gevi/new_pipeline/functions/perform_donor_volume_rotation.py

98 lines
3.3 KiB
Python
Raw Normal View History

2024-02-26 18:57:33 +01:00
import torch
import torchvision as tv # type: ignore
import logging
from functions.calculate_rotation import calculate_rotation
from functions.ImageAlignment import ImageAlignment
@torch.no_grad()
def perform_donor_volume_rotation(
mylogger: logging.Logger,
acceptor: torch.Tensor,
donor: torch.Tensor,
oxygenation: torch.Tensor,
volume: torch.Tensor,
ref_image_donor: torch.Tensor,
ref_image_volume: torch.Tensor,
image_alignment: ImageAlignment,
batch_size: int,
fill_value: float = 0,
) -> tuple[
torch.Tensor,
torch.Tensor,
torch.Tensor,
torch.Tensor,
torch.Tensor,
]:
mylogger.info("Calculate rotation between donor data and donor ref image")
2024-02-27 18:18:47 +01:00
2024-02-26 18:57:33 +01:00
angle_donor = calculate_rotation(
input=donor,
reference_image=ref_image_donor,
image_alignment=image_alignment,
batch_size=batch_size,
)
mylogger.info("Calculate rotation between volume data and volume ref image")
angle_volume = calculate_rotation(
input=volume,
reference_image=ref_image_volume,
image_alignment=image_alignment,
batch_size=batch_size,
)
mylogger.info("Average over both rotations")
angle_donor_volume = (angle_donor + angle_volume) / 2.0
2024-02-27 18:18:47 +01:00
angle_donor_volume *= 0.0
2024-02-26 18:57:33 +01:00
mylogger.info("Rotate acceptor data based on the average rotation")
for frame_id in range(0, angle_donor_volume.shape[0]):
acceptor[frame_id, ...] = tv.transforms.functional.affine(
img=acceptor[frame_id, ...].unsqueeze(0),
angle=-float(angle_donor_volume[frame_id]),
translate=[0, 0],
scale=1.0,
shear=0,
interpolation=tv.transforms.InterpolationMode.BILINEAR,
fill=fill_value,
).squeeze(0)
mylogger.info("Rotate donor data based on the average rotation")
for frame_id in range(0, angle_donor_volume.shape[0]):
donor[frame_id, ...] = tv.transforms.functional.affine(
img=donor[frame_id, ...].unsqueeze(0),
angle=-float(angle_donor_volume[frame_id]),
translate=[0, 0],
scale=1.0,
shear=0,
interpolation=tv.transforms.InterpolationMode.BILINEAR,
fill=fill_value,
).squeeze(0)
mylogger.info("Rotate oxygenation data based on the average rotation")
for frame_id in range(0, angle_donor_volume.shape[0]):
oxygenation[frame_id, ...] = tv.transforms.functional.affine(
img=oxygenation[frame_id, ...].unsqueeze(0),
angle=-float(angle_donor_volume[frame_id]),
translate=[0, 0],
scale=1.0,
shear=0,
interpolation=tv.transforms.InterpolationMode.BILINEAR,
fill=fill_value,
).squeeze(0)
mylogger.info("Rotate volume data based on the average rotation")
for frame_id in range(0, angle_donor_volume.shape[0]):
volume[frame_id, ...] = tv.transforms.functional.affine(
img=volume[frame_id, ...].unsqueeze(0),
angle=-float(angle_donor_volume[frame_id]),
translate=[0, 0],
scale=1.0,
shear=0,
interpolation=tv.transforms.InterpolationMode.BILINEAR,
fill=fill_value,
).squeeze(0)
return (acceptor, donor, oxygenation, volume, angle_donor_volume)