Update README.md

Signed-off-by: David Rotermund <54365609+davrot@users.noreply.github.com>
This commit is contained in:
David Rotermund 2023-12-16 15:05:36 +01:00 committed by GitHub
parent adf1be8246
commit 726b6d0ab8
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23

View file

@ -32,12 +32,10 @@ see [here](https://scikit-learn.org/stable/modules/classes.html#module-sklearn.b
## [sklearn.calibration: Probability Calibration](https://scikit-learn.org/stable/modules/classes.html#module-sklearn.calibration) ## [sklearn.calibration: Probability Calibration](https://scikit-learn.org/stable/modules/classes.html#module-sklearn.calibration)
|||
calibration.CalibratedClassifierCV([...]) |---|---|
Probability calibration with isotonic regression or logistic regression. |calibration.CalibratedClassifierCV([...])|Probability calibration with isotonic regression or logistic regression.|
|calibration.calibration_curve(y_true, y_prob, *)|Compute true and predicted probabilities for a calibration curve.|
calibration.calibration_curve(y_true, y_prob, *)
Compute true and predicted probabilities for a calibration curve.
## [sklearn.cluster: Clustering](https://scikit-learn.org/stable/modules/classes.html#module-sklearn.cluster) ## [sklearn.cluster: Clustering](https://scikit-learn.org/stable/modules/classes.html#module-sklearn.cluster)
@ -45,86 +43,43 @@ Compute true and predicted probabilities for a calibration curve.
### Classes ### Classes
cluster.AffinityPropagation(*[, damping, ...]) |||
Perform Affinity Propagation Clustering of data. |---|---|
|cluster.AffinityPropagation(*[, damping, ...])|Perform Affinity Propagation Clustering of data.|
cluster.AgglomerativeClustering([...]) |cluster.AgglomerativeClustering([...])|Agglomerative Clustering.|
Agglomerative Clustering. |cluster.Birch(*[, threshold, ...])|Implements the BIRCH clustering algorithm.|
|cluster.DBSCAN([eps, min_samples, metric, ...])|Perform DBSCAN clustering from vector array or distance matrix.|
cluster.Birch(*[, threshold, ...]) |cluster.HDBSCAN([min_cluster_size, ...])|Cluster data using hierarchical density-based clustering.|
Implements the BIRCH clustering algorithm. |cluster.FeatureAgglomeration([n_clusters, ...])|Agglomerate features.|
|**cluster.KMeans([n_clusters, init, n_init, ...])**|**K-Means clustering.**|
cluster.DBSCAN([eps, min_samples, metric, ...]) |cluster.BisectingKMeans([n_clusters, init, ...])|Bisecting K-Means clustering.|
Perform DBSCAN clustering from vector array or distance matrix. |**cluster.MiniBatchKMeans([n_clusters, init, ...])**|**Mini-Batch K-Means clustering.**|
|cluster.MeanShift(*[, bandwidth, seeds, ...])|Mean shift clustering using a flat kernel.|
cluster.HDBSCAN([min_cluster_size, ...]) |cluster.OPTICS(*[, min_samples, max_eps, ...])|Estimate clustering structure from vector array.|
Cluster data using hierarchical density-based clustering. |cluster.SpectralClustering([n_clusters, ...])|Apply clustering to a projection of the normalized Laplacian.|
|cluster.SpectralBiclustering([n_clusters, ...])|Spectral biclustering (Kluger, 2003).|
cluster.FeatureAgglomeration([n_clusters, ...]) |cluster.SpectralCoclustering([n_clusters, ...])|Spectral Co-Clustering algorithm (Dhillon, 2001).|
Agglomerate features.
**cluster.KMeans([n_clusters, init, n_init, ...])**
**K-Means clustering.**
cluster.BisectingKMeans([n_clusters, init, ...])
Bisecting K-Means clustering.
**cluster.MiniBatchKMeans([n_clusters, init, ...])**
**Mini-Batch K-Means clustering.**
cluster.MeanShift(*[, bandwidth, seeds, ...])
Mean shift clustering using a flat kernel.
cluster.OPTICS(*[, min_samples, max_eps, ...])
Estimate clustering structure from vector array.
cluster.SpectralClustering([n_clusters, ...])
Apply clustering to a projection of the normalized Laplacian.
cluster.SpectralBiclustering([n_clusters, ...])
Spectral biclustering (Kluger, 2003).
cluster.SpectralCoclustering([n_clusters, ...])
Spectral Co-Clustering algorithm (Dhillon, 2001).
### Functions ### Functions
cluster.affinity_propagation(S, *[, ...]) |||
Perform Affinity Propagation Clustering of data. |---|---|
|cluster.affinity_propagation(S, *[, ...])|Perform Affinity Propagation Clustering of data.|
cluster.cluster_optics_dbscan(*, ...) |cluster.cluster_optics_dbscan(*, ...)|Perform DBSCAN extraction for an arbitrary epsilon.|
Perform DBSCAN extraction for an arbitrary epsilon. |cluster.cluster_optics_xi(*, reachability, ...)|Automatically extract clusters according to the Xi-steep method.|
|cluster.compute_optics_graph(X, *, ...)|Compute the OPTICS reachability graph.|
cluster.cluster_optics_xi(*, reachability, ...) |cluster.dbscan(X[, eps, min_samples, ...])|Perform DBSCAN clustering from vector array or distance matrix.|
Automatically extract clusters according to the Xi-steep method. |cluster.estimate_bandwidth(X, *[, quantile, ...])|Estimate the bandwidth to use with the mean-shift algorithm.|
|cluster.k_means(X, n_clusters, *[, ...])|Perform K-means clustering algorithm.|
cluster.compute_optics_graph(X, *, ...) |cluster.kmeans_plusplus(X, n_clusters, *[, ...])|Init n_clusters seeds according to k-means++.|
Compute the OPTICS reachability graph. |cluster.mean_shift(X, *[, bandwidth, seeds, ...])|Perform mean shift clustering of data using a flat kernel.|
|cluster.spectral_clustering(affinity, *[, ...])|Apply clustering to a projection of the normalized Laplacian.|
cluster.dbscan(X[, eps, min_samples, ...]) |cluster.ward_tree(X, *[, connectivity, ...])|Ward clustering based on a Feature matrix.|
Perform DBSCAN clustering from vector array or distance matrix.
cluster.estimate_bandwidth(X, *[, quantile, ...])
Estimate the bandwidth to use with the mean-shift algorithm.
cluster.k_means(X, n_clusters, *[, ...])
Perform K-means clustering algorithm.
cluster.kmeans_plusplus(X, n_clusters, *[, ...])
Init n_clusters seeds according to k-means++.
cluster.mean_shift(X, *[, bandwidth, seeds, ...])
Perform mean shift clustering of data using a flat kernel.
cluster.spectral_clustering(affinity, *[, ...])
Apply clustering to a projection of the normalized Laplacian.
cluster.ward_tree(X, *[, connectivity, ...])
Ward clustering based on a Feature matrix.
## [sklearn.compose: Composite Estimators](https://scikit-learn.org/stable/modules/classes.html#module-sklearn.compose) ## [sklearn.compose: Composite Estimators](https://scikit-learn.org/stable/modules/classes.html#module-sklearn.compose)
|||
|---|---|
compose.ColumnTransformer(transformers, *[, ...]) compose.ColumnTransformer(transformers, *[, ...])
Applies transformers to columns of an array or pandas DataFrame. Applies transformers to columns of an array or pandas DataFrame.
@ -139,6 +94,8 @@ Create a callable to select columns to be used with ColumnTransformer.
## [sklearn.covariance: Covariance Estimators](https://scikit-learn.org/stable/modules/classes.html#module-sklearn.covariance) ## [sklearn.covariance: Covariance Estimators](https://scikit-learn.org/stable/modules/classes.html#module-sklearn.covariance)
|||
|---|---|
covariance.EmpiricalCovariance(*[, ...]) covariance.EmpiricalCovariance(*[, ...])
Maximum likelihood covariance estimator. Maximum likelihood covariance estimator.
@ -184,6 +141,8 @@ Calculate a covariance matrix shrunk on the diagonal.
## [sklearn.cross_decomposition: Cross decomposition](https://scikit-learn.org/stable/modules/classes.html#module-sklearn.cross_decomposition) ## [sklearn.cross_decomposition: Cross decomposition](https://scikit-learn.org/stable/modules/classes.html#module-sklearn.cross_decomposition)
|||
|---|---|
cross_decomposition.CCA([n_components, ...]) cross_decomposition.CCA([n_components, ...])
Canonical Correlation Analysis, also known as "Mode B" PLS. Canonical Correlation Analysis, also known as "Mode B" PLS.
@ -205,6 +164,8 @@ see [here](https://scikit-learn.org/stable/modules/classes.html#module-sklearn.d
## [sklearn.decomposition: Matrix Decomposition](https://scikit-learn.org/stable/modules/classes.html#module-sklearn.decomposition) ## [sklearn.decomposition: Matrix Decomposition](https://scikit-learn.org/stable/modules/classes.html#module-sklearn.decomposition)
|||
|---|---|
decomposition.DictionaryLearning([...]) decomposition.DictionaryLearning([...])
Dictionary learning. Dictionary learning.
@ -264,6 +225,8 @@ Sparse coding.
## [sklearn.discriminant_analysis: Discriminant Analysis](https://scikit-learn.org/stable/modules/classes.html#module-sklearn.discriminant_analysis) ## [sklearn.discriminant_analysis: Discriminant Analysis](https://scikit-learn.org/stable/modules/classes.html#module-sklearn.discriminant_analysis)
|||
|---|---|
discriminant_analysis.LinearDiscriminantAnalysis([...]) discriminant_analysis.LinearDiscriminantAnalysis([...])
Linear Discriminant Analysis. Linear Discriminant Analysis.
@ -273,6 +236,8 @@ Quadratic Discriminant Analysis.
## [sklearn.dummy: Dummy estimators](https://scikit-learn.org/stable/modules/classes.html#module-sklearn.dummy) ## [sklearn.dummy: Dummy estimators](https://scikit-learn.org/stable/modules/classes.html#module-sklearn.dummy)
|||
|---|---|
dummy.DummyClassifier(*[, strategy, ...]) dummy.DummyClassifier(*[, strategy, ...])
DummyClassifier makes predictions that ignore the input features. DummyClassifier makes predictions that ignore the input features.
@ -281,6 +246,8 @@ Regressor that makes predictions using simple rules.
## [sklearn.ensemble: Ensemble Methods](https://scikit-learn.org/stable/modules/classes.html#module-sklearn.ensemble) ## [sklearn.ensemble: Ensemble Methods](https://scikit-learn.org/stable/modules/classes.html#module-sklearn.ensemble)
|||
|---|---|
ensemble.AdaBoostClassifier([estimator, ...]) ensemble.AdaBoostClassifier([estimator, ...])
An AdaBoost classifier. An AdaBoost classifier.
@ -345,6 +312,8 @@ see [here](https://scikit-learn.org/stable/modules/classes.html#module-sklearn.e
## [sklearn.feature_extraction: Feature Extraction](https://scikit-learn.org/stable/modules/classes.html#module-sklearn.feature_extraction) ## [sklearn.feature_extraction: Feature Extraction](https://scikit-learn.org/stable/modules/classes.html#module-sklearn.feature_extraction)
|||
|---|---|
feature_extraction.DictVectorizer(*[, ...]) feature_extraction.DictVectorizer(*[, ...])
Transforms lists of feature-value mappings to vectors. Transforms lists of feature-value mappings to vectors.
@ -353,6 +322,8 @@ Implements feature hashing, aka the hashing trick.
### From images ### From images
|||
|---|---|
feature_extraction.image.extract_patches_2d(...) feature_extraction.image.extract_patches_2d(...)
Reshape a 2D image into a collection of patches. Reshape a 2D image into a collection of patches.
@ -370,6 +341,8 @@ Extracts patches from a collection of images.
### From text ### From text
|||
|---|---|
feature_extraction.text.CountVectorizer(*[, ...]) feature_extraction.text.CountVectorizer(*[, ...])
Convert a collection of text documents to a matrix of token counts. Convert a collection of text documents to a matrix of token counts.
@ -384,6 +357,8 @@ Convert a collection of raw documents to a matrix of TF-IDF features.
## [sklearn.feature_selection: Feature Selection](https://scikit-learn.org/stable/modules/classes.html#module-sklearn.feature_selection) ## [sklearn.feature_selection: Feature Selection](https://scikit-learn.org/stable/modules/classes.html#module-sklearn.feature_selection)
|||
|---|---|
feature_selection.GenericUnivariateSelect([...]) feature_selection.GenericUnivariateSelect([...])
Univariate feature selector with configurable strategy. Univariate feature selector with configurable strategy.
@ -437,6 +412,8 @@ Estimate mutual information for a continuous target variable.
## [sklearn.gaussian_process: Gaussian Processes]() ## [sklearn.gaussian_process: Gaussian Processes]()
|||
|---|---|
gaussian_process.GaussianProcessClassifier([...]) gaussian_process.GaussianProcessClassifier([...])
Gaussian process classification (GPC) based on Laplace approximation. Gaussian process classification (GPC) based on Laplace approximation.
@ -446,6 +423,8 @@ Gaussian process regression (GPR).
### Kernels ### Kernels
|||
|---|---|
gaussian_process.kernels.CompoundKernel(kernels) gaussian_process.kernels.CompoundKernel(kernels)
Kernel which is composed of a set of other kernels. Kernel which is composed of a set of other kernels.
@ -490,6 +469,8 @@ White kernel.
## [sklearn.impute: Impute](https://scikit-learn.org/stable/modules/classes.html#module-sklearn.impute) ## [sklearn.impute: Impute](https://scikit-learn.org/stable/modules/classes.html#module-sklearn.impute)
|||
|---|---|
impute.SimpleImputer(*[, missing_values, ...]) impute.SimpleImputer(*[, missing_values, ...])
Univariate imputer for completing missing values with simple strategies. Univariate imputer for completing missing values with simple strategies.
@ -504,6 +485,8 @@ Imputation for completing missing values using k-Nearest Neighbors.
## [sklearn.inspection: Inspection](https://scikit-learn.org/stable/modules/classes.html#module-sklearn.inspection) ## [sklearn.inspection: Inspection](https://scikit-learn.org/stable/modules/classes.html#module-sklearn.inspection)
|||
|---|---|
inspection.partial_dependence(estimator, X, ...) inspection.partial_dependence(estimator, X, ...)
Partial dependence of features. Partial dependence of features.
@ -512,6 +495,8 @@ Permutation importance for feature evaluation [Rd9e56ef97513-BRE].
### Plotting ### Plotting
|||
|---|---|
inspection.DecisionBoundaryDisplay(*, xx0, ...) inspection.DecisionBoundaryDisplay(*, xx0, ...)
Decisions boundary visualization. Decisions boundary visualization.
@ -522,6 +507,8 @@ Partial Dependence Plot (PDP).
## [sklearn.isotonic: Isotonic regression](https://scikit-learn.org/stable/modules/classes.html#module-sklearn.isotonic) ## [sklearn.isotonic: Isotonic regression](https://scikit-learn.org/stable/modules/classes.html#module-sklearn.isotonic)
|||
|---|---|
isotonic.IsotonicRegression(*[, y_min, ...]) isotonic.IsotonicRegression(*[, y_min, ...])
Isotonic regression model. Isotonic regression model.
@ -533,6 +520,8 @@ Solve the isotonic regression model.
## [sklearn.kernel_approximation: Kernel Approximation](https://scikit-learn.org/stable/modules/classes.html#module-sklearn.kernel_approximation) ## [sklearn.kernel_approximation: Kernel Approximation](https://scikit-learn.org/stable/modules/classes.html#module-sklearn.kernel_approximation)
|||
|---|---|
kernel_approximation.AdditiveChi2Sampler(*) kernel_approximation.AdditiveChi2Sampler(*)
Approximate feature map for additive chi2 kernel. Approximate feature map for additive chi2 kernel.
@ -550,6 +539,8 @@ Approximate feature map for "skewed chi-squared" kernel.
## [sklearn.kernel_ridge: Kernel Ridge Regression](https://scikit-learn.org/stable/modules/classes.html#module-sklearn.kernel_ridge) ## [sklearn.kernel_ridge: Kernel Ridge Regression](https://scikit-learn.org/stable/modules/classes.html#module-sklearn.kernel_ridge)
|||
|---|---|
kernel_ridge.KernelRidge([alpha, kernel, ...]) kernel_ridge.KernelRidge([alpha, kernel, ...])
Kernel ridge regression. Kernel ridge regression.
@ -557,6 +548,8 @@ Kernel ridge regression.
### Linear classifiers ### Linear classifiers
|||
|---|---|
linear_model.LogisticRegression([penalty, ...]) linear_model.LogisticRegression([penalty, ...])
Logistic Regression (aka logit, MaxEnt) classifier. Logistic Regression (aka logit, MaxEnt) classifier.
@ -583,6 +576,8 @@ Solves linear One-Class SVM using Stochastic Gradient Descent.
### Classical linear regressors ### Classical linear regressors
|||
|---|---|
linear_model.LinearRegression(*[, ...]) linear_model.LinearRegression(*[, ...])
Ordinary least squares Linear Regression. Ordinary least squares Linear Regression.
@ -597,7 +592,8 @@ Linear model fitted by minimizing a regularized empirical loss with SGD.
### Regressors with variable selection ### Regressors with variable selection
|||
|---|---|
linear_model.ElasticNet([alpha, l1_ratio, ...]) linear_model.ElasticNet([alpha, l1_ratio, ...])
Linear regression with combined L1 and L2 priors as regularizer. Linear regression with combined L1 and L2 priors as regularizer.
@ -633,6 +629,8 @@ Cross-validated Orthogonal Matching Pursuit model (OMP).
### Bayesian regressors ### Bayesian regressors
|||
|---|---|
linear_model.ARDRegression(*[, max_iter, ...]) linear_model.ARDRegression(*[, max_iter, ...])
Bayesian ARD regression. Bayesian ARD regression.
@ -641,6 +639,8 @@ Bayesian ridge regression.
### Multi-task linear regressors with variable selection ### Multi-task linear regressors with variable selection
|||
|---|---|
linear_model.MultiTaskElasticNet([alpha, ...]) linear_model.MultiTaskElasticNet([alpha, ...])
Multi-task ElasticNet model trained with L1/L2 mixed-norm as regularizer. Multi-task ElasticNet model trained with L1/L2 mixed-norm as regularizer.
@ -656,6 +656,8 @@ Multi-task Lasso model trained with L1/L2 mixed-norm as regularizer.
### Outlier-robust regressors ### Outlier-robust regressors
|||
|---|---|
linear_model.HuberRegressor(*[, epsilon, ...]) linear_model.HuberRegressor(*[, epsilon, ...])
L2-regularized linear regression model that is robust to outliers. L2-regularized linear regression model that is robust to outliers.
@ -670,6 +672,8 @@ Theil-Sen Estimator: robust multivariate regression model.
### Generalized linear models (GLM) for regression ### Generalized linear models (GLM) for regression
|||
|---|---|
linear_model.PoissonRegressor(*[, alpha, ...]) linear_model.PoissonRegressor(*[, alpha, ...])
Generalized Linear Model with a Poisson distribution. Generalized Linear Model with a Poisson distribution.
@ -681,6 +685,8 @@ Generalized Linear Model with a Gamma distribution.
### Miscellaneous ### Miscellaneous
|||
|---|---|
linear_model.PassiveAggressiveRegressor(*[, ...]) linear_model.PassiveAggressiveRegressor(*[, ...])
Passive Aggressive Regressor. Passive Aggressive Regressor.
@ -707,7 +713,8 @@ Solve the ridge equation by the method of normal equations.
## [sklearn.manifold: Manifold Learning](https://scikit-learn.org/stable/modules/classes.html#module-sklearn.manifold) ## [sklearn.manifold: Manifold Learning](https://scikit-learn.org/stable/modules/classes.html#module-sklearn.manifold)
|||
|---|---|
manifold.Isomap(*[, n_neighbors, radius, ...]) manifold.Isomap(*[, n_neighbors, radius, ...])
Isomap Embedding. Isomap Embedding.
@ -741,6 +748,8 @@ Indicate to what extent the local structure is retained.
### Model Selection Interface ### Model Selection Interface
|||
|---|---|
metrics.check_scoring(estimator[, scoring, ...]) metrics.check_scoring(estimator[, scoring, ...])
Determine scorer from user options. Determine scorer from user options.
@ -755,6 +764,8 @@ Make a scorer from a performance metric or loss function.
### Classification metrics ### Classification metrics
|||
|---|---|
metrics.accuracy_score(y_true, y_pred, *[, ...]) metrics.accuracy_score(y_true, y_pred, *[, ...])
Accuracy classification score. Accuracy classification score.
@ -841,6 +852,8 @@ Zero-one classification loss.
### Regression metrics ### Regression metrics
|||
|---|---|
metrics.explained_variance_score(y_true, ...) metrics.explained_variance_score(y_true, ...)
Explained variance regression score function. Explained variance regression score function.
@ -889,6 +902,8 @@ D^2 regression score function, fraction of absolute error explained.
### Multilabel ranking metrics ### Multilabel ranking metrics
|||
|---|---|
metrics.coverage_error(y_true, y_score, *[, ...]) metrics.coverage_error(y_true, y_score, *[, ...])
Coverage error measure. Coverage error measure.
@ -901,6 +916,8 @@ Compute Ranking loss measure.
### Clustering metrics ### Clustering metrics
|||
|---|---|
metrics.adjusted_mutual_info_score(...[, ...]) metrics.adjusted_mutual_info_score(...[, ...])
Adjusted Mutual Information between two clusterings. Adjusted Mutual Information between two clusterings.
@ -951,16 +968,22 @@ V-measure cluster labeling given a ground truth.
### Biclustering metrics ### Biclustering metrics
|||
|---|---|
metrics.consensus_score(a, b, *[, similarity]) metrics.consensus_score(a, b, *[, similarity])
The similarity of two sets of biclusters. The similarity of two sets of biclusters.
### Distance metrics ### Distance metrics
|||
|---|---|
metrics.DistanceMetric metrics.DistanceMetric
Uniform interface for fast distance metric functions. Uniform interface for fast distance metric functions.
### Pairwise metrics ### Pairwise metrics
|||
|---|---|
metrics.pairwise.additive_chi2_kernel(X[, Y]) metrics.pairwise.additive_chi2_kernel(X[, Y])
Compute the additive chi-squared kernel between observations in X and Y. Compute the additive chi-squared kernel between observations in X and Y.
@ -1035,6 +1058,8 @@ Generate a distance matrix chunk by chunk with optional reduction.
### Plotting ### Plotting
|||
|---|---|
metrics.ConfusionMatrixDisplay(...[, ...]) metrics.ConfusionMatrixDisplay(...[, ...])
Confusion Matrix visualization. Confusion Matrix visualization.
@ -1057,6 +1082,8 @@ Calibration curve (also known as reliability diagram) visualization.
## [sklearn.mixture: Gaussian Mixture Models](https://scikit-learn.org/stable/modules/classes.html#module-sklearn.mixture) ## [sklearn.mixture: Gaussian Mixture Models](https://scikit-learn.org/stable/modules/classes.html#module-sklearn.mixture)
|||
|---|---|
mixture.BayesianGaussianMixture(*[, ...]) mixture.BayesianGaussianMixture(*[, ...])
Variational Bayesian estimation of a Gaussian mixture. Variational Bayesian estimation of a Gaussian mixture.
@ -1068,6 +1095,8 @@ Gaussian Mixture.
### Splitter Classes ### Splitter Classes
|||
|---|---|
model_selection.GroupKFold([n_splits]) model_selection.GroupKFold([n_splits])
K-fold iterator variant with non-overlapping groups. K-fold iterator variant with non-overlapping groups.
@ -1115,14 +1144,18 @@ Time Series cross-validator
### Splitter Functions ### Splitter Functions
|||
|---|---|
model_selection.check_cv([cv, y, classifier]) model_selection.check_cv([cv, y, classifier])
Input checker utility for building a cross-validator. Input checker utility for building a cross-validator.
model_selection.train_test_split(*arrays[, ...]) model_selection.train_test_split(*arrays[, ...])
Split arrays or matrices into random train and test subsets. Split arrays or matrices into random train and test subsets.
##ä Hyper-parameter optimizers ### Hyper-parameter optimizers
|||
|---|---|
model_selection.GridSearchCV(estimator, ...) model_selection.GridSearchCV(estimator, ...)
Exhaustive search over specified parameter values for an estimator. Exhaustive search over specified parameter values for an estimator.
@ -1144,6 +1177,8 @@ Randomized search on hyper parameters.
### Model validation ### Model validation
|||
|---|---|
model_selection.cross_validate(estimator, X) model_selection.cross_validate(estimator, X)
Evaluate metric(s) by cross-validation and also record fit/score times. Evaluate metric(s) by cross-validation and also record fit/score times.
@ -1165,6 +1200,8 @@ Validation curve.
### Visualization ### Visualization
|||
|---|---|
model_selection.LearningCurveDisplay(*, ...) model_selection.LearningCurveDisplay(*, ...)
Learning Curve visualization. Learning Curve visualization.
@ -1175,6 +1212,8 @@ Validation Curve visualization.
## [sklearn.multiclass: Multiclass classification](https://scikit-learn.org/stable/modules/classes.html#module-sklearn.multiclass) ## [sklearn.multiclass: Multiclass classification](https://scikit-learn.org/stable/modules/classes.html#module-sklearn.multiclass)
|||
|---|---|
multiclass.OneVsRestClassifier(estimator, *) multiclass.OneVsRestClassifier(estimator, *)
One-vs-the-rest (OvR) multiclass strategy. One-vs-the-rest (OvR) multiclass strategy.
@ -1186,7 +1225,8 @@ multiclass.OutputCodeClassifier(estimator, *)
## [sklearn.multioutput: Multioutput regression and classification](https://scikit-learn.org/stable/modules/classes.html#module-sklearn.multioutput) ## [sklearn.multioutput: Multioutput regression and classification](https://scikit-learn.org/stable/modules/classes.html#module-sklearn.multioutput)
|||
|---|---|
multioutput.ClassifierChain(base_estimator, *) multioutput.ClassifierChain(base_estimator, *)
A multi-label model that arranges binary classifiers into a chain. A multi-label model that arranges binary classifiers into a chain.
@ -1202,6 +1242,8 @@ A multi-label model that arranges regressions into a chain.
## [sklearn.naive_bayes: Naive Bayes](https://scikit-learn.org/stable/modules/classes.html#module-sklearn.naive_bayes) ## [sklearn.naive_bayes: Naive Bayes](https://scikit-learn.org/stable/modules/classes.html#module-sklearn.naive_bayes)
|||
|---|---|
naive_bayes.BernoulliNB(*[, alpha, ...]) naive_bayes.BernoulliNB(*[, alpha, ...])
Naive Bayes classifier for multivariate Bernoulli models. Naive Bayes classifier for multivariate Bernoulli models.
@ -1221,6 +1263,8 @@ Naive Bayes classifier for multinomial models.
## [sklearn.neighbors: Nearest Neighbors](https://scikit-learn.org/stable/modules/classes.html#module-sklearn.neighbors) ## [sklearn.neighbors: Nearest Neighbors](https://scikit-learn.org/stable/modules/classes.html#module-sklearn.neighbors)
|||
|---|---|
neighbors.BallTree(X[, leaf_size, metric]) neighbors.BallTree(X[, leaf_size, metric])
BallTree for fast generalized N-point problems BallTree for fast generalized N-point problems
@ -1272,6 +1316,8 @@ Sort a sparse graph such that each row is stored with increasing values.
## [sklearn.neural_network: Neural network models](https://scikit-learn.org/stable/modules/classes.html#module-sklearn.neural_network) ## [sklearn.neural_network: Neural network models](https://scikit-learn.org/stable/modules/classes.html#module-sklearn.neural_network)
|||
|---|---|
pipeline.FeatureUnion(transformer_list, *[, ...]) pipeline.FeatureUnion(transformer_list, *[, ...])
Concatenates results of multiple transformer objects. Concatenates results of multiple transformer objects.
@ -1292,6 +1338,8 @@ see [here](https://scikit-learn.org/stable/modules/classes.html#module-sklearn.p
## [sklearn.preprocessing: Preprocessing and Normalization](https://scikit-learn.org/stable/modules/classes.html#module-sklearn.preprocessing) ## [sklearn.preprocessing: Preprocessing and Normalization](https://scikit-learn.org/stable/modules/classes.html#module-sklearn.preprocessing)
|||
|---|---|
preprocessing.Binarizer(*[, threshold, copy]) preprocessing.Binarizer(*[, threshold, copy])
Binarize data (set feature values to 0 or 1) according to a threshold. Binarize data (set feature values to 0 or 1) according to a threshold.
@ -1383,6 +1431,8 @@ Parametric, monotonic transformation to make data more Gaussian-like.
## [sklearn.random_projection: Random projection](https://scikit-learn.org/stable/modules/classes.html#module-sklearn.random_projection) ## [sklearn.random_projection: Random projection](https://scikit-learn.org/stable/modules/classes.html#module-sklearn.random_projection)
|||
|---|---|
random_projection.GaussianRandomProjection([...]) random_projection.GaussianRandomProjection([...])
Reduce dimensionality through Gaussian random projection. Reduce dimensionality through Gaussian random projection.
@ -1394,6 +1444,8 @@ Find a 'safe' number of components to randomly project to.
## [sklearn.semi_supervised: Semi-Supervised Learning](https://scikit-learn.org/stable/modules/classes.html#module-sklearn.semi_supervised) ## [sklearn.semi_supervised: Semi-Supervised Learning](https://scikit-learn.org/stable/modules/classes.html#module-sklearn.semi_supervised)
|||
|---|---|
semi_supervised.LabelPropagation([kernel, ...]) semi_supervised.LabelPropagation([kernel, ...])
Label Propagation classifier. Label Propagation classifier.
@ -1407,6 +1459,8 @@ Self-training classifier.
## [sklearn.svm: Support Vector Machines](https://scikit-learn.org/stable/modules/classes.html#module-sklearn.svm) ## [sklearn.svm: Support Vector Machines](https://scikit-learn.org/stable/modules/classes.html#module-sklearn.svm)
|||
|---|---|
svm.LinearSVC([penalty, loss, dual, tol, C, ...]) svm.LinearSVC([penalty, loss, dual, tol, C, ...])
Linear Support Vector Classification. Linear Support Vector Classification.
@ -1435,6 +1489,8 @@ Return the lowest bound for C.
## [sklearn.tree: Decision Trees](https://scikit-learn.org/stable/modules/classes.html#module-sklearn.tree) ## [sklearn.tree: Decision Trees](https://scikit-learn.org/stable/modules/classes.html#module-sklearn.tree)
|||
|---|---|
tree.DecisionTreeClassifier(*[, criterion, ...]) tree.DecisionTreeClassifier(*[, criterion, ...])
A decision tree classifier. A decision tree classifier.