1098 lines
40 KiB
Python
1098 lines
40 KiB
Python
import numpy as np
|
|
import torch
|
|
import torchvision as tv # type: ignore
|
|
|
|
import os
|
|
import logging
|
|
import h5py # type: ignore
|
|
|
|
from functions.create_logger import create_logger
|
|
from functions.get_torch_device import get_torch_device
|
|
from functions.load_config import load_config
|
|
from functions.get_experiments import get_experiments
|
|
from functions.get_trials import get_trials
|
|
from functions.binning import binning
|
|
from functions.align_refref import align_refref
|
|
from functions.perform_donor_volume_rotation import perform_donor_volume_rotation
|
|
from functions.perform_donor_volume_translation import perform_donor_volume_translation
|
|
from functions.bandpass import bandpass
|
|
from functions.gauss_smear_individual import gauss_smear_individual
|
|
from functions.regression import regression
|
|
from functions.data_raw_loader import data_raw_loader
|
|
|
|
import argh
|
|
|
|
|
|
@torch.no_grad()
|
|
def process_trial(
|
|
config: dict,
|
|
mylogger: logging.Logger,
|
|
experiment_id: int,
|
|
trial_id: int,
|
|
device: torch.device,
|
|
):
|
|
|
|
mylogger.info("")
|
|
mylogger.info("~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~")
|
|
mylogger.info("~ TRIAL START ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~")
|
|
mylogger.info("~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~")
|
|
mylogger.info("")
|
|
|
|
if device != torch.device("cpu"):
|
|
torch.cuda.empty_cache()
|
|
mylogger.info("Empty CUDA cache")
|
|
cuda_total_memory: int = torch.cuda.get_device_properties(
|
|
device.index
|
|
).total_memory
|
|
else:
|
|
cuda_total_memory = 0
|
|
|
|
raw_data_path: str = os.path.join(
|
|
config["basic_path"],
|
|
config["recoding_data"],
|
|
config["mouse_identifier"],
|
|
config["raw_path"],
|
|
)
|
|
|
|
if config["binning_enable"] and (config["binning_at_the_end"] is False):
|
|
force_to_cpu_memory: bool = True
|
|
else:
|
|
force_to_cpu_memory = False
|
|
|
|
meta_channels: list[str]
|
|
meta_mouse_markings: str
|
|
meta_recording_date: str
|
|
meta_stimulation_times: dict
|
|
meta_experiment_names: dict
|
|
meta_trial_recording_duration: float
|
|
meta_frame_time: float
|
|
meta_mouse: str
|
|
data: torch.Tensor
|
|
|
|
(
|
|
meta_channels,
|
|
meta_mouse_markings,
|
|
meta_recording_date,
|
|
meta_stimulation_times,
|
|
meta_experiment_names,
|
|
meta_trial_recording_duration,
|
|
meta_frame_time,
|
|
meta_mouse,
|
|
data,
|
|
) = data_raw_loader(
|
|
raw_data_path=raw_data_path,
|
|
mylogger=mylogger,
|
|
experiment_id=experiment_id,
|
|
trial_id=trial_id,
|
|
device=device,
|
|
force_to_cpu_memory=force_to_cpu_memory,
|
|
config=config,
|
|
)
|
|
experiment_name: str = f"Exp{experiment_id:03d}_Trial{trial_id:03d}"
|
|
|
|
dtype_str = config["dtype"]
|
|
dtype_np: np.dtype = getattr(np, dtype_str)
|
|
|
|
dtype: torch.dtype = data.dtype
|
|
|
|
if device != torch.device("cpu"):
|
|
free_mem = cuda_total_memory - max(
|
|
[torch.cuda.memory_reserved(device), torch.cuda.memory_allocated(device)]
|
|
)
|
|
mylogger.info(f"CUDA memory: {free_mem // 1024} MByte")
|
|
|
|
mylogger.info(f"Data shape: {data.shape}")
|
|
mylogger.info("-==- Done -==-")
|
|
|
|
mylogger.info("Finding limit values in the RAW data and mark them for masking")
|
|
limit: float = (2**16) - 1
|
|
for i in range(0, data.shape[3]):
|
|
zero_pixel_mask: torch.Tensor = torch.any(data[..., i] >= limit, dim=-1)
|
|
data[zero_pixel_mask, :, i] = -100.0
|
|
mylogger.info(
|
|
f"{meta_channels[i]}: "
|
|
f"found {int(zero_pixel_mask.type(dtype=dtype).sum())} pixel "
|
|
f"with limit values "
|
|
)
|
|
mylogger.info("-==- Done -==-")
|
|
|
|
mylogger.info("Reference images and mask")
|
|
|
|
ref_image_path: str = config["ref_image_path"]
|
|
|
|
ref_image_path_acceptor: str = os.path.join(ref_image_path, "acceptor.npy")
|
|
if os.path.isfile(ref_image_path_acceptor) is False:
|
|
mylogger.info(f"Could not load ref file: {ref_image_path_acceptor}")
|
|
assert os.path.isfile(ref_image_path_acceptor)
|
|
return
|
|
|
|
mylogger.info(f"Loading ref file data: {ref_image_path_acceptor}")
|
|
ref_image_acceptor: torch.Tensor = torch.tensor(
|
|
np.load(ref_image_path_acceptor).astype(dtype_np),
|
|
dtype=dtype,
|
|
device=data.device,
|
|
)
|
|
|
|
ref_image_path_donor: str = os.path.join(ref_image_path, "donor.npy")
|
|
if os.path.isfile(ref_image_path_donor) is False:
|
|
mylogger.info(f"Could not load ref file: {ref_image_path_donor}")
|
|
assert os.path.isfile(ref_image_path_donor)
|
|
return
|
|
|
|
mylogger.info(f"Loading ref file data: {ref_image_path_donor}")
|
|
ref_image_donor: torch.Tensor = torch.tensor(
|
|
np.load(ref_image_path_donor).astype(dtype_np), dtype=dtype, device=data.device
|
|
)
|
|
|
|
ref_image_path_oxygenation: str = os.path.join(ref_image_path, "oxygenation.npy")
|
|
if os.path.isfile(ref_image_path_oxygenation) is False:
|
|
mylogger.info(f"Could not load ref file: {ref_image_path_oxygenation}")
|
|
assert os.path.isfile(ref_image_path_oxygenation)
|
|
return
|
|
|
|
mylogger.info(f"Loading ref file data: {ref_image_path_oxygenation}")
|
|
ref_image_oxygenation: torch.Tensor = torch.tensor(
|
|
np.load(ref_image_path_oxygenation).astype(dtype_np),
|
|
dtype=dtype,
|
|
device=data.device,
|
|
)
|
|
|
|
ref_image_path_volume: str = os.path.join(ref_image_path, "volume.npy")
|
|
if os.path.isfile(ref_image_path_volume) is False:
|
|
mylogger.info(f"Could not load ref file: {ref_image_path_volume}")
|
|
assert os.path.isfile(ref_image_path_volume)
|
|
return
|
|
|
|
mylogger.info(f"Loading ref file data: {ref_image_path_volume}")
|
|
ref_image_volume: torch.Tensor = torch.tensor(
|
|
np.load(ref_image_path_volume).astype(dtype_np), dtype=dtype, device=data.device
|
|
)
|
|
|
|
refined_mask_file: str = os.path.join(ref_image_path, "mask_not_rotated.npy")
|
|
if os.path.isfile(refined_mask_file) is False:
|
|
mylogger.info(f"Could not load mask file: {refined_mask_file}")
|
|
assert os.path.isfile(refined_mask_file)
|
|
return
|
|
|
|
mylogger.info(f"Loading mask file data: {refined_mask_file}")
|
|
mask: torch.Tensor = torch.tensor(
|
|
np.load(refined_mask_file).astype(dtype_np), dtype=dtype, device=data.device
|
|
)
|
|
mylogger.info("-==- Done -==-")
|
|
|
|
if config["binning_enable"] and (config["binning_at_the_end"] is False):
|
|
mylogger.info("Binning of data")
|
|
mylogger.info(
|
|
(
|
|
f"kernel_size={int(config['binning_kernel_size'])}, "
|
|
f"stride={int(config['binning_stride'])}, "
|
|
f"divisor_override={int(config['binning_divisor_override'])}"
|
|
)
|
|
)
|
|
|
|
data = binning(
|
|
data,
|
|
kernel_size=int(config["binning_kernel_size"]),
|
|
stride=int(config["binning_stride"]),
|
|
divisor_override=int(config["binning_divisor_override"]),
|
|
).to(device=data.device)
|
|
ref_image_acceptor = (
|
|
binning(
|
|
ref_image_acceptor.unsqueeze(-1).unsqueeze(-1),
|
|
kernel_size=int(config["binning_kernel_size"]),
|
|
stride=int(config["binning_stride"]),
|
|
divisor_override=int(config["binning_divisor_override"]),
|
|
)
|
|
.squeeze(-1)
|
|
.squeeze(-1)
|
|
)
|
|
ref_image_donor = (
|
|
binning(
|
|
ref_image_donor.unsqueeze(-1).unsqueeze(-1),
|
|
kernel_size=int(config["binning_kernel_size"]),
|
|
stride=int(config["binning_stride"]),
|
|
divisor_override=int(config["binning_divisor_override"]),
|
|
)
|
|
.squeeze(-1)
|
|
.squeeze(-1)
|
|
)
|
|
ref_image_oxygenation = (
|
|
binning(
|
|
ref_image_oxygenation.unsqueeze(-1).unsqueeze(-1),
|
|
kernel_size=int(config["binning_kernel_size"]),
|
|
stride=int(config["binning_stride"]),
|
|
divisor_override=int(config["binning_divisor_override"]),
|
|
)
|
|
.squeeze(-1)
|
|
.squeeze(-1)
|
|
)
|
|
ref_image_volume = (
|
|
binning(
|
|
ref_image_volume.unsqueeze(-1).unsqueeze(-1),
|
|
kernel_size=int(config["binning_kernel_size"]),
|
|
stride=int(config["binning_stride"]),
|
|
divisor_override=int(config["binning_divisor_override"]),
|
|
)
|
|
.squeeze(-1)
|
|
.squeeze(-1)
|
|
)
|
|
mask = (
|
|
binning(
|
|
mask.unsqueeze(-1).unsqueeze(-1),
|
|
kernel_size=int(config["binning_kernel_size"]),
|
|
stride=int(config["binning_stride"]),
|
|
divisor_override=int(config["binning_divisor_override"]),
|
|
)
|
|
.squeeze(-1)
|
|
.squeeze(-1)
|
|
)
|
|
mylogger.info(f"Data shape: {data.shape}")
|
|
mylogger.info("-==- Done -==-")
|
|
|
|
mylogger.info("Preparing alignment")
|
|
mylogger.info("Re-order Raw data")
|
|
data = data.moveaxis(-2, 0).moveaxis(-1, 0)
|
|
mylogger.info(f"Data shape: {data.shape}")
|
|
mylogger.info("-==- Done -==-")
|
|
|
|
mylogger.info("Alignment of the ref images and the mask")
|
|
mylogger.info("Ref image of donor stays fixed.")
|
|
mylogger.info("Ref image of volume and the mask doesn't need to be touched")
|
|
mylogger.info("Calculate translation and rotation between the reference images")
|
|
angle_refref, tvec_refref, ref_image_acceptor, ref_image_donor = align_refref(
|
|
mylogger=mylogger,
|
|
ref_image_acceptor=ref_image_acceptor,
|
|
ref_image_donor=ref_image_donor,
|
|
batch_size=config["alignment_batch_size"],
|
|
fill_value=-100.0,
|
|
)
|
|
mylogger.info(f"Rotation: {round(float(angle_refref[0]), 2)} degree")
|
|
mylogger.info(
|
|
f"Translation: {round(float(tvec_refref[0]), 1)} x {round(float(tvec_refref[1]), 1)} pixel"
|
|
)
|
|
|
|
if config["save_alignment"]:
|
|
temp_path: str = os.path.join(
|
|
config["export_path"], experiment_name + "_angle_refref.npy"
|
|
)
|
|
mylogger.info(f"Save angle to {temp_path}")
|
|
np.save(temp_path, angle_refref.cpu())
|
|
|
|
temp_path = os.path.join(
|
|
config["export_path"], experiment_name + "_tvec_refref.npy"
|
|
)
|
|
mylogger.info(f"Save translation vector to {temp_path}")
|
|
np.save(temp_path, tvec_refref.cpu())
|
|
|
|
mylogger.info("Moving & rotating the oxygenation ref image")
|
|
ref_image_oxygenation = tv.transforms.functional.affine( # type: ignore
|
|
img=ref_image_oxygenation.unsqueeze(0),
|
|
angle=-float(angle_refref),
|
|
translate=[0, 0],
|
|
scale=1.0,
|
|
shear=0,
|
|
interpolation=tv.transforms.InterpolationMode.BILINEAR,
|
|
fill=-100.0,
|
|
)
|
|
|
|
ref_image_oxygenation = tv.transforms.functional.affine( # type: ignore
|
|
img=ref_image_oxygenation,
|
|
angle=0,
|
|
translate=[tvec_refref[1], tvec_refref[0]],
|
|
scale=1.0,
|
|
shear=0,
|
|
interpolation=tv.transforms.InterpolationMode.BILINEAR,
|
|
fill=-100.0,
|
|
).squeeze(0)
|
|
mylogger.info("-==- Done -==-")
|
|
|
|
mylogger.info("Rotate and translate the acceptor and oxygenation data accordingly")
|
|
acceptor_index: int = config["required_order"].index("acceptor")
|
|
donor_index: int = config["required_order"].index("donor")
|
|
oxygenation_index: int = config["required_order"].index("oxygenation")
|
|
volume_index: int = config["required_order"].index("volume")
|
|
|
|
mylogger.info("Rotate acceptor")
|
|
data[acceptor_index, ...] = tv.transforms.functional.affine( # type: ignore
|
|
img=data[acceptor_index, ...], # type: ignore
|
|
angle=-float(angle_refref),
|
|
translate=[0, 0],
|
|
scale=1.0,
|
|
shear=0,
|
|
interpolation=tv.transforms.InterpolationMode.BILINEAR,
|
|
fill=-100.0,
|
|
)
|
|
|
|
mylogger.info("Translate acceptor")
|
|
data[acceptor_index, ...] = tv.transforms.functional.affine( # type: ignore
|
|
img=data[acceptor_index, ...],
|
|
angle=0,
|
|
translate=[tvec_refref[1], tvec_refref[0]],
|
|
scale=1.0,
|
|
shear=0,
|
|
interpolation=tv.transforms.InterpolationMode.BILINEAR,
|
|
fill=-100.0,
|
|
)
|
|
|
|
mylogger.info("Rotate oxygenation")
|
|
data[oxygenation_index, ...] = tv.transforms.functional.affine( # type: ignore
|
|
img=data[oxygenation_index, ...],
|
|
angle=-float(angle_refref),
|
|
translate=[0, 0],
|
|
scale=1.0,
|
|
shear=0,
|
|
interpolation=tv.transforms.InterpolationMode.BILINEAR,
|
|
fill=-100.0,
|
|
)
|
|
|
|
mylogger.info("Translate oxygenation")
|
|
data[oxygenation_index, ...] = tv.transforms.functional.affine( # type: ignore
|
|
img=data[oxygenation_index, ...],
|
|
angle=0,
|
|
translate=[tvec_refref[1], tvec_refref[0]],
|
|
scale=1.0,
|
|
shear=0,
|
|
interpolation=tv.transforms.InterpolationMode.BILINEAR,
|
|
fill=-100.0,
|
|
)
|
|
mylogger.info("-==- Done -==-")
|
|
|
|
mylogger.info("Perform rotation between donor and volume and its ref images")
|
|
mylogger.info("for all frames and then rotate all the data accordingly")
|
|
|
|
(
|
|
data[acceptor_index, ...],
|
|
data[donor_index, ...],
|
|
data[oxygenation_index, ...],
|
|
data[volume_index, ...],
|
|
angle_donor_volume,
|
|
) = perform_donor_volume_rotation(
|
|
mylogger=mylogger,
|
|
acceptor=data[acceptor_index, ...],
|
|
donor=data[donor_index, ...],
|
|
oxygenation=data[oxygenation_index, ...],
|
|
volume=data[volume_index, ...],
|
|
ref_image_donor=ref_image_donor,
|
|
ref_image_volume=ref_image_volume,
|
|
batch_size=config["alignment_batch_size"],
|
|
fill_value=-100.0,
|
|
config=config,
|
|
)
|
|
|
|
mylogger.info(
|
|
f"angles: "
|
|
f"min {round(float(angle_donor_volume.min()), 2)} "
|
|
f"max {round(float(angle_donor_volume.max()), 2)} "
|
|
f"mean {round(float(angle_donor_volume.mean()), 2)} "
|
|
)
|
|
|
|
if config["save_alignment"]:
|
|
temp_path = os.path.join(
|
|
config["export_path"], experiment_name + "_angle_donor_volume.npy"
|
|
)
|
|
mylogger.info(f"Save angles to {temp_path}")
|
|
np.save(temp_path, angle_donor_volume.cpu())
|
|
mylogger.info("-==- Done -==-")
|
|
|
|
mylogger.info("Perform translation between donor and volume and its ref images")
|
|
mylogger.info("for all frames and then translate all the data accordingly")
|
|
(
|
|
data[acceptor_index, ...],
|
|
data[donor_index, ...],
|
|
data[oxygenation_index, ...],
|
|
data[volume_index, ...],
|
|
tvec_donor_volume,
|
|
) = perform_donor_volume_translation(
|
|
mylogger=mylogger,
|
|
acceptor=data[acceptor_index, ...],
|
|
donor=data[donor_index, ...],
|
|
oxygenation=data[oxygenation_index, ...],
|
|
volume=data[volume_index, ...],
|
|
ref_image_donor=ref_image_donor,
|
|
ref_image_volume=ref_image_volume,
|
|
batch_size=config["alignment_batch_size"],
|
|
fill_value=-100.0,
|
|
config=config,
|
|
)
|
|
|
|
mylogger.info(
|
|
f"translation dim 0: "
|
|
f"min {round(float(tvec_donor_volume[:, 0].min()), 1)} "
|
|
f"max {round(float(tvec_donor_volume[:, 0].max()), 1)} "
|
|
f"mean {round(float(tvec_donor_volume[:, 0].mean()), 1)} "
|
|
)
|
|
mylogger.info(
|
|
f"translation dim 1: "
|
|
f"min {round(float(tvec_donor_volume[:, 1].min()), 1)} "
|
|
f"max {round(float(tvec_donor_volume[:, 1].max()), 1)} "
|
|
f"mean {round(float(tvec_donor_volume[:, 1].mean()), 1)} "
|
|
)
|
|
|
|
if config["save_alignment"]:
|
|
temp_path = os.path.join(
|
|
config["export_path"], experiment_name + "_tvec_donor_volume.npy"
|
|
)
|
|
mylogger.info(f"Save translation vector to {temp_path}")
|
|
np.save(temp_path, tvec_donor_volume.cpu())
|
|
mylogger.info("-==- Done -==-")
|
|
|
|
mylogger.info("Finding zeros values in the RAW data and mark them for masking")
|
|
for i in range(0, data.shape[0]):
|
|
zero_pixel_mask = torch.any(data[i, ...] == 0, dim=0)
|
|
data[i, :, zero_pixel_mask] = -100.0
|
|
mylogger.info(
|
|
f"{config['required_order'][i]}: "
|
|
f"found {int(zero_pixel_mask.type(dtype=dtype).sum())} pixel "
|
|
f"with zeros "
|
|
)
|
|
mylogger.info("-==- Done -==-")
|
|
|
|
mylogger.info("Update mask with the new regions due to alignment")
|
|
|
|
new_mask_area: torch.Tensor = torch.any(torch.any(data < -0.1, dim=0), dim=0).bool()
|
|
mask = (mask == 0).bool()
|
|
mask = torch.logical_or(mask, new_mask_area)
|
|
mask_negative: torch.Tensor = mask.clone()
|
|
mask_positve: torch.Tensor = torch.logical_not(mask)
|
|
del mask
|
|
|
|
mylogger.info("Update the data with the new mask")
|
|
data *= mask_positve.unsqueeze(0).unsqueeze(0).type(dtype=dtype)
|
|
mylogger.info("-==- Done -==-")
|
|
|
|
mylogger.info("Interpolate the 'in-between' frames for oxygenation and volume")
|
|
data[oxygenation_index, 1:, ...] = (
|
|
data[oxygenation_index, 1:, ...] + data[oxygenation_index, :-1, ...]
|
|
) / 2.0
|
|
data[volume_index, 1:, ...] = (
|
|
data[volume_index, 1:, ...] + data[volume_index, :-1, ...]
|
|
) / 2.0
|
|
mylogger.info("-==- Done -==-")
|
|
|
|
sample_frequency: float = 1.0 / meta_frame_time
|
|
|
|
if config["gevi"]:
|
|
assert config["heartbeat_remove"]
|
|
|
|
if config["heartbeat_remove"]:
|
|
mylogger.info("Extract heartbeat from volume signal")
|
|
heartbeat_ts: torch.Tensor = bandpass(
|
|
data=data[volume_index, ...].movedim(0, -1).clone(),
|
|
low_frequency=config["lower_freqency_bandpass"],
|
|
high_frequency=config["upper_freqency_bandpass"],
|
|
fs=sample_frequency,
|
|
filtfilt_chuck_size=config["heartbeat_filtfilt_chuck_size"],
|
|
)
|
|
heartbeat_ts = heartbeat_ts.flatten(start_dim=0, end_dim=-2)
|
|
mask_flatten: torch.Tensor = mask_positve.flatten(start_dim=0, end_dim=-1)
|
|
|
|
heartbeat_ts = heartbeat_ts[mask_flatten, :]
|
|
|
|
heartbeat_ts = heartbeat_ts.movedim(0, -1)
|
|
heartbeat_ts -= heartbeat_ts.mean(dim=0, keepdim=True)
|
|
|
|
try:
|
|
volume_heartbeat, _, _ = torch.linalg.svd(heartbeat_ts, full_matrices=False)
|
|
except torch.cuda.OutOfMemoryError:
|
|
mylogger.info("torch.cuda.OutOfMemoryError: Fallback to cpu")
|
|
volume_heartbeat_cpu, _, _ = torch.linalg.svd(
|
|
heartbeat_ts.cpu(), full_matrices=False
|
|
)
|
|
volume_heartbeat = volume_heartbeat_cpu.to(heartbeat_ts.data, copy=True)
|
|
del volume_heartbeat_cpu
|
|
|
|
volume_heartbeat = volume_heartbeat[:, 0]
|
|
volume_heartbeat -= volume_heartbeat[
|
|
config["skip_frames_in_the_beginning"] :
|
|
].mean()
|
|
|
|
del heartbeat_ts
|
|
|
|
if device != torch.device("cpu"):
|
|
torch.cuda.empty_cache()
|
|
mylogger.info("Empty CUDA cache")
|
|
free_mem = cuda_total_memory - max(
|
|
[
|
|
torch.cuda.memory_reserved(device),
|
|
torch.cuda.memory_allocated(device),
|
|
]
|
|
)
|
|
mylogger.info(f"CUDA memory: {free_mem // 1024} MByte")
|
|
|
|
if config["save_heartbeat"]:
|
|
temp_path = os.path.join(
|
|
config["export_path"], experiment_name + "_volume_heartbeat.npy"
|
|
)
|
|
mylogger.info(f"Save volume heartbeat to {temp_path}")
|
|
np.save(temp_path, volume_heartbeat.cpu())
|
|
mylogger.info("-==- Done -==-")
|
|
|
|
volume_heartbeat = volume_heartbeat.unsqueeze(0).unsqueeze(0)
|
|
norm_volume_heartbeat = (
|
|
volume_heartbeat[..., config["skip_frames_in_the_beginning"] :] ** 2
|
|
).sum(dim=-1)
|
|
|
|
heartbeat_coefficients: torch.Tensor = torch.zeros(
|
|
(data.shape[0], data.shape[-2], data.shape[-1]),
|
|
dtype=data.dtype,
|
|
device=data.device,
|
|
)
|
|
for i in range(0, data.shape[0]):
|
|
y = bandpass(
|
|
data=data[i, ...].movedim(0, -1).clone(),
|
|
low_frequency=config["lower_freqency_bandpass"],
|
|
high_frequency=config["upper_freqency_bandpass"],
|
|
fs=sample_frequency,
|
|
filtfilt_chuck_size=config["heartbeat_filtfilt_chuck_size"],
|
|
)[..., config["skip_frames_in_the_beginning"] :]
|
|
y -= y.mean(dim=-1, keepdim=True)
|
|
|
|
heartbeat_coefficients[i, ...] = (
|
|
volume_heartbeat[..., config["skip_frames_in_the_beginning"] :] * y
|
|
).sum(dim=-1) / norm_volume_heartbeat
|
|
|
|
heartbeat_coefficients[i, ...] *= mask_positve.type(
|
|
dtype=heartbeat_coefficients.dtype
|
|
)
|
|
del y
|
|
|
|
if config["save_heartbeat"]:
|
|
temp_path = os.path.join(
|
|
config["export_path"], experiment_name + "_heartbeat_coefficients.npy"
|
|
)
|
|
mylogger.info(f"Save heartbeat coefficients to {temp_path}")
|
|
np.save(temp_path, heartbeat_coefficients.cpu())
|
|
mylogger.info("-==- Done -==-")
|
|
|
|
mylogger.info("Remove heart beat from data")
|
|
data -= heartbeat_coefficients.unsqueeze(1) * volume_heartbeat.unsqueeze(
|
|
0
|
|
).movedim(-1, 1)
|
|
mylogger.info("-==- Done -==-")
|
|
|
|
donor_heartbeat_factor = heartbeat_coefficients[donor_index, ...].clone()
|
|
acceptor_heartbeat_factor = heartbeat_coefficients[acceptor_index, ...].clone()
|
|
del heartbeat_coefficients
|
|
|
|
if device != torch.device("cpu"):
|
|
torch.cuda.empty_cache()
|
|
mylogger.info("Empty CUDA cache")
|
|
free_mem = cuda_total_memory - max(
|
|
[
|
|
torch.cuda.memory_reserved(device),
|
|
torch.cuda.memory_allocated(device),
|
|
]
|
|
)
|
|
mylogger.info(f"CUDA memory: {free_mem // 1024} MByte")
|
|
|
|
mylogger.info("Calculate scaling factor for donor and acceptor")
|
|
donor_factor: torch.Tensor = (
|
|
donor_heartbeat_factor + acceptor_heartbeat_factor
|
|
) / (2 * donor_heartbeat_factor)
|
|
acceptor_factor: torch.Tensor = (
|
|
donor_heartbeat_factor + acceptor_heartbeat_factor
|
|
) / (2 * acceptor_heartbeat_factor)
|
|
|
|
del donor_heartbeat_factor
|
|
del acceptor_heartbeat_factor
|
|
|
|
if config["save_factors"]:
|
|
temp_path = os.path.join(
|
|
config["export_path"], experiment_name + "_donor_factor.npy"
|
|
)
|
|
mylogger.info(f"Save donor factor to {temp_path}")
|
|
np.save(temp_path, donor_factor.cpu())
|
|
|
|
temp_path = os.path.join(
|
|
config["export_path"], experiment_name + "_acceptor_factor.npy"
|
|
)
|
|
mylogger.info(f"Save acceptor factor to {temp_path}")
|
|
np.save(temp_path, acceptor_factor.cpu())
|
|
mylogger.info("-==- Done -==-")
|
|
|
|
mylogger.info("Scale acceptor to heart beat amplitude")
|
|
mylogger.info("Calculate mean")
|
|
mean_values_acceptor = data[
|
|
acceptor_index, config["skip_frames_in_the_beginning"] :, ...
|
|
].nanmean(dim=0, keepdim=True)
|
|
|
|
mylogger.info("Remove mean")
|
|
data[acceptor_index, ...] -= mean_values_acceptor
|
|
mylogger.info("Apply acceptor_factor and mask")
|
|
data[acceptor_index, ...] *= acceptor_factor.unsqueeze(
|
|
0
|
|
) * mask_positve.unsqueeze(0)
|
|
mylogger.info("Add mean")
|
|
data[acceptor_index, ...] += mean_values_acceptor
|
|
mylogger.info("-==- Done -==-")
|
|
|
|
mylogger.info("Scale donor to heart beat amplitude")
|
|
mylogger.info("Calculate mean")
|
|
mean_values_donor = data[
|
|
donor_index, config["skip_frames_in_the_beginning"] :, ...
|
|
].nanmean(dim=0, keepdim=True)
|
|
mylogger.info("Remove mean")
|
|
data[donor_index, ...] -= mean_values_donor
|
|
mylogger.info("Apply donor_factor and mask")
|
|
data[donor_index, ...] *= donor_factor.unsqueeze(0) * mask_positve.unsqueeze(0)
|
|
mylogger.info("Add mean")
|
|
data[donor_index, ...] += mean_values_donor
|
|
mylogger.info("-==- Done -==-")
|
|
|
|
mylogger.info("Divide by mean over time")
|
|
data /= data[:, config["skip_frames_in_the_beginning"] :, ...].nanmean(
|
|
dim=1,
|
|
keepdim=True,
|
|
)
|
|
|
|
mylogger.info("-==- Done -==-")
|
|
|
|
data = data.nan_to_num(nan=0.0)
|
|
mylogger.info("Preparation for regression -- Gauss smear")
|
|
spatial_width = float(config["gauss_smear_spatial_width"])
|
|
|
|
if config["binning_enable"] and (config["binning_at_the_end"] is False):
|
|
spatial_width /= float(config["binning_kernel_size"])
|
|
|
|
mylogger.info(
|
|
f"Mask -- "
|
|
f"spatial width: {spatial_width}, "
|
|
f"temporal width: {float(config['gauss_smear_temporal_width'])}, "
|
|
f"use matlab mode: {bool(config['gauss_smear_use_matlab_mask'])} "
|
|
)
|
|
|
|
input_mask = mask_positve.type(dtype=dtype).clone()
|
|
|
|
filtered_mask: torch.Tensor
|
|
filtered_mask, _ = gauss_smear_individual(
|
|
input=input_mask,
|
|
spatial_width=spatial_width,
|
|
temporal_width=float(config["gauss_smear_temporal_width"]),
|
|
use_matlab_mask=bool(config["gauss_smear_use_matlab_mask"]),
|
|
epsilon=float(torch.finfo(input_mask.dtype).eps),
|
|
)
|
|
|
|
mylogger.info("creating a copy of the data")
|
|
data_filtered = data.clone().movedim(1, -1)
|
|
if device != torch.device("cpu"):
|
|
torch.cuda.empty_cache()
|
|
mylogger.info("Empty CUDA cache")
|
|
free_mem = cuda_total_memory - max(
|
|
[torch.cuda.memory_reserved(device), torch.cuda.memory_allocated(device)]
|
|
)
|
|
mylogger.info(f"CUDA memory: {free_mem // 1024} MByte")
|
|
|
|
overwrite_fft_gauss: None | torch.Tensor = None
|
|
for i in range(0, data_filtered.shape[0]):
|
|
mylogger.info(
|
|
f"{config['required_order'][i]} -- "
|
|
f"spatial width: {spatial_width}, "
|
|
f"temporal width: {float(config['gauss_smear_temporal_width'])}, "
|
|
f"use matlab mode: {bool(config['gauss_smear_use_matlab_mask'])} "
|
|
)
|
|
data_filtered[i, ...] *= input_mask.unsqueeze(-1)
|
|
data_filtered[i, ...], overwrite_fft_gauss = gauss_smear_individual(
|
|
input=data_filtered[i, ...],
|
|
spatial_width=spatial_width,
|
|
temporal_width=float(config["gauss_smear_temporal_width"]),
|
|
overwrite_fft_gauss=overwrite_fft_gauss,
|
|
use_matlab_mask=bool(config["gauss_smear_use_matlab_mask"]),
|
|
epsilon=float(torch.finfo(input_mask.dtype).eps),
|
|
)
|
|
|
|
data_filtered[i, ...] /= filtered_mask + 1e-20
|
|
data_filtered[i, ...] += 1.0 - input_mask.unsqueeze(-1)
|
|
|
|
del filtered_mask
|
|
del overwrite_fft_gauss
|
|
del input_mask
|
|
mylogger.info("data_filtered is populated")
|
|
|
|
if device != torch.device("cpu"):
|
|
torch.cuda.empty_cache()
|
|
mylogger.info("Empty CUDA cache")
|
|
free_mem = cuda_total_memory - max(
|
|
[torch.cuda.memory_reserved(device), torch.cuda.memory_allocated(device)]
|
|
)
|
|
mylogger.info(f"CUDA memory: {free_mem // 1024} MByte")
|
|
mylogger.info("-==- Done -==-")
|
|
|
|
mylogger.info("Preperation for Regression")
|
|
mylogger.info("Move time dimensions of data to the last dimension")
|
|
data = data.movedim(1, -1)
|
|
|
|
dual_signal_mode: bool = True
|
|
if len(config["target_camera_acceptor"]) > 0:
|
|
mylogger.info("Regression Acceptor")
|
|
mylogger.info(f"Target: {config['target_camera_acceptor']}")
|
|
mylogger.info(
|
|
f"Regressors: constant, linear and {config['regressor_cameras_acceptor']}"
|
|
)
|
|
target_id: int = config["required_order"].index(
|
|
config["target_camera_acceptor"]
|
|
)
|
|
regressor_id: list[int] = []
|
|
for i in range(0, len(config["regressor_cameras_acceptor"])):
|
|
regressor_id.append(
|
|
config["required_order"].index(config["regressor_cameras_acceptor"][i])
|
|
)
|
|
|
|
data_acceptor, coefficients_acceptor = regression(
|
|
mylogger=mylogger,
|
|
target_camera_id=target_id,
|
|
regressor_camera_ids=regressor_id,
|
|
mask=mask_negative,
|
|
data=data,
|
|
data_filtered=data_filtered,
|
|
first_none_ramp_frame=int(config["skip_frames_in_the_beginning"]),
|
|
)
|
|
|
|
if config["save_regression_coefficients"]:
|
|
temp_path = os.path.join(
|
|
config["export_path"], experiment_name + "_coefficients_acceptor.npy"
|
|
)
|
|
mylogger.info(f"Save acceptor coefficients to {temp_path}")
|
|
np.save(temp_path, coefficients_acceptor.cpu())
|
|
del coefficients_acceptor
|
|
|
|
mylogger.info("-==- Done -==-")
|
|
else:
|
|
dual_signal_mode = False
|
|
target_id = config["required_order"].index("acceptor")
|
|
data_acceptor = data[target_id, ...].clone()
|
|
data_acceptor[mask_negative, :] = 0.0
|
|
|
|
if len(config["target_camera_donor"]) > 0:
|
|
mylogger.info("Regression Donor")
|
|
mylogger.info(f"Target: {config['target_camera_donor']}")
|
|
mylogger.info(
|
|
f"Regressors: constant, linear and {config['regressor_cameras_donor']}"
|
|
)
|
|
target_id = config["required_order"].index(config["target_camera_donor"])
|
|
regressor_id = []
|
|
for i in range(0, len(config["regressor_cameras_donor"])):
|
|
regressor_id.append(
|
|
config["required_order"].index(config["regressor_cameras_donor"][i])
|
|
)
|
|
|
|
data_donor, coefficients_donor = regression(
|
|
mylogger=mylogger,
|
|
target_camera_id=target_id,
|
|
regressor_camera_ids=regressor_id,
|
|
mask=mask_negative,
|
|
data=data,
|
|
data_filtered=data_filtered,
|
|
first_none_ramp_frame=int(config["skip_frames_in_the_beginning"]),
|
|
)
|
|
|
|
if config["save_regression_coefficients"]:
|
|
temp_path = os.path.join(
|
|
config["export_path"], experiment_name + "_coefficients_donor.npy"
|
|
)
|
|
mylogger.info(f"Save acceptor donor to {temp_path}")
|
|
np.save(temp_path, coefficients_donor.cpu())
|
|
del coefficients_donor
|
|
mylogger.info("-==- Done -==-")
|
|
else:
|
|
dual_signal_mode = False
|
|
target_id = config["required_order"].index("donor")
|
|
data_donor = data[target_id, ...].clone()
|
|
data_donor[mask_negative, :] = 0.0
|
|
|
|
del data
|
|
del data_filtered
|
|
|
|
if device != torch.device("cpu"):
|
|
torch.cuda.empty_cache()
|
|
mylogger.info("Empty CUDA cache")
|
|
free_mem = cuda_total_memory - max(
|
|
[torch.cuda.memory_reserved(device), torch.cuda.memory_allocated(device)]
|
|
)
|
|
mylogger.info(f"CUDA memory: {free_mem // 1024} MByte")
|
|
|
|
# #####################
|
|
|
|
if config["gevi"]:
|
|
assert dual_signal_mode
|
|
else:
|
|
assert dual_signal_mode is False
|
|
|
|
if dual_signal_mode is False:
|
|
|
|
mylogger.info("mono signal model")
|
|
|
|
mylogger.info("Remove nan")
|
|
data_acceptor = torch.nan_to_num(data_acceptor, nan=0.0)
|
|
data_donor = torch.nan_to_num(data_donor, nan=0.0)
|
|
mylogger.info("-==- Done -==-")
|
|
|
|
if config["binning_enable"] and config["binning_at_the_end"]:
|
|
mylogger.info("Binning of data")
|
|
mylogger.info(
|
|
(
|
|
f"kernel_size={int(config['binning_kernel_size'])}, "
|
|
f"stride={int(config['binning_stride'])}, "
|
|
"divisor_override=None"
|
|
)
|
|
)
|
|
|
|
data_acceptor = binning(
|
|
data_acceptor.unsqueeze(-1),
|
|
kernel_size=int(config["binning_kernel_size"]),
|
|
stride=int(config["binning_stride"]),
|
|
divisor_override=None,
|
|
).squeeze(-1)
|
|
|
|
data_donor = binning(
|
|
data_donor.unsqueeze(-1),
|
|
kernel_size=int(config["binning_kernel_size"]),
|
|
stride=int(config["binning_stride"]),
|
|
divisor_override=None,
|
|
).squeeze(-1)
|
|
|
|
mask_positve = (
|
|
binning(
|
|
mask_positve.unsqueeze(-1).unsqueeze(-1).type(dtype=dtype),
|
|
kernel_size=int(config["binning_kernel_size"]),
|
|
stride=int(config["binning_stride"]),
|
|
divisor_override=None,
|
|
)
|
|
.squeeze(-1)
|
|
.squeeze(-1)
|
|
)
|
|
mask_positve = (mask_positve > 0).type(torch.bool)
|
|
|
|
if config["save_as_python"]:
|
|
|
|
temp_path = os.path.join(
|
|
config["export_path"], experiment_name + "_acceptor_donor.npz"
|
|
)
|
|
mylogger.info(f"Save data donor and acceptor and mask to {temp_path}")
|
|
np.savez_compressed(
|
|
temp_path,
|
|
data_acceptor=data_acceptor.cpu(),
|
|
data_donor=data_donor.cpu(),
|
|
mask=mask_positve.cpu(),
|
|
)
|
|
|
|
if config["save_as_matlab"]:
|
|
temp_path = os.path.join(
|
|
config["export_path"], experiment_name + "_acceptor_donor.hd5"
|
|
)
|
|
mylogger.info(f"Save data donor and acceptor and mask to {temp_path}")
|
|
file_handle = h5py.File(temp_path, "w")
|
|
|
|
mask_positve = mask_positve.movedim(0, -1)
|
|
data_acceptor = data_acceptor.movedim(1, -1).movedim(0, -1)
|
|
data_donor = data_donor.movedim(1, -1).movedim(0, -1)
|
|
_ = file_handle.create_dataset(
|
|
"mask",
|
|
data=mask_positve.type(torch.uint8).cpu(),
|
|
compression="gzip",
|
|
compression_opts=9,
|
|
)
|
|
_ = file_handle.create_dataset(
|
|
"data_acceptor",
|
|
data=data_acceptor.cpu(),
|
|
compression="gzip",
|
|
compression_opts=9,
|
|
)
|
|
_ = file_handle.create_dataset(
|
|
"data_donor",
|
|
data=data_donor.cpu(),
|
|
compression="gzip",
|
|
compression_opts=9,
|
|
)
|
|
mylogger.info("Reminder: How to read with matlab:")
|
|
mylogger.info(f"mask = h5read('{temp_path}','/mask');")
|
|
mylogger.info(f"data_acceptor = h5read('{temp_path}','/data_acceptor');")
|
|
mylogger.info(f"data_donor = h5read('{temp_path}','/data_donor');")
|
|
file_handle.close()
|
|
return
|
|
# #####################
|
|
|
|
mylogger.info("Calculate ratio sequence")
|
|
|
|
if config["classical_ratio_mode"]:
|
|
mylogger.info("via acceptor / donor")
|
|
ratio_sequence: torch.Tensor = data_acceptor / data_donor
|
|
mylogger.info("via / mean over time")
|
|
ratio_sequence /= ratio_sequence.mean(dim=-1, keepdim=True)
|
|
else:
|
|
mylogger.info("via 1.0 + acceptor - donor")
|
|
ratio_sequence = 1.0 + data_acceptor - data_donor
|
|
|
|
mylogger.info("Remove nan")
|
|
ratio_sequence = torch.nan_to_num(ratio_sequence, nan=0.0)
|
|
mylogger.info("-==- Done -==-")
|
|
|
|
if config["binning_enable"] and config["binning_at_the_end"]:
|
|
mylogger.info("Binning of data")
|
|
mylogger.info(
|
|
(
|
|
f"kernel_size={int(config['binning_kernel_size'])}, "
|
|
f"stride={int(config['binning_stride'])}, "
|
|
"divisor_override=None"
|
|
)
|
|
)
|
|
|
|
ratio_sequence = binning(
|
|
ratio_sequence.unsqueeze(-1),
|
|
kernel_size=int(config["binning_kernel_size"]),
|
|
stride=int(config["binning_stride"]),
|
|
divisor_override=None,
|
|
).squeeze(-1)
|
|
|
|
mask_positve = (
|
|
binning(
|
|
mask_positve.unsqueeze(-1).unsqueeze(-1).type(dtype=dtype),
|
|
kernel_size=int(config["binning_kernel_size"]),
|
|
stride=int(config["binning_stride"]),
|
|
divisor_override=None,
|
|
)
|
|
.squeeze(-1)
|
|
.squeeze(-1)
|
|
)
|
|
mask_positve = (mask_positve > 0).type(torch.bool)
|
|
|
|
if config["save_as_python"]:
|
|
temp_path = os.path.join(
|
|
config["export_path"], experiment_name + "_ratio_sequence.npz"
|
|
)
|
|
mylogger.info(f"Save ratio_sequence and mask to {temp_path}")
|
|
np.savez_compressed(
|
|
temp_path, ratio_sequence=ratio_sequence.cpu(), mask=mask_positve.cpu()
|
|
)
|
|
|
|
if config["save_as_matlab"]:
|
|
temp_path = os.path.join(
|
|
config["export_path"], experiment_name + "_ratio_sequence.hd5"
|
|
)
|
|
mylogger.info(f"Save ratio_sequence and mask to {temp_path}")
|
|
file_handle = h5py.File(temp_path, "w")
|
|
|
|
mask_positve = mask_positve.movedim(0, -1)
|
|
ratio_sequence = ratio_sequence.movedim(1, -1).movedim(0, -1)
|
|
_ = file_handle.create_dataset(
|
|
"mask",
|
|
data=mask_positve.type(torch.uint8).cpu(),
|
|
compression="gzip",
|
|
compression_opts=9,
|
|
)
|
|
_ = file_handle.create_dataset(
|
|
"ratio_sequence",
|
|
data=ratio_sequence.cpu(),
|
|
compression="gzip",
|
|
compression_opts=9,
|
|
)
|
|
mylogger.info("Reminder: How to read with matlab:")
|
|
mylogger.info(f"mask = h5read('{temp_path}','/mask');")
|
|
mylogger.info(f"ratio_sequence = h5read('{temp_path}','/ratio_sequence');")
|
|
file_handle.close()
|
|
|
|
del ratio_sequence
|
|
del mask_positve
|
|
del mask_negative
|
|
|
|
mylogger.info("")
|
|
mylogger.info("***********************************************")
|
|
mylogger.info("* TRIAL END ***********************************")
|
|
mylogger.info("***********************************************")
|
|
mylogger.info("")
|
|
|
|
return
|
|
|
|
|
|
def main(
|
|
*,
|
|
config_filename: str = "config.json",
|
|
experiment_id_overwrite: int = -1,
|
|
trial_id_overwrite: int = -1,
|
|
) -> None:
|
|
mylogger = create_logger(
|
|
save_logging_messages=True,
|
|
display_logging_messages=True,
|
|
log_stage_name="stage_4",
|
|
)
|
|
|
|
config = load_config(mylogger=mylogger, filename=config_filename)
|
|
|
|
if (config["save_as_python"] is False) and (config["save_as_matlab"] is False):
|
|
mylogger.info("No output will be created. ")
|
|
mylogger.info("Change save_as_python and/or save_as_matlab in the config file")
|
|
mylogger.info("ERROR: STOP!!!")
|
|
exit()
|
|
|
|
if (len(config["target_camera_donor"]) == 0) and (
|
|
len(config["target_camera_acceptor"]) == 0
|
|
):
|
|
mylogger.info(
|
|
"Configure at least target_camera_donor or target_camera_acceptor correctly."
|
|
)
|
|
mylogger.info("ERROR: STOP!!!")
|
|
exit()
|
|
|
|
device = get_torch_device(mylogger, config["force_to_cpu"])
|
|
|
|
mylogger.info(
|
|
f"Create directory {config['export_path']} in the case it does not exist"
|
|
)
|
|
os.makedirs(config["export_path"], exist_ok=True)
|
|
|
|
raw_data_path: str = os.path.join(
|
|
config["basic_path"],
|
|
config["recoding_data"],
|
|
config["mouse_identifier"],
|
|
config["raw_path"],
|
|
)
|
|
|
|
if os.path.isdir(raw_data_path) is False:
|
|
mylogger.info(f"ERROR: could not find raw directory {raw_data_path}!!!!")
|
|
exit()
|
|
|
|
if experiment_id_overwrite == -1:
|
|
experiments = get_experiments(raw_data_path)
|
|
else:
|
|
assert experiment_id_overwrite >= 0
|
|
experiments = torch.tensor([experiment_id_overwrite])
|
|
|
|
for experiment_counter in range(0, experiments.shape[0]):
|
|
experiment_id = int(experiments[experiment_counter])
|
|
|
|
if trial_id_overwrite == -1:
|
|
trials = get_trials(raw_data_path, experiment_id)
|
|
else:
|
|
assert trial_id_overwrite >= 0
|
|
trials = torch.tensor([trial_id_overwrite])
|
|
|
|
for trial_counter in range(0, trials.shape[0]):
|
|
trial_id = int(trials[trial_counter])
|
|
|
|
mylogger.info("")
|
|
mylogger.info(
|
|
f"======= EXPERIMENT ID: {experiment_id} ==== TRIAL ID: {trial_id} ======="
|
|
)
|
|
mylogger.info("")
|
|
|
|
try:
|
|
process_trial(
|
|
config=config,
|
|
mylogger=mylogger,
|
|
experiment_id=experiment_id,
|
|
trial_id=trial_id,
|
|
device=device,
|
|
)
|
|
except torch.cuda.OutOfMemoryError:
|
|
mylogger.info("WARNING: RUNNING IN FAILBACK MODE!!!!")
|
|
mylogger.info("Not enough GPU memory. Retry on CPU")
|
|
process_trial(
|
|
config=config,
|
|
mylogger=mylogger,
|
|
experiment_id=experiment_id,
|
|
trial_id=trial_id,
|
|
device=torch.device("cpu"),
|
|
)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
argh.dispatch_command(main)
|