Add files via upload
This commit is contained in:
parent
6b3146be0f
commit
675e9743b6
8 changed files with 1377 additions and 0 deletions
1015
new_pipeline/functions/ImageAlignment.py
Normal file
1015
new_pipeline/functions/ImageAlignment.py
Normal file
File diff suppressed because it is too large
Load diff
57
new_pipeline/functions/align_refref.py
Normal file
57
new_pipeline/functions/align_refref.py
Normal file
|
@ -0,0 +1,57 @@
|
|||
import torch
|
||||
import torchvision as tv # type: ignore
|
||||
import logging
|
||||
from functions.ImageAlignment import ImageAlignment
|
||||
from functions.calculate_translation import calculate_translation
|
||||
from functions.calculate_rotation import calculate_rotation
|
||||
|
||||
|
||||
@torch.no_grad()
|
||||
def align_refref(
|
||||
mylogger: logging.Logger,
|
||||
ref_image_acceptor: torch.Tensor,
|
||||
ref_image_donor: torch.Tensor,
|
||||
image_alignment: ImageAlignment,
|
||||
batch_size: int,
|
||||
fill_value: float = 0,
|
||||
) -> tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
|
||||
|
||||
mylogger.info("Rotate ref image acceptor onto donor")
|
||||
angle_refref = calculate_rotation(
|
||||
image_alignment=image_alignment,
|
||||
input=ref_image_acceptor.unsqueeze(0),
|
||||
reference_image=ref_image_donor,
|
||||
batch_size=batch_size,
|
||||
)
|
||||
|
||||
ref_image_acceptor = tv.transforms.functional.affine(
|
||||
img=ref_image_acceptor.unsqueeze(0),
|
||||
angle=-float(angle_refref),
|
||||
translate=[0, 0],
|
||||
scale=1.0,
|
||||
shear=0,
|
||||
interpolation=tv.transforms.InterpolationMode.BILINEAR,
|
||||
fill=fill_value,
|
||||
)
|
||||
|
||||
mylogger.info("Translate ref image acceptor onto donor")
|
||||
tvec_refref = calculate_translation(
|
||||
image_alignment=image_alignment,
|
||||
input=ref_image_acceptor,
|
||||
reference_image=ref_image_donor,
|
||||
batch_size=batch_size,
|
||||
)
|
||||
|
||||
tvec_refref = tvec_refref[0, :]
|
||||
|
||||
ref_image_acceptor = tv.transforms.functional.affine(
|
||||
img=ref_image_acceptor,
|
||||
angle=0,
|
||||
translate=[tvec_refref[1], tvec_refref[0]],
|
||||
scale=1.0,
|
||||
shear=0,
|
||||
interpolation=tv.transforms.InterpolationMode.BILINEAR,
|
||||
fill=fill_value,
|
||||
).squeeze(0)
|
||||
|
||||
return angle_refref, tvec_refref, ref_image_acceptor, ref_image_donor
|
21
new_pipeline/functions/binning.py
Normal file
21
new_pipeline/functions/binning.py
Normal file
|
@ -0,0 +1,21 @@
|
|||
import torch
|
||||
|
||||
|
||||
def binning(
|
||||
data: torch.Tensor,
|
||||
kernel_size: int = 4,
|
||||
stride: int = 4,
|
||||
divisor_override: int | None = 1,
|
||||
) -> torch.Tensor:
|
||||
|
||||
assert data.ndim == 4
|
||||
return (
|
||||
torch.nn.functional.avg_pool2d(
|
||||
input=data.movedim(0, -1).movedim(0, -1),
|
||||
kernel_size=kernel_size,
|
||||
stride=stride,
|
||||
divisor_override=divisor_override,
|
||||
)
|
||||
.movedim(-1, 0)
|
||||
.movedim(-1, 0)
|
||||
)
|
40
new_pipeline/functions/calculate_rotation.py
Normal file
40
new_pipeline/functions/calculate_rotation.py
Normal file
|
@ -0,0 +1,40 @@
|
|||
import torch
|
||||
|
||||
from functions.ImageAlignment import ImageAlignment
|
||||
|
||||
|
||||
@torch.no_grad()
|
||||
def calculate_rotation(
|
||||
image_alignment: ImageAlignment,
|
||||
input: torch.Tensor,
|
||||
reference_image: torch.Tensor,
|
||||
batch_size: int,
|
||||
) -> torch.Tensor:
|
||||
angle = torch.zeros((input.shape[0]))
|
||||
|
||||
data_loader = torch.utils.data.DataLoader(
|
||||
torch.utils.data.TensorDataset(input),
|
||||
batch_size=batch_size,
|
||||
shuffle=False,
|
||||
)
|
||||
start_position: int = 0
|
||||
for input_batch in data_loader:
|
||||
assert len(input_batch) == 1
|
||||
|
||||
end_position = start_position + input_batch[0].shape[0]
|
||||
|
||||
angle_temp = image_alignment.dry_run_angle(
|
||||
input=input_batch[0],
|
||||
new_reference_image=reference_image,
|
||||
)
|
||||
|
||||
assert angle_temp is not None
|
||||
|
||||
angle[start_position:end_position] = angle_temp
|
||||
|
||||
start_position += input_batch[0].shape[0]
|
||||
|
||||
angle = torch.where(angle >= 180, 360.0 - angle, angle)
|
||||
angle = torch.where(angle <= -180, 360.0 + angle, angle)
|
||||
|
||||
return angle
|
37
new_pipeline/functions/calculate_translation.py
Normal file
37
new_pipeline/functions/calculate_translation.py
Normal file
|
@ -0,0 +1,37 @@
|
|||
import torch
|
||||
|
||||
from functions.ImageAlignment import ImageAlignment
|
||||
|
||||
|
||||
@torch.no_grad()
|
||||
def calculate_translation(
|
||||
image_alignment: ImageAlignment,
|
||||
input: torch.Tensor,
|
||||
reference_image: torch.Tensor,
|
||||
batch_size: int,
|
||||
) -> torch.Tensor:
|
||||
tvec = torch.zeros((input.shape[0], 2))
|
||||
|
||||
data_loader = torch.utils.data.DataLoader(
|
||||
torch.utils.data.TensorDataset(input),
|
||||
batch_size=batch_size,
|
||||
shuffle=False,
|
||||
)
|
||||
start_position: int = 0
|
||||
for input_batch in data_loader:
|
||||
assert len(input_batch) == 1
|
||||
|
||||
end_position = start_position + input_batch[0].shape[0]
|
||||
|
||||
tvec_temp = image_alignment.dry_run_translation(
|
||||
input=input_batch[0],
|
||||
new_reference_image=reference_image,
|
||||
)
|
||||
|
||||
assert tvec_temp is not None
|
||||
|
||||
tvec[start_position:end_position, :] = tvec_temp
|
||||
|
||||
start_position += input_batch[0].shape[0]
|
||||
|
||||
return tvec
|
16
new_pipeline/functions/load_config.py
Normal file
16
new_pipeline/functions/load_config.py
Normal file
|
@ -0,0 +1,16 @@
|
|||
import json
|
||||
import os
|
||||
import logging
|
||||
|
||||
from jsmin import jsmin # type:ignore
|
||||
|
||||
|
||||
def load_config(mylogger: logging.Logger, filename: str = "config.json") -> dict:
|
||||
mylogger.info("loading config file")
|
||||
if os.path.isfile(filename) is False:
|
||||
mylogger.info(f"{filename} is missing")
|
||||
|
||||
with open(filename, "r") as file:
|
||||
config = json.loads(jsmin(file.read()))
|
||||
|
||||
return config
|
95
new_pipeline/functions/perform_donor_volume_rotation.py
Normal file
95
new_pipeline/functions/perform_donor_volume_rotation.py
Normal file
|
@ -0,0 +1,95 @@
|
|||
import torch
|
||||
import torchvision as tv # type: ignore
|
||||
import logging
|
||||
from functions.calculate_rotation import calculate_rotation
|
||||
from functions.ImageAlignment import ImageAlignment
|
||||
|
||||
|
||||
@torch.no_grad()
|
||||
def perform_donor_volume_rotation(
|
||||
mylogger: logging.Logger,
|
||||
acceptor: torch.Tensor,
|
||||
donor: torch.Tensor,
|
||||
oxygenation: torch.Tensor,
|
||||
volume: torch.Tensor,
|
||||
ref_image_donor: torch.Tensor,
|
||||
ref_image_volume: torch.Tensor,
|
||||
image_alignment: ImageAlignment,
|
||||
batch_size: int,
|
||||
fill_value: float = 0,
|
||||
) -> tuple[
|
||||
torch.Tensor,
|
||||
torch.Tensor,
|
||||
torch.Tensor,
|
||||
torch.Tensor,
|
||||
torch.Tensor,
|
||||
]:
|
||||
|
||||
mylogger.info("Calculate rotation between donor data and donor ref image")
|
||||
angle_donor = calculate_rotation(
|
||||
input=donor,
|
||||
reference_image=ref_image_donor,
|
||||
image_alignment=image_alignment,
|
||||
batch_size=batch_size,
|
||||
)
|
||||
|
||||
mylogger.info("Calculate rotation between volume data and volume ref image")
|
||||
angle_volume = calculate_rotation(
|
||||
input=volume,
|
||||
reference_image=ref_image_volume,
|
||||
image_alignment=image_alignment,
|
||||
batch_size=batch_size,
|
||||
)
|
||||
|
||||
mylogger.info("Average over both rotations")
|
||||
angle_donor_volume = (angle_donor + angle_volume) / 2.0
|
||||
|
||||
mylogger.info("Rotate acceptor data based on the average rotation")
|
||||
for frame_id in range(0, angle_donor_volume.shape[0]):
|
||||
acceptor[frame_id, ...] = tv.transforms.functional.affine(
|
||||
img=acceptor[frame_id, ...].unsqueeze(0),
|
||||
angle=-float(angle_donor_volume[frame_id]),
|
||||
translate=[0, 0],
|
||||
scale=1.0,
|
||||
shear=0,
|
||||
interpolation=tv.transforms.InterpolationMode.BILINEAR,
|
||||
fill=fill_value,
|
||||
).squeeze(0)
|
||||
|
||||
mylogger.info("Rotate donor data based on the average rotation")
|
||||
for frame_id in range(0, angle_donor_volume.shape[0]):
|
||||
donor[frame_id, ...] = tv.transforms.functional.affine(
|
||||
img=donor[frame_id, ...].unsqueeze(0),
|
||||
angle=-float(angle_donor_volume[frame_id]),
|
||||
translate=[0, 0],
|
||||
scale=1.0,
|
||||
shear=0,
|
||||
interpolation=tv.transforms.InterpolationMode.BILINEAR,
|
||||
fill=fill_value,
|
||||
).squeeze(0)
|
||||
|
||||
mylogger.info("Rotate oxygenation data based on the average rotation")
|
||||
for frame_id in range(0, angle_donor_volume.shape[0]):
|
||||
oxygenation[frame_id, ...] = tv.transforms.functional.affine(
|
||||
img=oxygenation[frame_id, ...].unsqueeze(0),
|
||||
angle=-float(angle_donor_volume[frame_id]),
|
||||
translate=[0, 0],
|
||||
scale=1.0,
|
||||
shear=0,
|
||||
interpolation=tv.transforms.InterpolationMode.BILINEAR,
|
||||
fill=fill_value,
|
||||
).squeeze(0)
|
||||
|
||||
mylogger.info("Rotate volume data based on the average rotation")
|
||||
for frame_id in range(0, angle_donor_volume.shape[0]):
|
||||
volume[frame_id, ...] = tv.transforms.functional.affine(
|
||||
img=volume[frame_id, ...].unsqueeze(0),
|
||||
angle=-float(angle_donor_volume[frame_id]),
|
||||
translate=[0, 0],
|
||||
scale=1.0,
|
||||
shear=0,
|
||||
interpolation=tv.transforms.InterpolationMode.BILINEAR,
|
||||
fill=fill_value,
|
||||
).squeeze(0)
|
||||
|
||||
return (acceptor, donor, oxygenation, volume, angle_donor_volume)
|
96
new_pipeline/functions/perform_donor_volume_translation.py
Normal file
96
new_pipeline/functions/perform_donor_volume_translation.py
Normal file
|
@ -0,0 +1,96 @@
|
|||
import torch
|
||||
import torchvision as tv # type: ignore
|
||||
import logging
|
||||
|
||||
from functions.calculate_translation import calculate_translation
|
||||
from functions.ImageAlignment import ImageAlignment
|
||||
|
||||
|
||||
@torch.no_grad()
|
||||
def perform_donor_volume_translation(
|
||||
mylogger: logging.Logger,
|
||||
acceptor: torch.Tensor,
|
||||
donor: torch.Tensor,
|
||||
oxygenation: torch.Tensor,
|
||||
volume: torch.Tensor,
|
||||
ref_image_donor: torch.Tensor,
|
||||
ref_image_volume: torch.Tensor,
|
||||
image_alignment: ImageAlignment,
|
||||
batch_size: int,
|
||||
fill_value: float = 0,
|
||||
) -> tuple[
|
||||
torch.Tensor,
|
||||
torch.Tensor,
|
||||
torch.Tensor,
|
||||
torch.Tensor,
|
||||
torch.Tensor,
|
||||
]:
|
||||
|
||||
mylogger.info("Calculate translation between donor data and donor ref image")
|
||||
tvec_donor = calculate_translation(
|
||||
input=donor,
|
||||
reference_image=ref_image_donor,
|
||||
image_alignment=image_alignment,
|
||||
batch_size=batch_size,
|
||||
)
|
||||
|
||||
mylogger.info("Calculate translation between volume data and volume ref image")
|
||||
tvec_volume = calculate_translation(
|
||||
input=volume,
|
||||
reference_image=ref_image_volume,
|
||||
image_alignment=image_alignment,
|
||||
batch_size=batch_size,
|
||||
)
|
||||
|
||||
mylogger.info("Average over both translations")
|
||||
tvec_donor_volume = (tvec_donor + tvec_volume) / 2.0
|
||||
|
||||
mylogger.info("Translate acceptor data based on the average translation vector")
|
||||
for frame_id in range(0, tvec_donor_volume.shape[0]):
|
||||
acceptor[frame_id, ...] = tv.transforms.functional.affine(
|
||||
img=acceptor[frame_id, ...].unsqueeze(0),
|
||||
angle=0,
|
||||
translate=[tvec_donor_volume[frame_id, 1], tvec_donor_volume[frame_id, 0]],
|
||||
scale=1.0,
|
||||
shear=0,
|
||||
interpolation=tv.transforms.InterpolationMode.BILINEAR,
|
||||
fill=fill_value,
|
||||
).squeeze(0)
|
||||
|
||||
mylogger.info("Translate donor data based on the average translation vector")
|
||||
for frame_id in range(0, tvec_donor_volume.shape[0]):
|
||||
donor[frame_id, ...] = tv.transforms.functional.affine(
|
||||
img=donor[frame_id, ...].unsqueeze(0),
|
||||
angle=0,
|
||||
translate=[tvec_donor_volume[frame_id, 1], tvec_donor_volume[frame_id, 0]],
|
||||
scale=1.0,
|
||||
shear=0,
|
||||
interpolation=tv.transforms.InterpolationMode.BILINEAR,
|
||||
fill=fill_value,
|
||||
).squeeze(0)
|
||||
|
||||
mylogger.info("Translate oxygenation data based on the average translation vector")
|
||||
for frame_id in range(0, tvec_donor_volume.shape[0]):
|
||||
oxygenation[frame_id, ...] = tv.transforms.functional.affine(
|
||||
img=oxygenation[frame_id, ...].unsqueeze(0),
|
||||
angle=0,
|
||||
translate=[tvec_donor_volume[frame_id, 1], tvec_donor_volume[frame_id, 0]],
|
||||
scale=1.0,
|
||||
shear=0,
|
||||
interpolation=tv.transforms.InterpolationMode.BILINEAR,
|
||||
fill=fill_value,
|
||||
).squeeze(0)
|
||||
|
||||
mylogger.info("Translate volume data based on the average translation vector")
|
||||
for frame_id in range(0, tvec_donor_volume.shape[0]):
|
||||
volume[frame_id, ...] = tv.transforms.functional.affine(
|
||||
img=volume[frame_id, ...].unsqueeze(0),
|
||||
angle=0,
|
||||
translate=[tvec_donor_volume[frame_id, 1], tvec_donor_volume[frame_id, 0]],
|
||||
scale=1.0,
|
||||
shear=0,
|
||||
interpolation=tv.transforms.InterpolationMode.BILINEAR,
|
||||
fill=fill_value,
|
||||
).squeeze(0)
|
||||
|
||||
return (acceptor, donor, oxygenation, volume, tvec_donor_volume)
|
Loading…
Reference in a new issue