289 lines
9.2 KiB
C++
289 lines
9.2 KiB
C++
// MIT License
|
|
// Copyright 2022 University of Bremen
|
|
//
|
|
// Permission is hereby granted, free of charge, to any person obtaining
|
|
// a copy of this software and associated documentation files (the "Software"),
|
|
// to deal in the Software without restriction, including without limitation
|
|
// the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
|
// and/or sell copies of the Software, and to permit persons to whom the
|
|
// Software is furnished to do so, subject to the following conditions:
|
|
//
|
|
// The above copyright notice and this permission notice shall be included
|
|
// in all copies or substantial portions of the Software.
|
|
//
|
|
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
|
|
// EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
|
|
// MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
|
|
// IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
|
|
// DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
|
|
// OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR
|
|
// THE USE OR OTHER DEALINGS IN THE SOFTWARE.
|
|
//
|
|
//
|
|
// David Rotermund ( davrot@uni-bremen.de )
|
|
//
|
|
//
|
|
// Release history:
|
|
// ================
|
|
// 1.0.0 -- 01.05.2022: first release
|
|
//
|
|
//
|
|
|
|
#include "HDynamicCNNManyIP.h"
|
|
|
|
#include <omp.h>
|
|
#include <stdio.h>
|
|
#include <string.h>
|
|
|
|
#include <algorithm>
|
|
#include <cassert>
|
|
#include <iostream>
|
|
#include <vector>
|
|
|
|
HDynamicCNNManyIP::HDynamicCNNManyIP(){
|
|
|
|
};
|
|
|
|
HDynamicCNNManyIP::~HDynamicCNNManyIP(){
|
|
|
|
};
|
|
|
|
bool HDynamicCNNManyIP::update(
|
|
int64_t np_h_pointer_addr, int64_t np_h_dim_0, int64_t np_h_dim_1,
|
|
int64_t np_h_dim_2, int64_t np_h_dim_3, int64_t np_epsilon_xy_pointer_addr,
|
|
int64_t np_epsilon_xy_dim_0, int64_t np_epsilon_xy_dim_1,
|
|
int64_t np_epsilon_t_pointer_addr, int64_t np_epsilon_t_dim_0,
|
|
int64_t np_weights_pointer_addr, int64_t np_weights_dim_0,
|
|
int64_t np_weights_dim_1, int64_t np_input_pointer_addr,
|
|
int64_t np_input_dim_0, int64_t np_input_dim_1, int64_t np_input_dim_2,
|
|
int64_t np_input_dim_3, float *np_init_vector_pointer_ptr,
|
|
int64_t np_init_vector_dim_0, int64_t id_pattern) {
|
|
float *np_h_pointer = (float *)np_h_pointer_addr;
|
|
float *np_epsilon_xy_pointer = (float *)np_epsilon_xy_pointer_addr;
|
|
float *np_epsilon_t_pointer = (float *)np_epsilon_t_pointer_addr;
|
|
float *np_weights_pointer = (float *)np_weights_pointer_addr;
|
|
int64_t *np_input_pointer = (int64_t *)np_input_pointer_addr;
|
|
|
|
int64_t number_of_pattern = np_input_dim_0;
|
|
|
|
assert((id_pattern >= 0));
|
|
assert((id_pattern < number_of_pattern));
|
|
|
|
assert((np_h_pointer != nullptr));
|
|
assert((np_h_dim_0 > 0));
|
|
assert((np_h_dim_1 > 0));
|
|
assert((np_h_dim_2 > 0));
|
|
assert((np_h_dim_3 > 0));
|
|
|
|
int64_t np_h_dim_c0 = np_h_dim_1 * np_h_dim_2 * np_h_dim_3;
|
|
int64_t np_h_dim_c1 = np_h_dim_2 * np_h_dim_3;
|
|
int64_t np_h_dim_c2 = np_h_dim_3;
|
|
|
|
float *np_h_pointer_pattern;
|
|
float *np_h_pointer_pattern_0;
|
|
float *np_h_pointer_pattern_01;
|
|
|
|
assert((np_epsilon_xy_pointer != nullptr));
|
|
assert((np_epsilon_xy_dim_0 > 0));
|
|
assert((np_epsilon_xy_dim_1 > 0));
|
|
|
|
int64_t np_epsilon_xy_dim_c0 = np_epsilon_xy_dim_1;
|
|
|
|
float *np_epsilon_xy_pointer_0;
|
|
float *np_epsilon_xy_pointer_01;
|
|
|
|
assert((np_epsilon_t_pointer != nullptr));
|
|
assert((np_epsilon_t_dim_0 > 0));
|
|
|
|
assert((np_weights_pointer != nullptr));
|
|
assert((np_weights_dim_0 > 0));
|
|
assert((np_weights_dim_1 > 0));
|
|
|
|
int64_t np_weights_dim_c0 = np_weights_dim_1;
|
|
|
|
float *w_ptr;
|
|
|
|
assert((np_input_pointer != nullptr));
|
|
assert((np_input_dim_0 > 0));
|
|
assert((np_input_dim_1 > 0));
|
|
assert((np_input_dim_2 > 0));
|
|
assert((np_input_dim_3 > 0));
|
|
|
|
int64_t np_input_dim_c0 = np_input_dim_1 * np_input_dim_2 * np_input_dim_3;
|
|
int64_t np_input_dim_c1 = np_input_dim_2 * np_input_dim_3;
|
|
int64_t np_input_dim_c2 = np_input_dim_3;
|
|
|
|
int64_t *np_input_pointer_pattern;
|
|
int64_t *np_input_pointer_pattern_0;
|
|
int64_t *np_input_pointer_pattern_01;
|
|
int64_t *np_input_pointer_pattern_01_spike;
|
|
|
|
assert((np_init_vector_pointer_ptr != nullptr));
|
|
assert((np_init_vector_dim_0 == np_weights_dim_1));
|
|
|
|
int64_t number_of_spikes = np_input_dim_1;
|
|
|
|
int64_t h_dim = np_weights_dim_1;
|
|
|
|
std::vector<float> h_temp_vector;
|
|
h_temp_vector.resize(h_dim);
|
|
float *h_temp = h_temp_vector.data();
|
|
|
|
std::vector<float> h_subsegment_vector;
|
|
h_subsegment_vector.resize(h_dim);
|
|
float *h_subsegment = h_subsegment_vector.data();
|
|
|
|
float h_temp_sum;
|
|
|
|
int64_t id_0;
|
|
int64_t id_1;
|
|
int64_t id_spike;
|
|
int64_t counter;
|
|
|
|
float temp_value;
|
|
|
|
float epsilon_scale;
|
|
float epsilon_subsegment;
|
|
|
|
// epsilon_subsegment = np_epsilon_xy_pointer[
|
|
// id_0 * np_epsilon_xy_dim_c0 +
|
|
// id_1 ]
|
|
// * np_epsilon_t_pointer[id_spike];
|
|
|
|
// spike = np_input_pointer[
|
|
// id_pattern * np_input_dim_c0 +
|
|
// id_spike * np_input_dim_c1 +
|
|
// id_0 * np_input_dim_c2 +
|
|
// id_1];
|
|
|
|
// w_ptr = np_weights_pointer +
|
|
// spike * np_weights_dim_c0;
|
|
|
|
// h_ptr = np_h_pointer +
|
|
// id_pattern * np_h_dim_c0 +
|
|
// id_0 * np_h_dim_c2 +
|
|
// id_1;
|
|
// // 0 * np_h_dim_c1 +
|
|
|
|
np_input_pointer_pattern = np_input_pointer + id_pattern * np_input_dim_c0;
|
|
np_h_pointer_pattern = np_h_pointer + id_pattern * np_h_dim_c0;
|
|
|
|
for (id_0 = 0; id_0 < np_input_dim_2; id_0++) {
|
|
np_epsilon_xy_pointer_0 =
|
|
np_epsilon_xy_pointer + id_0 * np_epsilon_xy_dim_c0;
|
|
|
|
np_h_pointer_pattern_0 = np_h_pointer_pattern + id_0 * np_h_dim_c2;
|
|
|
|
np_input_pointer_pattern_0 =
|
|
np_input_pointer_pattern + id_0 * np_input_dim_c2;
|
|
|
|
for (id_1 = 0; id_1 < np_input_dim_3; id_1++) {
|
|
np_epsilon_xy_pointer_01 = np_epsilon_xy_pointer_0 + id_1;
|
|
|
|
np_h_pointer_pattern_01 = np_h_pointer_pattern_0 + id_1;
|
|
|
|
np_input_pointer_pattern_01 = np_input_pointer_pattern_0 + id_1;
|
|
|
|
memcpy(h_subsegment, np_init_vector_pointer_ptr, sizeof(float) * h_dim);
|
|
|
|
epsilon_scale = 1.0;
|
|
|
|
for (id_spike = 0; id_spike < number_of_spikes; id_spike++) {
|
|
if (epsilon_scale > 1E10) {
|
|
temp_value = 1.0 / epsilon_scale;
|
|
|
|
#pragma omp simd
|
|
for (counter = 0; counter < h_dim; counter++) {
|
|
h_subsegment[counter] *= temp_value;
|
|
}
|
|
|
|
epsilon_scale = 1.0;
|
|
}
|
|
|
|
epsilon_subsegment =
|
|
np_epsilon_xy_pointer_01[0] * np_epsilon_t_pointer[id_spike];
|
|
|
|
np_input_pointer_pattern_01_spike =
|
|
np_input_pointer_pattern_01 + id_spike * np_input_dim_c1;
|
|
|
|
w_ptr = np_weights_pointer +
|
|
np_input_pointer_pattern_01_spike[0] * np_weights_dim_c0;
|
|
|
|
memcpy(h_temp, h_subsegment, sizeof(float) * h_dim);
|
|
|
|
#pragma omp simd
|
|
for (counter = 0; counter < h_dim; counter++) {
|
|
h_temp[counter] *= w_ptr[counter];
|
|
}
|
|
|
|
h_temp_sum = 0.0;
|
|
#pragma omp simd reduction(+ : h_temp_sum)
|
|
for (counter = 0; counter < h_dim; counter++) {
|
|
h_temp_sum += h_temp[counter];
|
|
}
|
|
|
|
if (h_temp_sum > 1E-10) {
|
|
temp_value = epsilon_scale * epsilon_subsegment / h_temp_sum;
|
|
|
|
#pragma omp simd
|
|
for (counter = 0; counter < h_dim; counter++) {
|
|
h_temp[counter] *= temp_value;
|
|
}
|
|
|
|
#pragma omp simd
|
|
for (counter = 0; counter < h_dim; counter++) {
|
|
h_subsegment[counter] += h_temp[counter];
|
|
}
|
|
|
|
epsilon_scale *= 1.0 + epsilon_subsegment;
|
|
// IF
|
|
}
|
|
// spike End
|
|
}
|
|
|
|
temp_value = 1.0 / epsilon_scale;
|
|
#pragma omp simd
|
|
for (counter = 0; counter < h_dim; counter++) {
|
|
np_h_pointer_pattern_01[counter * np_h_dim_c1] =
|
|
h_subsegment[counter] * temp_value;
|
|
}
|
|
|
|
// id_1 End
|
|
}
|
|
|
|
// id_0 End
|
|
}
|
|
|
|
return true;
|
|
};
|
|
|
|
bool HDynamicCNNManyIP::update_with_init_vector_multi_pattern(
|
|
int64_t np_h_pointer_addr, int64_t np_h_dim_0, int64_t np_h_dim_1,
|
|
int64_t np_h_dim_2, int64_t np_h_dim_3, int64_t np_epsilon_xy_pointer_addr,
|
|
int64_t np_epsilon_xy_dim_0, int64_t np_epsilon_xy_dim_1,
|
|
int64_t np_epsilon_t_pointer_addr, int64_t np_epsilon_t_dim_0,
|
|
int64_t np_weights_pointer_addr, int64_t np_weights_dim_0,
|
|
int64_t np_weights_dim_1, int64_t np_input_pointer_addr,
|
|
int64_t np_input_dim_0, int64_t np_input_dim_1, int64_t np_input_dim_2,
|
|
int64_t np_input_dim_3, int64_t np_init_vector_pointer_addr,
|
|
int64_t np_init_vector_dim_0, int64_t number_of_processes) {
|
|
int64_t number_of_pattern = np_input_dim_0;
|
|
int64_t pattern_id;
|
|
|
|
int64_t h_dim = np_init_vector_dim_0;
|
|
float *h_init_ptr = (float *)np_init_vector_pointer_addr;
|
|
|
|
omp_set_num_threads(number_of_processes);
|
|
|
|
#pragma omp parallel for
|
|
for (pattern_id = 0; pattern_id < number_of_pattern; pattern_id++) {
|
|
update(np_h_pointer_addr, np_h_dim_0, np_h_dim_1, np_h_dim_2, np_h_dim_3,
|
|
np_epsilon_xy_pointer_addr, np_epsilon_xy_dim_0, np_epsilon_xy_dim_1,
|
|
np_epsilon_t_pointer_addr, np_epsilon_t_dim_0,
|
|
np_weights_pointer_addr, np_weights_dim_0, np_weights_dim_1,
|
|
np_input_pointer_addr, np_input_dim_0, np_input_dim_1,
|
|
np_input_dim_2, np_input_dim_3, h_init_ptr, h_dim, pattern_id);
|
|
}
|
|
|
|
return true;
|
|
};
|