pytutorial/scikit-learn/overview/README.md

905 lines
46 KiB
Markdown
Raw Normal View History

# Overview
{:.no_toc}
<nav markdown="1" class="toc-class">
* TOC
{:toc}
</nav>
## The goal
[scikit-learn](https://scikit-learn.org/stable/index.html) is a machine learning tool kit for data analysis.
Questions to [David Rotermund](mailto:davrot@uni-bremen.de)
```shell
pip install scikit-learn
```
> * Simple and efficient tools for predictive data analysis
> * Accessible to everybody, and reusable in various contexts
> * Built on NumPy, SciPy, and matplotlib
**I will keep it short and I will mark the most relevant tools in bold**
## [sklearn.base: Base classes and utility functions](https://scikit-learn.org/stable/modules/classes.html#module-sklearn.base)
see [here](https://scikit-learn.org/stable/modules/classes.html#module-sklearn.base)
## [sklearn.calibration: Probability Calibration](https://scikit-learn.org/stable/modules/classes.html#module-sklearn.calibration)
|||
|---|---|
|calibration.CalibratedClassifierCV([...])|Probability calibration with isotonic regression or logistic regression.|
|calibration.calibration_curve(y_true, y_prob, *)|Compute true and predicted probabilities for a calibration curve.|
## [sklearn.cluster: Clustering](https://scikit-learn.org/stable/modules/classes.html#module-sklearn.cluster)
### Classes
|||
|---|---|
|cluster.AffinityPropagation(*[, damping, ...])|Perform Affinity Propagation Clustering of data.|
|cluster.AgglomerativeClustering([...])|Agglomerative Clustering.|
|cluster.Birch(*[, threshold, ...])|Implements the BIRCH clustering algorithm.|
|cluster.DBSCAN([eps, min_samples, metric, ...])|Perform DBSCAN clustering from vector array or distance matrix.|
|cluster.HDBSCAN([min_cluster_size, ...])|Cluster data using hierarchical density-based clustering.|
|cluster.FeatureAgglomeration([n_clusters, ...])|Agglomerate features.|
|**cluster.KMeans([n_clusters, init, n_init, ...])**|**K-Means clustering.**|
|cluster.BisectingKMeans([n_clusters, init, ...])|Bisecting K-Means clustering.|
|**cluster.MiniBatchKMeans([n_clusters, init, ...])**|**Mini-Batch K-Means clustering.**|
|cluster.MeanShift(*[, bandwidth, seeds, ...])|Mean shift clustering using a flat kernel.|
|cluster.OPTICS(*[, min_samples, max_eps, ...])|Estimate clustering structure from vector array.|
|cluster.SpectralClustering([n_clusters, ...])|Apply clustering to a projection of the normalized Laplacian.|
|cluster.SpectralBiclustering([n_clusters, ...])|Spectral biclustering (Kluger, 2003).|
|cluster.SpectralCoclustering([n_clusters, ...])|Spectral Co-Clustering algorithm (Dhillon, 2001).|
### Functions
|||
|---|---|
|cluster.affinity_propagation(S, *[, ...])|Perform Affinity Propagation Clustering of data.|
|cluster.cluster_optics_dbscan(*, ...)|Perform DBSCAN extraction for an arbitrary epsilon.|
|cluster.cluster_optics_xi(*, reachability, ...)|Automatically extract clusters according to the Xi-steep method.|
|cluster.compute_optics_graph(X, *, ...)|Compute the OPTICS reachability graph.|
|cluster.dbscan(X[, eps, min_samples, ...])|Perform DBSCAN clustering from vector array or distance matrix.|
|cluster.estimate_bandwidth(X, *[, quantile, ...])|Estimate the bandwidth to use with the mean-shift algorithm.|
|cluster.k_means(X, n_clusters, *[, ...])|Perform K-means clustering algorithm.|
|cluster.kmeans_plusplus(X, n_clusters, *[, ...])|Init n_clusters seeds according to k-means++.|
|cluster.mean_shift(X, *[, bandwidth, seeds, ...])|Perform mean shift clustering of data using a flat kernel.|
|cluster.spectral_clustering(affinity, *[, ...])|Apply clustering to a projection of the normalized Laplacian.|
|cluster.ward_tree(X, *[, connectivity, ...])|Ward clustering based on a Feature matrix.|
## [sklearn.compose: Composite Estimators](https://scikit-learn.org/stable/modules/classes.html#module-sklearn.compose)
|||
|---|---|
|compose.ColumnTransformer(transformers, *[, ...])|Applies transformers to columns of an array or pandas DataFrame.|
|compose.TransformedTargetRegressor([...])|Meta-estimator to regress on a transformed target.|
|compose.make_column_transformer(*transformers)|Construct a ColumnTransformer from the given transformers.|
|compose.make_column_selector([pattern, ...])|Create a callable to select columns to be used with ColumnTransformer.|
## [sklearn.covariance: Covariance Estimators](https://scikit-learn.org/stable/modules/classes.html#module-sklearn.covariance)
|||
|---|---|
|covariance.EmpiricalCovariance(*[, ...])|Maximum likelihood covariance estimator.|
|covariance.EllipticEnvelope(*[, ...])|An object for detecting outliers in a Gaussian distributed dataset.|
|covariance.GraphicalLasso([alpha, mode, ...])|Sparse inverse covariance estimation with an l1-penalized estimator.|
|covariance.GraphicalLassoCV(*[, alphas, ...])|Sparse inverse covariance w/ cross-validated choice of the l1 penalty.|
|covariance.LedoitWolf(*[, store_precision, ...])|LedoitWolf Estimator.|
|covariance.MinCovDet(*[, store_precision, ...])|Minimum Covariance Determinant (MCD): robust estimator of covariance.|
|covariance.OAS(*[, store_precision, ...])|Oracle Approximating Shrinkage Estimator as proposed in [R69773891e6a6-1].|
|covariance.ShrunkCovariance(*[, ...])|Covariance estimator with shrinkage.|
|covariance.empirical_covariance(X, *[, ...])|Compute the Maximum likelihood covariance estimator.|
|covariance.graphical_lasso(emp_cov, alpha, *)|L1-penalized covariance estimator.|
|covariance.ledoit_wolf(X, *[, ...])|Estimate the shrunk Ledoit-Wolf covariance matrix.|
|covariance.ledoit_wolf_shrinkage(X[, ...])|Estimate the shrunk Ledoit-Wolf covariance matrix.|
|covariance.oas(X, *[, assume_centered])|Estimate covariance with the Oracle Approximating Shrinkage as proposed in [Rca3a42e5ec35-1].|
|covariance.shrunk_covariance(emp_cov[, ...])|Calculate a covariance matrix shrunk on the diagonal.|
## [sklearn.cross_decomposition: Cross decomposition](https://scikit-learn.org/stable/modules/classes.html#module-sklearn.cross_decomposition)
|||
|---|---|
|cross_decomposition.CCA([n_components, ...])|Canonical Correlation Analysis, also known as "Mode B" PLS.|
|cross_decomposition.PLSCanonical([...])|Partial Least Squares transformer and regressor.|
|cross_decomposition.PLSRegression([...])|PLS regression.|
|cross_decomposition.PLSSVD([n_components, ...])|Partial Least Square SVD.|
## [sklearn.datasets: Datasets](https://scikit-learn.org/stable/modules/classes.html#module-sklearn.datasets)
see [here](https://scikit-learn.org/stable/modules/classes.html#module-sklearn.datasets)
## [sklearn.decomposition: Matrix Decomposition](https://scikit-learn.org/stable/modules/classes.html#module-sklearn.decomposition)
|||
|---|---|
|decomposition.DictionaryLearning([...])|Dictionary learning.|
|decomposition.FactorAnalysis([n_components, ...])|Factor Analysis (FA).|
|**decomposition.FastICA([n_components, ...])**|**FastICA: a fast algorithm for Independent Component Analysis.**|
|decomposition.IncrementalPCA([n_components, ...])|Incremental principal components analysis (IPCA).|
|decomposition.KernelPCA([n_components, ...])|Kernel Principal component analysis (KPCA) [R396fc7d924b8-1].|
|decomposition.LatentDirichletAllocation([...])|Latent Dirichlet Allocation with online variational Bayes algorithm.|
|decomposition.MiniBatchDictionaryLearning([...])|Mini-batch dictionary learning.|
|decomposition.MiniBatchSparsePCA([...])|Mini-batch Sparse Principal Components Analysis.|
|decomposition.NMF([n_components, init, ...])|Non-Negative Matrix Factorization (NMF).|
|decomposition.MiniBatchNMF([n_components, ...])|Mini-Batch Non-Negative Matrix Factorization (NMF).|
|**decomposition.PCA([n_components, copy, ...])**|**Principal component analysis (PCA).**|
|decomposition.SparsePCA([n_components, ...])|Sparse Principal Components Analysis (SparsePCA).|
|decomposition.SparseCoder(dictionary, *[, ...])|Sparse coding.|
|decomposition.TruncatedSVD([n_components, ...])|Dimensionality reduction using truncated SVD (aka LSA).|
|decomposition.dict_learning(X, n_components, ...)|Solve a dictionary learning matrix factorization problem.|
|decomposition.dict_learning_online(X[, ...])|Solve a dictionary learning matrix factorization problem online.|
|decomposition.fastica(X[, n_components, ...])|Perform Fast Independent Component Analysis.|
|decomposition.non_negative_factorization(X)|Compute Non-negative Matrix Factorization (NMF).|
|decomposition.sparse_encode(X, dictionary, *)|Sparse coding.|
## [sklearn.discriminant_analysis: Discriminant Analysis](https://scikit-learn.org/stable/modules/classes.html#module-sklearn.discriminant_analysis)
|||
|---|---|
|discriminant_analysis.LinearDiscriminantAnalysis([...])|Linear Discriminant Analysis.|
|discriminant_analysis.QuadraticDiscriminantAnalysis(*)|Quadratic Discriminant Analysis.|
## [sklearn.dummy: Dummy estimators](https://scikit-learn.org/stable/modules/classes.html#module-sklearn.dummy)
|||
|---|---|
|dummy.DummyClassifier(*[, strategy, ...])|DummyClassifier makes predictions that ignore the input features.|
|dummy.DummyRegressor(*[, strategy, ...])|Regressor that makes predictions using simple rules.|
## [sklearn.ensemble: Ensemble Methods](https://scikit-learn.org/stable/modules/classes.html#module-sklearn.ensemble)
|||
|---|---|
|ensemble.AdaBoostClassifier([estimator, ...])|An AdaBoost classifier.|
|ensemble.AdaBoostRegressor([estimator, ...])|An AdaBoost regressor.|
|ensemble.BaggingClassifier([estimator, ...])|A Bagging classifier.|
|ensemble.BaggingRegressor([estimator, ...])|A Bagging regressor.|
|ensemble.ExtraTreesClassifier([...])|An extra-trees classifier.|
|ensemble.ExtraTreesRegressor([n_estimators, ...])|An extra-trees regressor.|
|ensemble.GradientBoostingClassifier(*[, ...])|Gradient Boosting for classification.|
|ensemble.GradientBoostingRegressor(*[, ...])|Gradient Boosting for regression.|
|ensemble.IsolationForest(*[, n_estimators, ...])|Isolation Forest Algorithm.|
|ensemble.RandomForestClassifier([...])|A random forest classifier.|
|ensemble.RandomForestRegressor([...])|A random forest regressor.|
|ensemble.RandomTreesEmbedding([...])|An ensemble of totally random trees.|
|ensemble.StackingClassifier(estimators[, ...])|Stack of estimators with a final classifier.|
|ensemble.StackingRegressor(estimators[, ...])|Stack of estimators with a final regressor.|
|ensemble.VotingClassifier(estimators, *[, ...])|Soft Voting/Majority Rule classifier for unfitted estimators.|
|ensemble.VotingRegressor(estimators, *[, ...])|Prediction voting regressor for unfitted estimators.|
|ensemble.HistGradientBoostingRegressor([...])|Histogram-based Gradient Boosting Regression Tree.|
|ensemble.HistGradientBoostingClassifier([...])|Histogram-based Gradient Boosting Classification Tree.|
## [sklearn.exceptions: Exceptions and warnings](https://scikit-learn.org/stable/modules/classes.html#module-sklearn.exceptions)
see [here](https://scikit-learn.org/stable/modules/classes.html#module-sklearn.exceptions)
## [sklearn.experimental: Experimental](https://scikit-learn.org/stable/modules/classes.html#module-sklearn.experimental)
see [here](https://scikit-learn.org/stable/modules/classes.html#module-sklearn.experimental)
## [sklearn.feature_extraction: Feature Extraction](https://scikit-learn.org/stable/modules/classes.html#module-sklearn.feature_extraction)
|||
|---|---|
|feature_extraction.DictVectorizer(*[, ...])|Transforms lists of feature-value mappings to vectors.|
|feature_extraction.FeatureHasher([...])|Implements feature hashing, aka the hashing trick.|
### From images
|||
|---|---|
|feature_extraction.image.extract_patches_2d(...)|Reshape a 2D image into a collection of patches.|
|feature_extraction.image.grid_to_graph(n_x, n_y)|Graph of the pixel-to-pixel connections.|
|feature_extraction.image.img_to_graph(img, *)|Graph of the pixel-to-pixel gradient connections.|
|feature_extraction.image.reconstruct_from_patches_2d(...)|Reconstruct the image from all of its patches.|
|feature_extraction.image.PatchExtractor(*[, ...])|Extracts patches from a collection of images.|
### From text
|||
|---|---|
|feature_extraction.text.CountVectorizer(*[, ...])|Convert a collection of text documents to a matrix of token counts.|
|feature_extraction.text.HashingVectorizer(*)|Convert a collection of text documents to a matrix of token occurrences.|
|feature_extraction.text.TfidfTransformer(*)|Transform a count matrix to a normalized tf or tf-idf representation.|
|feature_extraction.text.TfidfVectorizer(*[, ...])|Convert a collection of raw documents to a matrix of TF-IDF features.|
## [sklearn.feature_selection: Feature Selection](https://scikit-learn.org/stable/modules/classes.html#module-sklearn.feature_selection)
|||
|---|---|
|feature_selection.GenericUnivariateSelect([...])|Univariate feature selector with configurable strategy.|
|feature_selection.SelectPercentile([...])|Select features according to a percentile of the highest scores.|
|feature_selection.SelectKBest([score_func, k])|Select features according to the k highest scores.|
|feature_selection.SelectFpr([score_func, alpha])|Filter: Select the pvalues below alpha based on a FPR test.|
|feature_selection.SelectFdr([score_func, alpha])|Filter: Select the p-values for an estimated false discovery rate.|
|feature_selection.SelectFromModel(estimator, *)|Meta-transformer for selecting features based on importance weights.|
|feature_selection.SelectFwe([score_func, alpha])|Filter: Select the p-values corresponding to Family-wise error rate.|
|feature_selection.SequentialFeatureSelector(...)|Transformer that performs Sequential Feature Selection.|
|feature_selection.RFE(estimator, *[, ...])|Feature ranking with recursive feature elimination.|
|feature_selection.RFECV(estimator, *[, ...])|Recursive feature elimination with cross-validation to select features.|
|feature_selection.VarianceThreshold([threshold])|Feature selector that removes all low-variance features.|
|feature_selection.chi2(X, y)|Compute chi-squared stats between each non-negative feature and class.|
|feature_selection.f_classif(X, y)|Compute the ANOVA F-value for the provided sample.|
|feature_selection.f_regression(X, y, *[, ...])|Univariate linear regression tests returning F-statistic and p-values.|
|feature_selection.r_regression(X, y, *[, ...])|Compute Pearson's r for each features and the target.|
|feature_selection.mutual_info_classif(X, y, *)|Estimate mutual information for a discrete target variable.|
|feature_selection.mutual_info_regression(X, y, *)|Estimate mutual information for a continuous target variable.|
## [sklearn.gaussian_process: Gaussian Processes]()
|||
|---|---|
|gaussian_process.GaussianProcessClassifier([...])|Gaussian process classification (GPC) based on Laplace approximation.|
|gaussian_process.GaussianProcessRegressor([...])|Gaussian process regression (GPR).|
### Kernels
|||
|---|---|
|gaussian_process.kernels.CompoundKernel(kernels)|Kernel which is composed of a set of other kernels.|
|gaussian_process.kernels.ConstantKernel([...])|Constant kernel.|
|gaussian_process.kernels.DotProduct([...])|Dot-Product kernel.|
|gaussian_process.kernels.ExpSineSquared([...])|Exp-Sine-Squared kernel (aka periodic kernel).|
|gaussian_process.kernels.Exponentiation(...)|The Exponentiation kernel takes one base kernel and a scalar parameter and combines them via|
|gaussian_process.kernels.Hyperparameter(...)|A kernel hyperparameter's specification in form of a namedtuple.|
|gaussian_process.kernels.Kernel()|Base class for all kernels.|
|gaussian_process.kernels.Matern([...])|Matern kernel.|
|gaussian_process.kernels.PairwiseKernel([...])|Wrapper for kernels in sklearn.metrics.pairwise.|
|gaussian_process.kernels.Product(k1, k2)|The Product kernel takes two kernels k1 and k2 and combines them via|
|gaussian_process.kernels.RBF([length_scale, ...])|Radial basis function kernel (aka squared-exponential kernel).|
|gaussian_process.kernels.RationalQuadratic([...])|Rational Quadratic kernel.|
|gaussian_process.kernels.Sum(k1, k2)|The Sum kernel takes two kernels k1 and k2 and combines them via|
|gaussian_process.kernels.WhiteKernel([...])|White kernel.|
## [sklearn.impute: Impute](https://scikit-learn.org/stable/modules/classes.html#module-sklearn.impute)
|||
|---|---|
impute.SimpleImputer(*[, missing_values, ...])
Univariate imputer for completing missing values with simple strategies.
impute.IterativeImputer([estimator, ...])
Multivariate imputer that estimates each feature from all the others.
impute.MissingIndicator(*[, missing_values, ...])
Binary indicators for missing values.
impute.KNNImputer(*[, missing_values, ...])
Imputation for completing missing values using k-Nearest Neighbors.
## [sklearn.inspection: Inspection](https://scikit-learn.org/stable/modules/classes.html#module-sklearn.inspection)
|||
|---|---|
inspection.partial_dependence(estimator, X, ...)
Partial dependence of features.
inspection.permutation_importance(estimator, ...)
Permutation importance for feature evaluation [Rd9e56ef97513-BRE].
### Plotting
|||
|---|---|
inspection.DecisionBoundaryDisplay(*, xx0, ...)
Decisions boundary visualization.
inspection.PartialDependenceDisplay(...[, ...])
Partial Dependence Plot (PDP).
## [sklearn.isotonic: Isotonic regression](https://scikit-learn.org/stable/modules/classes.html#module-sklearn.isotonic)
|||
|---|---|
isotonic.IsotonicRegression(*[, y_min, ...])
Isotonic regression model.
isotonic.check_increasing(x, y)
Determine whether y is monotonically correlated with x.
isotonic.isotonic_regression(y, *[, ...])
Solve the isotonic regression model.
## [sklearn.kernel_approximation: Kernel Approximation](https://scikit-learn.org/stable/modules/classes.html#module-sklearn.kernel_approximation)
|||
|---|---|
kernel_approximation.AdditiveChi2Sampler(*)
Approximate feature map for additive chi2 kernel.
kernel_approximation.Nystroem([kernel, ...])
Approximate a kernel map using a subset of the training data.
kernel_approximation.PolynomialCountSketch(*)
Polynomial kernel approximation via Tensor Sketch.
kernel_approximation.RBFSampler(*[, gamma, ...])
Approximate a RBF kernel feature map using random Fourier features.
kernel_approximation.SkewedChi2Sampler(*[, ...])
Approximate feature map for "skewed chi-squared" kernel.
## [sklearn.kernel_ridge: Kernel Ridge Regression](https://scikit-learn.org/stable/modules/classes.html#module-sklearn.kernel_ridge)
|||
|---|---|
kernel_ridge.KernelRidge([alpha, kernel, ...])
Kernel ridge regression.
## [sklearn.linear_model: Linear Models](https://scikit-learn.org/stable/modules/classes.html#module-sklearn.linear_model)
### Linear classifiers
|||
|---|---|
linear_model.LogisticRegression([penalty, ...])
Logistic Regression (aka logit, MaxEnt) classifier.
linear_model.LogisticRegressionCV(*[, Cs, ...])
Logistic Regression CV (aka logit, MaxEnt) classifier.
linear_model.PassiveAggressiveClassifier(*)
Passive Aggressive Classifier.
linear_model.Perceptron(*[, penalty, alpha, ...])
Linear perceptron classifier.
linear_model.RidgeClassifier([alpha, ...])
Classifier using Ridge regression.
linear_model.RidgeClassifierCV([alphas, ...])
Ridge classifier with built-in cross-validation.
linear_model.SGDClassifier([loss, penalty, ...])
Linear classifiers (SVM, logistic regression, etc.) with SGD training.
linear_model.SGDOneClassSVM([nu, ...])
Solves linear One-Class SVM using Stochastic Gradient Descent.
### Classical linear regressors
|||
|---|---|
linear_model.LinearRegression(*[, ...])
Ordinary least squares Linear Regression.
linear_model.Ridge([alpha, fit_intercept, ...])
Linear least squares with l2 regularization.
linear_model.RidgeCV([alphas, ...])
Ridge regression with built-in cross-validation.
linear_model.SGDRegressor([loss, penalty, ...])
Linear model fitted by minimizing a regularized empirical loss with SGD.
### Regressors with variable selection
|||
|---|---|
linear_model.ElasticNet([alpha, l1_ratio, ...])
Linear regression with combined L1 and L2 priors as regularizer.
linear_model.ElasticNetCV(*[, l1_ratio, ...])
Elastic Net model with iterative fitting along a regularization path.
linear_model.Lars(*[, fit_intercept, ...])
Least Angle Regression model a.k.a.
linear_model.LarsCV(*[, fit_intercept, ...])
Cross-validated Least Angle Regression model.
linear_model.Lasso([alpha, fit_intercept, ...])
Linear Model trained with L1 prior as regularizer (aka the Lasso).
linear_model.LassoCV(*[, eps, n_alphas, ...])
Lasso linear model with iterative fitting along a regularization path.
linear_model.LassoLars([alpha, ...])
Lasso model fit with Least Angle Regression a.k.a.
linear_model.LassoLarsCV(*[, fit_intercept, ...])
Cross-validated Lasso, using the LARS algorithm.
linear_model.LassoLarsIC([criterion, ...])
Lasso model fit with Lars using BIC or AIC for model selection.
linear_model.OrthogonalMatchingPursuit(*[, ...])
Orthogonal Matching Pursuit model (OMP).
linear_model.OrthogonalMatchingPursuitCV(*)
Cross-validated Orthogonal Matching Pursuit model (OMP).
### Bayesian regressors
|||
|---|---|
linear_model.ARDRegression(*[, max_iter, ...])
Bayesian ARD regression.
linear_model.BayesianRidge(*[, max_iter, ...])
Bayesian ridge regression.
### Multi-task linear regressors with variable selection
|||
|---|---|
linear_model.MultiTaskElasticNet([alpha, ...])
Multi-task ElasticNet model trained with L1/L2 mixed-norm as regularizer.
linear_model.MultiTaskElasticNetCV(*[, ...])
Multi-task L1/L2 ElasticNet with built-in cross-validation.
linear_model.MultiTaskLasso([alpha, ...])
Multi-task Lasso model trained with L1/L2 mixed-norm as regularizer.
linear_model.MultiTaskLassoCV(*[, eps, ...])
Multi-task Lasso model trained with L1/L2 mixed-norm as regularizer.
### Outlier-robust regressors
|||
|---|---|
linear_model.HuberRegressor(*[, epsilon, ...])
L2-regularized linear regression model that is robust to outliers.
linear_model.QuantileRegressor(*[, ...])
Linear regression model that predicts conditional quantiles.
linear_model.RANSACRegressor([estimator, ...])
RANSAC (RANdom SAmple Consensus) algorithm.
linear_model.TheilSenRegressor(*[, ...])
Theil-Sen Estimator: robust multivariate regression model.
### Generalized linear models (GLM) for regression
|||
|---|---|
linear_model.PoissonRegressor(*[, alpha, ...])
Generalized Linear Model with a Poisson distribution.
linear_model.TweedieRegressor(*[, power, ...])
Generalized Linear Model with a Tweedie distribution.
linear_model.GammaRegressor(*[, alpha, ...])
Generalized Linear Model with a Gamma distribution.
### Miscellaneous
|||
|---|---|
linear_model.PassiveAggressiveRegressor(*[, ...])
Passive Aggressive Regressor.
linear_model.enet_path(X, y, *[, l1_ratio, ...])
Compute elastic net path with coordinate descent.
linear_model.lars_path(X, y[, Xy, Gram, ...])
Compute Least Angle Regression or Lasso path using the LARS algorithm [1].
linear_model.lars_path_gram(Xy, Gram, *, ...)
The lars_path in the sufficient stats mode [1].
linear_model.lasso_path(X, y, *[, eps, ...])
Compute Lasso path with coordinate descent.
linear_model.orthogonal_mp(X, y, *[, ...])
Orthogonal Matching Pursuit (OMP).
linear_model.orthogonal_mp_gram(Gram, Xy, *)
Gram Orthogonal Matching Pursuit (OMP).
linear_model.ridge_regression(X, y, alpha, *)
Solve the ridge equation by the method of normal equations.
## [sklearn.manifold: Manifold Learning](https://scikit-learn.org/stable/modules/classes.html#module-sklearn.manifold)
|||
|---|---|
manifold.Isomap(*[, n_neighbors, radius, ...])
Isomap Embedding.
manifold.LocallyLinearEmbedding(*[, ...])
Locally Linear Embedding.
manifold.MDS([n_components, metric, n_init, ...])
Multidimensional scaling.
manifold.SpectralEmbedding([n_components, ...])
Spectral embedding for non-linear dimensionality reduction.
manifold.TSNE([n_components, perplexity, ...])
T-distributed Stochastic Neighbor Embedding.
manifold.locally_linear_embedding(X, *, ...)
Perform a Locally Linear Embedding analysis on the data.
manifold.smacof(dissimilarities, *[, ...])
Compute multidimensional scaling using the SMACOF algorithm.
manifold.spectral_embedding(adjacency, *[, ...])
Project the sample on the first eigenvectors of the graph Laplacian.
manifold.trustworthiness(X, X_embedded, *[, ...])
Indicate to what extent the local structure is retained.
## [sklearn.metrics: Metrics](https://scikit-learn.org/stable/modules/classes.html#sklearn-metrics-metrics)
### Model Selection Interface
|||
|---|---|
metrics.check_scoring(estimator[, scoring, ...])
Determine scorer from user options.
metrics.get_scorer(scoring)
Get a scorer from string.
metrics.get_scorer_names()
Get the names of all available scorers.
metrics.make_scorer(score_func, *[, ...])
Make a scorer from a performance metric or loss function.
### Classification metrics
|||
|---|---|
|metrics.accuracy_score(y_true, y_pred, *[, ...])|Accuracy classification score.|
|metrics.auc(x, y)|Compute Area Under the Curve (AUC) using the trapezoidal rule.|
|metrics.average_precision_score(y_true, ...)|Compute average precision (AP) from prediction scores.|
|metrics.balanced_accuracy_score(y_true, ...)|Compute the balanced accuracy.|
|metrics.brier_score_loss(y_true, y_prob, *)|Compute the Brier score loss.|
|metrics.class_likelihood_ratios(y_true, ...)|Compute binary classification positive and negative likelihood ratios.|
|metrics.classification_report(y_true, y_pred, *)|Build a text report showing the main classification metrics.|
|metrics.cohen_kappa_score(y1, y2, *[, ...])|Compute Cohen's kappa: a statistic that measures inter-annotator agreement.|
|metrics.confusion_matrix(y_true, y_pred, *)|Compute confusion matrix to evaluate the accuracy of a classification.|
|metrics.dcg_score(y_true, y_score, *[, k, ...])|Compute Discounted Cumulative Gain.|
|metrics.det_curve(y_true, y_score[, ...])|Compute error rates for different probability thresholds.|
|metrics.f1_score(y_true, y_pred, *[, ...])|Compute the F1 score, also known as balanced F-score or F-measure.|
|metrics.fbeta_score(y_true, y_pred, *, beta)|Compute the F-beta score.|
|metrics.hamming_loss(y_true, y_pred, *[, ...])|Compute the average Hamming loss.|
|metrics.hinge_loss(y_true, pred_decision, *)|Average hinge loss (non-regularized).|
|metrics.jaccard_score(y_true, y_pred, *[, ...])|Jaccard similarity coefficient score.|
|metrics.log_loss(y_true, y_pred, *[, eps, ...])|Log loss, aka logistic loss or cross-entropy loss.|
|metrics.matthews_corrcoef(y_true, y_pred, *)|Compute the Matthews correlation coefficient (MCC).|
|metrics.multilabel_confusion_matrix(y_true, ...)|Compute a confusion matrix for each class or sample.|
|metrics.ndcg_score(y_true, y_score, *[, k, ...])|Compute Normalized Discounted Cumulative Gain.|
|metrics.precision_recall_curve(y_true, ...)|Compute precision-recall pairs for different probability thresholds.|
|metrics.precision_recall_fscore_support(...)|Compute precision, recall, F-measure and support for each class.|
|metrics.precision_score(y_true, y_pred, *[, ...])|Compute the precision.|
|metrics.recall_score(y_true, y_pred, *[, ...])|Compute the recall.|
|metrics.roc_auc_score(y_true, y_score, *[, ...])|Compute Area Under the Receiver Operating Characteristic Curve (ROC AUC) from prediction scores.|
|metrics.roc_curve(y_true, y_score, *[, ...])|Compute Receiver operating characteristic (ROC).|
|metrics.top_k_accuracy_score(y_true, y_score, *)|Top-k Accuracy classification score.|
|metrics.zero_one_loss(y_true, y_pred, *[, ...])|Zero-one classification loss.|
### Regression metrics
|||
|---|---|
|metrics.explained_variance_score(y_true, ...)|Explained variance regression score function.|
|metrics.max_error(y_true, y_pred)|The max_error metric calculates the maximum residual error.|
|metrics.mean_absolute_error(y_true, y_pred, *)|Mean absolute error regression loss.|
|metrics.mean_squared_error(y_true, y_pred, *)|Mean squared error regression loss.|
|metrics.mean_squared_log_error(y_true, y_pred, *)|Mean squared logarithmic error regression loss.|
|metrics.median_absolute_error(y_true, y_pred, *)|Median absolute error regression loss.|
|metrics.mean_absolute_percentage_error(...)|Mean absolute percentage error (MAPE) regression loss.|
|metrics.r2_score(y_true, y_pred, *[, ...])|R^2 (coefficient of determination) regression score function.|
|metrics.mean_poisson_deviance(y_true, y_pred, *)|Mean Poisson deviance regression loss.|
|metrics.mean_gamma_deviance(y_true, y_pred, *)|Mean Gamma deviance regression loss.|
|metrics.mean_tweedie_deviance(y_true, y_pred, *)|Mean Tweedie deviance regression loss.|
|metrics.d2_tweedie_score(y_true, y_pred, *)|D^2 regression score function, fraction of Tweedie deviance explained.|
|metrics.mean_pinball_loss(y_true, y_pred, *)|Pinball loss for quantile regression.|
|metrics.d2_pinball_score(y_true, y_pred, *)|D^2 regression score function, fraction of pinball loss explained.|
|metrics.d2_absolute_error_score(y_true, ...)|D^2 regression score function, fraction of absolute error explained.|
### Multilabel ranking metrics
|||
|---|---|
|metrics.coverage_error(y_true, y_score, *[, ...])|Coverage error measure.|
|metrics.label_ranking_average_precision_score(...)|Compute ranking-based average precision.|
|metrics.label_ranking_loss(y_true, y_score, *)|Compute Ranking loss measure.|
### Clustering metrics
|||
|---|---|
|metrics.adjusted_mutual_info_score(...[, ...])|Adjusted Mutual Information between two clusterings.|
|metrics.adjusted_rand_score(labels_true, ...)|Rand index adjusted for chance.|
|metrics.calinski_harabasz_score(X, labels)|Compute the Calinski and Harabasz score.|
|metrics.davies_bouldin_score(X, labels)|Compute the Davies-Bouldin score.|
|metrics.completeness_score(labels_true, ...)|Compute completeness metric of a cluster labeling given a ground truth.|
|metrics.cluster.contingency_matrix(...[, ...])|Build a contingency matrix describing the relationship between labels.|
|metrics.cluster.pair_confusion_matrix(...)|Pair confusion matrix arising from two clusterings [R9ca8fd06d29a-1].|
|metrics.fowlkes_mallows_score(labels_true, ...)|Measure the similarity of two clusterings of a set of points.|
|metrics.homogeneity_completeness_v_measure(...)|Compute the homogeneity and completeness and V-Measure scores at once.|
|metrics.homogeneity_score(labels_true, ...)|Homogeneity metric of a cluster labeling given a ground truth.|
|metrics.mutual_info_score(labels_true, ...)|Mutual Information between two clusterings.|
|metrics.normalized_mutual_info_score(...[, ...])|Normalized Mutual Information between two clusterings.|
|metrics.rand_score(labels_true, labels_pred)|Rand index.|
|metrics.silhouette_score(X, labels, *[, ...])|Compute the mean Silhouette Coefficient of all samples.|
|metrics.silhouette_samples(X, labels, *[, ...])|Compute the Silhouette Coefficient for each sample.|
|metrics.v_measure_score(labels_true, ...[, beta])|V-measure cluster labeling given a ground truth.|
### Biclustering metrics
|||
|---|---|
|metrics.consensus_score(a, b, *[, similarity])|The similarity of two sets of biclusters.|
### Distance metrics
|||
|---|---|
|metrics.DistanceMetric|Uniform interface for fast distance metric functions.|
### Pairwise metrics
|||
|---|---|
|metrics.pairwise.additive_chi2_kernel(X[, Y])|Compute the additive chi-squared kernel between observations in X and Y.|
|metrics.pairwise.chi2_kernel(X[, Y, gamma])|Compute the exponential chi-squared kernel between X and Y.|
|metrics.pairwise.cosine_similarity(X[, Y, ...])|Compute cosine similarity between samples in X and Y.|
|metrics.pairwise.cosine_distances(X[, Y])|Compute cosine distance between samples in X and Y.|
|metrics.pairwise.distance_metrics()|Valid metrics for pairwise_distances.|
|metrics.pairwise.euclidean_distances(X[, Y, ...])|Compute the distance matrix between each pair from a vector array X and Y.|
|metrics.pairwise.haversine_distances(X[, Y])|Compute the Haversine distance between samples in X and Y.|
|metrics.pairwise.kernel_metrics()|Valid metrics for pairwise_kernels.|
|metrics.pairwise.laplacian_kernel(X[, Y, gamma])Compute the laplacian kernel between X and Y.|
|metrics.pairwise.linear_kernel(X[, Y, ...])|Compute the linear kernel between X and Y.|
|metrics.pairwise.manhattan_distances(X[, Y, ...])|Compute the L1 distances between the vectors in X and Y.|
|metrics.pairwise.nan_euclidean_distances(X)|Calculate the euclidean distances in the presence of missing values.|
|metrics.pairwise.pairwise_kernels(X[, Y, ...])|Compute the kernel between arrays X and optional array Y.|
|metrics.pairwise.polynomial_kernel(X[, Y, ...])|Compute the polynomial kernel between X and Y.|
|metrics.pairwise.rbf_kernel(X[, Y, gamma])|Compute the rbf (gaussian) kernel between X and Y.|
|metrics.pairwise.sigmoid_kernel(X[, Y, ...])|Compute the sigmoid kernel between X and Y.|
|metrics.pairwise.paired_euclidean_distances(X, Y)|Compute the paired euclidean distances between X and Y.|
|metrics.pairwise.paired_manhattan_distances(X, Y)|Compute the paired L1 distances between X and Y.|
|metrics.pairwise.paired_cosine_distances(X, Y)|Compute the paired cosine distances between X and Y.|
|metrics.pairwise.paired_distances(X, Y, *[, ...])|Compute the paired distances between X and Y.|
|metrics.pairwise_distances(X[, Y, metric, ...])|Compute the distance matrix from a vector array X and optional Y.|
|metrics.pairwise_distances_argmin(X, Y, *[, ...])|Compute minimum distances between one point and a set of points.|
|metrics.pairwise_distances_argmin_min(X, Y, *)|Compute minimum distances between one point and a set of points.|
|metrics.pairwise_distances_chunked(X[, Y, ...])|Generate a distance matrix chunk by chunk with optional reduction.|
### Plotting
|||
|---|---|
|metrics.ConfusionMatrixDisplay(...[, ...])|Confusion Matrix visualization.|
|metrics.DetCurveDisplay(*, fpr, fnr[, ...])|DET curve visualization.|
|metrics.PrecisionRecallDisplay(precision, ...)|Precision Recall visualization.|
|metrics.PredictionErrorDisplay(*, y_true, y_pred)|Visualization of the prediction error of a regression model.|
|metrics.RocCurveDisplay(*, fpr, tpr[, ...])|ROC Curve visualization.|
|calibration.CalibrationDisplay(prob_true, ...)|Calibration curve (also known as reliability diagram) visualization.|
## [sklearn.mixture: Gaussian Mixture Models](https://scikit-learn.org/stable/modules/classes.html#module-sklearn.mixture)
|||
|---|---|
|mixture.BayesianGaussianMixture(*[, ...])|Variational Bayesian estimation of a Gaussian mixture.|
|mixture.GaussianMixture([n_components, ...])|Gaussian Mixture.|
## [sklearn.model_selection: Model Selection](https://scikit-learn.org/stable/modules/classes.html#module-sklearn.model_selection)
### Splitter Classes
|||
|---|---|
|model_selection.GroupKFold([n_splits])|K-fold iterator variant with non-overlapping groups.|
|model_selection.GroupShuffleSplit([...])|Shuffle-Group(s)-Out cross-validation iterator|
|model_selection.KFold([n_splits, shuffle, ...])|K-Folds cross-validator|
|model_selection.LeaveOneGroupOut()|Leave One Group Out cross-validator|
|model_selection.LeavePGroupsOut(n_groups)|Leave P Group(s) Out cross-validator|
|model_selection.LeaveOneOut()|Leave-One-Out cross-validator|
|model_selection.LeavePOut(p)|Leave-P-Out cross-validator|
|model_selection.PredefinedSplit(test_fold)|Predefined split cross-validator|
|model_selection.RepeatedKFold(*[, n_splits, ...])|Repeated K-Fold cross validator.|
|model_selection.RepeatedStratifiedKFold(*[, ...])|Repeated Stratified K-Fold cross validator.|
|model_selection.ShuffleSplit([n_splits, ...])|Random permutation cross-validator|
|model_selection.StratifiedKFold([n_splits, ...])|Stratified K-Folds cross-validator.|
|model_selection.StratifiedShuffleSplit([...])|Stratified ShuffleSplit cross-validator|
|model_selection.StratifiedGroupKFold([...])|Stratified K-Folds iterator variant with non-overlapping groups.|
|model_selection.TimeSeriesSplit([n_splits, ...])|Time Series cross-validator|
### Splitter Functions
|||
|---|---|
|model_selection.check_cv([cv, y, classifier])|Input checker utility for building a cross-validator.|
|model_selection.train_test_split(*arrays[, ...])|Split arrays or matrices into random train and test subsets.|
### Hyper-parameter optimizers
|||
|---|---|
|model_selection.GridSearchCV(estimator, ...)|Exhaustive search over specified parameter values for an estimator.|
|model_selection.HalvingGridSearchCV(...[, ...])|Search over specified parameter values with successive halving.|
|model_selection.ParameterGrid(param_grid)|Grid of parameters with a discrete number of values for each.|
|model_selection.ParameterSampler(...[, ...])|Generator on parameters sampled from given distributions.|
|model_selection.RandomizedSearchCV(...[, ...])|Randomized search on hyper parameters.|
|model_selection.HalvingRandomSearchCV(...[, ...])|Randomized search on hyper parameters.|
### Model validation
|||
|---|---|
|model_selection.cross_validate(estimator, X)|Evaluate metric(s) by cross-validation and also record fit/score times.|
|model_selection.cross_val_predict(estimator, X)|Generate cross-validated estimates for each input data point.|
|model_selection.cross_val_score(estimator, X)|Evaluate a score by cross-validation.|
|model_selection.learning_curve(estimator, X, ...)|Learning curve.|
|model_selection.permutation_test_score(...)|Evaluate the significance of a cross-validated score with permutations.|
|model_selection.validation_curve(estimator, ...)|Validation curve.|
### Visualization
|||
|---|---|
|model_selection.LearningCurveDisplay(*, ...)|Learning Curve visualization.|
|model_selection.ValidationCurveDisplay(*, ...)|Validation Curve visualization.|
## [sklearn.multiclass: Multiclass classification](https://scikit-learn.org/stable/modules/classes.html#module-sklearn.multiclass)
|||
|---|---|
|multiclass.OneVsRestClassifier(estimator, *)|One-vs-the-rest (OvR) multiclass strategy.|
|multiclass.OneVsOneClassifier(estimator, *)|One-vs-one multiclass strategy.|
|multiclass.OutputCodeClassifier(estimator, *)|(Error-Correcting) Output-Code multiclass strategy.|
## [sklearn.multioutput: Multioutput regression and classification](https://scikit-learn.org/stable/modules/classes.html#module-sklearn.multioutput)
|||
|---|---|
|multioutput.ClassifierChain(base_estimator, *)|A multi-label model that arranges binary classifiers into a chain.|
|multioutput.MultiOutputRegressor(estimator, *)|Multi target regression.|
|multioutput.MultiOutputClassifier(estimator, *)|Multi target classification.|
|multioutput.RegressorChain(base_estimator, *)|A multi-label model that arranges regressions into a chain.|
## [sklearn.naive_bayes: Naive Bayes](https://scikit-learn.org/stable/modules/classes.html#module-sklearn.naive_bayes)
|||
|---|---|
|naive_bayes.BernoulliNB(*[, alpha, ...])|Naive Bayes classifier for multivariate Bernoulli models.|
|naive_bayes.CategoricalNB(*[, alpha, ...])|Naive Bayes classifier for categorical features.|
|naive_bayes.ComplementNB(*[, alpha, ...])|The Complement Naive Bayes classifier described in Rennie et al. (2003).|
|naive_bayes.GaussianNB(*[, priors, ...])|Gaussian Naive Bayes (GaussianNB).|
|naive_bayes.MultinomialNB(*[, alpha, ...])|Naive Bayes classifier for multinomial models.|
## [sklearn.neighbors: Nearest Neighbors](https://scikit-learn.org/stable/modules/classes.html#module-sklearn.neighbors)
|||
|---|---|
|neighbors.BallTree(X[, leaf_size, metric])|BallTree for fast generalized N-point problems|
|neighbors.KDTree(X[, leaf_size, metric])|KDTree for fast generalized N-point problems|
|neighbors.KernelDensity(*[, bandwidth, ...])|Kernel Density Estimation.|
|**neighbors.KNeighborsClassifier([...])**|**Classifier implementing the k-nearest neighbors vote.**|
|neighbors.KNeighborsRegressor([n_neighbors, ...])|Regression based on k-nearest neighbors.|
|neighbors.KNeighborsTransformer(*[, mode, ...])|Transform X into a (weighted) graph of k nearest neighbors.|
|neighbors.LocalOutlierFactor([n_neighbors, ...])|Unsupervised Outlier Detection using the Local Outlier Factor (LOF).|
|neighbors.RadiusNeighborsClassifier([...])|Classifier implementing a vote among neighbors within a given radius.|
|neighbors.RadiusNeighborsRegressor([radius, ...])|Regression based on neighbors within a fixed radius.|
|neighbors.RadiusNeighborsTransformer(*[, ...])|Transform X into a (weighted) graph of neighbors nearer than a radius.|
|neighbors.NearestCentroid([metric, ...])|Nearest centroid classifier.|
|neighbors.NearestNeighbors(*[, n_neighbors, ...])|Unsupervised learner for implementing neighbor searches.|
|neighbors.NeighborhoodComponentsAnalysis([...])|Neighborhood Components Analysis.|
|neighbors.kneighbors_graph(X, n_neighbors, *)|Compute the (weighted) graph of k-Neighbors for points in X.|
|neighbors.radius_neighbors_graph(X, radius, *)|Compute the (weighted) graph of Neighbors for points in X.|
|neighbors.sort_graph_by_row_values(graph[, ...])|Sort a sparse graph such that each row is stored with increasing values.|
## [sklearn.neural_network: Neural network models](https://scikit-learn.org/stable/modules/classes.html#module-sklearn.neural_network)
|||
|---|---|
|pipeline.FeatureUnion(transformer_list, *[, ...])|Concatenates results of multiple transformer objects.|
|pipeline.Pipeline(steps, *[, memory, verbose])|Pipeline of transforms with a final estimator.|
|pipeline.make_pipeline(*steps[, memory, verbose])|Construct a Pipeline from the given estimators.|
|pipeline.make_union(*transformers[, n_jobs, ...])|Construct a FeatureUnion from the given transformers.|
## [sklearn.pipeline: Pipeline](https://scikit-learn.org/stable/modules/classes.html#module-sklearn.pipeline)
see [here](https://scikit-learn.org/stable/modules/classes.html#module-sklearn.pipeline)
## [sklearn.preprocessing: Preprocessing and Normalization](https://scikit-learn.org/stable/modules/classes.html#module-sklearn.preprocessing)
|||
|---|---|
|preprocessing.Binarizer(*[, threshold, copy])|Binarize data (set feature values to 0 or 1) according to a threshold.|
|preprocessing.FunctionTransformer([func, ...])|Constructs a transformer from an arbitrary callable.|
|preprocessing.KBinsDiscretizer([n_bins, ...])|Bin continuous data into intervals.|
|preprocessing.KernelCenterer()|Center an arbitrary kernel matrix |
|preprocessing.LabelBinarizer(*[, neg_label, ...])|Binarize labels in a one-vs-all fashion.|
|preprocessing.LabelEncoder()|Encode target labels with value between 0 and n_classes-1.v
|preprocessing.MultiLabelBinarizer(*[, ...])|Transform between iterable of iterables and a multilabel format.|
|preprocessing.MaxAbsScaler(*[, copy])|Scale each feature by its maximum absolute value.|
|preprocessing.MinMaxScaler([feature_range, ...])|Transform features by scaling each feature to a given range.|
|preprocessing.Normalizer([norm, copy])|Normalize samples individually to unit norm.|
|preprocessing.OneHotEncoder(*[, categories, ...])|Encode categorical features as a one-hot numeric array.|
|preprocessing.OrdinalEncoder(*[, ...])|Encode categorical features as an integer array.|
|preprocessing.PolynomialFeatures([degree, ...])|Generate polynomial and interaction features.|
|preprocessing.PowerTransformer([method, ...])|Apply a power transform featurewise to make data more Gaussian-like.|
|preprocessing.QuantileTransformer(*[, ...])|Transform features using quantiles information.|
|preprocessing.RobustScaler(*[, ...])|Scale features using statistics that are robust to outliers.|
|preprocessing.SplineTransformer([n_knots, ...])|Generate univariate B-spline bases for features.|
|preprocessing.StandardScaler(*[, copy, ...])|Standardize features by removing the mean and scaling to unit variance.|
|preprocessing.TargetEncoder([categories, ...])|Target Encoder for regression and classification targets.|
|preprocessing.add_dummy_feature(X[, value])|Augment dataset with an additional dummy feature.|
|preprocessing.binarize(X, *[, threshold, copy])|Boolean thresholding of array-like or scipy.sparse matrix.|
|preprocessing.label_binarize(y, *, classes)|Binarize labels in a one-vs-all fashion.|
|preprocessing.maxabs_scale(X, *[, axis, copy])|Scale each feature to the [-1, 1] range without breaking the sparsity.|
|preprocessing.minmax_scale(X[, ...])|Transform features by scaling each feature to a given range.|
|preprocessing.normalize(X[, norm, axis, ...])|Scale input vectors individually to unit norm (vector length).|
|preprocessing.quantile_transform(X, *[, ...])|Transform features using quantiles information.|
|preprocessing.robust_scale(X, *[, axis, ...])|Standardize a dataset along any axis.|
|preprocessing.scale(X, *[, axis, with_mean, ...])|Standardize a dataset along any axis.|
|preprocessing.power_transform(X[, method, ...])|Parametric, monotonic transformation to make data more Gaussian-like.|
## [sklearn.random_projection: Random projection](https://scikit-learn.org/stable/modules/classes.html#module-sklearn.random_projection)
|||
|---|---|
|random_projection.GaussianRandomProjection([...])|Reduce dimensionality through Gaussian random projection.|
|random_projection.SparseRandomProjection([...])|Reduce dimensionality through sparse random projection.|
|random_projection.johnson_lindenstrauss_min_dim(...)|Find a 'safe' number of components to randomly project to.|
## [sklearn.semi_supervised: Semi-Supervised Learning](https://scikit-learn.org/stable/modules/classes.html#module-sklearn.semi_supervised)
|||
|---|---|
|semi_supervised.LabelPropagation([kernel, ...])|Label Propagation classifier.|
|semi_supervised.LabelSpreading([kernel, ...])|LabelSpreading model for semi-supervised learning.|
|semi_supervised.SelfTrainingClassifier(...)|Self-training classifier.|
## [sklearn.svm: Support Vector Machines](https://scikit-learn.org/stable/modules/classes.html#module-sklearn.svm)
|||
|---|---|
|svm.LinearSVC([penalty, loss, dual, tol, C, ...])|Linear Support Vector Classification.|
|svm.LinearSVR(*[, epsilon, tol, C, loss, ...])|Linear Support Vector Regression.|
|svm.NuSVC(*[, nu, kernel, degree, gamma, ...])|Nu-Support Vector Classification.|
|svm.NuSVR(*[, nu, C, kernel, degree, gamma, ...])|Nu Support Vector Regression.|
|svm.OneClassSVM(*[, kernel, degree, gamma, ...])|Unsupervised Outlier Detection.|
|svm.SVC(*[, C, kernel, degree, gamma, ...])|C-Support Vector Classification.|
|svm.SVR(*[, kernel, degree, gamma, coef0, ...])|Epsilon-Support Vector Regression.|
|svm.l1_min_c(X, y, *[, loss, fit_intercept, ...])|Return the lowest bound for C.|
## [sklearn.tree: Decision Trees](https://scikit-learn.org/stable/modules/classes.html#module-sklearn.tree)
|||
|---|---|
|tree.DecisionTreeClassifier(*[, criterion, ...])|A decision tree classifier.|
|tree.DecisionTreeRegressor(*[, criterion, ...])|A decision tree regressor.|
|tree.ExtraTreeClassifier(*[, criterion, ...])|An extremely randomized tree classifier.|
|tree.ExtraTreeRegressor(*[, criterion, ...])|An extremely randomized tree regressor.|
|tree.export_graphviz(decision_tree[, ...])|Export a decision tree in DOT format.|
|tree.export_text(decision_tree, *[, ...])|Build a text report showing the rules of a decision tree.|
|tree.plot_tree(decision_tree, *[, ...])|Plot a decision tree.|
## [sklearn.utils: Utilities](https://scikit-learn.org/stable/modules/classes.html#module-sklearn.utils)
see [here](https://scikit-learn.org/stable/modules/classes.html#module-sklearn.utils)