gevi/geci_plot.py

206 lines
6.5 KiB
Python
Raw Normal View History

2024-08-10 20:56:23 +02:00
import numpy as np
import matplotlib.pyplot as plt
import h5py # type: ignore
import argh
import scipy # type: ignore
import json
import os
from jsmin import jsmin # type:ignore
def func_pow(x, a, b, c):
return -a * x**b + c
def func_exp(x, a, b, c):
return a * np.exp(-x / b) + c
# mouse: int = 0, 1, 2, 3, 4
def plot(
filename: str = "config_M_Sert_Cre_49.json",
experiment: int = 4,
skip_timesteps: int = 100,
# If there is no special ROI... Get one! This is just a backup
roi_control_path: str = "/data_1/hendrik/2023-03-15/ROI_control.mat",
roi_sdraken_path: str = "/data_1/hendrik/2023-03-15/ROI_sDarken.mat",
remove_fit: bool = True,
fit_power: bool = False, # True => -ax^b ; False => exp(-b)
) -> None:
# lbs = [
# [
# "control",
# "visual control",
# "op20 50 5",
# "op20 100 5",
# "op20 50 grat",
# "op20 100 grat",
# ],
# [
# "control",
# "visual control",
# "op20 50 5",
# "op20 100 5",
# "op20 50 grat",
# "op20 100 grat",
# ],
# [
# "control",
# "visual control",
# "op20 50 5",
# "op20 100 5",
# "op20 50 grat",
# "op20 100 grat",
# ],
# ["control", "visual control", "op20 50 5", "op20 100 5"],
# ["control", "visual control", "op20 50 5", "op20 100 5"],
# ]
if os.path.isfile(filename) is False:
print(f"{filename} is missing")
exit()
with open(filename, "r") as file:
config = json.loads(jsmin(file.read()))
raw_data_path: str = os.path.join(
config["basic_path"],
config["recoding_data"],
config["mouse_identifier"],
config["raw_path"],
)
if os.path.isdir(raw_data_path) is False:
print(f"ERROR: could not find raw directory {raw_data_path}!!!!")
exit()
2024-08-12 10:54:17 +02:00
with open(f"meta_{config["mouse_identifier"]}_exp{experiment:03d}.json", "r") as file:
2024-08-10 20:56:23 +02:00
metadata = json.loads(jsmin(file.read()))
experiment_names = metadata['sessionMetaData']['experimentNames'][str(experiment)]
roi_path: str = os.path.join(config["basic_path"], config["recoding_data"])
roi_control_mat: str = os.path.join(roi_path, "ROI_control.mat")
roi_sdarken_mat: str = os.path.join(roi_path, "ROI_sDarken.mat")
if os.path.isdir(roi_control_mat):
roi_control_path = roi_control_mat
if os.path.isdir(roi_sdarken_mat):
roi_sdraken_path = roi_sdarken_mat
print("Load data...")
data = np.load("dsq_" + config["mouse_identifier"] + ".npy", mmap_mode="r")
print("Load light signal...")
light = np.load("lsq_" + config["mouse_identifier"] + ".npy", mmap_mode="r")
print("Load mask...")
mask = np.load("msq_" + config["mouse_identifier"] + ".npy")
hf = h5py.File(roi_control_path, "r")
roi_lighten = np.array(hf["roi"]).T
roi_lighten *= mask
hf = h5py.File(roi_sdraken_path, "r")
roi_darken = np.array(hf["roi"]).T
roi_darken *= mask
plt.figure(1)
a_show = data[experiment - 1, :, :, 1000].copy()
a_show[(roi_darken + roi_lighten) < 0.5] = np.nan
plt.imshow(a_show)
plt.title(f"{config["mouse_identifier"]} -- Experiment: {experiment}")
plt.show(block=False)
plt.figure(2)
a_dontshow = data[experiment - 1, :, :, 1000].copy()
a_dontshow[(roi_darken + roi_lighten) > 0.5] = np.nan
plt.imshow(a_dontshow)
plt.title(f"{config["mouse_identifier"]} -- Experiment: {experiment}")
plt.show(block=False)
plt.figure(3)
light_exp = light[experiment - 1, :, :, skip_timesteps:].copy()
light_exp[(roi_darken + roi_lighten) < 0.5, :] = 0.0
light_signal = light_exp.mean(axis=(0, 1))
light_signal -= light_signal.min()
light_signal /= light_signal.max()
a_exp = data[experiment - 1, :, :, skip_timesteps:].copy()
if remove_fit:
combined_matrix = (roi_darken + roi_lighten) > 0
idx = np.where(combined_matrix)
for idx_pos in range(0, idx[0].shape[0]):
temp = a_exp[idx[0][idx_pos], idx[1][idx_pos], :]
temp -= temp.mean()
data_time = np.arange(0, temp.shape[0], dtype=np.float32) + skip_timesteps
data_time /= 100.0
data_min = temp.min()
data_max = temp.max()
data_delta = data_max - data_min
a_min = data_min - data_delta
b_min = 0.01
a_max = data_max + data_delta
if fit_power:
b_max = 10.0
else:
b_max = 100.0
c_min = data_min - data_delta
c_max = data_max + data_delta
try:
if fit_power:
popt, _ = scipy.optimize.curve_fit(
f=func_pow,
xdata=data_time,
ydata=np.nan_to_num(temp),
bounds=([a_min, b_min, c_min], [a_max, b_max, c_max]),
)
pattern: np.ndarray | None = func_pow(data_time, *popt)
else:
popt, _ = scipy.optimize.curve_fit(
f=func_exp,
xdata=data_time,
ydata=np.nan_to_num(temp),
bounds=([a_min, b_min, c_min], [a_max, b_max, c_max]),
)
pattern = func_exp(data_time, *popt)
assert pattern is not None
pattern -= pattern.mean()
scale = (temp * pattern).sum() / (pattern**2).sum()
pattern *= scale
except ValueError:
print(f"Fit failed: Position ({idx[0][idx_pos]}, {idx[1][idx_pos]}")
pattern = None
if pattern is not None:
temp -= pattern
darken = a_exp[roi_darken > 0.5, :].sum(axis=0) / (roi_darken > 0.5).sum()
lighten = a_exp[roi_lighten > 0.5, :].sum(axis=0) / (roi_lighten > 0.5).sum()
light_signal *= darken.max() - darken.min()
light_signal += darken.min()
time_axis = np.arange(0, lighten.shape[-1], dtype=np.float32) + skip_timesteps
time_axis /= 100.0
plt.plot(time_axis, light_signal, c="k", label="light")
plt.plot(time_axis, darken, label="sDarken")
plt.plot(time_axis, lighten, label="control")
plt.title(f"{config["mouse_identifier"]} -- Experiment: {experiment} ({experiment_names})")
plt.legend()
plt.show()
if __name__ == "__main__":
argh.dispatch_command(plot)