## [sklearn.cluster.KMeans](https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html) and its [fit](https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html#sklearn.cluster.KMeans.fit)
> **cluster_centers_** : ndarray of shape (n_clusters, n_features)
> Coordinates of cluster centers. If the algorithm stops before fully converging (see tol and max_iter), these will not be consistent with labels_.
Method:
```python
fit(X, y=None, sample_weight=None)
```
> Compute k-means clustering
> **X**: {array-like, sparse matrix} of shape (n_samples, n_features)
> Training instances to cluster. It must be noted that the data will be converted to C ordering, which will cause a memory copy if the given data is not C-contiguous. If a sparse matrix is passed, a copy will be made if it’s not in CSR format.