Add files via upload
This commit is contained in:
parent
a537f3e356
commit
7c2a974e67
2 changed files with 35 additions and 31 deletions
62
get_perf.py
62
get_perf.py
|
@ -1,47 +1,47 @@
|
||||||
import os
|
import os
|
||||||
|
|
||||||
os.environ["TF_CPP_MIN_LOG_LEVEL"] = "3"
|
os.environ["TF_CPP_MIN_LOG_LEVEL"] = "3"
|
||||||
import matplotlib.pyplot as plt
|
|
||||||
|
which_scalar = "Test Error"
|
||||||
|
|
||||||
from tensorboard.backend.event_processing import event_accumulator
|
from tensorboard.backend.event_processing import event_accumulator
|
||||||
import numpy as np
|
import numpy as np
|
||||||
import json
|
|
||||||
from jsmin import jsmin
|
|
||||||
import glob
|
import glob
|
||||||
|
|
||||||
# -------------------------------
|
log_paths: str = "Log*"
|
||||||
|
log_paths_list = glob.glob(log_paths)
|
||||||
|
assert len(log_paths_list) > 0
|
||||||
|
|
||||||
filename:str = "def.json"
|
for path in log_paths_list:
|
||||||
with open(filename) as json_file:
|
print(path)
|
||||||
minified = jsmin(json_file.read())
|
temp = path.split("_")
|
||||||
data = json.loads(minified)
|
if len(temp) == 2:
|
||||||
|
parameter:str | None = temp[-1]
|
||||||
|
else:
|
||||||
|
parameter = None
|
||||||
|
|
||||||
|
# ----------------------
|
||||||
|
temp = glob.glob(path)
|
||||||
|
assert len(temp) == 1
|
||||||
|
|
||||||
|
acc = event_accumulator.EventAccumulator(path)
|
||||||
|
acc.Reload()
|
||||||
|
|
||||||
# -------------------------------
|
# Check if the requested scalar exists
|
||||||
|
available_scalar = acc.Tags()["scalars"]
|
||||||
|
# available_histograms = acc.Tags()["histograms"]
|
||||||
|
available_scalar.index(which_scalar)
|
||||||
|
|
||||||
|
te = acc.Scalars(which_scalar)
|
||||||
|
|
||||||
path_runs: str = "./Log/*"
|
np_temp = np.zeros((len(te), 2))
|
||||||
|
|
||||||
temp = glob.glob(path_runs)
|
for id in range(0, len(te)):
|
||||||
assert len(temp) == 1
|
np_temp[id, 0] = te[id][1]
|
||||||
path = temp[0]
|
np_temp[id, 1] = te[id][2]
|
||||||
|
print(np_temp)
|
||||||
|
|
||||||
|
if parameter is not None:
|
||||||
acc = event_accumulator.EventAccumulator(path)
|
np.save(f"result_{parameter}.npy", np_temp)
|
||||||
acc.Reload()
|
else:
|
||||||
|
np.save(f"result.npy", np_temp)
|
||||||
available_scalar = acc.Tags()["scalars"]
|
|
||||||
available_histograms = acc.Tags()["histograms"]
|
|
||||||
|
|
||||||
which_scalar = "Test Error"
|
|
||||||
te = acc.Scalars(which_scalar)
|
|
||||||
|
|
||||||
temp = []
|
|
||||||
for te_item in te:
|
|
||||||
temp.append((te_item[1], te_item[2]))
|
|
||||||
temp = np.array(temp)
|
|
||||||
|
|
||||||
print(temp)
|
|
||||||
np.save(f"test_error.npy", temp)
|
|
||||||
|
|
||||||
|
|
|
@ -30,8 +30,10 @@ from network.loop_train_test import (
|
||||||
run_lr_scheduler,
|
run_lr_scheduler,
|
||||||
loop_test_reconstruction,
|
loop_test_reconstruction,
|
||||||
)
|
)
|
||||||
|
|
||||||
from network.SbSReconstruction import SbSReconstruction
|
from network.SbSReconstruction import SbSReconstruction
|
||||||
from network.InputSpikeImage import InputSpikeImage
|
from network.InputSpikeImage import InputSpikeImage
|
||||||
|
from network.SbSLayer import SbSLayer
|
||||||
|
|
||||||
from torch.utils.tensorboard import SummaryWriter
|
from torch.utils.tensorboard import SummaryWriter
|
||||||
|
|
||||||
|
@ -155,6 +157,8 @@ if order_id is not None:
|
||||||
if isinstance(network[0], InputSpikeImage) is True:
|
if isinstance(network[0], InputSpikeImage) is True:
|
||||||
network[0].number_of_spikes = number_of_spikes_in_input_layer
|
network[0].number_of_spikes = number_of_spikes_in_input_layer
|
||||||
|
|
||||||
|
if isinstance(network[0], SbSLayer) is True:
|
||||||
|
network[0]._number_of_spikes = number_of_spikes_in_input_layer
|
||||||
|
|
||||||
last_test_performance: float = -1.0
|
last_test_performance: float = -1.0
|
||||||
with torch.no_grad():
|
with torch.no_grad():
|
||||||
|
|
Loading…
Reference in a new issue