nnmf_24a/README.md
2024-07-10 17:35:17 +02:00

106 lines
4.8 KiB
Markdown
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

Code excerpt from David Rotermund, Mahbod Nouri, Alberto Garcia-Ortiz and Kaus R. Pawelzik trying to understand deep NNMF networks.
# Origin of the algorithm
Refinement of the approach for deep NNMF networks shown in:
```
Competitive performance and superior noise robustness of a non-negative deep convolutional spiking network
David Rotermund, Alberto Garcia-Ortiz, Kaus R. Pawelzik
https://www.biorxiv.org/content/10.1101/2023.04.22.537923v1
```
Now a normal ADAM optimiser will work.
The BP learning rule is taken from here (it was derived for a spike-based SbS system, but it works exactly the same for NNMF):
```
Back-Propagation Learning in Deep Spike-By-Spike Networks
David Rotermund and Klaus R. Pawelzik
https://www.frontiersin.org/journals/computational-neuroscience/articles/10.3389/fncom.2019.00055/full
```
# CIFAR 10 Test run on RTX 4090
Last epoch
```
Epoch: 369
Actual lr: 1.0000e-10 1.0000e-09 1.0000e-10
Training: Loss=0.01888 Correct=92.36%
Testing: Correct=85.25%
Time: Training=12.0sec, Testing=2.3sec
```
Note: This is just one run. Even though we have set the seed to a fixed value, the whole network suffers strongly under non-determinism during lerning.
## Test performance
![Test Performance](Figure_1.png)
# Network structure
Note: A block like
```
(1): Unfold(kernel_size=(5, 5), dilation=(1, 1), padding=(0, 0), stride=(1, 1))
(2): Fold(output_size=torch.Size([24, 24]), kernel_size=(1, 1), dilation=1, padding=0, stride=1)
(3): L1NormLayer()
(4): NNMF2d(75, 32, pfunctype=0, local_learning=False)
```
represents one(!) Conv2d NNMF Layer. We just see more of the innards that for a normal Conv2d.
```
Sequential(
(0): ReLU()
(1): Unfold(kernel_size=(5, 5), dilation=(1, 1), padding=(0, 0), stride=(1, 1))
(2): Fold(output_size=torch.Size([24, 24]), kernel_size=(1, 1), dilation=1, padding=0, stride=1)
(3): L1NormLayer()
(4): NNMF2d(75, 32, pfunctype=0, local_learning=False)
(5): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=False)
(6): Conv2d(32, 32, kernel_size=(1, 1), stride=(1, 1))
(7): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=False)
(8): ReLU()
(9): Unfold(kernel_size=(2, 2), dilation=(1, 1), padding=(0, 0), stride=(2, 2))
(10): Fold(output_size=torch.Size([12, 12]), kernel_size=(1, 1), dilation=1, padding=0, stride=1)
(11): L1NormLayer()
(12): NNMF2d(128, 32, pfunctype=0, local_learning=False)
(13): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=False)
(14): ReLU()
(15): Unfold(kernel_size=(5, 5), dilation=(1, 1), padding=(0, 0), stride=(1, 1))
(16): Fold(output_size=torch.Size([8, 8]), kernel_size=(1, 1), dilation=1, padding=0, stride=1)
(17): L1NormLayer()
(18): NNMF2d(800, 64, pfunctype=0, local_learning=False)
(19): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=False)
(20): Conv2d(64, 64, kernel_size=(1, 1), stride=(1, 1))
(21): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=False)
(22): ReLU()
(23): Unfold(kernel_size=(2, 2), dilation=(1, 1), padding=(0, 0), stride=(2, 2))
(24): Fold(output_size=torch.Size([4, 4]), kernel_size=(1, 1), dilation=1, padding=0, stride=1)
(25): L1NormLayer()
(26): NNMF2d(256, 64, pfunctype=0, local_learning=False)
(27): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=False)
(28): ReLU()
(29): Unfold(kernel_size=(4, 4), dilation=(1, 1), padding=(0, 0), stride=(1, 1))
(30): Fold(output_size=torch.Size([1, 1]), kernel_size=(1, 1), dilation=1, padding=0, stride=1)
(31): L1NormLayer()
(32): NNMF2d(1024, 96, pfunctype=0, local_learning=False)
(33): Conv2d(96, 96, kernel_size=(1, 1), stride=(1, 1))
(34): ReLU()
(35): Unfold(kernel_size=(1, 1), dilation=(1, 1), padding=(0, 0), stride=(1, 1))
(36): Fold(output_size=torch.Size([1, 1]), kernel_size=(1, 1), dilation=1, padding=0, stride=1)
(37): L1NormLayer()
(38): NNMF2d(96, 10, pfunctype=0, local_learning=False)
(39): Conv2d(10, 10, kernel_size=(1, 1), stride=(1, 1))
(40): Softmax(dim=1)
(41): Flatten(start_dim=1, end_dim=-1)
)
Information about used parameters:
cnn_top: 14638
nnmf: 173344
batchnorm2d: 576
total number of parameter: 188558
```
We acknowledge support by the following grants: DFG: Efficient implementation of spike-by-spike neural networks using stochastic and approximate techniques (PA 569/6-1, GA 763/15-1), DFG SPP: Evolutionary optimisation of neural systems (SPP 2205) https://gepris.dfg.de/gepris/projekt/402741184 Evolution of flexibility - optimisation of task-dependent information processing in the visual system (ER 324/5-1), Era-Net Neuron https://www.neuron-eranet.eu: I-See Improved intra-cortical visual prostheses through complex coding and integration of spontaneous activity states (BMBF 01EW2104A), Stiftung Bremer Wertpapierboerse https://www.stiftung-bwb.de.