Delete test_average_calculate.py
This commit is contained in:
parent
df75075ac0
commit
00f0026237
1 changed files with 0 additions and 113 deletions
|
@ -1,113 +0,0 @@
|
|||
import torch
|
||||
from functions.DataContainer import DataContainer
|
||||
import numpy as np
|
||||
from tqdm import trange
|
||||
|
||||
# path: str = "/data_1/robert/2021-05-05/M3852M/raw"
|
||||
path: str = "/data_1/robert/2021-05-21/M3852M/raw"
|
||||
initital_mask_name: str | None = None
|
||||
initital_mask_update: bool = True
|
||||
initital_mask_roi: bool = False # default: True
|
||||
|
||||
experiment_id: int = 2
|
||||
trial_id: int = 180
|
||||
start_position: int = 0
|
||||
start_position_coefficients: int = 100
|
||||
remove_heartbeat: bool = True # i.e. use SVD
|
||||
bin_size: int = 4
|
||||
threshold: float | None = 0.05 # Between 0 and 1.0
|
||||
|
||||
|
||||
display_logging_messages: bool = False
|
||||
save_logging_messages: bool = False
|
||||
|
||||
# Post data processing modifiations
|
||||
gaussian_blur_kernel_size: int | None = 3
|
||||
gaussian_blur_sigma: float = 1.0
|
||||
bin_size_post: int | None = None
|
||||
|
||||
# ------------------------
|
||||
|
||||
|
||||
torch_device: torch.device = torch.device(
|
||||
"cuda:0" if torch.cuda.is_available() else "cpu"
|
||||
)
|
||||
|
||||
af = DataContainer(
|
||||
path=path,
|
||||
device=torch_device,
|
||||
display_logging_messages=display_logging_messages,
|
||||
save_logging_messages=save_logging_messages,
|
||||
)
|
||||
|
||||
|
||||
list_of_experiments = af.get_experiments()
|
||||
print(
|
||||
f"The following experiments have been found:\n {list_of_experiments.cpu().numpy()}"
|
||||
)
|
||||
assert experiment_id in list_of_experiments
|
||||
print(f"Continue with experiment: {experiment_id}")
|
||||
list_of_trials = af.get_trials(experiment_id).cpu().numpy()
|
||||
print(f"The following trials have been found:\n {list_of_trials}")
|
||||
|
||||
|
||||
# mask
|
||||
_, mask = af.automatic_load(
|
||||
experiment_id=experiment_id,
|
||||
trial_id=int(list_of_trials[0]),
|
||||
start_position=start_position,
|
||||
remove_heartbeat=remove_heartbeat, # i.e. use SVD
|
||||
bin_size=bin_size,
|
||||
initital_mask_name=initital_mask_name,
|
||||
initital_mask_update=initital_mask_update,
|
||||
initital_mask_roi=initital_mask_roi,
|
||||
start_position_coefficients=start_position_coefficients,
|
||||
gaussian_blur_kernel_size=gaussian_blur_kernel_size,
|
||||
gaussian_blur_sigma=gaussian_blur_sigma,
|
||||
bin_size_post=bin_size_post,
|
||||
threshold=threshold,
|
||||
)
|
||||
|
||||
if mask is not None:
|
||||
np.save("mask.npy", mask.cpu())
|
||||
|
||||
|
||||
# data
|
||||
result: torch.Tensor | None = None
|
||||
count_not_nan: torch.Tensor | None = None
|
||||
|
||||
n: float = 0
|
||||
for trial_id in trange(0, len(list_of_trials)):
|
||||
result_temp, _ = af.automatic_load( # type: ignore
|
||||
experiment_id=experiment_id,
|
||||
trial_id=int(list_of_trials[trial_id]),
|
||||
start_position=start_position,
|
||||
remove_heartbeat=remove_heartbeat, # i.e. use SVD
|
||||
bin_size=bin_size,
|
||||
initital_mask_name=initital_mask_name,
|
||||
initital_mask_update=initital_mask_update,
|
||||
initital_mask_roi=initital_mask_roi,
|
||||
start_position_coefficients=start_position_coefficients,
|
||||
gaussian_blur_kernel_size=gaussian_blur_kernel_size,
|
||||
gaussian_blur_sigma=gaussian_blur_sigma,
|
||||
bin_size_post=bin_size_post,
|
||||
threshold=None,
|
||||
)
|
||||
n += 1.0
|
||||
if result is None:
|
||||
result = (result_temp - 1.0).nan_to_num(nan=0.0)
|
||||
count_not_nan = torch.isfinite(result_temp).type(torch.float32)
|
||||
else:
|
||||
result += (result_temp - 1.0).nan_to_num(nan=0.0)
|
||||
count_not_nan += torch.isfinite(result_temp).type(torch.float32)
|
||||
|
||||
assert result is not None
|
||||
if trial_id % 10 == 0:
|
||||
np.save("result.npy", (result / count_not_nan).cpu())
|
||||
np.save("count_not_nan.npy", (count_not_nan / n).cpu())
|
||||
|
||||
assert result is not None
|
||||
assert count_not_nan is not None
|
||||
|
||||
np.save("result.npy", (result / count_not_nan).cpu())
|
||||
np.save("count_not_nan.npy", (count_not_nan / n).cpu())
|
Loading…
Reference in a new issue