Add files via upload

This commit is contained in:
David Rotermund 2024-07-10 16:01:26 +02:00 committed by GitHub
parent 9e28e73468
commit 533f54f212
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
5 changed files with 6 additions and 76 deletions

View file

@ -7,7 +7,6 @@ class NNMF2d(torch.nn.Module):
in_channels: int
out_channels: int
weight: torch.Tensor
bias: None | torch.Tensor
iterations: int
epsilon: float | None
init_min: float
@ -16,8 +15,6 @@ class NNMF2d(torch.nn.Module):
positive_function_type: int
local_learning: bool
local_learning_kl: bool
use_reconstruction: bool
skip_connection: bool
def __init__(
self,

View file

@ -9,8 +9,6 @@ def append_block(
out_channels: int,
test_image: torch.Tensor,
parameter_cnn_top: list[torch.nn.parameter.Parameter],
parameter_cnn_skip: list[torch.nn.parameter.Parameter],
parameter_cnn: list[torch.nn.parameter.Parameter],
parameter_nnmf: list[torch.nn.parameter.Parameter],
parameter_norm: list[torch.nn.parameter.Parameter],
torch_device: torch.device,
@ -24,8 +22,6 @@ def append_block(
iterations: int = 20,
local_learning: bool = False,
local_learning_kl: bool = False,
use_nnmf: bool = True,
use_identity: bool = False,
momentum: float = 0.1,
track_running_stats: bool = False,
) -> torch.Tensor:
@ -39,7 +35,6 @@ def append_block(
kernel_size_internal[1] = test_image.shape[-1]
# Main
network.append(torch.nn.ReLU())
test_image = network[-1](test_image)

View file

@ -19,7 +19,8 @@ def get_data(path: str = "log_cnn"):
for id in range(0, len(te)):
np_temp[id, 0] = te[id].step
np_temp[id, 1] = te[id].value
print(np_temp[:, 1]/100)
print(np_temp[:, 1] / 100)
return np_temp

View file

@ -1,5 +1,4 @@
import torch
from SplitOnOffLayer import SplitOnOffLayer
from append_block import append_block
from L1NormLayer import L1NormLayer
from NNMF2d import NNMF2d
@ -7,7 +6,6 @@ from append_parameter import append_parameter
def make_network(
use_nnmf: bool,
input_dim_x: int,
input_dim_y: int,
input_number_of_channel: int,
@ -67,11 +65,7 @@ def make_network(
(1, 1),
(1, 1),
],
local_learning: list[bool] = [False, False, False, False],
local_learning_kl: bool = True,
max_pool: bool = True,
enable_onoff: bool = False,
use_identity: bool = False,
) -> tuple[
torch.nn.Sequential,
list[list[torch.nn.parameter.Parameter]],
@ -86,14 +80,11 @@ def make_network(
assert len(number_of_output_channels) == len(stride_pool)
assert len(number_of_output_channels) == len(padding_pool)
assert len(number_of_output_channels) == len(dilation_pool)
assert len(number_of_output_channels) == len(local_learning)
if enable_onoff:
input_number_of_channel *= 2
parameter_cnn_top: list[torch.nn.parameter.Parameter] = []
parameter_cnn_skip: list[torch.nn.parameter.Parameter] = []
parameter_cnn: list[torch.nn.parameter.Parameter] = []
parameter_nnmf: list[torch.nn.parameter.Parameter] = []
parameter_norm: list[torch.nn.parameter.Parameter] = []
@ -104,10 +95,6 @@ def make_network(
network = torch.nn.Sequential()
network = network.to(torch_device)
if enable_onoff:
network.append(SplitOnOffLayer())
test_image = network[-1](test_image)
for block_id in range(0, len(number_of_output_channels)):
test_image = append_block(
@ -122,16 +109,10 @@ def make_network(
positive_function_type=positive_function_type,
beta=beta,
iterations=iterations,
local_learning=local_learning[block_id],
local_learning_kl=local_learning_kl,
torch_device=torch_device,
parameter_cnn_top=parameter_cnn_top,
parameter_cnn_skip=parameter_cnn_skip,
parameter_cnn=parameter_cnn,
parameter_nnmf=parameter_nnmf,
parameter_norm=parameter_norm,
use_nnmf=use_nnmf,
use_identity=use_identity,
)
if (kernel_size_pool[block_id][0] > 0) and (kernel_size_pool[block_id][1] > 0):
@ -214,16 +195,12 @@ def make_network(
parameters: list[list[torch.nn.parameter.Parameter]] = [
parameter_cnn_top,
parameter_cnn_skip,
parameter_cnn,
parameter_nnmf,
parameter_norm,
]
name_list: list[str] = [
"cnn_top",
"cnn_skip",
"cnn",
"nnmf",
"batchnorm2d",
]

View file

@ -23,51 +23,26 @@ from make_optimize import make_optimize
def main(
lr_initial_nnmf: float = 0.01,
lr_initial_cnn: float = 0.001,
lr_initial_cnn_top: float = 0.001,
lr_initial_cnn_skip: float = 0.001,
lr_initial_norm: float = 0.001,
iterations: int = 20,
use_nnmf: bool = True,
dataset: str = "CIFAR10", # "CIFAR10", "FashionMNIST", "MNIST"
enable_onoff: bool = False,
local_learning_all: bool = False,
local_learning_0: bool = False,
local_learning_1: bool = False,
local_learning_2: bool = False,
local_learning_3: bool = False,
local_learning_kl: bool = False,
max_pool: bool = False,
only_print_network: bool = False,
use_identity: bool = False,
da_auto_mode: bool = False,
) -> None:
if local_learning_all:
local_learning_0 = True
local_learning_1 = True
local_learning_2 = True
local_learning_3 = True
da_auto_mode: bool = False # Automatic Data Augmentation from TorchVision
lr_limit: float = 1e-9
if use_identity:
use_nnmf = True
torch_device: torch.device = (
torch.device("cuda:0") if torch.cuda.is_available() else torch.device("cpu")
)
torch.set_default_dtype(torch.float32)
# Some parameters
batch_size_train: int = 50#0
batch_size_test: int = 50#0
batch_size_train: int = 50 # 0
batch_size_test: int = 50 # 0
number_of_epoch: int = 5000
if use_nnmf:
prefix: str = "nnmf"
else:
prefix = "cnn"
loss_mode: int = 0
loss_coeffs_mse: float = 0.5
loss_coeffs_kldiv: float = 1.0
@ -111,22 +86,11 @@ def main(
parameters,
name_list,
) = make_network(
use_nnmf=use_nnmf,
input_dim_x=input_dim_x,
input_dim_y=input_dim_y,
input_number_of_channel=input_number_of_channel,
iterations=iterations,
enable_onoff=enable_onoff,
local_learning=[
local_learning_0,
local_learning_1,
local_learning_2,
local_learning_3,
],
local_learning_kl=local_learning_kl,
max_pool=max_pool,
torch_device=torch_device,
use_identity=use_identity,
)
print(network)
@ -152,8 +116,6 @@ def main(
parameters=parameters,
lr_initial=[
lr_initial_cnn_top,
lr_initial_cnn_skip,
lr_initial_cnn,
lr_initial_nnmf,
lr_initial_norm,
],
@ -166,9 +128,7 @@ def main(
else:
my_string += "-_"
default_path: str = (
f"{prefix}_iter{iterations}{my_string}0{local_learning_0}_1{local_learning_1}_2{local_learning_2}_3{local_learning_3}_kl{local_learning_kl}_max{max_pool}"
)
default_path: str = f"iter{iterations}{my_string}"
log_dir: str = f"log_{default_path}"
tb = SummaryWriter(log_dir=log_dir)