Update README.md
Signed-off-by: David Rotermund <54365609+davrot@users.noreply.github.com>
This commit is contained in:
parent
ef4f69b54c
commit
adf1be8246
1 changed files with 188 additions and 1 deletions
|
@ -548,7 +548,194 @@ Approximate a RBF kernel feature map using random Fourier features.
|
|||
kernel_approximation.SkewedChi2Sampler(*[, ...])
|
||||
Approximate feature map for "skewed chi-squared" kernel.
|
||||
|
||||
# ---------------
|
||||
## [sklearn.kernel_ridge: Kernel Ridge Regression](https://scikit-learn.org/stable/modules/classes.html#module-sklearn.kernel_ridge)
|
||||
|
||||
kernel_ridge.KernelRidge([alpha, kernel, ...])
|
||||
Kernel ridge regression.
|
||||
|
||||
## [sklearn.linear_model: Linear Models](https://scikit-learn.org/stable/modules/classes.html#module-sklearn.linear_model)
|
||||
|
||||
### Linear classifiers
|
||||
|
||||
linear_model.LogisticRegression([penalty, ...])
|
||||
Logistic Regression (aka logit, MaxEnt) classifier.
|
||||
|
||||
linear_model.LogisticRegressionCV(*[, Cs, ...])
|
||||
Logistic Regression CV (aka logit, MaxEnt) classifier.
|
||||
|
||||
linear_model.PassiveAggressiveClassifier(*)
|
||||
Passive Aggressive Classifier.
|
||||
|
||||
linear_model.Perceptron(*[, penalty, alpha, ...])
|
||||
Linear perceptron classifier.
|
||||
|
||||
linear_model.RidgeClassifier([alpha, ...])
|
||||
Classifier using Ridge regression.
|
||||
|
||||
linear_model.RidgeClassifierCV([alphas, ...])
|
||||
Ridge classifier with built-in cross-validation.
|
||||
|
||||
linear_model.SGDClassifier([loss, penalty, ...])
|
||||
Linear classifiers (SVM, logistic regression, etc.) with SGD training.
|
||||
|
||||
linear_model.SGDOneClassSVM([nu, ...])
|
||||
Solves linear One-Class SVM using Stochastic Gradient Descent.
|
||||
|
||||
### Classical linear regressors
|
||||
|
||||
linear_model.LinearRegression(*[, ...])
|
||||
Ordinary least squares Linear Regression.
|
||||
|
||||
linear_model.Ridge([alpha, fit_intercept, ...])
|
||||
Linear least squares with l2 regularization.
|
||||
|
||||
linear_model.RidgeCV([alphas, ...])
|
||||
Ridge regression with built-in cross-validation.
|
||||
|
||||
linear_model.SGDRegressor([loss, penalty, ...])
|
||||
Linear model fitted by minimizing a regularized empirical loss with SGD.
|
||||
|
||||
### Regressors with variable selection
|
||||
|
||||
|
||||
linear_model.ElasticNet([alpha, l1_ratio, ...])
|
||||
Linear regression with combined L1 and L2 priors as regularizer.
|
||||
|
||||
linear_model.ElasticNetCV(*[, l1_ratio, ...])
|
||||
Elastic Net model with iterative fitting along a regularization path.
|
||||
|
||||
linear_model.Lars(*[, fit_intercept, ...])
|
||||
Least Angle Regression model a.k.a.
|
||||
|
||||
linear_model.LarsCV(*[, fit_intercept, ...])
|
||||
Cross-validated Least Angle Regression model.
|
||||
|
||||
linear_model.Lasso([alpha, fit_intercept, ...])
|
||||
Linear Model trained with L1 prior as regularizer (aka the Lasso).
|
||||
|
||||
linear_model.LassoCV(*[, eps, n_alphas, ...])
|
||||
Lasso linear model with iterative fitting along a regularization path.
|
||||
|
||||
linear_model.LassoLars([alpha, ...])
|
||||
Lasso model fit with Least Angle Regression a.k.a.
|
||||
|
||||
linear_model.LassoLarsCV(*[, fit_intercept, ...])
|
||||
Cross-validated Lasso, using the LARS algorithm.
|
||||
|
||||
linear_model.LassoLarsIC([criterion, ...])
|
||||
Lasso model fit with Lars using BIC or AIC for model selection.
|
||||
|
||||
linear_model.OrthogonalMatchingPursuit(*[, ...])
|
||||
Orthogonal Matching Pursuit model (OMP).
|
||||
|
||||
linear_model.OrthogonalMatchingPursuitCV(*)
|
||||
Cross-validated Orthogonal Matching Pursuit model (OMP).
|
||||
|
||||
### Bayesian regressors
|
||||
|
||||
linear_model.ARDRegression(*[, max_iter, ...])
|
||||
Bayesian ARD regression.
|
||||
|
||||
linear_model.BayesianRidge(*[, max_iter, ...])
|
||||
Bayesian ridge regression.
|
||||
|
||||
### Multi-task linear regressors with variable selection
|
||||
|
||||
linear_model.MultiTaskElasticNet([alpha, ...])
|
||||
Multi-task ElasticNet model trained with L1/L2 mixed-norm as regularizer.
|
||||
|
||||
linear_model.MultiTaskElasticNetCV(*[, ...])
|
||||
Multi-task L1/L2 ElasticNet with built-in cross-validation.
|
||||
|
||||
linear_model.MultiTaskLasso([alpha, ...])
|
||||
Multi-task Lasso model trained with L1/L2 mixed-norm as regularizer.
|
||||
|
||||
linear_model.MultiTaskLassoCV(*[, eps, ...])
|
||||
Multi-task Lasso model trained with L1/L2 mixed-norm as regularizer.
|
||||
|
||||
### Outlier-robust regressors
|
||||
|
||||
|
||||
linear_model.HuberRegressor(*[, epsilon, ...])
|
||||
L2-regularized linear regression model that is robust to outliers.
|
||||
|
||||
linear_model.QuantileRegressor(*[, ...])
|
||||
Linear regression model that predicts conditional quantiles.
|
||||
|
||||
linear_model.RANSACRegressor([estimator, ...])
|
||||
RANSAC (RANdom SAmple Consensus) algorithm.
|
||||
|
||||
linear_model.TheilSenRegressor(*[, ...])
|
||||
Theil-Sen Estimator: robust multivariate regression model.
|
||||
|
||||
### Generalized linear models (GLM) for regression
|
||||
|
||||
linear_model.PoissonRegressor(*[, alpha, ...])
|
||||
Generalized Linear Model with a Poisson distribution.
|
||||
|
||||
linear_model.TweedieRegressor(*[, power, ...])
|
||||
Generalized Linear Model with a Tweedie distribution.
|
||||
|
||||
linear_model.GammaRegressor(*[, alpha, ...])
|
||||
Generalized Linear Model with a Gamma distribution.
|
||||
|
||||
### Miscellaneous
|
||||
|
||||
linear_model.PassiveAggressiveRegressor(*[, ...])
|
||||
Passive Aggressive Regressor.
|
||||
|
||||
linear_model.enet_path(X, y, *[, l1_ratio, ...])
|
||||
Compute elastic net path with coordinate descent.
|
||||
|
||||
linear_model.lars_path(X, y[, Xy, Gram, ...])
|
||||
Compute Least Angle Regression or Lasso path using the LARS algorithm [1].
|
||||
|
||||
linear_model.lars_path_gram(Xy, Gram, *, ...)
|
||||
The lars_path in the sufficient stats mode [1].
|
||||
|
||||
linear_model.lasso_path(X, y, *[, eps, ...])
|
||||
Compute Lasso path with coordinate descent.
|
||||
|
||||
linear_model.orthogonal_mp(X, y, *[, ...])
|
||||
Orthogonal Matching Pursuit (OMP).
|
||||
|
||||
linear_model.orthogonal_mp_gram(Gram, Xy, *)
|
||||
Gram Orthogonal Matching Pursuit (OMP).
|
||||
|
||||
linear_model.ridge_regression(X, y, alpha, *)
|
||||
Solve the ridge equation by the method of normal equations.
|
||||
|
||||
## [sklearn.manifold: Manifold Learning](https://scikit-learn.org/stable/modules/classes.html#module-sklearn.manifold)
|
||||
|
||||
|
||||
manifold.Isomap(*[, n_neighbors, radius, ...])
|
||||
Isomap Embedding.
|
||||
|
||||
manifold.LocallyLinearEmbedding(*[, ...])
|
||||
Locally Linear Embedding.
|
||||
|
||||
manifold.MDS([n_components, metric, n_init, ...])
|
||||
Multidimensional scaling.
|
||||
|
||||
manifold.SpectralEmbedding([n_components, ...])
|
||||
Spectral embedding for non-linear dimensionality reduction.
|
||||
|
||||
manifold.TSNE([n_components, perplexity, ...])
|
||||
T-distributed Stochastic Neighbor Embedding.
|
||||
|
||||
manifold.locally_linear_embedding(X, *, ...)
|
||||
Perform a Locally Linear Embedding analysis on the data.
|
||||
|
||||
manifold.smacof(dissimilarities, *[, ...])
|
||||
Compute multidimensional scaling using the SMACOF algorithm.
|
||||
|
||||
manifold.spectral_embedding(adjacency, *[, ...])
|
||||
Project the sample on the first eigenvectors of the graph Laplacian.
|
||||
|
||||
manifold.trustworthiness(X, X_embedded, *[, ...])
|
||||
Indicate to what extent the local structure is retained.
|
||||
|
||||
|
||||
|
||||
## [sklearn.metrics: Metrics](https://scikit-learn.org/stable/modules/classes.html#sklearn-metrics-metrics)
|
||||
|
||||
|
|
Loading…
Reference in a new issue