Add files via upload

This commit is contained in:
David Rotermund 2024-05-30 14:08:44 +02:00 committed by GitHub
parent 0ad3b2c89c
commit 4e0f4f84f1
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
12 changed files with 2041 additions and 0 deletions

502
NNMFConv2d.py Normal file
View file

@ -0,0 +1,502 @@
import torch
from non_linear_weigth_function import non_linear_weigth_function
class NNMFConv2d(torch.nn.Module):
in_channels: int
out_channels: int
kernel_size: tuple[int, ...]
stride: tuple[int, ...]
padding: str | tuple[int, ...]
dilation: tuple[int, ...]
weight: torch.Tensor
bias: None | torch.Tensor
output_size: None | torch.Tensor = None
convolution_contribution_map: None | torch.Tensor = None
iterations: int
convolution_contribution_map_enable: bool
epsilon: float | None
init_min: float
init_max: float
beta: torch.Tensor | None
positive_function_type: int
use_convolution: bool
local_learning: bool
local_learning_kl: bool
def __init__(
self,
in_channels: int,
out_channels: int,
kernel_size: tuple[int, int],
stride: tuple[int, int] = (1, 1),
padding: str | tuple[int, int] = (0, 0),
dilation: tuple[int, int] = (1, 1),
device=None,
dtype=None,
iterations: int = 20,
convolution_contribution_map_enable: bool = False,
epsilon: float | None = None,
init_min: float = 0.0,
init_max: float = 1.0,
beta: float | None = None,
positive_function_type: int = 0,
use_convolution: bool = False,
local_learning: bool = False,
local_learning_kl: bool = False,
) -> None:
factory_kwargs = {"device": device, "dtype": dtype}
super().__init__()
valid_padding_strings = {"same", "valid"}
if isinstance(padding, str):
if padding not in valid_padding_strings:
raise ValueError(
f"Invalid padding string {padding!r}, should be one of {valid_padding_strings}"
)
if padding == "same" and any(s != 1 for s in stride):
raise ValueError(
"padding='same' is not supported for strided convolutions"
)
self.positive_function_type = positive_function_type
self.init_min = init_min
self.init_max = init_max
self.in_channels = in_channels
self.out_channels = out_channels
self.kernel_size = kernel_size
self.stride = stride
self.padding = padding
self.dilation = dilation
self.iterations = iterations
self.convolution_contribution_map_enable = convolution_contribution_map_enable
self.local_learning = local_learning
self.local_learning_kl = local_learning_kl
self.weight = torch.nn.parameter.Parameter(
torch.empty((out_channels, in_channels, *kernel_size), **factory_kwargs)
)
if beta is not None:
self.beta = torch.nn.parameter.Parameter(torch.empty((1), **factory_kwargs))
self.beta.data[0] = beta
else:
self.beta = None
self.reset_parameters()
self.functional_nnmf_conv2d = FunctionalNNMFConv2d.apply
self.epsilon = epsilon
self.use_convolution = use_convolution
def extra_repr(self) -> str:
s: str = f"{self.in_channels}, {self.out_channels}"
s += f", kernel_size={self.kernel_size}"
s += f", stride={self.stride}, iterations={self.iterations}"
s += f", epsilon={self.epsilon}"
s += f", use_convolution={self.use_convolution}"
if self.use_convolution:
s += f", ccmap={self.convolution_contribution_map_enable}"
s += f", pfunctype={self.positive_function_type}"
s += f", local_learning={self.local_learning}"
if self.local_learning:
s += f", local_learning_kl={self.local_learning_kl}"
if self.padding != (0,) * len(self.padding):
s += f", padding={self.padding}"
if self.dilation != (1,) * len(self.dilation):
s += f", dilation={self.dilation}"
return s
def reset_parameters(self) -> None:
torch.nn.init.uniform_(self.weight, a=self.init_min, b=self.init_max)
def forward(self, input: torch.Tensor) -> torch.Tensor:
if input.ndim == 2:
input = input.unsqueeze(-1)
if input.ndim == 3:
input = input.unsqueeze(-1)
if self.output_size is None:
self.output_size = torch.tensor(
torch.nn.functional.conv2d(
torch.zeros(
1,
input.shape[1],
input.shape[2],
input.shape[3],
device=self.weight.device,
dtype=self.weight.dtype,
),
torch.zeros_like(self.weight),
stride=self.stride,
padding=self.padding,
dilation=self.dilation,
).shape,
requires_grad=False,
)
assert self.output_size is not None
if self.use_convolution is False:
input = torch.nn.functional.fold(
torch.nn.functional.unfold(
input.requires_grad_(True),
kernel_size=self.kernel_size,
dilation=self.dilation,
padding=self.padding,
stride=self.stride,
),
output_size=self.output_size[-2:],
kernel_size=(1, 1),
dilation=(1, 1),
padding=(0, 0),
stride=(1, 1),
)
if (
(self.convolution_contribution_map is None)
and (self.convolution_contribution_map_enable)
and (self.use_convolution)
):
self.convolution_contribution_map = torch.nn.functional.conv_transpose2d(
torch.full(
self.output_size.tolist(),
1.0 / float(self.output_size[1]),
dtype=self.weight.dtype,
device=self.weight.device,
requires_grad=False,
),
torch.ones_like(self.weight, requires_grad=False),
stride=self.stride,
padding=self.padding,
dilation=self.dilation,
) * (
(input.shape[1] * input.shape[2] * input.shape[3])
/ (self.weight.shape[1] * self.weight.shape[2] * self.weight.shape[3])
)
if self.convolution_contribution_map_enable and self.use_convolution:
assert self.convolution_contribution_map is not None
positive_weights = non_linear_weigth_function(
self.weight, self.beta, self.positive_function_type
)
positive_weights = positive_weights / (
positive_weights.sum((1, 2, 3), keepdim=True) + 10e-20
)
if self.use_convolution is False:
positive_weights = positive_weights.reshape(
positive_weights.shape[0],
positive_weights.shape[1]
* positive_weights.shape[2]
* positive_weights.shape[3],
)
# Prepare input
if self.use_convolution:
input = input / (input.sum((1, 2, 3), keepdim=True) + 10e-20)
if self.convolution_contribution_map is not None:
input = input * self.convolution_contribution_map
else:
input = input / (input.sum(dim=1, keepdim=True) + 10e-20)
return self.functional_nnmf_conv2d(
input,
positive_weights,
self.output_size,
self.iterations,
self.stride,
self.padding,
self.dilation,
self.epsilon,
self.use_convolution,
self.local_learning,
self.local_learning_kl,
)
class FunctionalNNMFConv2d(torch.autograd.Function):
@staticmethod
def forward( # type: ignore
ctx,
input: torch.Tensor,
weight: torch.Tensor,
output_size: torch.Tensor,
iterations: int,
stride: tuple[int, int],
padding: str | tuple[int, int],
dilation: tuple[int, int],
epsilon: float | None,
use_convolution: bool,
local_learning: bool,
local_learning_kl: bool,
) -> torch.Tensor:
# Prepare h
output_size[0] = input.shape[0]
h = torch.full(
output_size.tolist(),
1.0 / float(output_size[1]),
device=input.device,
dtype=input.dtype,
)
if use_convolution:
for _ in range(0, iterations):
factor_x_div_r: torch.Tensor = input / (
torch.nn.functional.conv_transpose2d(
h,
weight,
stride=stride,
padding=padding,
dilation=dilation,
)
+ 10e-20
)
if epsilon is None:
h *= torch.nn.functional.conv2d(
factor_x_div_r,
weight,
stride=stride,
padding=padding,
dilation=dilation,
)
else:
h *= 1 + epsilon * torch.nn.functional.conv2d(
factor_x_div_r,
weight,
stride=stride,
padding=padding,
dilation=dilation,
)
h /= h.sum(1, keepdim=True) + 10e-20
else:
h = h.movedim(1, -1)
input = input.movedim(1, -1)
for _ in range(0, iterations):
reconstruction = torch.nn.functional.linear(h, weight.T)
reconstruction += 1e-20
if epsilon is None:
h *= torch.nn.functional.linear((input / reconstruction), weight)
else:
h *= 1 + epsilon * torch.nn.functional.linear(
(input / reconstruction), weight
)
h /= h.sum(-1, keepdim=True) + 10e-20
h = h.movedim(-1, 1)
input = input.movedim(-1, 1)
# ###########################################################
# Save the necessary data for the backward pass
# ###########################################################
ctx.save_for_backward(input, weight, h)
ctx.stride = stride
ctx.padding = padding
ctx.dilation = dilation
ctx.use_convolution = use_convolution
ctx.local_learning = local_learning
ctx.local_learning_kl = local_learning_kl
assert torch.isfinite(h).all()
return h
@staticmethod
@torch.autograd.function.once_differentiable
def backward(ctx, grad_output: torch.Tensor) -> tuple[ # type: ignore
torch.Tensor | None,
torch.Tensor | None,
None,
None,
None,
None,
None,
None,
None,
None,
None,
]:
# ##############################################
# Default values
# ##############################################
grad_input: torch.Tensor | None = None
grad_weight: torch.Tensor | None = None
# ##############################################
# Get the variables back
# ##############################################
(input, weight, h) = ctx.saved_tensors
if ctx.use_convolution:
big_r: torch.Tensor = torch.nn.functional.conv_transpose2d(
h,
weight,
stride=ctx.stride,
padding=ctx.padding,
dilation=ctx.dilation,
)
big_r_div = 1.0 / (big_r + 1e-20)
factor_x_div_r: torch.Tensor = input * big_r_div
grad_input = (
torch.nn.functional.conv_transpose2d(
(h * grad_output),
weight,
stride=ctx.stride,
padding=ctx.padding,
dilation=ctx.dilation,
)
* big_r_div
)
del big_r_div
if ctx.local_learning is False:
del big_r
grad_weight = -torch.nn.functional.conv2d(
(factor_x_div_r * grad_input).movedim(0, 1),
h.movedim(0, 1),
stride=ctx.dilation,
padding=ctx.padding,
dilation=ctx.stride,
)
grad_weight += torch.nn.functional.conv2d(
factor_x_div_r.movedim(0, 1),
(h * grad_output).movedim(0, 1),
stride=ctx.dilation,
padding=ctx.padding,
dilation=ctx.stride,
)
else:
if ctx.local_learning_kl:
grad_weight = -torch.nn.functional.conv2d(
factor_x_div_r.movedim(0, 1),
h.movedim(0, 1),
stride=ctx.dilation,
padding=ctx.padding,
dilation=ctx.stride,
)
else:
grad_weight = -torch.nn.functional.conv2d(
(2 * (input - big_r)).movedim(0, 1),
h.movedim(0, 1),
stride=ctx.dilation,
padding=ctx.padding,
dilation=ctx.stride,
)
grad_weight = grad_weight.movedim(0, 1)
else:
h = h.movedim(1, -1)
grad_output = grad_output.movedim(1, -1)
input = input.movedim(1, -1)
big_r = torch.nn.functional.linear(h, weight.T)
big_r_div = 1.0 / (big_r + 1e-20)
factor_x_div_r = input * big_r_div
grad_input = (
torch.nn.functional.linear(h * grad_output, weight.T) * big_r_div
)
del big_r_div
if ctx.local_learning is False:
del big_r
grad_weight = -torch.nn.functional.linear(
h.reshape(
grad_input.shape[0] * grad_input.shape[1] * grad_input.shape[2],
h.shape[3],
).T,
(factor_x_div_r * grad_input)
.reshape(
grad_input.shape[0] * grad_input.shape[1] * grad_input.shape[2],
grad_input.shape[3],
)
.T,
)
grad_weight += torch.nn.functional.linear(
(h * grad_output)
.reshape(
grad_input.shape[0] * grad_input.shape[1] * grad_input.shape[2],
h.shape[3],
)
.T,
factor_x_div_r.reshape(
grad_input.shape[0] * grad_input.shape[1] * grad_input.shape[2],
grad_input.shape[3],
).T,
)
else:
if ctx.local_learning_kl:
grad_weight = -torch.nn.functional.linear(
h.reshape(
grad_input.shape[0]
* grad_input.shape[1]
* grad_input.shape[2],
h.shape[3],
).T,
factor_x_div_r.reshape(
grad_input.shape[0]
* grad_input.shape[1]
* grad_input.shape[2],
grad_input.shape[3],
).T,
)
else:
grad_weight = -torch.nn.functional.linear(
h.reshape(
grad_input.shape[0]
* grad_input.shape[1]
* grad_input.shape[2],
h.shape[3],
).T,
(2 * (input - big_r))
.reshape(
grad_input.shape[0]
* grad_input.shape[1]
* grad_input.shape[2],
grad_input.shape[3],
)
.T,
)
grad_input = grad_input.movedim(-1, 1)
assert torch.isfinite(grad_input).all()
assert torch.isfinite(grad_weight).all()
return (
grad_input,
grad_weight,
None,
None,
None,
None,
None,
None,
None,
None,
None,
)

480
NNMFConv2dP.py Normal file
View file

@ -0,0 +1,480 @@
import torch
from non_linear_weigth_function import non_linear_weigth_function
class NNMFConv2dP(torch.nn.Module):
in_channels: int
out_channels: int
kernel_size: tuple[int, ...]
stride: tuple[int, ...]
padding: str | tuple[int, ...]
dilation: tuple[int, ...]
weight: torch.Tensor
bias: None | torch.Tensor
output_size: None | torch.Tensor = None
convolution_contribution_map: None | torch.Tensor = None
iterations: int
convolution_contribution_map_enable: bool
epsilon: float | None
init_min: float
init_max: float
beta: torch.Tensor | None
positive_function_type: int
use_convolution: bool
local_learning: bool
local_learning_kl: bool
def __init__(
self,
in_channels: int,
out_channels: int,
kernel_size: tuple[int, int],
stride: tuple[int, int] = (1, 1),
padding: str | tuple[int, int] = (0, 0),
dilation: tuple[int, int] = (1, 1),
device=None,
dtype=None,
iterations: int = 20,
convolution_contribution_map_enable: bool = False,
epsilon: float | None = None,
init_min: float = 0.0,
init_max: float = 1.0,
beta: float | None = None,
positive_function_type: int = 0,
use_convolution: bool = False,
local_learning: bool = False,
local_learning_kl: bool = False,
) -> None:
factory_kwargs = {"device": device, "dtype": dtype}
super().__init__()
valid_padding_strings = {"same", "valid"}
if isinstance(padding, str):
if padding not in valid_padding_strings:
raise ValueError(
f"Invalid padding string {padding!r}, should be one of {valid_padding_strings}"
)
if padding == "same" and any(s != 1 for s in stride):
raise ValueError(
"padding='same' is not supported for strided convolutions"
)
self.positive_function_type = positive_function_type
self.init_min = init_min
self.init_max = init_max
self.in_channels = in_channels
self.out_channels = out_channels
self.kernel_size = kernel_size
self.stride = stride
self.padding = padding
self.dilation = dilation
self.iterations = iterations
self.convolution_contribution_map_enable = convolution_contribution_map_enable
self.local_learning = local_learning
self.local_learning_kl = local_learning_kl
self.weight = torch.nn.parameter.Parameter(
torch.empty((out_channels, in_channels, *kernel_size), **factory_kwargs)
)
if beta is not None:
self.beta = torch.nn.parameter.Parameter(torch.empty((1), **factory_kwargs))
self.beta.data[0] = beta
else:
self.beta = None
self.reset_parameters()
self.functional_nnmf_conv2d = FunctionalNNMFConv2dP.apply
self.epsilon = epsilon
self.use_convolution = use_convolution
assert self.use_convolution is False
def extra_repr(self) -> str:
s: str = f"{self.in_channels}, {self.out_channels}"
s += f", kernel_size={self.kernel_size}"
s += f", stride={self.stride}, iterations={self.iterations}"
s += f", epsilon={self.epsilon}"
s += f", use_convolution={self.use_convolution}"
if self.use_convolution:
s += f", ccmap={self.convolution_contribution_map_enable}"
s += f", pfunctype={self.positive_function_type}"
s += f", local_learning={self.local_learning}"
if self.local_learning:
s += f", local_learning_kl={self.local_learning_kl}"
if self.padding != (0,) * len(self.padding):
s += f", padding={self.padding}"
if self.dilation != (1,) * len(self.dilation):
s += f", dilation={self.dilation}"
return s
def reset_parameters(self) -> None:
torch.nn.init.uniform_(self.weight, a=self.init_min, b=self.init_max)
def forward(self, input: torch.Tensor) -> torch.Tensor:
if input.ndim == 2:
input = input.unsqueeze(-1)
if input.ndim == 3:
input = input.unsqueeze(-1)
if self.output_size is None:
self.output_size = torch.tensor(
torch.nn.functional.conv2d(
torch.zeros(
1,
input.shape[1],
input.shape[2],
input.shape[3],
device=self.weight.device,
dtype=self.weight.dtype,
),
torch.zeros_like(self.weight),
stride=self.stride,
padding=self.padding,
dilation=self.dilation,
).shape,
requires_grad=False,
)
assert self.output_size is not None
input = torch.nn.functional.fold(
torch.nn.functional.unfold(
input.requires_grad_(True),
kernel_size=self.kernel_size,
dilation=self.dilation,
padding=self.padding,
stride=self.stride,
),
output_size=self.output_size[-2:],
kernel_size=(1, 1),
dilation=(1, 1),
padding=(0, 0),
stride=(1, 1),
)
positive_weights = non_linear_weigth_function(
self.weight, self.beta, self.positive_function_type
)
positive_weights = positive_weights / (
positive_weights.sum((1, 2, 3), keepdim=True) + 10e-20
)
positive_weights = positive_weights.reshape(
positive_weights.shape[0],
positive_weights.shape[1]
* positive_weights.shape[2]
* positive_weights.shape[3],
)
# Prepare input
input = input / (input.sum(dim=1, keepdim=True) + 10e-20)
h_dyn = self.functional_nnmf_conv2d(
input,
positive_weights,
self.output_size,
self.iterations,
self.stride,
self.padding,
self.dilation,
self.epsilon,
self.use_convolution,
self.local_learning,
self.local_learning_kl,
)
self.reco = False
if self.reco:
print(h_dyn.shape)
print(positive_weights.shape)
print(input.shape)
exit()
output = torch.cat((h_dyn, input), dim=1)
else:
output = torch.cat((h_dyn, input), dim=1)
return output
class FunctionalNNMFConv2dP(torch.autograd.Function):
@staticmethod
def forward( # type: ignore
ctx,
input: torch.Tensor,
weight: torch.Tensor,
output_size: torch.Tensor,
iterations: int,
stride: tuple[int, int],
padding: str | tuple[int, int],
dilation: tuple[int, int],
epsilon: float | None,
use_convolution: bool,
local_learning: bool,
local_learning_kl: bool,
) -> torch.Tensor:
# Prepare h
output_size[0] = input.shape[0]
h = torch.full(
output_size.tolist(),
1.0 / float(output_size[1]),
device=input.device,
dtype=input.dtype,
)
if use_convolution:
for _ in range(0, iterations):
factor_x_div_r: torch.Tensor = input / (
torch.nn.functional.conv_transpose2d(
h,
weight,
stride=stride,
padding=padding,
dilation=dilation,
)
+ 10e-20
)
if epsilon is None:
h *= torch.nn.functional.conv2d(
factor_x_div_r,
weight,
stride=stride,
padding=padding,
dilation=dilation,
)
else:
h *= 1 + epsilon * torch.nn.functional.conv2d(
factor_x_div_r,
weight,
stride=stride,
padding=padding,
dilation=dilation,
)
h /= h.sum(1, keepdim=True) + 10e-20
else:
h = h.movedim(1, -1)
input = input.movedim(1, -1)
for _ in range(0, iterations):
reconstruction = torch.nn.functional.linear(h, weight.T)
reconstruction += 1e-20
if epsilon is None:
h *= torch.nn.functional.linear((input / reconstruction), weight)
else:
h *= 1 + epsilon * torch.nn.functional.linear(
(input / reconstruction), weight
)
h /= h.sum(-1, keepdim=True) + 10e-20
h = h.movedim(-1, 1)
input = input.movedim(-1, 1)
# ###########################################################
# Save the necessary data for the backward pass
# ###########################################################
ctx.save_for_backward(input, weight, h)
ctx.stride = stride
ctx.padding = padding
ctx.dilation = dilation
ctx.use_convolution = use_convolution
ctx.local_learning = local_learning
ctx.local_learning_kl = local_learning_kl
assert torch.isfinite(h).all()
return h
@staticmethod
@torch.autograd.function.once_differentiable
def backward(ctx, grad_output: torch.Tensor) -> tuple[ # type: ignore
torch.Tensor | None,
torch.Tensor | None,
None,
None,
None,
None,
None,
None,
None,
None,
None,
]:
# ##############################################
# Default values
# ##############################################
grad_input: torch.Tensor | None = None
grad_weight: torch.Tensor | None = None
# ##############################################
# Get the variables back
# ##############################################
(input, weight, h) = ctx.saved_tensors
if ctx.use_convolution:
big_r: torch.Tensor = torch.nn.functional.conv_transpose2d(
h,
weight,
stride=ctx.stride,
padding=ctx.padding,
dilation=ctx.dilation,
)
big_r_div = 1.0 / (big_r + 1e-20)
factor_x_div_r: torch.Tensor = input * big_r_div
grad_input = (
torch.nn.functional.conv_transpose2d(
(h * grad_output),
weight,
stride=ctx.stride,
padding=ctx.padding,
dilation=ctx.dilation,
)
* big_r_div
)
del big_r_div
if ctx.local_learning is False:
del big_r
grad_weight = -torch.nn.functional.conv2d(
(factor_x_div_r * grad_input).movedim(0, 1),
h.movedim(0, 1),
stride=ctx.dilation,
padding=ctx.padding,
dilation=ctx.stride,
)
grad_weight += torch.nn.functional.conv2d(
factor_x_div_r.movedim(0, 1),
(h * grad_output).movedim(0, 1),
stride=ctx.dilation,
padding=ctx.padding,
dilation=ctx.stride,
)
else:
if ctx.local_learning_kl:
grad_weight = -torch.nn.functional.conv2d(
factor_x_div_r.movedim(0, 1),
h.movedim(0, 1),
stride=ctx.dilation,
padding=ctx.padding,
dilation=ctx.stride,
)
else:
grad_weight = -torch.nn.functional.conv2d(
(2 * (input - big_r)).movedim(0, 1),
h.movedim(0, 1),
stride=ctx.dilation,
padding=ctx.padding,
dilation=ctx.stride,
)
grad_weight = grad_weight.movedim(0, 1)
else:
h = h.movedim(1, -1)
grad_output = grad_output.movedim(1, -1)
input = input.movedim(1, -1)
big_r = torch.nn.functional.linear(h, weight.T)
big_r_div = 1.0 / (big_r + 1e-20)
factor_x_div_r = input * big_r_div
grad_input = (
torch.nn.functional.linear(h * grad_output, weight.T) * big_r_div
)
del big_r_div
if ctx.local_learning is False:
del big_r
grad_weight = -torch.nn.functional.linear(
h.reshape(
grad_input.shape[0] * grad_input.shape[1] * grad_input.shape[2],
h.shape[3],
).T,
(factor_x_div_r * grad_input)
.reshape(
grad_input.shape[0] * grad_input.shape[1] * grad_input.shape[2],
grad_input.shape[3],
)
.T,
)
grad_weight += torch.nn.functional.linear(
(h * grad_output)
.reshape(
grad_input.shape[0] * grad_input.shape[1] * grad_input.shape[2],
h.shape[3],
)
.T,
factor_x_div_r.reshape(
grad_input.shape[0] * grad_input.shape[1] * grad_input.shape[2],
grad_input.shape[3],
).T,
)
else:
if ctx.local_learning_kl:
grad_weight = -torch.nn.functional.linear(
h.reshape(
grad_input.shape[0]
* grad_input.shape[1]
* grad_input.shape[2],
h.shape[3],
).T,
factor_x_div_r.reshape(
grad_input.shape[0]
* grad_input.shape[1]
* grad_input.shape[2],
grad_input.shape[3],
).T,
)
else:
grad_weight = -torch.nn.functional.linear(
h.reshape(
grad_input.shape[0]
* grad_input.shape[1]
* grad_input.shape[2],
h.shape[3],
).T,
(2 * (input - big_r))
.reshape(
grad_input.shape[0]
* grad_input.shape[1]
* grad_input.shape[2],
grad_input.shape[3],
)
.T,
)
grad_input = grad_input.movedim(-1, 1)
assert torch.isfinite(grad_input).all()
assert torch.isfinite(grad_weight).all()
return (
grad_input,
grad_weight,
None,
None,
None,
None,
None,
None,
None,
None,
None,
)

23
SplitOnOffLayer.py Normal file
View file

@ -0,0 +1,23 @@
import torch
class SplitOnOffLayer(torch.nn.Module):
def __init__(
self,
) -> None:
super().__init__()
####################################################################
# Forward #
####################################################################
def forward(self, input: torch.Tensor) -> torch.Tensor:
assert input.ndim == 4
temp = input - 0.5
temp_a = torch.nn.functional.relu(temp)
temp_b = torch.nn.functional.relu(-temp)
output = torch.cat((temp_a, temp_b), dim=1)
return output

29
convert_log_to_numpy.py Normal file
View file

@ -0,0 +1,29 @@
import os
import glob
os.environ["TF_CPP_MIN_LOG_LEVEL"] = "3"
from tensorboard.backend.event_processing import event_accumulator
import numpy as np
def get_data(path: str = "log_cnn"):
acc = event_accumulator.EventAccumulator(path)
acc.Reload()
which_scalar = "Test Number Correct"
te = acc.Scalars(which_scalar)
np_temp = np.zeros((len(te), 2))
for id in range(0, len(te)):
np_temp[id, 0] = te[id].step
np_temp[id, 1] = te[id].value
return np_temp
for path in glob.glob("log_*"):
print(path)
data = get_data(path)
np.save("data_" + path + ".npy", data)

27
data_loader.py Normal file
View file

@ -0,0 +1,27 @@
import torch
def data_loader(
pattern: torch.Tensor,
labels: torch.Tensor,
batch_size: int = 128,
shuffle: bool = True,
torch_device: torch.device = torch.device("cpu"),
) -> torch.utils.data.dataloader.DataLoader:
assert pattern.ndim >= 3
pattern_storage: torch.Tensor = pattern.to(torch_device).type(torch.float32)
if pattern_storage.ndim == 3:
pattern_storage = pattern_storage.unsqueeze(1)
pattern_storage /= pattern_storage.max()
label_storage: torch.Tensor = labels.to(torch_device).type(torch.int64)
dataloader = torch.utils.data.DataLoader(
torch.utils.data.TensorDataset(pattern_storage, label_storage),
batch_size=batch_size,
shuffle=shuffle,
)
return dataloader

115
get_the_data.py Normal file
View file

@ -0,0 +1,115 @@
import torch
import torchvision # type: ignore
from data_loader import data_loader
def get_the_data(
dataset: str,
batch_size_train: int,
batch_size_test: int,
torch_device: torch.device,
input_dim_x: int,
input_dim_y: int,
flip_p: float = 0.5,
jitter_brightness: float = 0.5,
jitter_contrast: float = 0.1,
jitter_saturation: float = 0.1,
jitter_hue: float = 0.15,
) -> tuple[
data_loader,
data_loader,
torchvision.transforms.Compose,
torchvision.transforms.Compose,
]:
if dataset == "MNIST":
tv_dataset_train = torchvision.datasets.MNIST(
root="data", train=True, download=True
)
tv_dataset_test = torchvision.datasets.MNIST(
root="data", train=False, download=True
)
elif dataset == "FashionMNIST":
tv_dataset_train = torchvision.datasets.FashionMNIST(
root="data", train=True, download=True
)
tv_dataset_test = torchvision.datasets.FashionMNIST(
root="data", train=False, download=True
)
elif dataset == "CIFAR10":
tv_dataset_train = torchvision.datasets.CIFAR10(
root="data", train=True, download=True
)
tv_dataset_test = torchvision.datasets.CIFAR10(
root="data", train=False, download=True
)
else:
raise NotImplementedError("This dataset is not implemented.")
if dataset == "MNIST" or dataset == "FashionMNIST":
train_dataloader = data_loader(
torch_device=torch_device,
batch_size=batch_size_train,
pattern=tv_dataset_train.data,
labels=tv_dataset_train.targets,
shuffle=True,
)
test_dataloader = data_loader(
torch_device=torch_device,
batch_size=batch_size_test,
pattern=tv_dataset_test.data,
labels=tv_dataset_test.targets,
shuffle=False,
)
# Data augmentation filter
test_processing_chain = torchvision.transforms.Compose(
transforms=[torchvision.transforms.CenterCrop((input_dim_x, input_dim_y))],
)
train_processing_chain = torchvision.transforms.Compose(
transforms=[torchvision.transforms.RandomCrop((input_dim_x, input_dim_y))],
)
else:
train_dataloader = data_loader(
torch_device=torch_device,
batch_size=batch_size_train,
pattern=torch.tensor(tv_dataset_train.data).movedim(-1, 1),
labels=torch.tensor(tv_dataset_train.targets),
shuffle=True,
)
test_dataloader = data_loader(
torch_device=torch_device,
batch_size=batch_size_test,
pattern=torch.tensor(tv_dataset_test.data).movedim(-1, 1),
labels=torch.tensor(tv_dataset_test.targets),
shuffle=False,
)
# Data augmentation filter
test_processing_chain = torchvision.transforms.Compose(
transforms=[torchvision.transforms.CenterCrop((input_dim_x, input_dim_y))],
)
train_processing_chain = torchvision.transforms.Compose(
transforms=[
torchvision.transforms.RandomCrop((input_dim_x, input_dim_y)),
torchvision.transforms.RandomHorizontalFlip(p=flip_p),
torchvision.transforms.ColorJitter(
brightness=jitter_brightness,
contrast=jitter_contrast,
saturation=jitter_saturation,
hue=jitter_hue,
),
],
)
return (
train_dataloader,
test_dataloader,
test_processing_chain,
train_processing_chain,
)

64
loss_function.py Normal file
View file

@ -0,0 +1,64 @@
import torch
# loss_mode == 0: "normal" SbS loss function mixture
# loss_mode == 1: cross_entropy
def loss_function(
h: torch.Tensor,
labels: torch.Tensor,
loss_mode: int = 0,
number_of_output_neurons: int = 10,
loss_coeffs_mse: float = 0.0,
loss_coeffs_kldiv: float = 0.0,
) -> torch.Tensor | None:
assert loss_mode >= 0
assert loss_mode <= 1
assert h.ndim == 2
if loss_mode == 0:
# Convert label into one hot
target_one_hot: torch.Tensor = torch.zeros(
(
labels.shape[0],
number_of_output_neurons,
),
device=h.device,
dtype=h.dtype,
)
target_one_hot.scatter_(
1,
labels.to(h.device).unsqueeze(1),
torch.ones(
(labels.shape[0], 1),
device=h.device,
dtype=h.dtype,
),
)
my_loss: torch.Tensor = ((h - target_one_hot) ** 2).sum(dim=0).mean(
dim=0
) * loss_coeffs_mse
my_loss = (
my_loss
+ (
(target_one_hot * torch.log((target_one_hot + 1e-20) / (h + 1e-20)))
.sum(dim=0)
.mean(dim=0)
)
* loss_coeffs_kldiv
)
my_loss = my_loss / (abs(loss_coeffs_kldiv) + abs(loss_coeffs_mse))
return my_loss
elif loss_mode == 1:
my_loss = torch.nn.functional.cross_entropy(h, labels.to(h.device))
return my_loss
else:
return None

354
make_network.py Normal file
View file

@ -0,0 +1,354 @@
import torch
from NNMFConv2d import NNMFConv2d
from NNMFConv2dP import NNMFConv2dP
from SplitOnOffLayer import SplitOnOffLayer
def make_network(
use_nnmf: bool,
cnn_top: bool,
input_dim_x: int,
input_dim_y: int,
input_number_of_channel: int,
iterations: int,
init_min: float = 0.0,
init_max: float = 1.0,
use_convolution: bool = False,
convolution_contribution_map_enable: bool = False,
epsilon: bool | None = None,
positive_function_type: int = 0,
beta: float | None = None,
number_of_output_channels_conv1: int = 32,
number_of_output_channels_conv2: int = 64,
number_of_output_channels_flatten2: int = 96,
number_of_output_channels_full1: int = 10,
kernel_size_conv1: tuple[int, int] = (5, 5),
kernel_size_pool1: tuple[int, int] = (2, 2),
kernel_size_conv2: tuple[int, int] = (5, 5),
kernel_size_pool2: tuple[int, int] = (2, 2),
stride_conv1: tuple[int, int] = (1, 1),
stride_pool1: tuple[int, int] = (2, 2),
stride_conv2: tuple[int, int] = (1, 1),
stride_pool2: tuple[int, int] = (2, 2),
padding_conv1: int = 0,
padding_pool1: int = 0,
padding_conv2: int = 0,
padding_pool2: int = 0,
enable_onoff: bool = False,
local_learning_0: bool = False,
local_learning_1: bool = False,
local_learning_2: bool = False,
local_learning_3: bool = False,
local_learning_kl: bool = True,
p_mode_0: bool = False,
p_mode_1: bool = False,
p_mode_2: bool = False,
p_mode_3: bool = False,
) -> tuple[torch.nn.Sequential, list[int], list[int]]:
if enable_onoff:
input_number_of_channel *= 2
list_cnn_top_id: list[int] = []
list_other_id: list[int] = []
test_image = torch.ones((1, input_number_of_channel, input_dim_x, input_dim_y))
network = torch.nn.Sequential()
if enable_onoff:
network.append(SplitOnOffLayer())
test_image = network[-1](test_image)
list_other_id.append(len(network))
if use_nnmf:
if p_mode_0:
network.append(
NNMFConv2dP(
in_channels=test_image.shape[1],
out_channels=number_of_output_channels_conv1,
kernel_size=kernel_size_conv1,
convolution_contribution_map_enable=convolution_contribution_map_enable,
epsilon=epsilon,
positive_function_type=positive_function_type,
init_min=init_min,
init_max=init_max,
beta=beta,
use_convolution=use_convolution,
iterations=iterations,
local_learning=local_learning_0,
local_learning_kl=local_learning_kl,
)
)
else:
network.append(
NNMFConv2d(
in_channels=test_image.shape[1],
out_channels=number_of_output_channels_conv1,
kernel_size=kernel_size_conv1,
convolution_contribution_map_enable=convolution_contribution_map_enable,
epsilon=epsilon,
positive_function_type=positive_function_type,
init_min=init_min,
init_max=init_max,
beta=beta,
use_convolution=use_convolution,
iterations=iterations,
local_learning=local_learning_0,
local_learning_kl=local_learning_kl,
)
)
test_image = network[-1](test_image)
else:
network.append(
torch.nn.Conv2d(
in_channels=test_image.shape[1],
out_channels=number_of_output_channels_conv1,
kernel_size=kernel_size_conv1,
stride=stride_conv1,
padding=padding_conv1,
)
)
test_image = network[-1](test_image)
network.append(torch.nn.ReLU())
test_image = network[-1](test_image)
if cnn_top:
list_cnn_top_id.append(len(network))
network.append(
torch.nn.Conv2d(
in_channels=test_image.shape[1],
out_channels=number_of_output_channels_conv1,
kernel_size=(1, 1),
stride=(1, 1),
padding=(0, 0),
bias=True,
)
)
test_image = network[-1](test_image)
network.append(torch.nn.ReLU())
test_image = network[-1](test_image)
network.append(
torch.nn.MaxPool2d(
kernel_size=kernel_size_pool1, stride=stride_pool1, padding=padding_pool1
)
)
test_image = network[-1](test_image)
list_other_id.append(len(network))
if use_nnmf:
if p_mode_1:
network.append(
NNMFConv2dP(
in_channels=test_image.shape[1],
out_channels=number_of_output_channels_conv2,
kernel_size=kernel_size_conv2,
convolution_contribution_map_enable=convolution_contribution_map_enable,
epsilon=epsilon,
positive_function_type=positive_function_type,
init_min=init_min,
init_max=init_max,
beta=beta,
use_convolution=use_convolution,
iterations=iterations,
local_learning=local_learning_1,
local_learning_kl=local_learning_kl,
)
)
else:
network.append(
NNMFConv2d(
in_channels=test_image.shape[1],
out_channels=number_of_output_channels_conv2,
kernel_size=kernel_size_conv2,
convolution_contribution_map_enable=convolution_contribution_map_enable,
epsilon=epsilon,
positive_function_type=positive_function_type,
init_min=init_min,
init_max=init_max,
beta=beta,
use_convolution=use_convolution,
iterations=iterations,
local_learning=local_learning_1,
local_learning_kl=local_learning_kl,
)
)
test_image = network[-1](test_image)
else:
network.append(
torch.nn.Conv2d(
in_channels=test_image.shape[1],
out_channels=number_of_output_channels_conv2,
kernel_size=kernel_size_conv2,
stride=stride_conv2,
padding=padding_conv2,
)
)
test_image = network[-1](test_image)
network.append(torch.nn.ReLU())
test_image = network[-1](test_image)
if cnn_top:
list_cnn_top_id.append(len(network))
network.append(
torch.nn.Conv2d(
in_channels=test_image.shape[1],
out_channels=number_of_output_channels_conv2,
kernel_size=(1, 1),
stride=(1, 1),
padding=(0, 0),
bias=True,
)
)
test_image = network[-1](test_image)
network.append(torch.nn.ReLU())
test_image = network[-1](test_image)
network.append(
torch.nn.MaxPool2d(
kernel_size=kernel_size_pool2, stride=stride_pool2, padding=padding_pool2
)
)
test_image = network[-1](test_image)
list_other_id.append(len(network))
if use_nnmf:
if p_mode_2:
network.append(
NNMFConv2dP(
in_channels=test_image.shape[1],
out_channels=number_of_output_channels_flatten2,
kernel_size=(test_image.shape[2], test_image.shape[3]),
convolution_contribution_map_enable=convolution_contribution_map_enable,
epsilon=epsilon,
positive_function_type=positive_function_type,
init_min=init_min,
init_max=init_max,
beta=beta,
use_convolution=use_convolution,
iterations=iterations,
local_learning=local_learning_2,
local_learning_kl=local_learning_kl,
)
)
else:
network.append(
NNMFConv2d(
in_channels=test_image.shape[1],
out_channels=number_of_output_channels_flatten2,
kernel_size=(test_image.shape[2], test_image.shape[3]),
convolution_contribution_map_enable=convolution_contribution_map_enable,
epsilon=epsilon,
positive_function_type=positive_function_type,
init_min=init_min,
init_max=init_max,
beta=beta,
use_convolution=use_convolution,
iterations=iterations,
local_learning=local_learning_2,
local_learning_kl=local_learning_kl,
)
)
test_image = network[-1](test_image)
else:
network.append(
torch.nn.Conv2d(
in_channels=test_image.shape[1],
out_channels=number_of_output_channels_flatten2,
kernel_size=(test_image.shape[2], test_image.shape[3]),
)
)
test_image = network[-1](test_image)
network.append(torch.nn.ReLU())
test_image = network[-1](test_image)
if cnn_top:
list_cnn_top_id.append(len(network))
network.append(
torch.nn.Conv2d(
in_channels=test_image.shape[1],
out_channels=number_of_output_channels_flatten2,
kernel_size=(1, 1),
stride=(1, 1),
padding=(0, 0),
bias=True,
)
)
test_image = network[-1](test_image)
network.append(torch.nn.ReLU())
test_image = network[-1](test_image)
list_other_id.append(len(network))
if use_nnmf:
if p_mode_3:
network.append(
NNMFConv2dP(
in_channels=test_image.shape[1],
out_channels=number_of_output_channels_full1,
kernel_size=(test_image.shape[2], test_image.shape[3]),
convolution_contribution_map_enable=convolution_contribution_map_enable,
epsilon=epsilon,
positive_function_type=positive_function_type,
init_min=init_min,
init_max=init_max,
beta=beta,
use_convolution=use_convolution,
iterations=iterations,
local_learning=local_learning_3,
local_learning_kl=local_learning_kl,
)
)
else:
network.append(
NNMFConv2d(
in_channels=test_image.shape[1],
out_channels=number_of_output_channels_full1,
kernel_size=(test_image.shape[2], test_image.shape[3]),
convolution_contribution_map_enable=convolution_contribution_map_enable,
epsilon=epsilon,
positive_function_type=positive_function_type,
init_min=init_min,
init_max=init_max,
beta=beta,
use_convolution=use_convolution,
iterations=iterations,
local_learning=local_learning_3,
local_learning_kl=local_learning_kl,
)
)
test_image = network[-1](test_image)
else:
network.append(
torch.nn.Conv2d(
in_channels=test_image.shape[1],
out_channels=number_of_output_channels_full1,
kernel_size=(test_image.shape[2], test_image.shape[3]),
)
)
test_image = network[-1](test_image)
if cnn_top:
network.append(torch.nn.ReLU())
test_image = network[-1](test_image)
if cnn_top:
list_cnn_top_id.append(len(network))
network.append(
torch.nn.Conv2d(
in_channels=test_image.shape[1],
out_channels=number_of_output_channels_full1,
kernel_size=(1, 1),
stride=(1, 1),
padding=(0, 0),
bias=True,
)
)
test_image = network[-1](test_image)
network.append(torch.nn.Flatten())
test_image = network[-1](test_image)
network.append(torch.nn.Softmax(dim=1))
test_image = network[-1](test_image)
return network, list_cnn_top_id, list_other_id

103
make_optimize.py Normal file
View file

@ -0,0 +1,103 @@
import torch
from NNMFConv2d import NNMFConv2d
from NNMFConv2dP import NNMFConv2dP
def make_optimize(
network: torch.nn.Sequential,
list_cnn_top_id: list[int],
list_other_id: list[int],
lr_initial_nnmf: float = 0.01,
lr_initial_cnn: float = 0.001,
lr_initial_cnn_top: float = 0.001,
eps=1e-10,
) -> tuple[
torch.optim.Adam | None,
torch.optim.Adam | None,
torch.optim.Adam | None,
torch.optim.lr_scheduler.ReduceLROnPlateau | None,
torch.optim.lr_scheduler.ReduceLROnPlateau | None,
torch.optim.lr_scheduler.ReduceLROnPlateau | None,
]:
list_cnn_top: list = []
# Init the cnn top layers 1x1 conv2d layers
for layerid in list_cnn_top_id:
for netp in network[layerid].parameters():
with torch.no_grad():
if netp.ndim == 1:
netp.data *= 0
if netp.ndim == 4:
assert netp.shape[-2] == 1
assert netp.shape[-1] == 1
netp[: netp.shape[0], : netp.shape[0], 0, 0] = torch.eye(
netp.shape[0], dtype=netp.dtype, device=netp.device
)
netp[netp.shape[0] :, :, 0, 0] = 0
netp[:, netp.shape[0] :, 0, 0] = 0
list_cnn_top.append(netp)
list_cnn: list = []
list_nnmf: list = []
for layerid in list_other_id:
if isinstance(network[layerid], torch.nn.Conv2d):
for netp in network[layerid].parameters():
list_cnn.append(netp)
if isinstance(network[layerid], (NNMFConv2d, NNMFConv2dP)):
for netp in network[layerid].parameters():
list_nnmf.append(netp)
# The optimizer
if len(list_nnmf) > 0:
optimizer_nnmf: torch.optim.Adam | None = torch.optim.Adam(
list_nnmf, lr=lr_initial_nnmf
)
else:
optimizer_nnmf = None
if len(list_cnn) > 0:
optimizer_cnn: torch.optim.Adam | None = torch.optim.Adam(
list_cnn, lr=lr_initial_cnn
)
else:
optimizer_cnn = None
if len(list_cnn_top) > 0:
optimizer_cnn_top: torch.optim.Adam | None = torch.optim.Adam(
list_cnn_top, lr=lr_initial_cnn_top
)
else:
optimizer_cnn_top = None
# The LR Scheduler
if optimizer_nnmf is not None:
lr_scheduler_nnmf: torch.optim.lr_scheduler.ReduceLROnPlateau | None = (
torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer_nnmf, eps=eps)
)
else:
lr_scheduler_nnmf = None
if optimizer_cnn is not None:
lr_scheduler_cnn: torch.optim.lr_scheduler.ReduceLROnPlateau | None = (
torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer_cnn, eps=eps)
)
else:
lr_scheduler_cnn = None
if optimizer_cnn_top is not None:
lr_scheduler_cnn_top: torch.optim.lr_scheduler.ReduceLROnPlateau | None = (
torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer_cnn_top, eps=eps)
)
else:
lr_scheduler_cnn_top = None
return (
optimizer_nnmf,
optimizer_cnn,
optimizer_cnn_top,
lr_scheduler_nnmf,
lr_scheduler_cnn,
lr_scheduler_cnn_top,
)

View file

@ -0,0 +1,26 @@
import torch
def non_linear_weigth_function(
weight: torch.Tensor, beta: torch.Tensor | None, positive_function_type: int
) -> torch.Tensor:
if positive_function_type == 0:
positive_weights = torch.abs(weight)
elif positive_function_type == 1:
assert beta is not None
positive_weights = weight
max_value = torch.abs(positive_weights).max()
if max_value > 80:
positive_weights = 80.0 * positive_weights / max_value
positive_weights = torch.exp((torch.tanh(beta) + 1.0) * 0.5 * positive_weights)
elif positive_function_type == 2:
assert beta is not None
positive_weights = (torch.tanh(beta * weight) + 1.0) * 0.5
else:
positive_weights = weight
return positive_weights

46
plot.py Normal file
View file

@ -0,0 +1,46 @@
import numpy as np
import matplotlib.pyplot as plt
data = np.load("data_log_cnn_20_True_0.001_0.01_True_True_True_True.npy")
plt.loglog(data[:, 0], 100.0 * (1.0 - data[:, 1] / 10000.0), "k", label="CNN + CNN Top")
data = np.load("data_log_cnn_20_False_0.001_0.01_True_True_True_True.npy")
plt.loglog(data[:, 0], 100.0 * (1.0 - data[:, 1] / 10000.0), "k--", label="CNN")
data = np.load("data_log_nnmf_20_True_0.001_0.01_True_True_True_True.npy")
plt.loglog(
data[:, 0],
100.0 * (1.0 - data[:, 1] / 10000.0),
"r",
label="NNMF + CNN Top (Iter 20, KL)",
)
data = np.load("data_log_nnmf_20_False_0.001_0.01_True_True_True_True.npy")
plt.loglog(
data[:, 0],
100.0 * (1.0 - data[:, 1] / 10000.0),
"r--",
label="NNMF (Iter 20, KL)",
)
data = np.load("data_log_nnmf_20_True_0.001_0.01_True_True_True_False.npy")
plt.loglog(
data[:, 0],
100.0 * (1.0 - data[:, 1] / 10000.0),
"b",
label="NNMF + CNN Top (Iter 20, MSE)",
)
data = np.load("data_log_nnmf_20_False_0.001_0.01_True_True_True_False.npy")
plt.loglog(
data[:, 0],
100.0 * (1.0 - data[:, 1] / 10000.0),
"b--",
label="NNMF (Iter 20, MSE)",
)
plt.legend()
plt.xlabel("Epoch")
plt.ylabel("Error [%]")
plt.show()

272
run_network.py Normal file
View file

@ -0,0 +1,272 @@
import os
os.environ["TF_CPP_MIN_LOG_LEVEL"] = "3"
import argh
import time
import torch
from torch.utils.tensorboard import SummaryWriter
from make_network import make_network
from get_the_data import get_the_data
from loss_function import loss_function
from make_optimize import make_optimize
def main(
lr_initial_nnmf: float = 0.01,
lr_initial_cnn: float = 0.001,
lr_initial_cnn_top: float = 0.001,
iterations: int = 20,
cnn_top: bool = True,
use_nnmf: bool = True,
dataset: str = "CIFAR10", # "CIFAR10", "FashionMNIST", "MNIST"
rand_seed: int = 21,
enable_onoff: bool = False,
local_learning_0: bool = False,
local_learning_1: bool = False,
local_learning_2: bool = False,
local_learning_3: bool = False,
local_learning_kl: bool = False,
p_mode_0: bool = False,
p_mode_1: bool = False,
p_mode_2: bool = False,
p_mode_3: bool = False,
) -> None:
lr_limit: float = 1e-9
torch.manual_seed(rand_seed)
torch_device: torch.device = (
torch.device("cuda:0") if torch.cuda.is_available() else torch.device("cpu")
)
torch.set_default_dtype(torch.float32)
# Some parameters
batch_size_train: int = 500
batch_size_test: int = 500
number_of_epoch: int = 500
if use_nnmf:
prefix: str = "nnmf"
else:
prefix = "cnn"
default_path: str = (
f"{prefix}_{iterations}_{cnn_top}_{lr_initial_cnn}_{lr_initial_nnmf}_{local_learning_0}_{local_learning_1}_{local_learning_2}_{local_learning_kl}"
)
log_dir: str = f"log_{default_path}"
loss_mode: int = 0
loss_coeffs_mse: float = 0.5
loss_coeffs_kldiv: float = 1.0
print(
"loss_mode: ",
loss_mode,
"loss_coeffs_mse: ",
loss_coeffs_mse,
"loss_coeffs_kldiv: ",
loss_coeffs_kldiv,
)
if dataset == "MNIST" or dataset == "FashionMNIST":
input_number_of_channel: int = 1
input_dim_x: int = 24
input_dim_y: int = 24
else:
input_number_of_channel = 3
input_dim_x = 28
input_dim_y = 28
train_dataloader, test_dataloader, test_processing_chain, train_processing_chain = (
get_the_data(
dataset,
batch_size_train,
batch_size_test,
torch_device,
input_dim_x,
input_dim_y,
flip_p=0.5,
jitter_brightness=0.5,
jitter_contrast=0.1,
jitter_saturation=0.1,
jitter_hue=0.15,
)
)
network, list_cnn_top_id, list_other_id = make_network(
use_nnmf=use_nnmf,
cnn_top=cnn_top,
input_dim_x=input_dim_x,
input_dim_y=input_dim_y,
input_number_of_channel=input_number_of_channel,
iterations=iterations,
enable_onoff=enable_onoff,
local_learning_0=local_learning_0,
local_learning_1=local_learning_1,
local_learning_2=local_learning_2,
local_learning_3=local_learning_3,
local_learning_kl=local_learning_kl,
p_mode_0=p_mode_0,
p_mode_1=p_mode_1,
p_mode_2=p_mode_2,
p_mode_3=p_mode_3,
)
network = network.to(torch_device)
print(network)
(
optimizer_nnmf,
optimizer_cnn,
optimizer_cnn_top,
lr_scheduler_nnmf,
lr_scheduler_cnn,
lr_scheduler_cnn_top,
) = make_optimize(
network=network,
list_cnn_top_id=list_cnn_top_id,
list_other_id=list_other_id,
lr_initial_nnmf=lr_initial_nnmf,
lr_initial_cnn=lr_initial_cnn,
lr_initial_cnn_top=lr_initial_cnn_top,
)
tb = SummaryWriter(log_dir=log_dir)
for epoch_id in range(0, number_of_epoch):
print()
print(f"Epoch: {epoch_id}")
t_start: float = time.perf_counter()
train_loss: float = 0.0
train_correct: int = 0
train_number: int = 0
test_correct: int = 0
test_number: int = 0
# Switch the network into training mode
network.train()
# This runs in total for one epoch split up into mini-batches
for image, target in train_dataloader:
# Clean the gradient
if optimizer_nnmf is not None:
optimizer_nnmf.zero_grad()
if optimizer_cnn is not None:
optimizer_cnn.zero_grad()
if optimizer_cnn_top is not None:
optimizer_cnn_top.zero_grad()
output = network(train_processing_chain(image))
loss = loss_function(
h=output,
labels=target,
number_of_output_neurons=output.shape[1],
loss_mode=loss_mode,
loss_coeffs_mse=loss_coeffs_mse,
loss_coeffs_kldiv=loss_coeffs_kldiv,
)
assert loss is not None
train_loss += loss.item()
train_correct += (output.argmax(dim=1) == target).sum().cpu().numpy()
train_number += target.shape[0]
# Calculate backprop
loss.backward()
# Update the parameter
if optimizer_nnmf is not None:
optimizer_nnmf.step()
if optimizer_cnn is not None:
optimizer_cnn.step()
if optimizer_cnn_top is not None:
optimizer_cnn_top.step()
perfomance_train_correct: float = 100.0 * train_correct / train_number
# Update the learning rate
if lr_scheduler_nnmf is not None:
lr_scheduler_nnmf.step(train_loss)
if lr_scheduler_cnn is not None:
lr_scheduler_cnn.step(train_loss)
if lr_scheduler_cnn_top is not None:
lr_scheduler_cnn_top.step(train_loss)
print(
"Actual lr: ",
"nnmf: ",
lr_scheduler_nnmf.get_last_lr() if lr_scheduler_nnmf is not None else -1.0,
"cnn: ",
lr_scheduler_cnn.get_last_lr() if lr_scheduler_cnn is not None else -1.0,
"cnn top: ",
(
lr_scheduler_cnn_top.get_last_lr()
if lr_scheduler_cnn_top is not None
else -1.0
),
)
t_training: float = time.perf_counter()
# Switch the network into evalution mode
network.eval()
with torch.no_grad():
for image, target in test_dataloader:
output = network(test_processing_chain(image))
test_correct += (output.argmax(dim=1) == target).sum().cpu().numpy()
test_number += target.shape[0]
t_testing = time.perf_counter()
perfomance_test_correct: float = 100.0 * test_correct / test_number
tb.add_scalar("Train Loss", train_loss / float(train_number), epoch_id)
tb.add_scalar("Train Number Correct", train_correct, epoch_id)
tb.add_scalar("Test Number Correct", test_correct, epoch_id)
print(
f"Training: Loss={train_loss / float(train_number):.5f} Correct={perfomance_train_correct:.2f}%"
)
print(f"Testing: Correct={perfomance_test_correct:.2f}%")
print(
f"Time: Training={(t_training - t_start):.1f}sec, Testing={(t_testing - t_training):.1f}sec"
)
tb.flush()
lr_check: list[float] = []
if lr_scheduler_nnmf is not None:
lr_check.append(lr_scheduler_nnmf.get_last_lr()[0])
if lr_scheduler_cnn is not None:
lr_check.append(lr_scheduler_cnn.get_last_lr()[0])
if lr_scheduler_cnn_top is not None:
lr_check.append(lr_scheduler_cnn_top.get_last_lr()[0])
lr_check_max = float(torch.tensor(lr_check).max())
if lr_check_max < lr_limit:
torch.save(network, f"Model_{default_path}.pt")
tb.close()
print("Done (lr_limit)")
return
torch.save(network, f"Model_{default_path}.pt")
print()
tb.close()
print("Done (loop end)")
return
if __name__ == "__main__":
argh.dispatch_command(main)