Add files via upload
This commit is contained in:
parent
9e28e73468
commit
533f54f212
5 changed files with 6 additions and 76 deletions
|
@ -7,7 +7,6 @@ class NNMF2d(torch.nn.Module):
|
|||
in_channels: int
|
||||
out_channels: int
|
||||
weight: torch.Tensor
|
||||
bias: None | torch.Tensor
|
||||
iterations: int
|
||||
epsilon: float | None
|
||||
init_min: float
|
||||
|
@ -16,8 +15,6 @@ class NNMF2d(torch.nn.Module):
|
|||
positive_function_type: int
|
||||
local_learning: bool
|
||||
local_learning_kl: bool
|
||||
use_reconstruction: bool
|
||||
skip_connection: bool
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
|
|
|
@ -9,8 +9,6 @@ def append_block(
|
|||
out_channels: int,
|
||||
test_image: torch.Tensor,
|
||||
parameter_cnn_top: list[torch.nn.parameter.Parameter],
|
||||
parameter_cnn_skip: list[torch.nn.parameter.Parameter],
|
||||
parameter_cnn: list[torch.nn.parameter.Parameter],
|
||||
parameter_nnmf: list[torch.nn.parameter.Parameter],
|
||||
parameter_norm: list[torch.nn.parameter.Parameter],
|
||||
torch_device: torch.device,
|
||||
|
@ -24,8 +22,6 @@ def append_block(
|
|||
iterations: int = 20,
|
||||
local_learning: bool = False,
|
||||
local_learning_kl: bool = False,
|
||||
use_nnmf: bool = True,
|
||||
use_identity: bool = False,
|
||||
momentum: float = 0.1,
|
||||
track_running_stats: bool = False,
|
||||
) -> torch.Tensor:
|
||||
|
@ -39,7 +35,6 @@ def append_block(
|
|||
kernel_size_internal[1] = test_image.shape[-1]
|
||||
|
||||
# Main
|
||||
|
||||
network.append(torch.nn.ReLU())
|
||||
test_image = network[-1](test_image)
|
||||
|
||||
|
|
|
@ -19,7 +19,8 @@ def get_data(path: str = "log_cnn"):
|
|||
for id in range(0, len(te)):
|
||||
np_temp[id, 0] = te[id].step
|
||||
np_temp[id, 1] = te[id].value
|
||||
print(np_temp[:, 1]/100)
|
||||
|
||||
print(np_temp[:, 1] / 100)
|
||||
return np_temp
|
||||
|
||||
|
||||
|
|
|
@ -1,5 +1,4 @@
|
|||
import torch
|
||||
from SplitOnOffLayer import SplitOnOffLayer
|
||||
from append_block import append_block
|
||||
from L1NormLayer import L1NormLayer
|
||||
from NNMF2d import NNMF2d
|
||||
|
@ -7,7 +6,6 @@ from append_parameter import append_parameter
|
|||
|
||||
|
||||
def make_network(
|
||||
use_nnmf: bool,
|
||||
input_dim_x: int,
|
||||
input_dim_y: int,
|
||||
input_number_of_channel: int,
|
||||
|
@ -67,11 +65,7 @@ def make_network(
|
|||
(1, 1),
|
||||
(1, 1),
|
||||
],
|
||||
local_learning: list[bool] = [False, False, False, False],
|
||||
local_learning_kl: bool = True,
|
||||
max_pool: bool = True,
|
||||
enable_onoff: bool = False,
|
||||
use_identity: bool = False,
|
||||
) -> tuple[
|
||||
torch.nn.Sequential,
|
||||
list[list[torch.nn.parameter.Parameter]],
|
||||
|
@ -86,14 +80,11 @@ def make_network(
|
|||
assert len(number_of_output_channels) == len(stride_pool)
|
||||
assert len(number_of_output_channels) == len(padding_pool)
|
||||
assert len(number_of_output_channels) == len(dilation_pool)
|
||||
assert len(number_of_output_channels) == len(local_learning)
|
||||
|
||||
if enable_onoff:
|
||||
input_number_of_channel *= 2
|
||||
|
||||
parameter_cnn_top: list[torch.nn.parameter.Parameter] = []
|
||||
parameter_cnn_skip: list[torch.nn.parameter.Parameter] = []
|
||||
parameter_cnn: list[torch.nn.parameter.Parameter] = []
|
||||
parameter_nnmf: list[torch.nn.parameter.Parameter] = []
|
||||
parameter_norm: list[torch.nn.parameter.Parameter] = []
|
||||
|
||||
|
@ -104,10 +95,6 @@ def make_network(
|
|||
network = torch.nn.Sequential()
|
||||
network = network.to(torch_device)
|
||||
|
||||
if enable_onoff:
|
||||
network.append(SplitOnOffLayer())
|
||||
test_image = network[-1](test_image)
|
||||
|
||||
for block_id in range(0, len(number_of_output_channels)):
|
||||
|
||||
test_image = append_block(
|
||||
|
@ -122,16 +109,10 @@ def make_network(
|
|||
positive_function_type=positive_function_type,
|
||||
beta=beta,
|
||||
iterations=iterations,
|
||||
local_learning=local_learning[block_id],
|
||||
local_learning_kl=local_learning_kl,
|
||||
torch_device=torch_device,
|
||||
parameter_cnn_top=parameter_cnn_top,
|
||||
parameter_cnn_skip=parameter_cnn_skip,
|
||||
parameter_cnn=parameter_cnn,
|
||||
parameter_nnmf=parameter_nnmf,
|
||||
parameter_norm=parameter_norm,
|
||||
use_nnmf=use_nnmf,
|
||||
use_identity=use_identity,
|
||||
)
|
||||
|
||||
if (kernel_size_pool[block_id][0] > 0) and (kernel_size_pool[block_id][1] > 0):
|
||||
|
@ -214,16 +195,12 @@ def make_network(
|
|||
|
||||
parameters: list[list[torch.nn.parameter.Parameter]] = [
|
||||
parameter_cnn_top,
|
||||
parameter_cnn_skip,
|
||||
parameter_cnn,
|
||||
parameter_nnmf,
|
||||
parameter_norm,
|
||||
]
|
||||
|
||||
name_list: list[str] = [
|
||||
"cnn_top",
|
||||
"cnn_skip",
|
||||
"cnn",
|
||||
"nnmf",
|
||||
"batchnorm2d",
|
||||
]
|
||||
|
|
|
@ -23,51 +23,26 @@ from make_optimize import make_optimize
|
|||
|
||||
def main(
|
||||
lr_initial_nnmf: float = 0.01,
|
||||
lr_initial_cnn: float = 0.001,
|
||||
lr_initial_cnn_top: float = 0.001,
|
||||
lr_initial_cnn_skip: float = 0.001,
|
||||
lr_initial_norm: float = 0.001,
|
||||
iterations: int = 20,
|
||||
use_nnmf: bool = True,
|
||||
dataset: str = "CIFAR10", # "CIFAR10", "FashionMNIST", "MNIST"
|
||||
enable_onoff: bool = False,
|
||||
local_learning_all: bool = False,
|
||||
local_learning_0: bool = False,
|
||||
local_learning_1: bool = False,
|
||||
local_learning_2: bool = False,
|
||||
local_learning_3: bool = False,
|
||||
local_learning_kl: bool = False,
|
||||
max_pool: bool = False,
|
||||
only_print_network: bool = False,
|
||||
use_identity: bool = False,
|
||||
da_auto_mode: bool = False,
|
||||
) -> None:
|
||||
|
||||
if local_learning_all:
|
||||
local_learning_0 = True
|
||||
local_learning_1 = True
|
||||
local_learning_2 = True
|
||||
local_learning_3 = True
|
||||
da_auto_mode: bool = False # Automatic Data Augmentation from TorchVision
|
||||
lr_limit: float = 1e-9
|
||||
|
||||
if use_identity:
|
||||
use_nnmf = True
|
||||
|
||||
torch_device: torch.device = (
|
||||
torch.device("cuda:0") if torch.cuda.is_available() else torch.device("cpu")
|
||||
)
|
||||
torch.set_default_dtype(torch.float32)
|
||||
|
||||
# Some parameters
|
||||
batch_size_train: int = 50#0
|
||||
batch_size_test: int = 50#0
|
||||
batch_size_train: int = 50 # 0
|
||||
batch_size_test: int = 50 # 0
|
||||
number_of_epoch: int = 5000
|
||||
|
||||
if use_nnmf:
|
||||
prefix: str = "nnmf"
|
||||
else:
|
||||
prefix = "cnn"
|
||||
|
||||
loss_mode: int = 0
|
||||
loss_coeffs_mse: float = 0.5
|
||||
loss_coeffs_kldiv: float = 1.0
|
||||
|
@ -111,22 +86,11 @@ def main(
|
|||
parameters,
|
||||
name_list,
|
||||
) = make_network(
|
||||
use_nnmf=use_nnmf,
|
||||
input_dim_x=input_dim_x,
|
||||
input_dim_y=input_dim_y,
|
||||
input_number_of_channel=input_number_of_channel,
|
||||
iterations=iterations,
|
||||
enable_onoff=enable_onoff,
|
||||
local_learning=[
|
||||
local_learning_0,
|
||||
local_learning_1,
|
||||
local_learning_2,
|
||||
local_learning_3,
|
||||
],
|
||||
local_learning_kl=local_learning_kl,
|
||||
max_pool=max_pool,
|
||||
torch_device=torch_device,
|
||||
use_identity=use_identity,
|
||||
)
|
||||
|
||||
print(network)
|
||||
|
@ -152,8 +116,6 @@ def main(
|
|||
parameters=parameters,
|
||||
lr_initial=[
|
||||
lr_initial_cnn_top,
|
||||
lr_initial_cnn_skip,
|
||||
lr_initial_cnn,
|
||||
lr_initial_nnmf,
|
||||
lr_initial_norm,
|
||||
],
|
||||
|
@ -166,9 +128,7 @@ def main(
|
|||
else:
|
||||
my_string += "-_"
|
||||
|
||||
default_path: str = (
|
||||
f"{prefix}_iter{iterations}{my_string}0{local_learning_0}_1{local_learning_1}_2{local_learning_2}_3{local_learning_3}_kl{local_learning_kl}_max{max_pool}"
|
||||
)
|
||||
default_path: str = f"iter{iterations}{my_string}"
|
||||
log_dir: str = f"log_{default_path}"
|
||||
|
||||
tb = SummaryWriter(log_dir=log_dir)
|
||||
|
|
Loading…
Reference in a new issue