ8cjSN37w5jMduDmM4/dRP70pEzIoiIkn+2/V/fb5VTeJtG61460YrTjWqK3lnAAAAAAAAAAAAYJnQF06oaVHEC9vTuD6YxPXBJD7xzLMx2BnFQw9cjbRWifOdWpzv1GKzXY3qfw2AAQAAAAAAAAAAgKOjtuoXAA5HNUkWMW9ExAc/9v+La9euxf/lSz9rxW8GAAAAAAAAAAAAHERl1S8AAAAAAAAAAAAAACwT+gIAAAAAAAAAAADAEST0BQAAAAAAAAAAAIAjSOgLAAAAAAAAAAAAAEeQ0BcAAAAAAAAAAAAAjiChLwAAAAAAAAAAAAAcQUJfAAAAAAAAAAAAADiChL4AAAAAAAAAAAAAcAQJfQEAAAAAAAAAAADgCBL6AgAAAAAAAAAAAMARJPQFAAAAAAAAAAAAgCNI6AsAAAAAAAAAAAAAR5DQFwAAAAAAAAAAAACOIKEvAAAAAAAAAAAAABxBQl8AAAAAAAAAAAAAOIKEvgAAAAAAAAAAAABwBAl9AQAAAAAAAAAAAOAIEvoCAAAAAAAAAAAAwBEk9AUAAAAAAAAAAACAI0joCwAAAAAAAAAAAABHkNAXAAAAAAAAAAAAAI4goS8AAAAAAAAAAAAAHEFCXwAAAAAAAAAAAAA4goS+AAAAAAAAAAAAAHAECX0BAAAAAAAAAAAA4AgS+gIAAAAAAAAAAADAEST0BQAAAAAAAAAAAIAjSOgLAAAAAAAAAAAAAEeQ0BcAAAAAAAAAAAAAjiChLwAAAAAAAAAAAAAcQUJfAAAAAAAAAAAAADiChL4AAAAAAAAAAAAAcAQJfQEAAAAAAAAAAADgCBL6AgAA8P9n526j7Czv+97/7r1HmpEGSRA9ICKBLPyk2LhCKC64cnCt2IpTGkOi1aS0tA6r4DTnkPIQL3elddqVHNsrx6lzVpPQYrvLcZ/cOsRJk0DiFhuMVYKgFpLAuHWMPRYgLNAIWSNGmhnN3vd5YaSAkDQjPLP3NTOfzyv27Gvu668X97z68gcAAAAAAACgQEJfAAAAAAAAAAAAACiQ0BcAAAAAAAAAAAAACiT0BQAAAAAAAAAAAIACCX0BAAAAAAAAAAAAoEBCXwAAAAAAAAAAAAAokNAXAAAAAAAAAAAAAAok9AUAAAAAAAAAAACAAgl9AQAAAAAAAAAAAKBAQl8AAAAAAAAAAAAAKJDQFwAAAAAAAAAAAAAKJPQFAAAAAAAAAAAAgAIJfQEAAAAAAAAAAACgQEJfAAAAAAAAAAAAACiQ0BcAAAAAAAAAAAAACiT0BQAAAAAAAAAAAIACCX0BAAAAAAAAAAAAoEBCXwAAAAAAAAAAAAAokNAXAAAAAAAAAAAAAAok9AUAAAAAAAAAAACAAgl9AQAAAAAAAAAAAKBAQl8AAAAAAAAAAAAAKJDQFwAAAAAAAAAAAAAKJPQFAAAAAAAAAAAAgAIJfQEAAAAAAAAAAACgQEJfAAAAAAAAAAAAACiQ0BcAAAAAAAAAAAAACiT0BQAAAAAAAAAAAIACCX0BAAAAAAAAAAAAoEBCXwAAAAAAAAAAAAAokNAXAAAAAAAAAAAAAAok9AUAAAAAAAAAAACAAgl9AQAAAAAAAAAAAKBAQl8AAAAAAAAAAAAAKJDQFwAAAAAAAAAAAAAKJPQFAAAAAAAAAAAAgAIJfQEAAAAAAAAAAACgQEJfAAAAAAAAAAAAACiQ0BcAAAAAAAAAAAAACiT0BQAAAAAAAAAAAIACCX0BAAAAAAAAAAAAoEBCXwAAAAAAAAAAAAAokNAXAAAAAAAAAAAAAAok9AUAAAAAAAAAAACAAgl9AQAAAAAAAAAAAKBAQl8AAAAAAAAAAAAAKJDQF+aI/v7+LFmypNtjAAAAAAAAAAAAAJNU1XVdd3sIAAAAAAAAAAAAAODlbPQFAAAAAAAAAAAAgAIJfQEAAAAAAAAAAACgQEJfAAAAAAAAAAAAACiQ0BcAAAAAAAAAAAAACiT0hTnmjjvuyOOPP97tMQAAAAAAAAAAAIAJVHVd190eAuicVatWZc2aNdm6dWtuu+22VFXV7ZEAAAAAAAAAAACAU7DRF+aY3t7ebNu2LcPDw9myZUv27NnT7ZEAAAAAAAAAAACAU7DRF+aYtWvXZmBgIEmyc+fO3HTTTbnhhhty/fXXd3kyAAAAAAAAAAAA4KWEvjBHbN68OXVdZ/v27bniiitO/HxsbCwPPvhg2u12F6cDAAAAAAAAAAAATtbT7QGAzrjllltSVVVuvPHG3Hrrrd0eBwAAAAAAAAAAAJiAjb4wh7Tb7Xz0ox/Nhz70oW6PAgAAAAAAAAAAAEyg0e0BgM649957s2LFinzkIx/Jtddem927d2fjxo3ZsGFDHn744W6PBwAAAAAAAAAAAJxE6AtzxAc/+MHceeedOXr0aK655ppcffXVufXWW/PhD384N998c7fHAwAAAAAAAAAAAE5S1XVdd3sIYPpt2LAhO3fuPPF5zZo12bNnT5LksssuyyOPPNKt0QAAAAAAAAAAAIBTsNEX5ohjx45lcHAwSTIwMJDBwcE89dRTOXjwYEZHR7s8HQAAAAAAAAAAAHCynm4PAHTGjTfemI0bN+byyy/P9u3b84lPfCKbNm3K6OhoPvCBD3R7PAAAAAAAAAAAAOAkVV3XdbeHADrjoYceyte+9rVs2rQp69aty3PPPZfnn38+69at6/ZoAAAAAAAAAAAAwEmEvgAAAAAAAAAAAABQoEa3BwAAAAAAAAAAAAAAXknoCwAAAAAAAAAAAAAFEvoCAAAAAAAAAAAAQIGEvjBHfPnLX87nPve5bo8BAAAAAAAAAAAATJLQF+aI4eHhHDp0qNtjAAAAAAAAAAAAAJMk9AUAAAAAAAAAAACAAgl9AQAAAAAAAAAAAKBAQl8AAAAAAAAAAAAAKJDQFwAAAAAAAAAAAAAKJPQFAAAAAAAAAAAAgAIJfQEAAAAAAAAAAACgQEJfAAAAAAAAAAAAACiQ0BcAAAAAAAAAAAAACiT0BQAAAAAAAAAAAIACCX0BAAAAAAAAAAAAoEBCXwAAAAAAAAAAAAAokNAXAAAAAAAAAAAAAAok9AUAAAAAAAAAAACAAgl9AQAAAAAAAAAAAKBAQl8AAAAAAAAAAAAAKJDQFwAAAAAAAAAAAAAKJPQFAAAAAAAAAAAAgAIJfQEAAAAAAAAAAACgQEJfAAAAAAAAAAAAACiQ0BcAAAAAAAAAAAAACiT0BQAAAAAAAAAAAIACCX0BAAAAAAAAAAAAoEBCXwAAAAAAAAAAAAAokNAXAAAAAAAAAAAAAAok9AUAAAAAAAAAAACAAgl9AQAAAAAAAAAAAKBAQl8AAAAAAAAAAAAAKJDQFwAAAAAAAAAAAAAKJPQFAAAAAAAAAAAAgAIJfQEAAAAAAAAAAACgQEJfAAAAAAAAAAAAACiQ0BcAAAAAAAAAAAAACiT0BQAAAAAAAAAAAIACCX0BAAAAAAAAAAAAoEBCXwAAAAAAAAAAAAAokNAXAAAAAAAAAAAAAAok9AUAAAAAAAAAAACAAgl9AQAAAAAAAAAAAKBAQl8AAAAAAAAAAAAAKJDQFwAAAAAAAAAAAAAKJPQFAAAAAAAAAAAAgAIJfQEAAAAAAAAAAACgQEJfAAAAAAAAAAAAACiQ0BcAAAAAAAAAAAAACiT0BQAAAAAAAAAAAIACCX0BAAAAAAAAAAAAoEBCXwAAAAAAAAAAAAAokNAXAAAAAAAAAAAAAAok9AUAAAAAAAAAAACAAgl9AQAAAAAAAAAAAKBAQl8AAAAAAAAAAAAAKJDQFwAAAAAAAAAAAAAKJPQFAAAAAAAAAAAAgAIJfQEAAAAAAAAAAACgQEJfAAAAAAAAAAAAACiQ0BcAAAAAAAAAAAAACiT0BQAAAAAAAAAAAIACCX0BAAAAAAAAAAAAoEBCXwAAAAAAAAAAAAAokNAXAAAAAAAAAAAAAAok9AUAAAAAAAAAAACAAgl9AQAAAAAAAAAAAKBAQl8AAAAAAAAAAAAAKJDQFwAAAAAAAAAAAAAKJPQFAAAAAAAAAAAAgAIJfQEAAAAAAAAAAACgQEJfAAAAAAAAAAAAACiQ0BcAAAAAAAAAAAAACiT0BQAAAAAAAAAAAIACCX0BAAAAAAAAAAAAoEBCX5iFBgcHU9f1pM4eOHAg7XZ7micCAAAAAAAAAAAAzpbQF2aZY8eO5fbbb8/u3bsnPPvcc8/ld3/3d/Pkk092YDIAAAAAAAAAAADgbAh9YZaZN29e1q1bl6985SsTbuq9//77c+655+bCCy/s0HQAAAAAAAAAAADAZAl9YRZ6xzvekYMHD+bRRx897ZnnnnsuX//61/NjP/ZjaTabHZwOAAAAAAAAAAAAmAyhL8xCK1eunHCr7/FtvuvXr+/wdAAAAAAAAAAAAMBkCH1hljrTVl/bfAEAAAAAAAAAAKB8Ql+Ypc601dc2XwAAAAAAAAAAACif0BdmsVNt9bXNFwAAAAAAAAAAAGYGoS/MYi/d6lvXdRLbfAEAAAAAAAAAAGCmEPrCLHd8q++BAwdy7Ngx23wBAAAAAAAAAABghqjq42s+gVmlVdfZf7SVfUfG88Bj/yeHx1pJo5FGkre84bW5oH9+Vi7syfIFzTSrqtvjAgAAAAAAAAAAACcR+sIsc2islV2DI9k5OJKR1vdf7yp12nVSVVVS12lUVdovnu9rVtmwrC+XLuvLkvm2/AIAAAAAAAAAAEAphL4wS4y02rlv73B2HxhNleRsXuzj59cv7c3mVf3pbTamZ0gAAAAAAAAAAABg0oS+MAsMDI3lrj2Hc2S8PqvA92RVkv6eKletWZS1i+dP1XgAAAAAAAAAAADAqyD0hRlux/6juefp4bPe4ns6x5/z7tX92bh8wRQ8EQAAAAAAAAAAAHg1Gt0eAHj1jke+ydREvi99zj1PD2fH/qNT9FQAAAAAAAAAAADgbAl9YYYaGBo7EflOl3ueHs7A0Ni03gEAAAAAAAAAAACcmtAXZqCRVjt37TmcaprvqZLcvedwRlvtab4JAAAAAAAAAAAAOJnQF2ag+/YO58h4nXqa76mTDI/XuXfv9G4OBgAAAAAAAAAAAF5J6AszzPdGW9l9YHTaI9/j6iS7D4zm0FirQzcCAAAAAAAAAAAASdLT7QGAs7P7wEiq5LSh78COv8hX/sPt2fu/d+fw4LO57uP/Pm9+59868f2vXLb8lL/3kzf/y1z5vptO+V2VZNfgSN7xw/0/2PAAAAAAAAAAAADApAl9YQZp1XV2Do6ccZvv2MiRXPCGN+dHr/57+U8f+PlXfP/P/sfXXvb5Gw98KX/467fkkh//26d9Zp1k5+BI3n7BwjSr6tUNDwAAAAAAAAAAAJwVoS/MIPuPtjLSOlPmm7xx07vyxk3vOu33i5ad/7LP//v+L+TiH317fmj1a8743JFWnf1HW1m50J8NAAAAAAAAAAAA6IRGtwcAJm/fkfEpfd7hA8/l//zPe/Kj1/z9rtwPAAAAAAAAAAAAnJ7QF2aQfUfGp/SlfeRPP5fehefkzZuvmvBsI0JfAAAAAAAAAAAA6CShL8wgL4y3057C5+34k8/m0p/cmnm9fROebScZHp/K2wEAAAAAAAAAAIAzEfrCDNJq11P2rIFHHsz+7zyRt/70dZP+nfEpvB8AAAAAAAAAAAA4M6EvzCDNRjVlz/rqH//nrPqR9bngDZdM+nd6pvB+AAAAAAAAAAAA4Mx6uj0AMHnn9DTSSNI+w5nRIy/kwFMDJz4f3PtknvnGY1m4+Lyce8HqJMnIC4fz2D1/mqtu+7VJ391I0t/j/w0AAAAAAAAAAACAThH6wgyycmFPdh0485m9X9+dT73/mhOf7/6tX02SXPZTP5e/82u/myR59L//UZI663/iZyZ9d/vF+wEAAAAAAAAAAIDOqOq6rrs9BDA5+46M5zPf+F7X7v/5N54r9gUAAAAAAAAAAIAOaXR7AGDyli9opq9ZdeXuvmaV5QuaXbkbAAAAAAAAAAAA5iKhL8wgzarKhmV96XTqWyXZsKwvzao7kTEAAAAAAAAAAADMRUJfmGEuXdaXusN31i/eCwAAAAAAAAAAAHSO0BdmmCXzm1m/tLdjW32rJOuX9mbJ/GaHbgQAAAAAAAAAAAASoS/MSJtX9ae/p5r22LdK0t9TZfOq/mm+CQAAAAAAAAAAADiZ0BdmoN5mI1etWZR6mu+pk1y1ZlF6m/5UAAAAAAAAAAAAQKep92CGWrt4ft69eno37W5Z3Z+1i+dP6x0AAAAAAAAAAADAqQl9YQbbuHzBidi3mqJnHn/OltX9uWz5gil6KgAAAAAAAAAAAHC2qrqu624PAfxgBobGcveewxker/ODvNBVkv6eKletWWSTLwAAAAAAAAAAAHSZ0BdmiZFWO/ftHc7uA6OpkrMKfo+fX7+0N5tX9ae3adk3AAAAAAAAAAAAdJvQF2aZQ2Ot7Bocyc7BkYy0vv96N5K06zqpqr/6/OL5vmaVDcv6cumyviyZ3+zKzAAAAAAAAAAAAMArCX1hlmrVdfYfbWXfkfHsOzKebz/9TI6MjmXtmovS39PIyoU9WbmwJ8sXNNN8MQAGAAAAAAAAAAAAytHT7QGA6dGsqhMxb5Lc/dg3s3fv3mx95yVdngwAAAAAAAAAAACYjEa3BwAAAAAAAAAAAAAAXknoCwAAAAAAAAAAAAAFEvoCAAAAAAAAAAAAQIGEvgAAAAAAAAAAAABQIKEvAAAAAAAAAAAAABRI6AsAAAAAAAAAAAAABRL6AgAAAAAAAAAAAECBhL4AAAAAAAAAAAAAUCChLwAAAAAAAAAAAAAUSOgLAAAAAAAAAAAAAAUS+gIAAAAAAAAAAABAgYS+AAAAAAAAAAAAAFAgoS8AAAAAAAAAAAAAFEjoCwAAAAAAAAAAAAAFEvoCAAAAAAAAAAAAQIGEvgAAAAAAAAAAAABQIKEvAAAAAAAAAAAAABRI6AsAAAAAAAAAAAAABRL6AgAAAAAAAAAAAECBhL4AAAAAAAAAAAAAUCChLwAAAAAAAAAAAAAUSOgLAAAAAAAAAAAAAAUS+gIAAAAAAAAAAABAgYS+AAAAAAAAAAAAAFAgoS8AAAAAAAAAAAAAFEjoCwAAAAAAAAAAAAAFEvoCAAAAAAAAAAAAQIGEvgAAAAAAAAAAAABQIKEvAAAAAAAAAAAAABRI6AsAAAAAAAAAAAAABRL6AgAAAAAAAAAAAECBhL4AAAAAAAAAAAAAUCChLwAAAAAAAAAAAAAUSOgLAAAAAAAAAAAAAAUS+gIAAAAAAAAAAABAgYS+AAAAAAAAAAAAAFAgoS8AAAAAAAAAAAAAFEjoCwAAAAAAAAAAAAAFEvoCAAAAAAAAAAAAQIGEvgAAAAAAAAAAAABQIKEvAAAAAAAAAAAAABRI6AsAAAAAAAAAAAAABRL6AgAAAAAAAAAAAECBhL4AAAAAAAAAAAAAUCChLwAAAAAAAAAAAAAUSOgLAAAAAAAAAAAAAAUS+gIAAAAAAAAAAABAgYS+AAAAAAAAAAAAAFAgoS8AAAAAAAAAAAAAFEjoCwAAAAAAAAAAAAAFEvoCAAAAAAAAAAAAQIGEvgAAAAAAAAAAAABQIKEvAAAAAAAAAAAAABRI6AsAAAAAAAAAAAAABRL6AgAAAAAAAAAAAECBhL4AAAAAAAAAAAAAUCChLwAAAAAAAAAAAAAUSOgLAAAAAAAAAAAAAAUS+gIAAAAAAAAAAABAgYS+AAAAAAAAAAAAAFAgoS8AAAAAAAAAAAAAFEjoCwAAAAAAAAAAAAAFEvoCAAAAAAAAAAAAQIGEvgAAAAAAAAAAAABQIKEvAAAAAAAAAAAAABRI6AsAAAAAAAAAAAAABRL6AgAAAAAAAAAAAECBhL4AAAAAAAAAAAAAUCChLwAAAAAAAAAAAAAUSOgLAAAAAAAAAAAAAAUS+gIAAAAAAAAAAABAgYS+AAAAAAAAAAAAAFAgoS8AAAAAAAAAAAAAFEjoCwAAAAAAAAAAAAAFEvoCAAAAAAAAAAAAQIGEvgAAAAAAAAAAAABQIKEvAAAAAAAAAAAAABRI6AsAAAAAAAAAAAAABRL6AgAAAAAAAAAAAECBhL4AAAAAAAAAAAAAUKCqruu620MA06/dbqeu6zSbzW6PAgAAAAAAAAAAAEyC0BcAAAAAAAAAAAAACtTo9gAAAAAAAAAAAAAAwCsJfQEAAAAAAAAAAACgQEJfAAAAAAAAAAAAACiQ0BfmmDvuuCOPP/54t8cAAAAAAAAAAAAAJlDVdV13ewigc1atWpU1a9Zk69atue2221JVVbdHAgAAAAAAAAAAAE7BRl+YY3p7e7Nt27YMDw9ny5Yt2bNnT7dHAgAAAAAAAAAAAE7BRl+YY9auXZuBgYEkyc6dO3PTTTflhhtuyPXXX9/lyQAAAAAAAAAAAICXEvrCHLF58+bUdZ3t27fniiuuOPHzsbGxPPjgg2m3212cDgAAAAAAAAAAADhZT7cHADrjlltuSVVVufHGG3Prrbd2exwAAAAAAAAAAABgAjb6whzSbrfz0Y9+NB/60Ie6PQoAAAAAAAAAAAAwgUa3BwA64957782KFSvykY98JNdee212796djRs3ZsOGDXn44Ye7PR4AAAAAAAAAAABwEqEvzBEf/OAHc+edd+bo0aO55pprcvXVV+fWW2/Nhz/84dx8883dHg8AAAAAAAAAAAA4SVXXdd3tIYDpt2HDhuzcufPE5zVr1mTPnj1JkssuuyyPPPJIt0YDAAAAAAAAAAAATsFGX5gjjh07lsHBwSTJwMBABgcH89RTT+XgwYMZHR3t8nQAAAAAAAAAAADAyXq6PQDQGTfeeGM2btyYyy+/PNu3b88nPvGJbNq0KaOjo/nABz7Q7fEAAAAAAAAAAACAk1R1XdfdHgLojIceeihf+9rXsmnTpqxbty7PPfdcnn/++axbt67bowEAAAAAAAAAAAAnEfoCAAAAAAAAAAAAQIEa3R4AAAAAAAAAAAAAAHgloS8AAAAAAAAAAAAAFEjoCwAAAAAAAAAAAAAFEvrCHLFjx47cc8893R4DAAAAAAAAAAAAmKSebg8AdMa+ffuyd+/ebo8BAAAAAAAAAAAATJKNvgAAAAAAAAAAAABQIKEvAAAAAAAAAAAAABRI6AsAAAAAAAAAAAAABRL6AgAAAAAAAAAAAECBhL4AAAAAAAAAAAAAUCChLwAAAAAAAAAAAAAUSOgLAAAAAAAAAAAAAAUS+gIAAAAAAAAAAABAgYS+AAAAAAAAAAAAAFAgoS8AAAAAAAAAAAAAFEjoCwAAAAAAAAAAAAAFEvoCAAAAAAAAAAAAQIGEvgAAAAAAAAAAAABQIKEvAAAAAAAAAAAAABRI6AsAAAAAAAAAAAAABRL6AgAAAAAAAAAAAECBhL4AAAAAAAAAAAAAUCChLwAAAAAAAAAAAAAUSOgLAAAAAAAAAAAAAAUS+gIAAAAAAAAAAABAgYS+AAAAAAAAAAAAAFAgoS8AAAAAAAAAAAAAFEjoCwAAAAAAAAAAAAAFEvoCAAAAAAAAAAAAQIGEvgAAAAAAAAAAAABQIKEvAAAAAAAAAAAAABRI6AsAAAAAAAAAAAAABRL6AgAAAAAAAAAAAECBhL4AAAAAAAAAAAAAUCChLwAAAAAAAAAAAAAUSOgLAAAAAAAAAAAAAAUS+gIAAAAAAAAAAABAgYS+AAAAAAAAAAAAAFAgoS8AAAAAAAAAAAAAFEjoCwAAAAAAAAAAAAAFEvoCAAAAAAAAAAAAQIGEvgAAAAAAAAAAAABQIKEvAAAAAAAAAAAAABRI6AsAAAAAAAAAAAAABRL6AgAAAAAAAAAAAECBhL4AAAAAAAAAAAAAUCChLwAAAAAAAAAAAAAUSOgLAAAAAAAAAAAAAAUS+gIAAAAAAAAAAABAgYS+AAAAAAAAAAAAAFAgoS8AAAAAAAAAAAAAFEjoCwAAAAAAAAAAAAAFEvoCAAAAAAAAAAAAQIGEvgAAAAAAAAAAAABQIKEvAAAAAAAAAAAAABRI6AsAAAAAAAAAAAAABRL6AgAAAAAAAAAAAECBhL4AAAAAAAAAAAAAUCChLwAAAAAAAAAAAAAUSOgLAAAAAAAAAAAAAAUS+gIAAAAAAAAAAABAgYS+AAAAAAAAAAAAAFAgoS8AAAAAAAAAAAAAFEjoCwAAAAAAAAAAAAAFEvoCAAAAAAAAAAAAQIGEvgAAAAAAAAAAAABQIKEvAAAAAAAAAAAAABRI6AsAAAAAAAAAAAAABRL6AgAAAAAAAAAAAECBhL4AAAAAAAAAAAAAUCChLwAAAAAAAAAAAAAUSOgLAAAAAAAAAAAAAAUS+gIAAAAAAAAAAABAgYS+AAAAAAAAAAAAAFAgoS8AAAAAAAAAAAAAFEjoC7NQq9WalrMAAAAAAAAAAABA5wh9YZY5duxYPvaxj+Vb3/rWhGeHhoby8Y9/PE899VQHJgMAAAAAAAAAAADOhtAXZpmenp6cf/75ue+++1LX9RnPPvDAA6nrOitWrOjQdAAAAAAAAAAAAMBkCX1hlqmqKu94xzuyd+/ePPHEE6c9NzQ0lB07duRtb3tbent7OzghAAAAAAAAAAAAMBlCX5iFLr744lx44YW5//77T7vV94EHHsi8efNy+eWXd3g6AAAAAAAAAAAAYDKEvjALTbTV1zZfAAAAAAAAAAAAKJ/QF2apM231tc0XAAAAAAAAAAAAyif0hVnqdFt9bfMFAAAAAAAAAACAmUHoC7PYqbb62uYLAAAAAAAAAAAAM4PQF2axl271HRoaSqvVss0XAAAAAAAAAAAAZoiqPr7mE5hVWnWd/Udb+e7wsdy/6/GM1o3UVSNpt/KWN74uq87pzcqFPVm+oJlmVXV7XAAAAAAAAAAAAOAkQl+YZQ6NtbJrcCQ7B0cy0vr+612lTrv+/obf1HUaVZX2i+f7mlU2LOvLpcv6smR+s3uDAwAAAAAAAAAAAC8j9IVZYqTVzn17h7P7wGiqJGfzYh8/v35pbzav6k9vszE9QwIAAAAAAAAAAACTJvSFWWBgaCx37TmcI+P1WQW+J6uS9PdUuWrNoqxdPH+qxgMAAAAAAAAAAABeBaEvzHA79h/NPU8Pn/UW39M5/px3r+7PxuULpuCJAAAAAAAAAAAAwKvR6PYAwKt3PPJNpibyfelz7nl6ODv2H52ipwIAAAAAAAAAAABnS+gLM9TA0NiJyHe63PP0cAaGxqb1DgAAAAAAAAAAAODUhL4wA4202rlrz+FU03xPleTuPYcz2mpP800AAAAAAAAAAADAyYS+MAPdt3c4R8br1NN8T51keLzOvXund3MwAAAAAAAAAAAA8EpCX5hhvjfayu4Do9Me+R5XJ9l9YDSHxloduhEAAAAAAAAAAABIhL4w4+w+MJKqw3dWSXYNjnT4VgAAAAAAAAAAAJjbero9ADB5rbrOzsGR027z3X7n7+WhOz+Tg999Mkmy4uJ1+fH3/3LeuOldSZJP3nh1Bnb8xct+569vfV9++p//qzPeWyfZOTiSt1+wMM2q05kxAAAAAAAAAAAAzE1CX5hB9h9tZaR1usw3WbLih/MT/+RDWXbRxanr5JE//a/5j7f+w/zSf7k35792XZLkrT/9D/LuX/ynJ35nXt/CSd090qqz/2grKxf6swEAAAAAAAAAAACdoNiDGWTfkfEzfv8j7/iJl33+iZv+eR76g8/kyce+eiL0nde3IIuWnf+q7xf6AgAAAAAAAAAAQGco9mAG2XdkPI0k7UmcbbdaeeyLf5Kxo0dy0V9764mf7/7zz2fXn/9BFi1dkXVXbsnmG3458xdMvNW3kYlDYwAAAAAAAAAAAGDqCH1hBnlhvD1h5Lvvm1/Pv/35n8z42GjmL+jPdR//TM6/+I1JkkvfszXnXrA6i5evzHe/+fV84bd/PYPf+Vau+/hnJry7nWR4fDKJMQAAAAAAAAAAADAVqrqu624PAUzO5544lIHDx854ZvzYWL733acz+sLhPPalP8lX/+g/58Z/98cnYt+X+tbD2/Lv/vHP5AN//HCWXrh2wvvXLpqXn3vdklc9PwAAAAAAAAAAADB5jW4PAExes1FNeKZn3vwsu+jirHrT+rznl341K9/w5vzFZz95yrMXvuWyJMmBpwYmdX/PJO4HAAAAAAAAAAAApobQF2aQc3oaZ/3S1u12xo+NnvK7Z77xtSTJomXnT/icRpL+Hn8yAAAAAAAAAAAAoFN6uj0AMHkrF/Zk14HTf/+F3/l/8sa/8eM594LVGR1+Ibu+8PkM7Hgg19/++znw1EB2feEPs27Tu7Lw3PPy3W9+PXd//Fez9rK35YI3vHnCu9sv3g8AAAAAAAAAAAB0hmoPZpCJQtvh5wfz+//iphwefDZ95yzOyte/Kdff/vt5/RV/M9/btzffeuj+PPDZT+TY0SNZcv4P55LNfzvvvOG2KbsfAAAAAAAAAAAAmDpVXdd1t4cAJqdV1/mdx57PSKvzr21fs8ovveWH0qyqjt8NAAAAAAAAAAAAc1Gj2wMAk9esqmxY1pdOp7ZVkg3L+kS+AAAAAAAAAAAA0EFCX5hhLl3Wl07v861fvBcAAAAAAAAAAADoHKEvzDBL5jezfmlvx7b6VknWL+3NkvnNDt0IAAAAAAAAAAAAJEJfmJE2r+pPf0817bFvlaS/p8rmVf3TfBMAAAAAAAAAAABwMqEvzEC9zUauWrMo9TTfUye5as2i9Db9qQAAAAAAAAAAAIBOU+/BDLV28fy8e/X0btrdsro/axfPn9Y7AAAAAAAAAAAAgFMT+sIMtnH5ghOxbzVFzzz+nC2r+3PZ8gVT9FQAAAAAAAAAAADgbFV1XdfdHgL4wQwMjeXuPYczPF7nB3mhqyT9PVWuWrPIJl8AAAAAAAAAAADoMqEvzBIjrXbu2zuc3QdGUyVnFfweP79+aW82r+pPb9OybwAAAAAAAAAAAOg2oS/MMofGWtk1OJKdgyMZaX3/9W4kadd1UlV/9fnF833NKhuW9eXSZX1ZMr/ZlZkBAAAAAAAAAACAVxL6wizVquvsP9rKviPj2XdkPN9++pkcGR3L2jUXpb+nkZULe7JyYU+WL2im+WIADAAAAAAAAAAAAJSjp9sDANOjWVUnYt4kufuxb2bv3r3Z+s5LujwZAAAAAAAAAAAAMBmNbg8AAAAAAAAAAAAAALyS0BcAAAAAAAAAAAAACiT0BQAAAAAAAAAAAIACCX0BAAAAAAAAAAAAoEBCXwAAAAAAAAAAAAAokNAXAAAAAAAAAAAAAAok9AUAAAAAAAAAAACAAgl9AQAAAAAAAAAAAKBAQl8AAAAAAAAAAAAAKJDQFwAAAAAAAAAAAAAKJPQFAAAAAAAAAAAAgAIJfQEAAAAAAAAAAACgQEJfAAAAAAAAAAAAACiQ0BcAAAAAAAAAAAAACiT0BQAAAAAAAAAAAIACCX0BAAAAAAAAAAAAoEBCXwAAAAAAAAAAAAAokNAXAAAAAAAAAAAAAAok9AUAAAAAAAAAAACAAgl9AQAAAAAAAAAAAKBAQl8AAAAAAAAAAAAAKJDQFwAAAAAAAAAAAAAKJPQFAAAAAAAAAAAAgAIJfQEAAAAAAAAAAACgQEJfAAAAAAAAAAAAACiQ0BcAAAAAAAAAAAAACiT0BQAAAAAAAAAAAIACCX0BAAAAAAAAAAAAoEBCXwAAAAAAAAAAAAAokNAXAAAAAAAAAAAAAAok9AUAAAAAAAAAAACAAgl9AQAAAAAAAAAAAKBAQl8AAAAAAAAAAAAAKJDQFwAAAAAAAAAAAAAKJPQFAAAAAAAAAAAAgAIJfQEAAAAAAAAAAACgQEJfAAAAAAAAAAAAACiQ0BcAAAAAAAAAAAAACiT0BQAAAAAAAAAAAIACCX0BAAAAAAAAAAAAoEBCXwAAAAAAAAAAAAAokNAXAAAAAAAAAAAAAAok9AUAAAAAAAAAAACAAgl9AQAAAAAAAAAAAKBAQl8AAAAAAAAAAAAAKJDQFwAAAAAAAAAAAAAKJPQFAAAAAAAAAAAAgAIJfQEAAAAAAAAAAACgQEJfAAAAAAAAAAAAACiQ0BcAAAAAAAAAAAAACiT0BQAAAAAAAAAAAIACCX0BAAAAAAAAAAAAoEBCXwAAAAAAAAAAAAAokNAXAAAAAAAAAAAAAAok9AUAAAAAAAAAAACAAgl9AQAAAAAAAAAAAKBAQl8AAAAAAAAAAAAAKJDQFwAAAAAAAAAAAAAKJPQFAAAAAAAAAAAAgAIJfQEAAAAAAAAAAACgQEJfAAAAAAAAAAAAACiQ0BcAAAAAAAAAAAAACiT0BQAAAAAAAAAAAIACCX0BAAAAAAAAAAAAoEBCXwAAAAAAAAAAAAAokNAXAAAAAAAAAAAAAAok9AUAAAAAAAAAAACAAgl9AQAAAAAAAAAAAKBAQl8AAAAAAAAAAAAAKJDQFwAAAAAAAAAAAAAKJPQFAAAAAAAAAAAAgAIJfQEAAAAAAAAAAACgQEJfAAAAAAAAAAAAACiQ0BcAAAAAAAAAAAAACiT0BQAAAAAAAAAAAIACCX0BAAAAAAAAAAAAoEBCXwAAAAAAAAAAAAAokNAXAAAAAAAAAAAAAAok9AUAAAAAAAAAAACAAgl9AQAAAAAAAAAAAKBAVV3XdbeHAKbf4OBgRkdHs2rVqm6PAgAAAAAAAAAAAEyC0BcAAAAAAAAAAAAACtTo9gAAAAAAAAAAAAAAwCsJfQEAAAAAAAAAAACgQEJfAAAAAAAAAAAAACiQ0BcAAAAAAAAAAAAACiT0hTnmjjvuyOOPP97tMQAAAAAAAAAAAIAJVHVd190eAuicVatWZc2aNdm6dWtuu+22VFXV7ZEAAAAAAAAAAACAU7DRF+aY3t7ebNu2LcPDw9myZUv27NnT7ZEAAAAAAAAAAACAU7DRF+aYtWvXZmBgIEmyc+fO3HTTTbnhhhty/fXXd3kyAAAAAAAAAAAA4KWEvjBHbN68OXVdZ/v27bniiitO/HxsbCwPPvhg2u12F6cDAAAAAAAAAAAATtbT7QGAzrjllluSJO9///tz6623dncYAAAAAAAAAAAAYEI2+sIcceTIkfT19eVTn/pUfuEXfqHb4wAAAAAAAAAAAAATEPrCHPHWt741d999d1asWJG9e/fmuuuuO/FdXdf58pe/3L3hAAAAAAAAAAAAgFfo6fYAQGeMjY1lxYoVSZJVq1bl2WefzW/8xm+kqqrcfPPNXZ4OAAAAAAAAAAAAOFmj2wMAnVFV1cs+z5s3L+9973vzUz/1Uzn33HO7MxQAAAAAAAAAAABwWkJfmCOWL1+ez3/+80mS22+/PW9605u6PBEAAAAAAAAAAABwJj3dHgDojN/6rd/Ke9/73lx33XW5+OKLc9ddd5347n3ve18XJwMAAAAAAAAAAABOparruu72EEDnHDx4MOedd163xwAAAAAAAAAAAAAmIPQFAAAAAAAAAAAAgAI1uj0AAAAAAAAAAAAAAPBKQl+YI9rtdtrtdrfHAAAAAAAAAAAAACZJ6AtzxDe+8Y08/PDD3R4DAAAAAAAAAAAAmCShL8wR3/72t/Poo492ewwAAAAAAAAAAABgkoS+AAAAAAAAAAAAAFAgoS8AAAAAAAAAAAAAFEjoCwAAAAAAAAAAAAAFEvoCAAAAAAAAAAAAQIGEvgAAAAAAAAAAAABQIKEvAAAAAAAAAAAAABRI6AsAAAAAAAAAAAAABRL6AgAAAAAAAAAAAECBhL4AAAAAAAAAAAAAUCChLwAAAAAAAAAAAAAUSOgLAAAAAAAAAAAAAAUS+gIAAAAAAAAAAABAgYS+AAAAAAAAAAAAAFAgoS8AAAAAAAAAAAAAFEjoCwAAAAAAAAAAAAAFEvoCAAAAAAAAAAAAQIGEvgAAAAAAAAAAAABQIKEvAAAAAAAAAAAAABRI6AsAAAAAAAAAAAAABRL6AgAAAAAAAAAAAECBhL4AAAAAAAAAAAAAUCChLwAAAAAAAAAAAAAUSOgLAAAAAAAAAAAAAAUS+gIAAAAAAAAAAABAgYS+AAAAAAAAAAAAAFAgoS8AAAAAAAAAAAAAFEjoCwAAAAAAAAAAAAAFEvoCAAAAAAAAAAAAQIGEvgAAAAAAAAAAAABQIKEvAAAAAAAAAAAAABRI6AsAAAAAAAAAAAAABRL6AgAAAAAAAAAAAECBhL4AAAAAAAAAAAAAUCChLwAAAAAAAAAAAAAUSOgLAAAAAAAAAAAAAAUS+gIAAAAAAAAAAABAgYS+AAAAAAAAAAAAAFAgoS8AAAAAAAAAAAAAFEjoCwAAAAAAAAAAAAAFEvoCAAAAAAAAAAAAQIGEvgAAAAAAAAAAAABQIKEvAAAAAAAAAAAAABRI6AsAAAAAAAAAAAAABRL6AgAAAAAAAAAAAECBhL4AAAAAAAAAAAAAUCChLwAAAAAAAAAAAAAUSOgLAAAAAAAAAAAAAAUS+gIAAAAAAAAAAABAgYS+AAAAAAAAAAAAAFAgoS8AAAAAAAAAAAAAFEjoCwAAAAAAAAAAAAAFEvoCAAAAAAAAAAAAQIGEvgAAAAAAAAAAAABQIKEvAAAAAAAAAAAAABRI6AsAAAAAAAAAAAAABRL6AgAAAAAAAAAAAECBhL4AAAAAAAAAAAAAUCChLwAAAAAAAAAAAAAUSOgLAAAAAAAAAAAAAAUS+gIAAAAAAAAAAABAgYS+AAAAAAAAAAAAAFAgoS8AAAAAAAAAAAAAFEjoCwAAAAAAAAAAAAAFEvoCAAAAAAAAAAAAQIGEvgAAAAAAAAAAAABQIKEvAAAAAAAAAAAAABRI6AsAAAAAAAAAAAAABRL6AgAAAAAAAAAAAECBhL4AAAAAAAAAAAAAUCChLwAAAAAAAAAAAAAUSOgLAAAAAAAAAAAAAAUS+sIsMz4+nk996lN59tlnJzw7OjqaT3/605M6CwAAAAAAAAAAAHSW0BdmmUajkdHR0dx7770Tnn3ooYfyzDPPZMGCBR2YDAAAAAAAAAAAADgbQl+YZRqNRq688sr85V/+ZZ555pnTnhsdHc2DDz6YjRs3ZvHixR2cEAAAAAAAAAAAAJgMoS/MQpdcckmWLl2a+++//7RnHnrooRw7diybNm3q4GQAAAAAAAAAAADAZAl9YRaaaKuvbb4AAAAAAAAAAABQPqEvzFJn2uprmy8AAAAAAAAAAACUT+gLs9Tptvra5gsAAAAAAAAAAAAzg9AXZrFTbfW1zRcAAAAAAAAAAABmBqEvzGIv3eo7PDycdrttmy8AAAAAAAAAAADMEFVd13W3hwCmXquus/9oK88Mj+Xerz6adk9v6qqR1rGxXPKG1+aiJQuzcmFPli9opllV3R4XAAAAAAAAAAAAOInQF2aZQ2Ot7Bocyc7BkYy0vv96V6nTrpOqqpK6TqOq0n7xfF+zyoZlfbl0WV+WzG92b3AAAAAAAAAAAADgZYS+MEuMtNq5b+9wdh8YTZXkbF7s4+fXL+3N5lX96W02pmdIAAAAAAAAAAAAYNKEvjALDAyN5a49h3NkvD6rwPdkVZL+nipXrVmUtYvnT9V4AAAAAAAAAAAAwKsg9IUZbsf+o7nn6eGz3uJ7Osef8+7V/dm4fMEUPBEAAAAAAAAAAAB4NRrdHgB49Y5HvsnURL4vfc49Tw9nx/6jU/RUAAAAAAAAAAAA4GwJfWGGGhgaOxH5Tpd7nh7OwNDYtN4BAAAAAAAAAAAAnJrQF2agkVY7d+05nGqa76mS3L3ncEZb7Wm+CQAAAAAAAAAAADiZ0BdmoPv2DufIeJ16mu+pkwyP17l37/RuDgYAAAAAAAAAAABeSegLM8z3RlvZfWB02iPf4+okuw+M5tBYq0M3AgAAAAAAAAAAAInQF2ac3QdGUnX4zirJrsGRDt8KAAAAAAAAAAAAc1tPtwcAJq9V19k5OHLabb5fvONj+dInf/NlP1v+mtfltj98MEnyRx/+5Tzx8FcytH9fehf056L1b817/sm/yIq1rz/jvXWSnYMjefsFC9OsOp0ZAwAAAAAAAAAAwNwk9IUZZP/RVkZap8t8v+/8167LP/q3f3Dic6P5V6/5qh9Zn0t/cmvOvWB1jhw6mC994jfz6f/77+SDf7ojjWbzjM8dadXZf7SVlQv92QAAAAAAAAAAAIBOUOzBDLLvyPiEZxrNZhYtO/+U3/31rf/wxH+f98MX5d3/16/kt//u38zBZ57M0gvXTup+oS8AAAAAAAAAAAB0hmIPZpB9R8bTSNI+w5nBJwfy0S2XpKe3Lxf9tR/Ne276UM69YPUrzo0dHc6OP/kvOW/VmixZuWrCuxuZXGgMAAAAAAAAAAAATI2qruu620MAk/MH3x7KE4fGTvv9Nx74YsaODGfZmtfl8OCz+dIn/1WGnvtubrlzW3r7z0mSPPj7n84X/vWvZezokSx/zevyvn/92Ult802S1y+Zn60XL56SfwsAAAAAAAAAAABwZkJfmEE+98ShDBw+NunzRw8fyv971YZcdduv563XXJckGTk8lBcO7s/h/c9m23/8Nzn03Hfzj3/v7szr7ZvweWsXzcvPvW7Jq54fAAAAAAAAAAAAmLxGtwcAJq/ZqM7q/IJFS7LsotfmwFMDJ37Wt2hxll302qzd+Dfy937z09n/nSfy+H1/Nqnn9Zzl/QAAAAAAAAAAAMCrJ/SFGeScnsZZvbSjR17I809/J4uWnX/qA3WdpE5rbHTCZzWS9Pf4kwEAAAAAAAAAAACd0tPtAYDJW7mwJ7sOnP77P/v//mXWXbkl511wYYb278sX7/hYGo1m1r/nZ/L809/Jo//jv+X1V7wz/ectzaHnnsn9v/fb6entyxvf/q4J726/eD8AAAAAAAAAAADQGao9mEEmCm0PPftM/uuv/EKOHDqY/vOW5jWXXp5f/Pd/nnPOW5ah8fEM7NyeBz77yRwd+l7OWbo8r7nsbfnF3/uznPNDy6fkfgAAAAAAAAAAAGDqVHVd190eApicVl3ndx57PiOtzr+2fc0qv/SWH0qzqjp+NwAAAAAAAAAAAMxFjW4PAExes6qyYVlfOp3aVkk2LOsT+QIAAAAAAAAAAEAHCX1hhrl0WV86vc+3fvFeAAAAAAAAAAAAoHOEvjDDLJnfzPqlvR3b6lslWb+0N0vmNzt0IwAAAAAAAAAAAJAIfWFG2ryqP/091bTHvlWS/p4qm1f1T/NNAAAAAAAAAAAAwMmEvjAD9TYbuWrNotTTfE+d5Ko1i9Lb9KcCAAAAAAAAAAAAOk29BzPU2sXz8+7V07tpd8vq/qxdPH9a7wAAAAAAAAAAAABOTegLM9jG5QtOxL7VFD3z+HO2rO7PZcsXTNFTAQAAAAAAAAAAgLNV1XVdd3sI4AczMDSWu/cczvB4nR/kha6S9PdUuWrNIpt8AQAAAAAAAAAAoMuEvjBLjLTauW/vcHYfGE2VnFXwe/z8+qW92byqP71Ny74BAAAAAAAAAACg24S+MMscGmtl1+BIdg6OZKT1/de7quu0k1RVldR1GlWV9ovn+5pVNizry6XL+rJkfrNrcwMAAAAAAAAAAAAvJ/SFWapV19l/tJVnXhjNF//X7rSb89OuGkl7PG9+3cVZc945WbmwJ8sXNNOsqm6PCwAAAAAAAAAAAJykp9sDANOjWVVZubAnT399V45+9Z6cd955GRoayoIFC5Kx7+bSq6/u9ogAAAAAAAAAAADAGTS6PQAwfcbHx7Nt27Zccskl6enpSVVV2bRpU3bv3p3nn3++2+MBAAAAAAAAAAAAZyD0hVls165dGRoaypVXXnniZxs3bkx/f3+2bdvWxckAAAAAAAAAAACAiQh9YZZ66Tbf5cuXn/j5vHnzbPUFAAAAAAAAAACAGUDoC7PUqbb5HmerLwAAAAAAAAAAAJRP6Auz0Om2+R5nqy8AAAAAAAAAAACUT+gLs9CZtvkeZ6svAAAAAAAAAAAAlE3oC7NMq9U64zbf41661ffgwYMdnBAAAAAAAAAAAACYjJ5uDwBMrbqus3Llyrzzne+c8OzGjRvz5JNPptVqdWAyAAAAAAAAAAAA4GwIfWGW6enpybXXXjups/PmzcvP/uzPTvNEAAAAAAAAAAAAwKvR6PYAAAAAAAAAAAAAAMArCX0BAAAAAAAAAAAAoEBCXwAAAAAAAAAAAAAokNAXAAAAAAAAAAAAAAok9AX4/9u529g6y/OA49fjY/wSYwKJwwIJs8gmOqIJwoK6BirxEpVFyipNlTUW1koFMW2DbZom1G5sExMqTFqRJtiAUWmIUtgosG4CoqalG4Jok4qCEsM2BiJA0qQNwSGOTfySnONnH4KjvBDHAdvnOie/3zef585zX/5w/OmfCwAAAAAAAAAAABIS+gIAAAAAAAAAAABAQkJfAAAAAAAAAAAAAEhI6AsAAAAAAAAAAAAACQl9AQAAAAAAAAAAACAhoS8AAAAAAAAAAAAAJCT0BQAAAAAAAAAAAICEhL4AAAAAAAAAAAAAkJDQFwAAAAAAAAAAAAASEvoCAAAAAAAAAAAAQEJCXwAAAAAAAAAAAABISOgLAAAAAAAAAAAAAAkJfQEAAAAAAAAAAAAgIaEvAAAAAAAAAAAAACQk9AUAAAAAAAAAAACAhIS+AAAAAAAAAAAAAJCQ0BcAAAAAAAAAAAAAEhL6AgAAAAAAAAAAAEBCQl8AAAAAAAAAAAAASEjoCwAAAAAAAAAAAAAJCX0BAAAAAAAAAAAAICGhLwAAAAAAAAAAAAAkJPQFAAAAAAAAAAAAgISEvgAAAAAAAAAAAACQkNAXAAAAAAAAAAAAABIS+gIAAAAAAAAAAABAQkJfAAAAAAAAAAAAAEhI6AsAAAAAAAAAAAAACQl9AQAAAAAAAAAAACAhoS8AAAAAAAAAAAAAJCT0BQAAAAAAAAAAAICEhL4AAAAAAAAAAAAAkJDQFwAAAAAAAAAAAAASEvoCAAAAAAAAAAAAQEJCXwAAAAAAAAAAAABISOgLAAAAAAAAAAAAAAkJfQEAAAAAAAAAAAAgIaEvAAAAAAAAAAAAACQk9AUAAAAAAAAAAACAhIS+AAAAAAAAAAAAAJCQ0BcAAAAAAAAAAAAAEhL6AgAAAAAAAAAAAEBCQl8AAAAAAAAAAAAASEjoCwAAAAAAAAAAAAAJCX0BAAAAAAAAAAAAICGhLwAAAAAAAAAAAAAkJPQFAAAAAAAAAAAAgISEvgAAAAAAAAAAAACQkNAXAAAAAAAAAAAAABIS+gIAAAAAAAAAAABAQkJfAAAAAAAAAAAAAEhI6AsAAAAAAAAAAAAACQl9AQAAAAAAAAAAACAhoS8AAAAAAAAAAAAAJCT0BQAAAAAAAAAAAICEhL4AAAAAAAAAAAAAkJDQFwAAAAAAAAAAAAASEvoCAAAAAAAAAAAAQEJCXwAAAAAAAAAAAABISOgLAAAAAAAAAAAAAAkJfQEAAAAAAAAAAAAgIaEvAAAAAAAAAAAAACQk9AUAAAAAAAAAAACAhIS+cJpobW2NM844o95jAAAAAAAAAAAAANNUlGVZ1nsIAAAAAAAAAAAAAOBoNvoCAAAAAAAAAAAAQEJCXwAAAAAAAAAAAABISOgLAAAAAAAAAAAAAAkJfQEAAAAAAAAAAAAgIaEvAAAAAAAAAAAAACQk9AUAAAAAAAAAAACAhIS+AAAAAAAAAAAAAJCQ0BcAAAAAAAAAAAAAEhL6AgAAAAAAAAAAAEBCQl84Tbz22mvx8MMPx6ZNm+o9CgAAAAAAAAAAADANQl9oUqtXr47du3dHRMSTTz4Za9asiQ0bNkRfX1889NBDdZ4OAAAAAAAAAAAAOJmiLMuy3kMAM++SSy6JV199NSIiVq1aFU888UT09vbGBx98EFdfffXhZwAAAAAAAAAAAEBONvpCkxofH49arRYREWVZRm9vb0RELFiwIPT9AAAAAAAAAAAAkJ/QF5rUunXr4vrrr4+33nor+vr64q677op33303HnzwwVi2bFm9xwMAAAAAAAAAAABOoiit9oSmde+998Y999wT7733XlSr1eju7o5169bF3XffHQsWLKj3eAAAAAAAAAAAAMAUhL5wGhgeHo5qtRrnnHNOvUcBAAAAAAAAAAAApqml3gMAs2Pr1q1xzTXXxLJly+KOO+6Izs7Ow89WrVpVx8kAAAAAAAAAAACA6RD6QpO65ZZboq+vL5566qkYGBiI1atXx/DwcEREjI2N1Xk6AAAAAAAAAAAA4GSEvtCkdu/eHbfeemusXLkyHn300Vi7dm2sXr069u3bF0VR1Hs8AAAAAAAAAAAA4CRa6z0AMDtGR0eP+vn222+Ptra2ozb7AgAAAAAAAAAAAHnZ6AtN6uKLL44NGzYc9dltt90WN9xwQ2zdurVOUwEAAAAAAAAAAADTVZRlWdZ7CGDmjY+PR0REe3v7cc927twZS5YsmeuRAAAAAAAAAAAAgFMg9AUAAAAAAAAAAACAhFrqPQAAAAAAAAAAAAAAcDyhLwAAAAAAAAAAAAAkJPQFAAAAAAAAAAAAgISEvgAAAAAAAAAAAACQkNAXAAAAAAAAAAAAABIS+sJp4rHHHov777+/3mMAAAAAAAAAAAAA0yT0hdPE0NBQDA4O1nsMAAAAAAAAAAAAYJqEvgAAAAAAAAAAAACQkNAXAAAAAAAAAAAAABIS+gIAAAAAAAAAAABAQkJfAAAAAAAAAAAAAEhI6AsAAAAAAAAAAAAACQl9AQAAAAAAAAAAACAhoS8AAAAAAAAAAAAAJCT0BQAAAAAAAAAAAICEhL4AAAAAAAAAAAAAkJDQFwAAAAAAAAAAAAASEvoCAAAAAAAAAAAAQEJCXwAAAAAAAAAAAABISOgLAAAAAAAAAAAAAAkJfQEAAAAAAAAAAAAgIaEvAAAAAAAAAAAAACQk9AUAAAAAAAAAAACAhIS+AAAAAAAAAAAAAJCQ0BcAAAAAAAAAAAAAEhL6AgAAAAAAAAAAAEBCQl8AAAAAAAAAAAAASEjoCwAAAAAAAAAAAAAJCX0BAAAAAAAAAAAAICGhLwAAAAAAAAAAAAAkJPQFAAAAAAAAAAAAgISEvgAAAAAAAAAAAACQkNAXAAAAAAAAAAAAABIS+gIAAAAAAAAAAABAQkJfAAAAAAAAAAAAAEhI6AsAAAAAAAAAAAAACQl9AQAAAAAAAAAAACAhoS8AAAAAAAAAAAAAJCT0BQAAAAAAAAAAAICEhL4AAAAAAAAAAAAAkJDQFwAAAAAAAAAAAAASEvoCAAAAAAAAAAAAQEJCXwAAAAAAAAAAAABISOgLAAAAAAAAAAAAAAkJfQEAAAAAAAAAAAAgIaEvAAAAAAAAAAAAACQk9AUAAAAAAAAAAACAhIS+AAAAAAAAAAAAAJCQ0BcAAAAAAAAAAAAAEhL6AgAAAAAAAAAAAEBCQl8AAAAAAAAAAAAASEjoCwAAAAAAAAAAAAAJCX0BAAAAAAAAAAAAICGhLwAAAAAAAAAAAAAkJPQFAAAAAAAAAAAAgISEvgAAAAAAAAAAAACQkNAXAAAAAAAAAAAAABIS+gIAAAAAAAAAAABAQkJfAAAAAAAAAAAAAEhI6AsAAAAAAAAAAAAACQl9AQAAAAAAAAAAACAhoS8AAAAAAAAAAAAAJCT0BQAAAAAAAAAAAICEhL4AAAAAAAAAAAAAkJDQFwAAAAAAAAAAAAASEvoCAAAAAAAAAAAAQEJCXwAAAAAAAAAAAABISOgLAAAAAAAAAAAAAAkJfQEAAAAAAAAAAAAgIaEvAAAAAAAAAAAAACQk9AUAAAAAAAAAAACAhIS+AAAAAAAAAAAAAJCQ0BcAAAAAAAAAAAAAEhL6AgAAAAAAAAAAAEBCQl9oMrVaLZ555pkYGhqa1tn169fH3r1752AyAAAAAAAAAAAA4FQIfaEJvfnmm/Hiiy+e9Fx/f39s2rQparXaHEwFAAAAAAAAAAAAnAqhLzSZSqUSV1xxRWzZsiUGBwdPeK5Wq8XGjRtj+fLl0dPTM3cDAgAAAAAAAAAAANMi9IUmdPnll0dnZ2ds3LjxhGf6+/tjcHAwrrrqqjmcDAAAAAAAAAAAAJguoS80oba2tim3+h65zffcc8+d+wEBAAAAAAAAAACAkxL6QpOa3Or70ksvHffMNl8AAAAAAAAAAADIT+gLTWpyq29/f3/s3bv38Oe2+QIAAAAAAAAAAEBjEPpCE5vc6rtx48bDn9nmCwAAAAAAAAAAAI1B6AtN7MitvrVaLSLCNl8AAAAAAAAAAABoEEJfaHKTW31HRkZiYmLCNl8AAAAAAAAAAABoEEVZlmW9hwBmXq0s4/3RWuwaqUb/Oztix/t7o6hU4sx5nXFR7wWxeF5rLJ7XGos6K1EpinqPCwAAAAAAAAAAABxD6AtNZt+BWmwZGIvNA2MxVjv09W6JQ+FvURQRUUZLFDHx0fmOShGX9XTEip6OmN9WqdfYAAAAAAAAAAAAwDGEvtAkxmoT8cLO/dG/ZzwO5bzTN3n+0oXtce2SrmivtMzOkAAAAAAAAAAAAMC0CX2hCbwzdCCe2zYcI9XylALfYxUR0dVaxNre7rjwrLaZGg8AAAAAAAAAAAD4BIS+0OBeeX80nt+x/5S3+J7I5Hu+sLQrVi7qnIE3AgAAAAAAAAAAAJ9ES70HAD65ycg3YmYi3yPf8/yO/fHK+6Mz9FYAAAAAAAAAAADgVAl9oUG9M3TgcOQ7W57fsT/eGTowq3cAAAAAAAAAAAAAH0/oCw1orDYRz20bjmKW7ykiYv224RivTczyTQAAAAAAAAAAAMCxhL7QgF7YuT9GqmWUs3xPGRH7q2X8x87Z3RwMAAAAAAAAAAAAHE/oCw1mcLwW/XvGZz3ynVRGRP+e8dh3oDZHNwIAAAAAAAAAAAAREa31HgA4Nf17xqKIOGHou2/3z2LDvXfGG//173FwbDQWXnBh9P3VfbF0+YqoHTwYP3zgr+ON//xRfLBjW3Sc2R2/+KtXxZo/+ss4a9HiE95ZRMSWgbG46vyu2fiVAAAAAAAAAAAAgI8h9IUGUivL2DwwdsLId3RoMP7hxrXxC5dfGTf+3RPRdc7CGNj+dnR2z4+IiINjo/HT/3s1rr35T+K8i345RocG49l7/jwe/eMvxx88/qMT3ltGxOaBsfj8efOiUhQz/4sBAAAAAAAAAAAAxynKsjxRMwgks2ukGo+8MXjC5xvuuzO2bXk5fvfh56b9zp/8z+Z44CvXxdfXb46zz1s65dmvfubsWDzP/w8AAAAAAAAAAACAudBS7wGA6ds1Up3y+esv/iCWLF8Rj3/tpvjG6ovjvnXXxMvf+86U/2b8w6EoiiI6Ptr6+2nuBwAAAAAAAAAAAGaO0BcayK6R6pRf2g92bosfP/1I9FywLG66/7vxub4b49lv3h6vPPvEx54/OD4W37/3zrhkzZei48zuKe9uCaEvAAAAAAAAAAAAzKXWeg8ATN+H1YmYmOJ5OTERS5aviF/7w7+IiIjzf+mS2LX19fjx09+OlV/8raPO1g4ejH/++s0RUcZv/Nk3T3r3RETsr051OwAAAAAAAAAAADCTbPSFBlKbKKd83t3zc3HusouO+uzcCy+Kfbt2HP2egwfjn/705tj7sx1x0wNPn3Sb76TqSe4HAAAAAAAAAAAAZo6NvtBAKi3FlM97V3w2Bt5966jPBrZtjbPPu+Dwz5OR757tb8fN3/rX6Dp7wbTvbz3J/QAAAAAAAAAAAMDMsdEXGsiZrS1Tfmmv/O3fi+3//Uq88I9/GwPb344t3/+XePl734nP/eZNEXEo8n38azfFzv/dEtff9WCUtVoMD7wXwwPvRfXggSnvbomIrlZ/MgAAAAAAAAAAAGCuFGVZlvUeApieLQNjseEnH0555vWXfhg/+PtvxJ7tb8c55/98fP7Lvx+f/dJXIiJi70+3x9/8+sqP/Xe/861/i2WXXznlu9dccGas6On4ZMMDAAAAAAAAAAAAp0ToCw1k10g1HnljsG73f/UzZ8fiea11ux8AAAAAAAAAAABOJy31HgCYvkWdleioFHW5u6NSxKLOSl3uBgAAAAAAAAAAgNOR0BcaSKUo4rKejpjr1LeIiMt6OqJS1CcyBgAAAAAAAAAAgNOR0BcazIqejijn+M7yo3sBAAAAAAAAAACAuSP0hQYzv60Sly5sn7OtvkVEXLqwPea3VeboRgAAAAAAAAAAACBC6AsN6dolXdHVWsx67FtERFdrEdcu6ZrlmwAAAAAAAAAAAIBjCX2hAbVXWmJtb3eUs3xPGRFre7ujveJPBQAAAAAAAAAAAMw19R40qAvPaosvLJ3dTbvXLe2KC89qm9U7AAAAAAAAAAAAgI8n9IUGtnJR5+HYt5ihd06+57qlXfErizpn6K0AAAAAAAAAAADAqSrKsizrPQTw6bwzdCDWbxuO/dUyPs0XuoiIrtYi1vZ22+QLAAAAAAAAAAAAdSb0hSYxVpuIF3buj/4941FEnFLwO3n+0oXtce2SrmivWPYNAAAAAAAAAAAA9Sb0hSaz70AttgyMxeaBsRirHfp6t0TExBFnjvy5o1LEZT0dsaKnI+a3VeZ4WgAAAAAAAAAAAOBEhL7QpGplGe+P1mLXSDV2jVRjf3UiqhNltLYU0dXaEovntcbiea2xqLMSlaKo97gAAAAAAAAAAADAMYS+AAAAAAAAAAAAAJBQS70HAAAAAAAAAAAAAACOJ/QFAAAAAAAAAAAAgISEvgAAAAAAAAAAAACQkNAXAAAAAAAAAAAAABIS+gIAAAAAAAAAAABAQkJfAAAAAAAAAAAAAEhI6AsAAAAAAAAAAAAACQl9AQAAAAAAAAAAACAhoS8AAAAAAAAAAAAAJCT0BQAAAAAAAAAAAICEhL4AAAAAAAAAAAAAkJDQFwAAAAAAAAAAAAASEvoCAAAAAAAAAAAAQEJCXwAAAAAAAAAAAABISOgLAAAAAAAAAAAAAAkJfQEAAAAAAAAAAAAgIaEvAAAAAAAAAAAAACQk9AUAAAAAAAAAAACAhIS+AAAAAAAAAAAAAJCQ0BcAAAAAAAAAAAAAEhL6AgAAAAAAAAAAAEBCQl8AAAAAAAAAAAAASEjoCwAAAAAAAAAAAAAJCX0BAAAAAAAAAAAAICGhLwAAAAAAAAAAAAAkJPQFAAAAAAAAAAAAgISEvgAAAAAAAAAAAACQkNAXAAAAAAAAAAAAABIS+gIAAAAAAAAAAABAQkJfAAAAAAAAAAAAAEhI6AsAAAAAAAAAAAAACQl9AQAAAAAAAAAAACAhoS8AAAAAAAAAAAAAJCT0BQAAAAAAAAAAAICEhL4AAAAAAAAAAAAAkJDQFwAAAAAAAAAAAAASEvoCAAAAAAAAAAAAQEJCXwAAAAAAAAAAAABISOgLAAAAAAAAAAAAAAkJfQEAAAAAAAAAAAAgIaEvAAAAAAAAAAAAACQk9AUAAAAAAAAAAACAhIS+AAAAAAAAAAAAAJCQ0BcAAAAAAAAAAAAAEhL6AgAAAAAAAAAAAEBCQl8AAAAAAAAAAAAASEjoCwAAAAAAAAAAAAAJCX0BAAAAAAAAAAAAICGhLwAAAAAAAAAAAAAkJPQFAAAAAAAAAAAAgISEvgAAAAAAAAAAAACQkNAXAAAAAAAAAAAAABIS+gIAAAAAAAAAAABAQkJfAAAAAAAAAAAAAEhI6AsAAAAAAAAAAAAACQl9AQAAAAAAAAAAACAhoS8AAAAAAAAAAAAAJCT0BQAAAAAAAAAAAICEhL4AAAAAAAAAAAAAkJDQFwAAAAAAAAAAAAASEvoCAAAAAAAAAAAAQEJCXwAAAAAAAAAAAABISOgLAAAAAAAAAAAAAAkJfQEAAAAAAAAAAAAgIaEvAAAAAAAAAAAAACQk9AUAAAAAAAAAAACAhIS+AAAAAAAAAAAAAJCQ0BcAAAAAAAAAAAAAEhL6AgAAAAAAAAAAAEBCQl8AAAAAAAAAAAAASEjoCwAAAAAAAAAAAAAJCX0BAAAAAAAAAAAAICGhLwAAAAAAAAAAAAAkJPQFAAAAAAAAAAAAgISEvgAAAAAAAAAAAACQkNAXAAAAAAAAAAAAABIS+gIAAAAAAAAAAABAQkJfAAAAAAAAAAAAAEhI6AsAAAAAAAAAAAAACQl9AQAAAAAAAAAAACAhoS8AAAAAAAAAAAAAJCT0BQAAAAAAAAAAAICEhL4AAAAAAAAAAAAAkJDQFwAAAAAAAAAAAAASEvoCAAAAAAAAAAAAQEJCXwAAAAAAAAAAAABISOgLAAAAAAAAAAAAAAkJfQEAAAAAAAAAAAAgIaEvAAAAAAAAAAAAACQk9AUAAAAAAAAAAACAhIS+AAAAAAAAAAAAAJCQ0BcAAAAAAAAAAAAAEhL6AgAAAAAAAAAAAEBCQl8AAAAAAAAAAAAASEjoCwAAAAAAAAAAAAAJCX0BAAAAAAAAAAAAICGhLwAAAAAAAAAAAAAkJPQFAAAAAAAAAAAAgISEvgAAAAAAAAAAAACQkNAXAAAAAAAAAAAAABIS+gIAAAAAAAAAAABAQkJfAAAAAAAAAAAAAEhI6AsAAAAAAAAAAAAACQl9AQAAAAAAAAAAACAhoS8AAAAAAAAAAAAAJCT0BQAAAAAAAAAAAICEhL4AAAAAAAAAAAAAkJDQFwAAAAAAAAAAAAASEvoCAAAAAAAAAAAAQEJCXwAAAAAAAAAAAABISOgLAAAAAAAAAAAAAAkJfQEAAAAAAAAAAAAgIaEvAAAAAAAAAAAAACQk9AUAAAAAAAAAAACAhIS+AAAAAAAAAAAAAJCQ0BcAAAAAAAAAAAAAEhL6AgAAAAAAAAAAAEBCQl8AAAAAAAAAAAAASEjoCwAAAAAAAAAAAAAJCX0BAAAAAAAAAAAAICGhLwAAAAAAAAAAAAAkJPQFAAAAAAAAAAAAgISEvgAAAAAAAAAAAACQkNAXAAAAAAAAAAAAABIS+gIAAAAAAAAAAABAQkJfAAAAAAAAAAAAAEhI6AsAAAAAAAAAAAAACQl9AQAAAAAAAAAAACAhoS8AAAAAAAAAAAAAJCT0BQAAAAAAAAAAAICEhL4AAAAAAAAAAAAAkJDQFwAAAAAAAAAAAAASEvoCAAAAAAAAAAAAQEJCXwAAAAAAAAAAAABISOgLAAAAAAAAAAAAAAkJfQEAAAAAAAAAAAAgIaEvAAAAAAAAAAAAACQk9AUAAAAAAAAAAACAhIS+AAAAAAAAAAAAAJCQ0BcAAAAAAAAAAAAAEhL6AgAAAAAAAAAAAEBCQl8AAAAAAAAAAAAASEjoCwAAAAAAAAAAAAAJCX0BAAAAAAAAAAAAICGhLwAAAAAAAAAAAAAkJPQFAAAAAAAAAAAAgISEvgAAAAAAAAAAAACQkNAXAAAAAAAAAAAAABIS+gIAAAAAAAAAAABAQkJfAAAAAAAAAAAAAEhI6AsAAAAAAAAAAAAACQl9AQAAAAAAAAAAACCh/wdOKWGdakNXPQAAAABJRU5ErkJggg==",
"text/plain": [
"<Figure size 3600x2400 with 1 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"\n",
"def Graph2LinProgDynamicMap():\n",
" import pulp\n",
" import importlib\n",
" import LinProg_lib\n",
" importlib.reload(LinProg_lib)\n",
" from LinProg_lib import draw_networkx_graph,combine_nodes\n",
" # ======================================================================\n",
" # Parameters of the NoC (how many PEs are available)\n",
" # ======================================================================\n",
"\n",
" mesh_x=4\n",
" mesh_y=4\n",
" router_num=mesh_x*mesh_y\n",
"\n",
" noc_factor=param1\n",
" comp_factor=param2\n",
" # noc_factor=0.5\n",
" # comp_factor=0.1\n",
"\n",
"\n",
"\n",
" # ======================================================================\n",
" # Creating/importing the input Task graph \n",
" # ======================================================================\n",
" \n",
" # G = CreateNetworkXGraph(Figure=False,flit_delay_consistent=True,detailed=False)\n",
" # G =CreateNetworkXGraphManuelParallel()\n",
"\n",
" G=CreateNetworkXGraph()\n",
"\n",
"\n",
" for node, atr in G.nodes(data=True):\n",
" G.nodes[node]['delay_send'] = math.ceil(atr['delay_send'] * noc_factor)\n",
" G.nodes[node]['delay_comp'] = math.ceil(atr['delay_comp'] * comp_factor)\n",
"\n",
"\n",
" for u, v, attrs in G.edges(data=True):\n",
" print(f\"Edge from {u} to {v}: {attrs}\")\n",
"\n",
"\n",
" for u, v, attrs in G.edges(data=True):\n",
" G[u][v]['flits'] = math.ceil(attrs['flits'] * noc_factor)\n",
"\n",
" for u, v, attrs in G.edges(data=True):\n",
" print(f\"Edge from {u} to {v}: {attrs}\")\n",
"\n",
" # Draw the graph\n",
" plt.figure(figsize=(32, 14))\n",
" pos = nx.spring_layout(G) # Layout for positioning\n",
" nx.draw(G, pos, with_labels=True, node_color=\"lightblue\", edge_color=\"black\", arrows=True, node_size=800, font_size=12)\n",
"\n",
" # Draw edge labels (if any)\n",
" edge_labels = {(u, v): f\"{d.get('flits', '')}\" for u, v, d in G.edges(data=True)}\n",
" nx.draw_networkx_edge_labels(G, pos, edge_labels=edge_labels, font_size=10)\n",
"\n",
" plt.title(\"NetworkX Graph Visualization\")\n",
" plt.show()\n",
" # G.add_edge(7, 3, flits=10)\n",
" # G.add_edge(7, 3, flits=10)\n",
" draw_networkx_graph(G)\n",
" \n",
" # ======================================================================\n",
" # Setup of LP model and initialization of variables\n",
" # ======================================================================\n",
"\n",
" model = LpProblem(name='small-problem', sense=LpMinimize)\n",
" \n",
" task_vars = [{} for _ in G.nodes]\n",
" task_total_delay_router = [{},{},{},{},{},{},{},{}] \n",
" task_total_delay_router = [{} for _ in range(router_num)]\n",
" task_total_memory_router = [{},{},{},{},{},{},{},{}] \n",
" task_total_memory_router = [{} for _ in range(router_num)]\n",
"\n",
" PE_var = {}\n",
" PE_delay = {}\n",
" PE_delay_min = {}\n",
" PE_delay_max = {}\n",
" PE_mem = {}\n",
" PE_partial = [{} for _ in range(router_num)]\n",
" PE_mem_overflow = {}\n",
" task_constraints = [] \n",
"\n",
" task_map={}\n",
"\n",
" same_map={}\n",
" same_map_and={}\n",
"\n",
"\n",
" # ======================================================================\n",
" # Mapping variables of tasks (is this task mapped to this PE/router) \n",
" # ======================================================================\n",
" for router in range(router_num):\n",
" for task in G.nodes:\n",
" if task not in task_map:\n",
" task_map[task] = {}\n",
" task_map[task][f\"t_map_{router}\"]=LpVariable(name=f't_{task}_map_{router}', cat=\"Binary\")\n",
"\n",
"\n",
" # for task in G.nodes:\n",
" # assigned_router = task // 5 # Integer division: 0-4→0, 5-9→1, etc.\n",
" # for router in range(router_num):\n",
" # if router == assigned_router:\n",
" # task_map[task][f\"t_map_{router}\"].setInitialValue(1)\n",
" # task_map[task][f\"t_map_{router}\"].fixValue()\n",
" # else:\n",
" # task_map[task][f\"t_map_{router}\"].setInitialValue(0)\n",
" # task_map[task][f\"t_map_{router}\"].fixValue() \n",
"\n",
" # 5x optimal mapping\n",
" manual_task_groups = [\n",
" [0, 1, 2, 3],\n",
" [10, 8, 9],\n",
" [11, 12, 13, 14, 15, 16, 7],\n",
" [17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34],\n",
" [35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52],\n",
" [4, 5, 6],\n",
" [53, 54, 55, 56, 57, 58, 59, 60, 61, 65, 66, 67, 68, 69],\n",
" [62, 63, 64]\n",
" ]\n",
"\n",
"\n",
"\n",
" # manual_task_groups = [\n",
" # list(range(0, 16)), # 16 elements: 0-15\n",
" # list(range(16, 20)), # 4 elements: 16-19\n",
" # list(range(20, 24)), # 4 elements: 20-23\n",
" # list(range(24, 28)), # 4 elements: 24-27\n",
" # list(range(28, 32)), # 4 elements: 28-31\n",
" # list(range(32, 36)), # 4 elements: 32-35\n",
" # list(range(36, 40)), # 4 elements: 36-39\n",
" # list(range(40, 44)), # 4 elements: 40-43\n",
" # list(range(44, 48)), # 4 elements: 44-47\n",
" # list(range(48, 52)), # 4 elements: 48-51\n",
" # list(range(52, 56)), # 4 elements: 52-55\n",
" # list(range(56, 60)), # 4 elements: 56-59\n",
" # list(range(60, 64)), # 4 elements: 60-63\n",
" # list(range(64, 68)), # 4 elements: 64-67\n",
" # list(range(68, 70)), # 2-4 elements: 68-71 (adjust if you only want up to 70: use range(68, 71))\n",
" # ]\n",
"\n",
" # Assign each group to a router index\n",
" for router, task_group in enumerate(manual_task_groups):\n",
" for task in G.nodes:\n",
" if task in task_group:\n",
" task_map[task][f\"t_map_{router}\"].setInitialValue(1)\n",
" task_map[task][f\"t_map_{router}\"].fixValue()\n",
" else:\n",
" task_map[task][f\"t_map_{router}\"].setInitialValue(0)\n",
" task_map[task][f\"t_map_{router}\"].fixValue()\n",
" # # ======================================================================\n",
" # Number of tasks per router\n",
" # ======================================================================\n",
" # for router in range(router_num):\n",
" # task_router_count = LpVariable(name=f'task_router_count_{router}', lowBound=0, cat=\"Integer\")\n",
"\n",
"\n",
" # for router in range(router_num):\n",
" # task_router_count = LpVariable(name=f'task_router_count_{router}', lowBound=0, cat=\"Integer\")\n",
" # task_constraints.append(task_router_count >= lpSum(task_map[task][f\"t_map_{router}\"] for task in G.nodes))\n",
"\n",
" # num_tasks = len(G.nodes)\n",
" # task_constraints.append(task_router_count <= math.ceil(num_tasks/16))\n",
"\n",
" # print(f\"max tasks per router: {math.ceil(num_tasks/16)}\")\n",
"\n",
"\n",
" # ======================================================================\n",
" # Are two tasks mapped to the same PE/Router?\n",
" # ======================================================================\n",
" for task1 in G.nodes:\n",
" for task2 in G.nodes:\n",
" if task2>=task1:\n",
" if task1 not in same_map:\n",
" same_map[task1] = {}\n",
" \n",
" if task1 not in same_map_and:\n",
" same_map_and[task1] = {}\n",
"\n",
" # bool: are task 1 and task 2 in the same creating variable\n",
" same_map[task1][f\"same_{task2}\"]=LpVariable(name=f'same_{task1}_{task2}', cat=\"Binary\")\n",
" for same_and in range(router_num):\n",
" same_map_and[task1][f\"same_{task2}_and_{same_and}\"]=LpVariable(name=f'same_{task1}_{task2}_and_{same_and}', cat=\"Binary\")\n",
"\n",
" # AND of task1_in_routerX and task2_in_routerX \n",
" for task1 in G.nodes:\n",
" for task2 in G.nodes:\n",
" if task2>task1:\n",
" for same_and in range(router_num):\n",
" task_constraints.append(same_map_and[task1][f\"same_{task2}_and_{same_and}\"] <= task_map[task1][f\"t_map_{same_and}\"])\n",
" task_constraints.append(same_map_and[task1][f\"same_{task2}_and_{same_and}\"] <= task_map[task2][f\"t_map_{same_and}\"])\n",
" task_constraints.append(same_map_and[task1][f\"same_{task2}_and_{same_and}\"] >= task_map[task2][f\"t_map_{same_and}\"]+task_map[task1][f\"t_map_{same_and}\"]-1)\n",
"\n",
" # Combine all ANDs to check if two tasks are in the same PE/Router\n",
" for task1 in G.nodes:\n",
" for task2 in G.nodes:\n",
" if task2 > task1:\n",
" # OR condition: If any same_map_and[task1][task2]_X is 1, then same_map[task1][task2] must be 1 There should only be one and being one\n",
" task_constraints.append(same_map[task1][f\"same_{task2}\"] == lpSum(same_map_and[task1][f\"same_{task2}_and_{same_and}\"] for same_and in range(router_num)))\n",
"\n",
" if task2==task1:\n",
" task_constraints.append(same_map[task1][f\"same_{task2}\"] == 1)\n",
"\n",
"\n",
"\n",
" # ======================================================================\n",
" # Constraints + dependencies of the task graph\n",
" # ======================================================================\n",
"\n",
" t_send_list=[]\n",
" # Define Variables and Constraints for each task\n",
" for task in G.nodes:\n",
" t_comp = LpVariable(name=f't_comp_{task}', lowBound=0)\n",
" t_send = LpVariable(name=f't_send_{task}', lowBound=0)\n",
" t_mem = LpVariable(name=f't_mem_{task}', lowBound=0)\n",
"\n",
" t_start = LpVariable(name=f't{task}_start', lowBound=0)\n",
" t_end = LpVariable(name=f't{task}_end ', lowBound=0)\n",
" t_send_list.append(t_send)\n",
" task_vars[task] = {'t_start': t_start, 't_end': t_end, 't_comp': t_comp, 't_send': t_send, 't_mem': t_mem}\n",
"\n",
" for task, atr in G.nodes(data=True):\n",
"\n",
" # Every task can only be mapped to one router\n",
" constraint = lpSum(task_map[task][f\"t_map_{router}\"] for router in range(router_num)) == 1\n",
" task_constraints.append(constraint)\n",
"\n",
" predecessors = list(G.predecessors(task))\n",
"\n",
"\n",
" # remove memory delay as it is saved in PE\n",
" # task_constraints.append(task_vars[task][\"t_start\"] + task_vars[task][\"t_comp\"] <= task_vars[task][\"t_end\"])\n",
" task_constraints.append(task_vars[task][\"t_start\"] + task_vars[task][\"t_comp\"] +task_vars[task]['t_send'] <= task_vars[task][\"t_end\"])\n",
"\n",
" # Predecessor constraints\n",
" for pre in predecessors:\n",
" # task_constraints.append(task_vars[pre]['t_end'] + task_vars[pre]['t_send'] <= task_vars[task][\"t_start\"])\n",
" task_constraints.append(task_vars[pre]['t_end']<= task_vars[task][\"t_start\"])\n",
" # Constraint for first task\n",
" if task==0:\n",
" # remove memory delay as it is saved in PE\n",
" # model += task_vars[rep][0]['t_comp'] + task_vars[rep][0]['t_mem'] <= task_vars[rep][0]['tR0_end']\n",
" model += task_vars[0]['t_comp'] <= task_vars[0]['t_end']\n",
" model += 0 <= task_vars[0]['t_start']\n",
"\n",
" # Static time constraints\n",
" task_constraints.append(task_vars[task][\"t_comp\"] == atr['delay_comp'])\n",
" task_constraints.append(task_vars[task][\"t_mem\"] == atr['delay_mem'])\n",
"\n",
" #total t_send\n",
" t_send_total = LpVariable(name=f't_send_total', lowBound=0)\n",
" # task_constraints.append(t_send_total<=110)\n",
" task_constraints.append(t_send_total >= lpSum(t_send_list))\n",
"\n",
" M = 25e4\n",
"\n",
"\n",
" # ======================================================================\n",
" # If the successor of a task is in the same PE the sending delay is 0/the normal sending delay condition does not apply\n",
" # ======================================================================\n",
" time_per_flit=0.649\n",
" for task, atr in G.nodes(data=True):\n",
" successors = list(G.successors(task))\n",
" if successors:\n",
" task_constraints.append(task_vars[task]['t_send'] >= 0)\n",
" task_constraints.append(task_vars[task]['t_send'] +M*(same_map[task][f\"same_{successors[0]}\"])>= math.ceil(atr['delay_send']*time_per_flit))\n",
"\n",
"\n",
" # ======================================================================\n",
" # Only one task can execute in one PE at the same time. If tasks are dependent on each other this is automatically satisfied\n",
" # ======================================================================\n",
" nodes = list(G.nodes)\n",
" for i, task1 in enumerate(nodes):\n",
" for task2 in nodes[i+1:]:\n",
" if (not(nx.has_path(G, task1, task2) or nx.has_path(G, task2,task1))):\n",
"\n",
" \n",
" # task1_idx, task1_rep = map(int, task1.split('_'))\n",
" # task2_idx, task2_rep = map(int, task2.split('_'))\n",
"\n",
" if f\"same_{task1}\" in same_map[task2]:\n",
" temp=same_map[task2][f\"same_{task1}\"]\n",
" elif f\"same_{task2}\" in same_map[task1]:\n",
" temp=same_map[task1][f\"same_{task2}\"]\n",
" else:\n",
" print(task1,task2)\n",
" print(\"NO combinatnion exists\")\n",
"\n",
" order_choose_var=LpVariable(name=f'order_choose_{task1}_{task2}', cat=\"Binary\")\n",
" task_constraints.append(task_vars[task1]['t_end'] <= task_vars[task2]['t_start']+ M*(1-order_choose_var) + M*(1-temp))\n",
" task_constraints.append(task_vars[task2]['t_end'] <= task_vars[task1]['t_start']+ M*(order_choose_var) + M*(1-temp))\n",
"\n",
"\n",
" # ======================================================================\n",
" # Add memory constraints: if memory exceeds the PE capacity, add delay because memory must be fetched from main mem\n",
" # ======================================================================\n",
"\n",
" # Get the usage time of each PE\n",
" max_router_delay=LpVariable(name=f'max_router_delay', lowBound=0)\n",
" max_memory_overflow=LpVariable(name=f'max_memory_overflow', lowBound=0)\n",
"\n",
" # max_memory=200 #bytes\n",
" max_memory=0 #bytes\n",
" delay_per_flit_mem=0\n",
" for router in range(router_num):\n",
" PE_var[router]=LpVariable(name=f'PE{router}_total_delay', lowBound=0)\n",
" PE_mem_overflow[router]=LpVariable(name=f'PE_mem_overflow{router}', lowBound=0)\n",
" \n",
" PE_mem[router]=LpVariable(name=f'PE{router}_total_memory', lowBound=0)\n",
"\n",
" sum_list=[]\n",
" sum_list_mem=[]\n",
" for task in G.nodes:\n",
" task= int(task)\n",
" # task_idx, task_rep = map(int, task.split('_'))\n",
" task_total_delay_router[router][task]=LpVariable(name=f'task_total_delay_router_router{router}_task{task}', lowBound=0)\n",
" task_constraints.append(task_total_delay_router[router][task]>=task_vars[task]['t_end']-task_vars[task]['t_start']+task_vars[task]['t_send'] - M*(1-task_map[task][f\"t_map_{router}\"]))\n",
" sum_list.append(task_total_delay_router[router][task])\n",
"\n",
" task_total_memory_router[router][task]=LpVariable(name=f'task_total_memory_router_router{router}_task{task}', lowBound=0)\n",
" task_constraints.append(task_total_memory_router[router][task]>=task_vars[task]['t_mem'] - M*(1-task_map[task][f\"t_map_{router}\"]))\n",
" sum_list_mem.append(task_total_memory_router[router][task])\n",
" PE_partial[router][task]=list(sum_list_mem)\n",
" task_constraints.append(PE_mem_overflow[router]>=lpSum(sum_list_mem) -max_memory)\n",
"\n",
" # task_constraints.append(PE_mem_overflow[router]>=lpSum(sum_list_mem))\n",
"\n",
"\n",
" task_constraints.append(PE_var[router] >= lpSum(sum_list) + PE_mem_overflow[router]*delay_per_flit_mem) #total delay per router\n",
" # task_constraints.append(PE_var[router] >= lpSum(sum_list)) #total delay per router no memory\n",
" task_constraints.append(PE_mem[router] >= lpSum(sum_list_mem)) #total memory per router\n",
"\n",
"\n",
" task_constraints.append(max_memory_overflow>=PE_mem_overflow[router]) #max memory overflow per router\n",
"\n",
" # task_constraints.append(PE_mem_overflow[router]<=5311.0) # calculated as max memory overflow\n",
" \n",
"\n",
"\n",
"\n",
" # task_constraints.append(max_router_delay>=PE_var[router])\n",
" \n",
" # enforce optimal PE delay\n",
" # task_constraints.append(PE_var[router] <= 1010) # Slightly stricter bound\n",
"\n",
" # PE_var[router].bounds(0, 3248) # Set the max delay per router to the optimal one\n",
" # PE_var[router].bounds(0, 3250) # Set the max delay per router to the optimal one\n",
" # PE_mem[router].bounds(0, 20) # Set the max memory per router to a random number\n",
"\n",
" \n",
"\n",
" # ======================================================================\n",
" # optimization goal for max throughput is to minimize the max delay(start-end time of all tasks) of the router/PE\n",
" # ======================================================================\n",
" # make throughput max-min not sum(delays)\n",
"\n",
" PE_delay[router]=LpVariable(name=f'PE{router}_total_time_delay', lowBound=0)\n",
" PE_delay_min[router]=LpVariable(name=f'PE{router}_time_delay_min', lowBound=0)\n",
" PE_delay_max[router]=LpVariable(name=f'PE{router}_time_delay_max', lowBound=0)\n",
"\n",
" for i, task1 in enumerate(nodes):\n",
" # task_vars[task1]['t_end'] <= task_vars[task2]['t_start']\n",
" # task_vars[task]['t_mem'] - M*(1-task_map[task][f\"t_map_{router}\"])\n",
" \n",
"\n",
" ## ADDED THE OVEFRFLOW HERE\n",
" task_constraints.append(PE_delay_max[router]>=task_vars[task1]['t_end'] - M*(1-task_map[task1][f\"t_map_{router}\"])+PE_mem_overflow[router]*delay_per_flit_mem)\n",
" task_constraints.append(PE_delay_min[router]<=task_vars[task1]['t_start'] + M*(1-task_map[task1][f\"t_map_{router}\"]))\n",
"\n",
" task_constraints.append(PE_delay[router]==PE_delay_max[router]-PE_delay_min[router])\n",
"\n",
"\n",
" # max router delay is now dependent on the actual time (max-min) of the tasks in the PE\n",
" task_constraints.append(max_router_delay>=PE_delay[router])\n",
"\n",
" # task_constraints.append(PE_delay[router] <= 1943*1) #strictly enforce some/optimal delay/throughput 2096\n",
" # task_constraints.append(PE_delay[router] <= 2096*1.2) #strictly enforce some/optimal delay/throughput\n",
"\n",
" # task_constraints.append(PE_delay[router] <= 4098*1) #34 layers inception \n",
" # task_constraints.append(PE_delay[router] <= 7725*1) #94 layers inception \n",
" # task_constraints.append(PE_delay[router] <= 4683*1) #94 layers inception reduced add\n",
"\n",
" # task_constraints.append(PE_delay[router] <= 4016*1) #6 layers inception \n",
"\n",
" # task_constraints.append(PE_delay[router] <= 2247*1.001) #52 layers inception \n",
" # task_constraints.append(PE_delay[router] <= 2697*1.01) #70 layers inception \n",
" # task_constraints.append(PE_delay[router] <= 862*1) #70 layers inception fast gemmini \n",
" # task_constraints.append(PE_delay[router] <= 6009*1) #70 layers inception fast gemmini and memory with zero size \n",
" # task_constraints.append(PE_delay[router] <= 5633*1) #70 layers inception fast gemmini and memory with zero size \n",
" # task_constraints.append(PE_delay[router] <= 613*1) #70 layers inception fast gemmini and no memory\n",
" \n",
" # task_constraints.append(PE_delay[router] <= 10590) #all layers inception \n",
"\n",
" # task_constraints.append(PE_delay[router] <= 20615) #all layers inception \n",
"\n",
" # task_constraints.append(PE_delay[router] <= 243) \n",
" \n",
"\n",
"\n",
"\n",
"\n",
" # ======================================================================\n",
" # Add constraints to the model\n",
" # ======================================================================\n",
"\n",
" for constraint in task_constraints:\n",
" model += constraint\n",
"\n",
" # ======================================================================\n",
" # Set the objective function and solve the model\n",
" # ======================================================================\n",
"\n",
" # Objective function\n",
" # model += task_vars[18]['t_end']\n",
" model += max_router_delay\n",
"\n",
" #optimize: minimize the traffic I have by minimizing t_send_total while having optimal time per PE\n",
" # model+=t_send_total\n",
" # exit()\n",
" # # Solve the problem\n",
" # status = model.solve(PULP_CBC_CMD(threads=20))\n",
"\n",
"\n",
" # model += max_memory_overflow # Minimize the memory per router\n",
"\n",
" status = model.solve(pulp.GUROBI_CMD(threads=20, timeLimit=1200))\n",
" \n",
" # ======================================================================\n",
" # print debug information\n",
" # ======================================================================\n",
" # G=combine_nodes(G, 8, 14,14)\n",
" \n",
"\n",
" print(f\"objective: {model.objective.value()}\")\n",
"\n",
" import os\n",
" import pickle\n",
" import csv\n",
" \n",
" # Set your subfolder and filename here\n",
" subfolder = \"inception70/Opt_noChange_5x_fasterLink\"\n",
" filename = f\"No_mem_opt_5x_NoC{noc_factor}_Comp{comp_factor}.pkl\"\n",
"\n",
" # Create the full path\n",
" results_dir = f\"/home/sfischer/Documents/projects/wk_LinProg/optimization_results/{subfolder}\"\n",
" os.makedirs(results_dir, exist_ok=True) # Create subfolder if it doesn't exist\n",
"\n",
" # Save the model\n",
" with open(os.path.join(results_dir, filename), \"wb\") as f:\n",
" pickle.dump(model, f)\n",
"\n",
"\n",
"\n",
"\n",
" with open(\"Task_graph.pkl\", \"wb\") as f:\n",
" pickle.dump(G, f)\n",
"\n",
" nx.write_graphml(G, \"Task_graph.graphml\")\n",
"\n",
"\n",
" csv_path = os.path.join(results_dir, \"resultsLinProg.csv\")\n",
" row = [noc_factor, comp_factor, model.objective.value()]\n",
" write_header = not os.path.exists(csv_path)\n",
" with open(csv_path, mode='a', newline='') as csvfile:\n",
" writer = csv.writer(csvfile)\n",
" if write_header:\n",
" writer.writerow([\"noc_factor\", \"comp_factor\", \"objective_value\"])\n",
" writer.writerow(row)\n",
"\n",
"\n",
" # Combine nodes and create a new graph + graph figure\n",
" import re\n",
" mappings = {}\n",
"\n",
" for v in model.variables():\n",
"\n",
" match = re.match(r't_(\\d+)_map_(\\d+)\\s*=\\s*(\\d+\\.\\d+)', f\"{v.name} = {v.varValue}\\n\")\n",
" if match:\n",
" task, pe, value = match.groups()\n",
" if float(value) > 0.9 and float(value) < 1.1:\n",
" pe = int(pe)\n",
" if pe not in mappings:\n",
" mappings[pe] = []\n",
" mappings[pe].append(int(task))\n",
"\n",
"\n",
" with open(\"CombinedMapping.txt\", \"w\") as f:\n",
" for router, tasks in mappings.items():\n",
" f.write(f\"Router {tasks[0]}: Tasks {tasks}\\n\")\n",
" for router, tasks in mappings.items():\n",
" for task in tasks:\n",
" if task != tasks[0]:\n",
" G=combine_nodes(G, tasks[0], task,tasks[0])\n",
"\n",
" print(G.edges)\n",
" draw_networkx_graph(G)\n",
"\n",
" \n",
"\n",
" with open(\"PE_graph.pkl\", \"wb\") as f:\n",
" pickle.dump(G, f)\n",
"\n",
" nx.write_graphml(G, \"PE_graph.graphml\")\n",
"\n",
" \n",
"\n",
" # for task in G.nodes:\n",
" # for router in range(router_num):\n",
" # var_name = f't_{task}_map_{router}'\n",
" # var_value = task_map[task][f\"t_map_{router}\"].varValue\n",
" # if float(var_value) > 0.7 and float(var_value) < 1.3: # Check if the task is mapped to this router\n",
" # mapped_tasks_per_router[router].append(task)\n",
"\n",
" # # Print the results\n",
" # for router, tasks in mapped_tasks_per_router.items():\n",
" # print(f\"Router {router}: Tasks {tasks}\")\n",
" # # # Open a file to write the variable values\n",
" # with open(\"/home/sfischer/Documents/projects/wk_hybridNoC_VHDL/Python/gen_vhdl_from_task/temp.txt\", \"w\") as f:\n",
" # for v in model.variables():\n",
" # f.write(f\"{v.name} = {v.varValue}\\n\")\n",
"\n",
" # f.write(\"\\nConstraints:\\n\")\n",
" \n",
" # # Print all constraints in their final form\n",
" # for name, constraint in model.constraints.items():\n",
" # f.write(f\"{name}: {constraint}\\n\")\n",
" # print(f\"Solver Status: {LpStatus[model.status]}\")\n",
"\n",
" # # # Print the start and end times of all tasks\n",
" # # for rep in range(repetitions):\n",
" # # print(f\"Repetition {rep}:\")\n",
" # for task in G.nodes:\n",
" # start_time = task_vars[task]['t_start'].varValue\n",
" # end_time = task_vars[task]['t_end'].varValue\n",
" # print(f\"Task {task}: Start Time = {start_time}, End Time = {end_time}\")\n",
" # print(f\"Max Router Delay: {max_router_delay.varValue}\")\n",
"\n",
" # # Print the total delay for each PE\n",
" # for router in range(len(PE_delay)):\n",
" # print(f\"PE {router} Total Delay: {PE_delay[router].varValue}\")\n",
" # print(f\"PE {router} Max Delay: {PE_delay_max[router].varValue}\")\n",
" # print(f\"PE {router} Min Delay: {PE_delay_min[router].varValue}\")\n",
" # # for i, task1 in enumerate(nodes):\n",
" # print(f\"Total t_send: {t_send_total.varValue}\")\n",
"\n",
"\n",
"if __name__ == \"__main__\":\n",
" Graph2LinProgDynamicMap()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"anaconda-cloud": {},
"kernelspec": {
"display_name": "env",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.12"
}
},
"nbformat": 4,
"nbformat_minor": 4
}