pytutorial/numpy/advanced_indexing/README.md

185 lines
3.1 KiB
Markdown
Raw Normal View History

# Advanced Indexing
{:.no_toc}
<nav markdown="1" class="toc-class">
* TOC
{:toc}
</nav>
## The goal
Beside slicing there is something called advanced indexing
Questions to [David Rotermund](mailto:davrot@uni-bremen.de)
## [Boolean Array](https://numpy.org/doc/stable/user/basics.indexing.html#boolean-array-indexing)
We can use Boolean arrays for more complicate indexing:
```python
import numpy as np
a = np.arange(1,10).reshape(3,3)
b = np.zeros_like(a)
b[a.sum(axis=1) > 6, :] = 1
print(a)
print()
print(b)
```
Output:
```python
[[1 2 3]
[4 5 6]
[7 8 9]]
[[0 0 0]
[1 1 1]
[1 1 1]]
```
Behind the curtains more or less this happens:
```python
import numpy as np
a = np.arange(1, 10).reshape(3, 3)
b = np.zeros_like(a)
temp_0 = a.sum(axis=1)
temp_1 = temp_0 > 6
temp_2 = np.nonzero(temp_1)
b[temp_2] = 1
print(temp_0)
print()
print(temp_1)
print()
print(temp_2)
print()
print(b)
```
Output:
```python
[ 6 15 24]
[False True True]
(array([1, 2]),)
[[0 0 0]
[1 1 1]
[1 1 1]]
```
## [Basic indexing](https://numpy.org/doc/stable/user/basics.indexing.html#basics-indexing) vs [Slices](https://numpy.org/doc/stable/user/basics.indexing.html#slicing-and-striding) / Views
If we get put indices in we get a non-view out. This procedure is called indexing:
```python
import numpy as np
a = np.arange(0, 10)
idx = np.arange(2,5)
b = a[idx]
print(idx) # -> [2 3 4]
print()
print(b) # -> [2 3 4]
print()
print(np.may_share_memory(a,b)) # -> False
```
While this is called slicing:
```python
import numpy as np
a = np.arange(0, 10)
b = a[2:5]
print(b) # -> [2 3 4]
print()
print(np.may_share_memory(a, b)) # -> True
```
As you can see lies the biggest different in the creation of a view when we use slicing. Indexing creates a new object instead.
## [Advanced Indexing](https://numpy.org/doc/stable/user/basics.indexing.html#advanced-indexing)
### 1-d indices
In the following we address the matrix **a** accoring **ndarray[[First dim], [Second dim], [... more dims if your array has them]]**:
```python
import numpy as np
a = np.arange(0, 9).reshape((3, 3))
print(a)
print()
b = a[[0, 1, 2], [0, 1, 2]]
print(b)
```
Output:
```python
[[0 1 2]
[3 4 5]
[6 7 8]]
[0 4 8]
```
Errors are punished via exceptions and not silently and creatively circumvented like with slices:
```python
import numpy as np
a = np.arange(0, 9).reshape((3, 3))
b = a[[0, 1, 3], [0, 1, 2]] # IndexError: index 3 is out of bounds for axis 0 with size 3
```
### n-d indices
Other shapes and repetitions are acceptable too:
```python
import numpy as np
a = np.arange(0, 4).reshape((2, 2))
idx_0 = [[1, 1], [1, 1]]
idx_1 = [[0, 0], [0, 0]]
print(a[idx_0, idx_1])
```
Output:
```python
[[2 2]
[2 2]]
```
## Advanced slices
A combination of indexing and slicing can be done but requires some thought. Otherwise it can be confusing like here:
```python
import numpy as np
a = np.empty((10, 20, 30, 40, 50))
idx_0 = np.ones((2, 3, 4), dtype=int)
idx_1 = np.ones((2, 3, 4), dtype=int)
print(a[:, idx_0, idx_1].shape) # -> (10, 2, 3, 4, 40, 50)
print(a[:, idx_0, :, idx_1].shape) # -> (2, 3, 4, 10, 30, 50)
```