408 lines
6.5 KiB
Markdown
408 lines
6.5 KiB
Markdown
# pytorch-sbs
|
||
SbS Extension for PyTorch
|
||
|
||
|
||
# Based on these scientific papers
|
||
|
||
**Back-Propagation Learning in Deep Spike-By-Spike Networks**
|
||
David Rotermund and Klaus R. Pawelzik
|
||
Front. Comput. Neurosci., https://doi.org/10.3389/fncom.2019.00055
|
||
https://www.frontiersin.org/articles/10.3389/fncom.2019.00055/full
|
||
|
||
**Efficient Computation Based on Stochastic Spikes**
|
||
Udo Ernst, David Rotermund, and Klaus Pawelzik
|
||
Neural Computation (2007) 19 (5): 1313–1343. https://doi.org/10.1162/neco.2007.19.5.1313
|
||
https://direct.mit.edu/neco/article-abstract/19/5/1313/7183/Efficient-Computation-Based-on-Stochastic-Spikes
|
||
|
||
# Python
|
||
|
||
It was programmed with 3.10.4. And I used some 3.10 Python expression. Thus you might get problems with older Python versions.
|
||
|
||
# C++
|
||
|
||
It works without compiling the C++ modules. However it is 10x slower.
|
||
You need to modify the Makefile in the C++ directory to your Python installation.
|
||
In addition yoir Python installation needs the PyBind11 package installed. You might want to perform a
|
||
pip install pybind11
|
||
The Makefile uses clang as a compiler. If you want something else then you need to change the Makefile.
|
||
The SbS.py autodetectes if the required C++ .so modules are in the same directory as the SbS.py file.
|
||
|
||
# SbS layer class
|
||
|
||
## Variables
|
||
|
||
```
|
||
epsilon_xy
|
||
```
|
||
|
||
```
|
||
epsilon_0
|
||
```
|
||
|
||
```
|
||
epsilon_t
|
||
```
|
||
|
||
```
|
||
weights
|
||
```
|
||
|
||
```
|
||
kernel_size
|
||
```
|
||
|
||
```
|
||
stride
|
||
```
|
||
|
||
```
|
||
dilation
|
||
```
|
||
|
||
```
|
||
padding
|
||
```
|
||
|
||
```
|
||
output_size
|
||
```
|
||
|
||
```
|
||
number_of_spikes
|
||
```
|
||
|
||
```
|
||
number_of_cpu_processes
|
||
```
|
||
|
||
```
|
||
number_of_neurons
|
||
```
|
||
|
||
```
|
||
number_of_input_neurons
|
||
```
|
||
|
||
```
|
||
h_initial
|
||
```
|
||
|
||
```
|
||
alpha_number_of_iterations
|
||
```
|
||
|
||
## Constructor
|
||
```
|
||
def __init__(
|
||
self,
|
||
number_of_input_neurons: int,
|
||
number_of_neurons: int,
|
||
input_size: list[int],
|
||
forward_kernel_size: list[int],
|
||
number_of_spikes: int,
|
||
epsilon_t: torch.Tensor,
|
||
epsilon_xy_intitial: float = 0.1,
|
||
epsilon_0: float = 1.0,
|
||
weight_noise_amplitude: float = 0.01,
|
||
is_pooling_layer: bool = False,
|
||
strides: list[int] = [1, 1],
|
||
dilation: list[int] = [0, 0],
|
||
padding: list[int] = [0, 0],
|
||
alpha_number_of_iterations: int = 0,
|
||
number_of_cpu_processes: int = 1,
|
||
) -> None:
|
||
```
|
||
|
||
## Methods
|
||
|
||
```
|
||
def initialize_weights(
|
||
self,
|
||
is_pooling_layer: bool = False,
|
||
noise_amplitude: float = 0.01,
|
||
) -> None:
|
||
```
|
||
For the generation of the initital weights. Switches between normal initial random weights and pooling weights.
|
||
|
||
---
|
||
|
||
```
|
||
def initialize_epsilon_xy(
|
||
self,
|
||
eps_xy_intitial: float,
|
||
) -> None:
|
||
```
|
||
Creates initial epsilon xy matrices.
|
||
|
||
---
|
||
```
|
||
def set_h_init_to_uniform(self) -> None:
|
||
```
|
||
|
||
---
|
||
```
|
||
def backup_epsilon_xy(self) -> None:
|
||
def restore_epsilon_xy(self) -> None:
|
||
def backup_weights(self) -> None:
|
||
def restore_weights(self) -> None:
|
||
```
|
||
|
||
---
|
||
```
|
||
def threshold_epsilon_xy(self, threshold: float) -> None:
|
||
def threshold_weights(self, threshold: float) -> None:
|
||
```
|
||
|
||
---
|
||
```
|
||
def mean_epsilon_xy(self) -> None:
|
||
```
|
||
|
||
---
|
||
```
|
||
def norm_weights(self) -> None:
|
||
```
|
||
|
||
# Parameters in JSON file
|
||
|
||
```
|
||
data_mode: str = field(default="")
|
||
```
|
||
data_path: str = field(default="./")
|
||
```
|
||
|
||
```
|
||
batch_size: int = field(default=500)
|
||
```
|
||
|
||
```
|
||
learning_step: int = field(default=0)
|
||
```
|
||
|
||
```
|
||
learning_step_max: int = field(default=10000)
|
||
```
|
||
|
||
|
||
```
|
||
number_of_cpu_processes: int = field(default=-1)
|
||
```
|
||
|
||
|
||
```
|
||
number_of_spikes: int = field(default=0)
|
||
```
|
||
|
||
```
|
||
cooldown_after_number_of_spikes: int = field(default=0)
|
||
```
|
||
|
||
|
||
```
|
||
weight_path: str = field(default="./Weights/")
|
||
```
|
||
|
||
```
|
||
eps_xy_path: str = field(default="./EpsXY/")
|
||
```
|
||
|
||
|
||
```
|
||
reduction_cooldown: float = field(default=25.0)
|
||
```
|
||
|
||
```
|
||
epsilon_0: float = field(default=1.0)
|
||
```
|
||
|
||
|
||
```
|
||
update_after_x_batch: float = field(default=1.0)
|
||
```
|
||
|
||
|
||
## network_structure (required!)
|
||
Parameters of the network. The details about its layers and the number of output neurons.
|
||
|
||
|
||
```
|
||
number_of_output_neurons: int = field(default=0)
|
||
```
|
||
|
||
```
|
||
forward_neuron_numbers: list[list[int]] = field(default_factory=list)
|
||
```
|
||
|
||
```
|
||
is_pooling_layer: list[bool] = field(default_factory=list)
|
||
```
|
||
|
||
|
||
```
|
||
forward_kernel_size: list[list[int]] = field(default_factory=list)
|
||
```
|
||
|
||
```
|
||
strides: list[list[int]] = field(default_factory=list)
|
||
```
|
||
|
||
```
|
||
dilation: list[list[int]] = field(default_factory=list)
|
||
```
|
||
|
||
```
|
||
padding: list[list[int]] = field(default_factory=list)
|
||
```
|
||
|
||
|
||
```
|
||
w_trainable: list[bool] = field(default_factory=list)
|
||
```
|
||
|
||
```
|
||
eps_xy_trainable: list[bool] = field(default_factory=list)
|
||
```
|
||
|
||
```
|
||
eps_xy_mean: list[bool] = field(default_factory=list)
|
||
```
|
||
|
||
|
||
## learning_parameters
|
||
Parameter required for training
|
||
|
||
|
||
```
|
||
learning_active: bool = field(default=True)
|
||
```
|
||
|
||
|
||
```
|
||
loss_coeffs_mse: float = field(default=0.5)
|
||
```
|
||
|
||
```
|
||
loss_coeffs_kldiv: float = field(default=1.0)
|
||
```
|
||
|
||
|
||
```
|
||
optimizer_name: str = field(default="Adam")
|
||
```
|
||
|
||
```
|
||
learning_rate_gamma_w: float = field(default=-1.0)
|
||
```
|
||
|
||
```
|
||
learning_rate_gamma_eps_xy: float = field(default=-1.0)
|
||
```
|
||
|
||
```
|
||
learning_rate_threshold_w: float = field(default=0.00001)
|
||
```
|
||
|
||
```
|
||
learning_rate_threshold_eps_xy: float = field(default=0.00001)
|
||
```
|
||
|
||
|
||
```
|
||
lr_schedule_name: str = field(default="ReduceLROnPlateau")
|
||
```
|
||
|
||
```
|
||
lr_scheduler_factor_w: float = field(default=0.75)
|
||
```
|
||
|
||
```
|
||
lr_scheduler_patience_w: int = field(default=-1)
|
||
```
|
||
|
||
|
||
```
|
||
lr_scheduler_factor_eps_xy: float = field(default=0.75)
|
||
```
|
||
|
||
```
|
||
lr_scheduler_patience_eps_xy: int = field(default=-1)
|
||
```
|
||
|
||
|
||
```
|
||
number_of_batches_for_one_update: int = field(default=1)
|
||
```
|
||
|
||
```
|
||
overload_path: str = field(default="./Previous")
|
||
```
|
||
|
||
|
||
```
|
||
weight_noise_amplitude: float = field(default=0.01)
|
||
```
|
||
|
||
```
|
||
eps_xy_intitial: float = field(default=0.1)
|
||
```
|
||
|
||
|
||
```
|
||
test_every_x_learning_steps: int = field(default=50)
|
||
```
|
||
|
||
```
|
||
test_during_learning: bool = field(default=True)
|
||
```
|
||
|
||
|
||
```
|
||
alpha_number_of_iterations: int = field(default=0)
|
||
```
|
||
|
||
## augmentation
|
||
Parameters used for data augmentation.
|
||
|
||
|
||
```
|
||
crop_width_in_pixel: int = field(default=2)
|
||
```
|
||
|
||
|
||
```
|
||
flip_p: float = field(default=0.5)
|
||
```
|
||
|
||
|
||
```
|
||
jitter_brightness: float = field(default=0.5)
|
||
```
|
||
|
||
```
|
||
jitter_contrast: float = field(default=0.1)
|
||
```
|
||
|
||
```
|
||
jitter_saturation: float = field(default=0.1)
|
||
```
|
||
|
||
```
|
||
jitter_hue: float = field(default=0.15)
|
||
```
|
||
|
||
|
||
```
|
||
use_on_off_filter: bool = field(default=True)
|
||
```
|
||
|
||
## ImageStatistics (please ignore)
|
||
(Statistical) information about the input. i.e. mean values and the x and y size of the input
|
||
|
||
|
||
```
|
||
mean: list[float] = field(default_factory=list)
|
||
```
|
||
|
||
```
|
||
the_size: list[int] = field(default_factory=list)
|
||
```
|