Add files via upload
This commit is contained in:
parent
a537f3e356
commit
7c2a974e67
2 changed files with 35 additions and 31 deletions
62
get_perf.py
62
get_perf.py
|
@ -1,47 +1,47 @@
|
|||
import os
|
||||
|
||||
os.environ["TF_CPP_MIN_LOG_LEVEL"] = "3"
|
||||
import matplotlib.pyplot as plt
|
||||
|
||||
which_scalar = "Test Error"
|
||||
|
||||
from tensorboard.backend.event_processing import event_accumulator
|
||||
import numpy as np
|
||||
import json
|
||||
from jsmin import jsmin
|
||||
import glob
|
||||
|
||||
# -------------------------------
|
||||
log_paths: str = "Log*"
|
||||
log_paths_list = glob.glob(log_paths)
|
||||
assert len(log_paths_list) > 0
|
||||
|
||||
filename:str = "def.json"
|
||||
with open(filename) as json_file:
|
||||
minified = jsmin(json_file.read())
|
||||
data = json.loads(minified)
|
||||
for path in log_paths_list:
|
||||
print(path)
|
||||
temp = path.split("_")
|
||||
if len(temp) == 2:
|
||||
parameter:str | None = temp[-1]
|
||||
else:
|
||||
parameter = None
|
||||
|
||||
# ----------------------
|
||||
temp = glob.glob(path)
|
||||
assert len(temp) == 1
|
||||
|
||||
acc = event_accumulator.EventAccumulator(path)
|
||||
acc.Reload()
|
||||
|
||||
# -------------------------------
|
||||
# Check if the requested scalar exists
|
||||
available_scalar = acc.Tags()["scalars"]
|
||||
# available_histograms = acc.Tags()["histograms"]
|
||||
available_scalar.index(which_scalar)
|
||||
|
||||
te = acc.Scalars(which_scalar)
|
||||
|
||||
path_runs: str = "./Log/*"
|
||||
np_temp = np.zeros((len(te), 2))
|
||||
|
||||
temp = glob.glob(path_runs)
|
||||
assert len(temp) == 1
|
||||
path = temp[0]
|
||||
for id in range(0, len(te)):
|
||||
np_temp[id, 0] = te[id][1]
|
||||
np_temp[id, 1] = te[id][2]
|
||||
print(np_temp)
|
||||
|
||||
|
||||
acc = event_accumulator.EventAccumulator(path)
|
||||
acc.Reload()
|
||||
|
||||
available_scalar = acc.Tags()["scalars"]
|
||||
available_histograms = acc.Tags()["histograms"]
|
||||
|
||||
which_scalar = "Test Error"
|
||||
te = acc.Scalars(which_scalar)
|
||||
|
||||
temp = []
|
||||
for te_item in te:
|
||||
temp.append((te_item[1], te_item[2]))
|
||||
temp = np.array(temp)
|
||||
|
||||
print(temp)
|
||||
np.save(f"test_error.npy", temp)
|
||||
if parameter is not None:
|
||||
np.save(f"result_{parameter}.npy", np_temp)
|
||||
else:
|
||||
np.save(f"result.npy", np_temp)
|
||||
|
||||
|
|
|
@ -30,8 +30,10 @@ from network.loop_train_test import (
|
|||
run_lr_scheduler,
|
||||
loop_test_reconstruction,
|
||||
)
|
||||
|
||||
from network.SbSReconstruction import SbSReconstruction
|
||||
from network.InputSpikeImage import InputSpikeImage
|
||||
from network.SbSLayer import SbSLayer
|
||||
|
||||
from torch.utils.tensorboard import SummaryWriter
|
||||
|
||||
|
@ -155,6 +157,8 @@ if order_id is not None:
|
|||
if isinstance(network[0], InputSpikeImage) is True:
|
||||
network[0].number_of_spikes = number_of_spikes_in_input_layer
|
||||
|
||||
if isinstance(network[0], SbSLayer) is True:
|
||||
network[0]._number_of_spikes = number_of_spikes_in_input_layer
|
||||
|
||||
last_test_performance: float = -1.0
|
||||
with torch.no_grad():
|
||||
|
|
Loading…
Reference in a new issue