Add files via upload

This commit is contained in:
David Rotermund 2024-03-01 01:36:18 +01:00 committed by GitHub
parent 62bd82dab5
commit 9fb22407a9
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
2 changed files with 111 additions and 89 deletions

View file

@ -7,57 +7,68 @@ from functions.load_config import load_config
from functions.get_trials import get_trials from functions.get_trials import get_trials
import h5py # type: ignore import h5py # type: ignore
control_file_handle = h5py.File("ROI_control_49.mat", "r") import argh
control_roi = (np.array(control_file_handle["roi"]).T) > 0
control_file_handle.close()
control_roi = control_roi.reshape((control_roi.shape[0] * control_roi.shape[1]))
s_darken_file_handle = h5py.File("ROI_sDarken_49.mat", "r")
s_darken_roi = (np.array(s_darken_file_handle["roi"]).T) > 0
s_darken_file_handle.close()
s_darken_roi = s_darken_roi.reshape((s_darken_roi.shape[0] * s_darken_roi.shape[1]))
mylogger = create_logger( def main(*, experiment_id: int = 1, config_filename: str = "config.json") -> None:
save_logging_messages=True, display_logging_messages=True, log_stage_name="test_xxx"
)
config = load_config(mylogger=mylogger)
experiment_id: int = 1 mylogger = create_logger(
save_logging_messages=True,
display_logging_messages=True,
log_stage_name="test_xxx",
)
config = load_config(mylogger=mylogger, filename=config_filename)
raw_data_path: str = os.path.join( roi_path: str = config["ref_image_path"]
config["basic_path"],
config["recoding_data"],
config["mouse_identifier"],
config["raw_path"],
)
data_path: str = "output" control_file_handle = h5py.File(os.path.join(roi_path, "ROI_control.mat"), "r")
control_roi = (np.array(control_file_handle["roi"]).T) > 0
control_file_handle.close()
control_roi = control_roi.reshape((control_roi.shape[0] * control_roi.shape[1]))
trails = get_trials(path=raw_data_path, experiment_id=experiment_id) s_darken_file_handle = h5py.File(os.path.join(roi_path, "ROI_sDarken.mat"), "r")
for i in range(0, trails.shape[0]): s_darken_roi = (np.array(s_darken_file_handle["roi"]).T) > 0
trial_id = int(trails[i]) s_darken_file_handle.close()
experiment_name: str = f"Exp{experiment_id:03d}_Trial{trial_id:03d}" s_darken_roi = s_darken_roi.reshape((s_darken_roi.shape[0] * s_darken_roi.shape[1]))
mylogger.info(f"Loading files for {experiment_name}")
data = np.load(os.path.join(data_path, f"{experiment_name}_ratio_sequence.npz")) raw_data_path: str = os.path.join(
if i == 0: config["basic_path"],
ratio_sequence = data["ratio_sequence"] config["recoding_data"],
else: config["mouse_identifier"],
ratio_sequence += data["ratio_sequence"] config["raw_path"],
)
ratio_sequence /= float(trails.shape[0]) data_path: str = str(config["export_path"])
ratio_sequence = ratio_sequence.reshape( trails = get_trials(path=raw_data_path, experiment_id=experiment_id)
(ratio_sequence.shape[0] * ratio_sequence.shape[1], ratio_sequence.shape[2]) for i in range(0, trails.shape[0]):
) trial_id = int(trails[i])
experiment_name: str = f"Exp{experiment_id:03d}_Trial{trial_id:03d}"
mylogger.info(f"Loading files for {experiment_name}")
control = ratio_sequence[control_roi, :].mean(axis=0) data = np.load(os.path.join(data_path, f"{experiment_name}_ratio_sequence.npz"))
s_darken = ratio_sequence[s_darken_roi, :].mean(axis=0) if i == 0:
ratio_sequence = data["ratio_sequence"]
else:
ratio_sequence += data["ratio_sequence"]
t = np.arange(0, control.shape[0]) / 100.0 ratio_sequence /= float(trails.shape[0])
plt.plot(t, control, label="control") ratio_sequence = ratio_sequence.reshape(
plt.plot(t, s_darken, label="sDarken") (ratio_sequence.shape[0] * ratio_sequence.shape[1], ratio_sequence.shape[2])
plt.legend() )
plt.xlabel("Time [sec]")
plt.show() control = ratio_sequence[control_roi, :].mean(axis=0)
s_darken = ratio_sequence[s_darken_roi, :].mean(axis=0)
t = np.arange(0, control.shape[0]) / 100.0
plt.plot(t, control, label="control")
plt.plot(t, s_darken, label="sDarken")
plt.legend()
plt.xlabel("Time [sec]")
plt.show()
if __name__ == "__main__":
argh.dispatch_command(main)

View file

@ -8,64 +8,75 @@ from functions.get_trials import get_trials
import h5py # type: ignore import h5py # type: ignore
import torch import torch
control_file_handle = h5py.File("ROI_control_49.mat", "r") import argh
control_roi = (np.array(control_file_handle["roi"]).T) > 0
control_file_handle.close()
control_roi = control_roi.reshape((control_roi.shape[0] * control_roi.shape[1]))
s_darken_file_handle = h5py.File("ROI_sDarken_49.mat", "r")
s_darken_roi = (np.array(s_darken_file_handle["roi"]).T) > 0
s_darken_file_handle.close()
s_darken_roi = s_darken_roi.reshape((s_darken_roi.shape[0] * s_darken_roi.shape[1]))
mylogger = create_logger( def main(*, experiment_id: int = 1, config_filename: str = "config.json") -> None:
save_logging_messages=True, display_logging_messages=True, log_stage_name="test_xxx"
)
config = load_config(mylogger=mylogger)
experiment_id: int = 2 mylogger = create_logger(
save_logging_messages=True,
display_logging_messages=True,
log_stage_name="test_xxx",
)
config = load_config(mylogger=mylogger, filename=config_filename)
raw_data_path: str = os.path.join( roi_path: str = config["ref_image_path"]
config["basic_path"],
config["recoding_data"],
config["mouse_identifier"],
config["raw_path"],
)
data_path: str = "output" control_file_handle = h5py.File(os.path.join(roi_path, "ROI_control.mat"), "r")
control_roi = (np.array(control_file_handle["roi"]).T) > 0
control_file_handle.close()
control_roi = control_roi.reshape((control_roi.shape[0] * control_roi.shape[1]))
trails = get_trials(path=raw_data_path, experiment_id=experiment_id) s_darken_file_handle = h5py.File(os.path.join(roi_path, "ROI_sDarken.mat"), "r")
for i in range(0, trails.shape[0]): s_darken_roi = (np.array(s_darken_file_handle["roi"]).T) > 0
trial_id = int(trails[i]) s_darken_file_handle.close()
experiment_name: str = f"Exp{experiment_id:03d}_Trial{trial_id:03d}" s_darken_roi = s_darken_roi.reshape((s_darken_roi.shape[0] * s_darken_roi.shape[1]))
mylogger.info(f"Loading files for {experiment_name}")
data = np.load(os.path.join(data_path, f"{experiment_name}_ratio_sequence.npz")) raw_data_path: str = os.path.join(
rs = data["ratio_sequence"] config["basic_path"],
rs = rs.reshape((rs.shape[0] * rs.shape[1], rs.shape[2])) config["recoding_data"],
rs_c = rs[control_roi, :] config["mouse_identifier"],
rs_c_core, _, _ = torch.linalg.svd(torch.tensor(rs_c.T), full_matrices=False) config["raw_path"],
rs_c_core = rs_c_core[:, 0].numpy() )
rs_s = rs[s_darken_roi, :] data_path: str = str(config["export_path"])
rs_s_core, _, _ = torch.linalg.svd(torch.tensor(rs_s.T), full_matrices=False)
rs_s_core = rs_s_core[:, 0].numpy()
rs_s_core -= rs_s_core.mean(keepdims=True) trails = get_trials(path=raw_data_path, experiment_id=experiment_id)
rs_c_core -= rs_c_core.mean(keepdims=True) for i in range(0, trails.shape[0]):
trial_id = int(trails[i])
experiment_name: str = f"Exp{experiment_id:03d}_Trial{trial_id:03d}"
mylogger.info(f"Loading files for {experiment_name}")
rs_c_core *= (rs_s_core * rs_c_core).sum() / (rs_c_core**2).sum() data = np.load(os.path.join(data_path, f"{experiment_name}_ratio_sequence.npz"))
rs = data["ratio_sequence"]
rs = rs.reshape((rs.shape[0] * rs.shape[1], rs.shape[2]))
rs_c = rs[control_roi, :]
rs_c_core, _, _ = torch.linalg.svd(torch.tensor(rs_c.T), full_matrices=False)
rs_c_core = rs_c_core[:, 0].numpy()
if i == 0: rs_s = rs[s_darken_roi, :]
ratio_sequence = rs_s_core - rs_c_core rs_s_core, _, _ = torch.linalg.svd(torch.tensor(rs_s.T), full_matrices=False)
else: rs_s_core = rs_s_core[:, 0].numpy()
ratio_sequence += rs_s_core - rs_c_core
ratio_sequence /= float(trails.shape[0]) rs_s_core -= rs_s_core.mean(keepdims=True)
rs_c_core -= rs_c_core.mean(keepdims=True)
t = np.arange(0, ratio_sequence.shape[0]) / 100.0 rs_c_core *= (rs_s_core * rs_c_core).sum() / (rs_c_core**2).sum()
plt.plot(t, ratio_sequence, label="sDarken-control") if i == 0:
plt.legend() ratio_sequence = rs_s_core - rs_c_core
plt.xlabel("Time [sec]") else:
plt.show() ratio_sequence += rs_s_core - rs_c_core
ratio_sequence /= float(trails.shape[0])
t = np.arange(0, ratio_sequence.shape[0]) / 100.0
plt.plot(t, ratio_sequence, label="sDarken - control")
plt.legend()
plt.xlabel("Time [sec]")
plt.show()
if __name__ == "__main__":
argh.dispatch_command(main)