Fouriert transformations are an important part of data analysis.
Questions to [David Rotermund](mailto:davrot@uni-bremen.de)
## [Numpy](https://numpy.org/doc/stable/reference/routines.fft.html) vs [scipy](https://docs.scipy.org/doc/scipy/tutorial/fft.html#fourier-transforms-scipy-fft)
> Compute the one-dimensional discrete Fourier Transform for real input.
>
> This function computes the one-dimensional n-point discrete Fourier Transform (DFT) of a real-valued array by means of an efficient algorithm called the Fast Fourier Transform (FFT).
If the input array is **real-valued** (i.e. no complex numbers) then use **rfft**. Otherwise use **fft**. However, you can always use **fft** if you want but you might need to add extra steps to remove the complex noise from the results. E.g. if x is real-valued ifft(fft(x)) can be complex, due to numerical noise.
> Return the Discrete Fourier Transform sample frequencies.
>
> The returned float array f contains the frequency bin centers in cycles per unit of the sample spacing (with zero at the start). For instance, if the sample spacing is in seconds, then the frequency unit is cycles/second.
>
> Given a window length n and a sample spacing d:
```python
f = [0, 1, ..., n/2-1, -n/2, ..., -1] / (d*n) if n is even
f = [0, 1, ..., (n-1)/2, -(n-1)/2, ..., -1] / (d*n) if n is odd
> Return the Discrete Fourier Transform sample frequencies (for usage with rfft, irfft).
>
> The returned float array f contains the frequency bin centers in cycles per unit of the sample spacing (with zero at the start). For instance, if the sample spacing is in seconds, then the frequency unit is cycles/second.
>
> Given a window length n and a sample spacing d:
```python
f = [0, 1, ..., n/2-1, n/2] / (d*n) if n is even
f = [0, 1, ..., (n-1)/2-1, (n-1)/2] / (d*n) if n is odd
```
> Unlike fftfreq (but like scipy.fftpack.rfftfreq) the Nyquist frequency component is considered to be positive.
|[fft(a[, n, axis, norm])](https://numpy.org/doc/stable/reference/generated/numpy.fft.fft.html#numpy.fft.fft)|Compute the one-dimensional discrete Fourier Transform.|
|[ifft(a[, n, axis, norm])](https://numpy.org/doc/stable/reference/generated/numpy.fft.ifft.html#numpy.fft.ifft)|Compute the one-dimensional inverse discrete Fourier Transform.|
|[fft2(a[, s, axes, norm])](https://numpy.org/doc/stable/reference/generated/numpy.fft.fft2.html#numpy.fft.fft2)|Compute the 2-dimensional discrete Fourier Transform.|
|[ifft2(a[, s, axes, norm])](https://numpy.org/doc/stable/reference/generated/numpy.fft.ifft2.html#numpy.fft.ifft2)|Compute the 2-dimensional inverse discrete Fourier Transform.|
|[fftn(a[, s, axes, norm])](https://numpy.org/doc/stable/reference/generated/numpy.fft.fftn.html#numpy.fft.fftn)|Compute the N-dimensional discrete Fourier Transform.|
|[ifftn(a[, s, axes, norm])](https://numpy.org/doc/stable/reference/generated/numpy.fft.ifftn.html#numpy.fft.ifftn)|Compute the N-dimensional inverse discrete Fourier Transform.|
|[rfft(a[, n, axis, norm])](https://numpy.org/doc/stable/reference/generated/numpy.fft.rfft.html#numpy.fft.rfft)|Compute the one-dimensional discrete Fourier Transform for real input.|
|[irfft(a[, n, axis, norm])](https://numpy.org/doc/stable/reference/generated/numpy.fft.irfft.html#numpy.fft.irfft)|Computes the inverse of rfft.|
|[rfft2(a[, s, axes, norm])](https://numpy.org/doc/stable/reference/generated/numpy.fft.rfft2.html#numpy.fft.rfft2)|Compute the 2-dimensional FFT of a real array.|
|[irfft2(a[, s, axes, norm])](https://numpy.org/doc/stable/reference/generated/numpy.fft.irfft2.html#numpy.fft.irfft2)|Computes the inverse of rfft2.|
|[rfftn(a[, s, axes, norm])](https://numpy.org/doc/stable/reference/generated/numpy.fft.rfftn.html#numpy.fft.rfftn)|Compute the N-dimensional discrete Fourier Transform for real input.|
|[irfftn(a[, s, axes, norm])](https://numpy.org/doc/stable/reference/generated/numpy.fft.irfftn.html#numpy.fft.irfftn)|Computes the inverse of rfftn. |
|[hfft(a[, n, axis, norm])](https://numpy.org/doc/stable/reference/generated/numpy.fft.hfft.html#numpy.fft.hfft)|Compute the FFT of a signal that has Hermitian symmetry, i.e., a real spectrum.|
|[ihfft(a[, n, axis, norm])](https://numpy.org/doc/stable/reference/generated/numpy.fft.ihfft.html#numpy.fft.ihfft)|Compute the inverse FFT of a signal that has Hermitian symmetry.|
|[fftfreq(n[, d])](https://numpy.org/doc/stable/reference/generated/numpy.fft.fftfreq.html#numpy.fft.fftfreq)|Return the Discrete Fourier Transform sample frequencies.|
|[rfftfreq(n[, d])](https://numpy.org/doc/stable/reference/generated/numpy.fft.rfftfreq.html#numpy.fft.rfftfreq)|Return the Discrete Fourier Transform sample frequencies (for usage with rfft, irfft).|
|[fftshift(x[, axes])](https://numpy.org/doc/stable/reference/generated/numpy.fft.fftshift.html#numpy.fft.fftshift)|Shift the zero-frequency component to the center of the spectrum.|
|[ifftshift(x[, axes])](https://numpy.org/doc/stable/reference/generated/numpy.fft.ifftshift.html#numpy.fft.ifftshift)|The inverse of fftshift.|