Update README.md
Signed-off-by: David Rotermund <54365609+davrot@users.noreply.github.com>
This commit is contained in:
parent
adf1be8246
commit
726b6d0ab8
1 changed files with 140 additions and 84 deletions
|
@ -32,12 +32,10 @@ see [here](https://scikit-learn.org/stable/modules/classes.html#module-sklearn.b
|
|||
|
||||
## [sklearn.calibration: Probability Calibration](https://scikit-learn.org/stable/modules/classes.html#module-sklearn.calibration)
|
||||
|
||||
|
||||
calibration.CalibratedClassifierCV([...])
|
||||
Probability calibration with isotonic regression or logistic regression.
|
||||
|
||||
calibration.calibration_curve(y_true, y_prob, *)
|
||||
Compute true and predicted probabilities for a calibration curve.
|
||||
|||
|
||||
|---|---|
|
||||
|calibration.CalibratedClassifierCV([...])|Probability calibration with isotonic regression or logistic regression.|
|
||||
|calibration.calibration_curve(y_true, y_prob, *)|Compute true and predicted probabilities for a calibration curve.|
|
||||
|
||||
## [sklearn.cluster: Clustering](https://scikit-learn.org/stable/modules/classes.html#module-sklearn.cluster)
|
||||
|
||||
|
@ -45,86 +43,43 @@ Compute true and predicted probabilities for a calibration curve.
|
|||
|
||||
### Classes
|
||||
|
||||
cluster.AffinityPropagation(*[, damping, ...])
|
||||
Perform Affinity Propagation Clustering of data.
|
||||
|
||||
cluster.AgglomerativeClustering([...])
|
||||
Agglomerative Clustering.
|
||||
|
||||
cluster.Birch(*[, threshold, ...])
|
||||
Implements the BIRCH clustering algorithm.
|
||||
|
||||
cluster.DBSCAN([eps, min_samples, metric, ...])
|
||||
Perform DBSCAN clustering from vector array or distance matrix.
|
||||
|
||||
cluster.HDBSCAN([min_cluster_size, ...])
|
||||
Cluster data using hierarchical density-based clustering.
|
||||
|
||||
cluster.FeatureAgglomeration([n_clusters, ...])
|
||||
Agglomerate features.
|
||||
|
||||
**cluster.KMeans([n_clusters, init, n_init, ...])**
|
||||
**K-Means clustering.**
|
||||
|
||||
cluster.BisectingKMeans([n_clusters, init, ...])
|
||||
Bisecting K-Means clustering.
|
||||
|
||||
**cluster.MiniBatchKMeans([n_clusters, init, ...])**
|
||||
**Mini-Batch K-Means clustering.**
|
||||
|
||||
cluster.MeanShift(*[, bandwidth, seeds, ...])
|
||||
Mean shift clustering using a flat kernel.
|
||||
|
||||
cluster.OPTICS(*[, min_samples, max_eps, ...])
|
||||
Estimate clustering structure from vector array.
|
||||
|
||||
cluster.SpectralClustering([n_clusters, ...])
|
||||
Apply clustering to a projection of the normalized Laplacian.
|
||||
|
||||
cluster.SpectralBiclustering([n_clusters, ...])
|
||||
Spectral biclustering (Kluger, 2003).
|
||||
|
||||
cluster.SpectralCoclustering([n_clusters, ...])
|
||||
Spectral Co-Clustering algorithm (Dhillon, 2001).
|
||||
|||
|
||||
|---|---|
|
||||
|cluster.AffinityPropagation(*[, damping, ...])|Perform Affinity Propagation Clustering of data.|
|
||||
|cluster.AgglomerativeClustering([...])|Agglomerative Clustering.|
|
||||
|cluster.Birch(*[, threshold, ...])|Implements the BIRCH clustering algorithm.|
|
||||
|cluster.DBSCAN([eps, min_samples, metric, ...])|Perform DBSCAN clustering from vector array or distance matrix.|
|
||||
|cluster.HDBSCAN([min_cluster_size, ...])|Cluster data using hierarchical density-based clustering.|
|
||||
|cluster.FeatureAgglomeration([n_clusters, ...])|Agglomerate features.|
|
||||
|**cluster.KMeans([n_clusters, init, n_init, ...])**|**K-Means clustering.**|
|
||||
|cluster.BisectingKMeans([n_clusters, init, ...])|Bisecting K-Means clustering.|
|
||||
|**cluster.MiniBatchKMeans([n_clusters, init, ...])**|**Mini-Batch K-Means clustering.**|
|
||||
|cluster.MeanShift(*[, bandwidth, seeds, ...])|Mean shift clustering using a flat kernel.|
|
||||
|cluster.OPTICS(*[, min_samples, max_eps, ...])|Estimate clustering structure from vector array.|
|
||||
|cluster.SpectralClustering([n_clusters, ...])|Apply clustering to a projection of the normalized Laplacian.|
|
||||
|cluster.SpectralBiclustering([n_clusters, ...])|Spectral biclustering (Kluger, 2003).|
|
||||
|cluster.SpectralCoclustering([n_clusters, ...])|Spectral Co-Clustering algorithm (Dhillon, 2001).|
|
||||
|
||||
### Functions
|
||||
|
||||
cluster.affinity_propagation(S, *[, ...])
|
||||
Perform Affinity Propagation Clustering of data.
|
||||
|
||||
cluster.cluster_optics_dbscan(*, ...)
|
||||
Perform DBSCAN extraction for an arbitrary epsilon.
|
||||
|
||||
cluster.cluster_optics_xi(*, reachability, ...)
|
||||
Automatically extract clusters according to the Xi-steep method.
|
||||
|
||||
cluster.compute_optics_graph(X, *, ...)
|
||||
Compute the OPTICS reachability graph.
|
||||
|
||||
cluster.dbscan(X[, eps, min_samples, ...])
|
||||
Perform DBSCAN clustering from vector array or distance matrix.
|
||||
|
||||
cluster.estimate_bandwidth(X, *[, quantile, ...])
|
||||
Estimate the bandwidth to use with the mean-shift algorithm.
|
||||
|
||||
cluster.k_means(X, n_clusters, *[, ...])
|
||||
Perform K-means clustering algorithm.
|
||||
|
||||
cluster.kmeans_plusplus(X, n_clusters, *[, ...])
|
||||
Init n_clusters seeds according to k-means++.
|
||||
|
||||
cluster.mean_shift(X, *[, bandwidth, seeds, ...])
|
||||
Perform mean shift clustering of data using a flat kernel.
|
||||
|
||||
cluster.spectral_clustering(affinity, *[, ...])
|
||||
Apply clustering to a projection of the normalized Laplacian.
|
||||
|
||||
cluster.ward_tree(X, *[, connectivity, ...])
|
||||
Ward clustering based on a Feature matrix.
|
||||
|
||||
|||
|
||||
|---|---|
|
||||
|cluster.affinity_propagation(S, *[, ...])|Perform Affinity Propagation Clustering of data.|
|
||||
|cluster.cluster_optics_dbscan(*, ...)|Perform DBSCAN extraction for an arbitrary epsilon.|
|
||||
|cluster.cluster_optics_xi(*, reachability, ...)|Automatically extract clusters according to the Xi-steep method.|
|
||||
|cluster.compute_optics_graph(X, *, ...)|Compute the OPTICS reachability graph.|
|
||||
|cluster.dbscan(X[, eps, min_samples, ...])|Perform DBSCAN clustering from vector array or distance matrix.|
|
||||
|cluster.estimate_bandwidth(X, *[, quantile, ...])|Estimate the bandwidth to use with the mean-shift algorithm.|
|
||||
|cluster.k_means(X, n_clusters, *[, ...])|Perform K-means clustering algorithm.|
|
||||
|cluster.kmeans_plusplus(X, n_clusters, *[, ...])|Init n_clusters seeds according to k-means++.|
|
||||
|cluster.mean_shift(X, *[, bandwidth, seeds, ...])|Perform mean shift clustering of data using a flat kernel.|
|
||||
|cluster.spectral_clustering(affinity, *[, ...])|Apply clustering to a projection of the normalized Laplacian.|
|
||||
|cluster.ward_tree(X, *[, connectivity, ...])|Ward clustering based on a Feature matrix.|
|
||||
|
||||
## [sklearn.compose: Composite Estimators](https://scikit-learn.org/stable/modules/classes.html#module-sklearn.compose)
|
||||
|
||||
|||
|
||||
|---|---|
|
||||
compose.ColumnTransformer(transformers, *[, ...])
|
||||
Applies transformers to columns of an array or pandas DataFrame.
|
||||
|
||||
|
@ -139,6 +94,8 @@ Create a callable to select columns to be used with ColumnTransformer.
|
|||
|
||||
## [sklearn.covariance: Covariance Estimators](https://scikit-learn.org/stable/modules/classes.html#module-sklearn.covariance)
|
||||
|
||||
|||
|
||||
|---|---|
|
||||
covariance.EmpiricalCovariance(*[, ...])
|
||||
Maximum likelihood covariance estimator.
|
||||
|
||||
|
@ -184,6 +141,8 @@ Calculate a covariance matrix shrunk on the diagonal.
|
|||
|
||||
## [sklearn.cross_decomposition: Cross decomposition](https://scikit-learn.org/stable/modules/classes.html#module-sklearn.cross_decomposition)
|
||||
|
||||
|||
|
||||
|---|---|
|
||||
cross_decomposition.CCA([n_components, ...])
|
||||
Canonical Correlation Analysis, also known as "Mode B" PLS.
|
||||
|
||||
|
@ -205,6 +164,8 @@ see [here](https://scikit-learn.org/stable/modules/classes.html#module-sklearn.d
|
|||
## [sklearn.decomposition: Matrix Decomposition](https://scikit-learn.org/stable/modules/classes.html#module-sklearn.decomposition)
|
||||
|
||||
|
||||
|||
|
||||
|---|---|
|
||||
decomposition.DictionaryLearning([...])
|
||||
Dictionary learning.
|
||||
|
||||
|
@ -264,6 +225,8 @@ Sparse coding.
|
|||
|
||||
## [sklearn.discriminant_analysis: Discriminant Analysis](https://scikit-learn.org/stable/modules/classes.html#module-sklearn.discriminant_analysis)
|
||||
|
||||
|||
|
||||
|---|---|
|
||||
discriminant_analysis.LinearDiscriminantAnalysis([...])
|
||||
Linear Discriminant Analysis.
|
||||
|
||||
|
@ -273,6 +236,8 @@ Quadratic Discriminant Analysis.
|
|||
|
||||
## [sklearn.dummy: Dummy estimators](https://scikit-learn.org/stable/modules/classes.html#module-sklearn.dummy)
|
||||
|
||||
|||
|
||||
|---|---|
|
||||
dummy.DummyClassifier(*[, strategy, ...])
|
||||
DummyClassifier makes predictions that ignore the input features.
|
||||
|
||||
|
@ -281,6 +246,8 @@ Regressor that makes predictions using simple rules.
|
|||
|
||||
## [sklearn.ensemble: Ensemble Methods](https://scikit-learn.org/stable/modules/classes.html#module-sklearn.ensemble)
|
||||
|
||||
|||
|
||||
|---|---|
|
||||
ensemble.AdaBoostClassifier([estimator, ...])
|
||||
An AdaBoost classifier.
|
||||
|
||||
|
@ -345,6 +312,8 @@ see [here](https://scikit-learn.org/stable/modules/classes.html#module-sklearn.e
|
|||
|
||||
## [sklearn.feature_extraction: Feature Extraction](https://scikit-learn.org/stable/modules/classes.html#module-sklearn.feature_extraction)
|
||||
|
||||
|||
|
||||
|---|---|
|
||||
feature_extraction.DictVectorizer(*[, ...])
|
||||
Transforms lists of feature-value mappings to vectors.
|
||||
|
||||
|
@ -353,6 +322,8 @@ Implements feature hashing, aka the hashing trick.
|
|||
|
||||
### From images
|
||||
|
||||
|||
|
||||
|---|---|
|
||||
feature_extraction.image.extract_patches_2d(...)
|
||||
Reshape a 2D image into a collection of patches.
|
||||
|
||||
|
@ -370,6 +341,8 @@ Extracts patches from a collection of images.
|
|||
|
||||
### From text
|
||||
|
||||
|||
|
||||
|---|---|
|
||||
feature_extraction.text.CountVectorizer(*[, ...])
|
||||
Convert a collection of text documents to a matrix of token counts.
|
||||
|
||||
|
@ -384,6 +357,8 @@ Convert a collection of raw documents to a matrix of TF-IDF features.
|
|||
|
||||
## [sklearn.feature_selection: Feature Selection](https://scikit-learn.org/stable/modules/classes.html#module-sklearn.feature_selection)
|
||||
|
||||
|||
|
||||
|---|---|
|
||||
feature_selection.GenericUnivariateSelect([...])
|
||||
Univariate feature selector with configurable strategy.
|
||||
|
||||
|
@ -437,6 +412,8 @@ Estimate mutual information for a continuous target variable.
|
|||
|
||||
## [sklearn.gaussian_process: Gaussian Processes]()
|
||||
|
||||
|||
|
||||
|---|---|
|
||||
gaussian_process.GaussianProcessClassifier([...])
|
||||
Gaussian process classification (GPC) based on Laplace approximation.
|
||||
|
||||
|
@ -446,6 +423,8 @@ Gaussian process regression (GPR).
|
|||
|
||||
### Kernels
|
||||
|
||||
|||
|
||||
|---|---|
|
||||
gaussian_process.kernels.CompoundKernel(kernels)
|
||||
Kernel which is composed of a set of other kernels.
|
||||
|
||||
|
@ -490,6 +469,8 @@ White kernel.
|
|||
|
||||
## [sklearn.impute: Impute](https://scikit-learn.org/stable/modules/classes.html#module-sklearn.impute)
|
||||
|
||||
|||
|
||||
|---|---|
|
||||
impute.SimpleImputer(*[, missing_values, ...])
|
||||
Univariate imputer for completing missing values with simple strategies.
|
||||
|
||||
|
@ -504,6 +485,8 @@ Imputation for completing missing values using k-Nearest Neighbors.
|
|||
|
||||
## [sklearn.inspection: Inspection](https://scikit-learn.org/stable/modules/classes.html#module-sklearn.inspection)
|
||||
|
||||
|||
|
||||
|---|---|
|
||||
inspection.partial_dependence(estimator, X, ...)
|
||||
Partial dependence of features.
|
||||
|
||||
|
@ -512,6 +495,8 @@ Permutation importance for feature evaluation [Rd9e56ef97513-BRE].
|
|||
|
||||
### Plotting
|
||||
|
||||
|||
|
||||
|---|---|
|
||||
inspection.DecisionBoundaryDisplay(*, xx0, ...)
|
||||
Decisions boundary visualization.
|
||||
|
||||
|
@ -522,6 +507,8 @@ Partial Dependence Plot (PDP).
|
|||
## [sklearn.isotonic: Isotonic regression](https://scikit-learn.org/stable/modules/classes.html#module-sklearn.isotonic)
|
||||
|
||||
|
||||
|||
|
||||
|---|---|
|
||||
isotonic.IsotonicRegression(*[, y_min, ...])
|
||||
Isotonic regression model.
|
||||
|
||||
|
@ -533,6 +520,8 @@ Solve the isotonic regression model.
|
|||
|
||||
## [sklearn.kernel_approximation: Kernel Approximation](https://scikit-learn.org/stable/modules/classes.html#module-sklearn.kernel_approximation)
|
||||
|
||||
|||
|
||||
|---|---|
|
||||
kernel_approximation.AdditiveChi2Sampler(*)
|
||||
Approximate feature map for additive chi2 kernel.
|
||||
|
||||
|
@ -550,6 +539,8 @@ Approximate feature map for "skewed chi-squared" kernel.
|
|||
|
||||
## [sklearn.kernel_ridge: Kernel Ridge Regression](https://scikit-learn.org/stable/modules/classes.html#module-sklearn.kernel_ridge)
|
||||
|
||||
|||
|
||||
|---|---|
|
||||
kernel_ridge.KernelRidge([alpha, kernel, ...])
|
||||
Kernel ridge regression.
|
||||
|
||||
|
@ -557,6 +548,8 @@ Kernel ridge regression.
|
|||
|
||||
### Linear classifiers
|
||||
|
||||
|||
|
||||
|---|---|
|
||||
linear_model.LogisticRegression([penalty, ...])
|
||||
Logistic Regression (aka logit, MaxEnt) classifier.
|
||||
|
||||
|
@ -583,6 +576,8 @@ Solves linear One-Class SVM using Stochastic Gradient Descent.
|
|||
|
||||
### Classical linear regressors
|
||||
|
||||
|||
|
||||
|---|---|
|
||||
linear_model.LinearRegression(*[, ...])
|
||||
Ordinary least squares Linear Regression.
|
||||
|
||||
|
@ -597,7 +592,8 @@ Linear model fitted by minimizing a regularized empirical loss with SGD.
|
|||
|
||||
### Regressors with variable selection
|
||||
|
||||
|
||||
|||
|
||||
|---|---|
|
||||
linear_model.ElasticNet([alpha, l1_ratio, ...])
|
||||
Linear regression with combined L1 and L2 priors as regularizer.
|
||||
|
||||
|
@ -633,6 +629,8 @@ Cross-validated Orthogonal Matching Pursuit model (OMP).
|
|||
|
||||
### Bayesian regressors
|
||||
|
||||
|||
|
||||
|---|---|
|
||||
linear_model.ARDRegression(*[, max_iter, ...])
|
||||
Bayesian ARD regression.
|
||||
|
||||
|
@ -641,6 +639,8 @@ Bayesian ridge regression.
|
|||
|
||||
### Multi-task linear regressors with variable selection
|
||||
|
||||
|||
|
||||
|---|---|
|
||||
linear_model.MultiTaskElasticNet([alpha, ...])
|
||||
Multi-task ElasticNet model trained with L1/L2 mixed-norm as regularizer.
|
||||
|
||||
|
@ -656,6 +656,8 @@ Multi-task Lasso model trained with L1/L2 mixed-norm as regularizer.
|
|||
### Outlier-robust regressors
|
||||
|
||||
|
||||
|||
|
||||
|---|---|
|
||||
linear_model.HuberRegressor(*[, epsilon, ...])
|
||||
L2-regularized linear regression model that is robust to outliers.
|
||||
|
||||
|
@ -670,6 +672,8 @@ Theil-Sen Estimator: robust multivariate regression model.
|
|||
|
||||
### Generalized linear models (GLM) for regression
|
||||
|
||||
|||
|
||||
|---|---|
|
||||
linear_model.PoissonRegressor(*[, alpha, ...])
|
||||
Generalized Linear Model with a Poisson distribution.
|
||||
|
||||
|
@ -681,6 +685,8 @@ Generalized Linear Model with a Gamma distribution.
|
|||
|
||||
### Miscellaneous
|
||||
|
||||
|||
|
||||
|---|---|
|
||||
linear_model.PassiveAggressiveRegressor(*[, ...])
|
||||
Passive Aggressive Regressor.
|
||||
|
||||
|
@ -707,7 +713,8 @@ Solve the ridge equation by the method of normal equations.
|
|||
|
||||
## [sklearn.manifold: Manifold Learning](https://scikit-learn.org/stable/modules/classes.html#module-sklearn.manifold)
|
||||
|
||||
|
||||
|||
|
||||
|---|---|
|
||||
manifold.Isomap(*[, n_neighbors, radius, ...])
|
||||
Isomap Embedding.
|
||||
|
||||
|
@ -741,6 +748,8 @@ Indicate to what extent the local structure is retained.
|
|||
|
||||
### Model Selection Interface
|
||||
|
||||
|||
|
||||
|---|---|
|
||||
metrics.check_scoring(estimator[, scoring, ...])
|
||||
Determine scorer from user options.
|
||||
|
||||
|
@ -755,6 +764,8 @@ Make a scorer from a performance metric or loss function.
|
|||
|
||||
### Classification metrics
|
||||
|
||||
|||
|
||||
|---|---|
|
||||
metrics.accuracy_score(y_true, y_pred, *[, ...])
|
||||
Accuracy classification score.
|
||||
|
||||
|
@ -841,6 +852,8 @@ Zero-one classification loss.
|
|||
|
||||
### Regression metrics
|
||||
|
||||
|||
|
||||
|---|---|
|
||||
metrics.explained_variance_score(y_true, ...)
|
||||
Explained variance regression score function.
|
||||
|
||||
|
@ -889,6 +902,8 @@ D^2 regression score function, fraction of absolute error explained.
|
|||
|
||||
### Multilabel ranking metrics
|
||||
|
||||
|||
|
||||
|---|---|
|
||||
metrics.coverage_error(y_true, y_score, *[, ...])
|
||||
Coverage error measure.
|
||||
|
||||
|
@ -901,6 +916,8 @@ Compute Ranking loss measure.
|
|||
|
||||
### Clustering metrics
|
||||
|
||||
|||
|
||||
|---|---|
|
||||
metrics.adjusted_mutual_info_score(...[, ...])
|
||||
Adjusted Mutual Information between two clusterings.
|
||||
|
||||
|
@ -951,16 +968,22 @@ V-measure cluster labeling given a ground truth.
|
|||
|
||||
### Biclustering metrics
|
||||
|
||||
|||
|
||||
|---|---|
|
||||
metrics.consensus_score(a, b, *[, similarity])
|
||||
The similarity of two sets of biclusters.
|
||||
|
||||
### Distance metrics
|
||||
|
||||
|||
|
||||
|---|---|
|
||||
metrics.DistanceMetric
|
||||
Uniform interface for fast distance metric functions.
|
||||
|
||||
### Pairwise metrics
|
||||
|
||||
|||
|
||||
|---|---|
|
||||
metrics.pairwise.additive_chi2_kernel(X[, Y])
|
||||
Compute the additive chi-squared kernel between observations in X and Y.
|
||||
|
||||
|
@ -1035,6 +1058,8 @@ Generate a distance matrix chunk by chunk with optional reduction.
|
|||
|
||||
### Plotting
|
||||
|
||||
|||
|
||||
|---|---|
|
||||
metrics.ConfusionMatrixDisplay(...[, ...])
|
||||
Confusion Matrix visualization.
|
||||
|
||||
|
@ -1057,6 +1082,8 @@ Calibration curve (also known as reliability diagram) visualization.
|
|||
|
||||
## [sklearn.mixture: Gaussian Mixture Models](https://scikit-learn.org/stable/modules/classes.html#module-sklearn.mixture)
|
||||
|
||||
|||
|
||||
|---|---|
|
||||
mixture.BayesianGaussianMixture(*[, ...])
|
||||
Variational Bayesian estimation of a Gaussian mixture.
|
||||
|
||||
|
@ -1068,6 +1095,8 @@ Gaussian Mixture.
|
|||
|
||||
### Splitter Classes
|
||||
|
||||
|||
|
||||
|---|---|
|
||||
model_selection.GroupKFold([n_splits])
|
||||
K-fold iterator variant with non-overlapping groups.
|
||||
|
||||
|
@ -1115,14 +1144,18 @@ Time Series cross-validator
|
|||
|
||||
### Splitter Functions
|
||||
|
||||
|||
|
||||
|---|---|
|
||||
model_selection.check_cv([cv, y, classifier])
|
||||
Input checker utility for building a cross-validator.
|
||||
|
||||
model_selection.train_test_split(*arrays[, ...])
|
||||
Split arrays or matrices into random train and test subsets.
|
||||
|
||||
##ä Hyper-parameter optimizers
|
||||
### Hyper-parameter optimizers
|
||||
|
||||
|||
|
||||
|---|---|
|
||||
model_selection.GridSearchCV(estimator, ...)
|
||||
Exhaustive search over specified parameter values for an estimator.
|
||||
|
||||
|
@ -1144,6 +1177,8 @@ Randomized search on hyper parameters.
|
|||
|
||||
### Model validation
|
||||
|
||||
|||
|
||||
|---|---|
|
||||
model_selection.cross_validate(estimator, X)
|
||||
Evaluate metric(s) by cross-validation and also record fit/score times.
|
||||
|
||||
|
@ -1165,6 +1200,8 @@ Validation curve.
|
|||
|
||||
### Visualization
|
||||
|
||||
|||
|
||||
|---|---|
|
||||
model_selection.LearningCurveDisplay(*, ...)
|
||||
Learning Curve visualization.
|
||||
|
||||
|
@ -1175,6 +1212,8 @@ Validation Curve visualization.
|
|||
|
||||
## [sklearn.multiclass: Multiclass classification](https://scikit-learn.org/stable/modules/classes.html#module-sklearn.multiclass)
|
||||
|
||||
|||
|
||||
|---|---|
|
||||
multiclass.OneVsRestClassifier(estimator, *)
|
||||
One-vs-the-rest (OvR) multiclass strategy.
|
||||
|
||||
|
@ -1186,7 +1225,8 @@ multiclass.OutputCodeClassifier(estimator, *)
|
|||
|
||||
## [sklearn.multioutput: Multioutput regression and classification](https://scikit-learn.org/stable/modules/classes.html#module-sklearn.multioutput)
|
||||
|
||||
|
||||
|||
|
||||
|---|---|
|
||||
multioutput.ClassifierChain(base_estimator, *)
|
||||
A multi-label model that arranges binary classifiers into a chain.
|
||||
|
||||
|
@ -1202,6 +1242,8 @@ A multi-label model that arranges regressions into a chain.
|
|||
|
||||
## [sklearn.naive_bayes: Naive Bayes](https://scikit-learn.org/stable/modules/classes.html#module-sklearn.naive_bayes)
|
||||
|
||||
|||
|
||||
|---|---|
|
||||
naive_bayes.BernoulliNB(*[, alpha, ...])
|
||||
Naive Bayes classifier for multivariate Bernoulli models.
|
||||
|
||||
|
@ -1221,6 +1263,8 @@ Naive Bayes classifier for multinomial models.
|
|||
|
||||
## [sklearn.neighbors: Nearest Neighbors](https://scikit-learn.org/stable/modules/classes.html#module-sklearn.neighbors)
|
||||
|
||||
|||
|
||||
|---|---|
|
||||
neighbors.BallTree(X[, leaf_size, metric])
|
||||
BallTree for fast generalized N-point problems
|
||||
|
||||
|
@ -1272,6 +1316,8 @@ Sort a sparse graph such that each row is stored with increasing values.
|
|||
|
||||
## [sklearn.neural_network: Neural network models](https://scikit-learn.org/stable/modules/classes.html#module-sklearn.neural_network)
|
||||
|
||||
|||
|
||||
|---|---|
|
||||
pipeline.FeatureUnion(transformer_list, *[, ...])
|
||||
Concatenates results of multiple transformer objects.
|
||||
|
||||
|
@ -1292,6 +1338,8 @@ see [here](https://scikit-learn.org/stable/modules/classes.html#module-sklearn.p
|
|||
|
||||
## [sklearn.preprocessing: Preprocessing and Normalization](https://scikit-learn.org/stable/modules/classes.html#module-sklearn.preprocessing)
|
||||
|
||||
|||
|
||||
|---|---|
|
||||
preprocessing.Binarizer(*[, threshold, copy])
|
||||
Binarize data (set feature values to 0 or 1) according to a threshold.
|
||||
|
||||
|
@ -1383,6 +1431,8 @@ Parametric, monotonic transformation to make data more Gaussian-like.
|
|||
|
||||
## [sklearn.random_projection: Random projection](https://scikit-learn.org/stable/modules/classes.html#module-sklearn.random_projection)
|
||||
|
||||
|||
|
||||
|---|---|
|
||||
random_projection.GaussianRandomProjection([...])
|
||||
Reduce dimensionality through Gaussian random projection.
|
||||
|
||||
|
@ -1394,6 +1444,8 @@ Find a 'safe' number of components to randomly project to.
|
|||
|
||||
## [sklearn.semi_supervised: Semi-Supervised Learning](https://scikit-learn.org/stable/modules/classes.html#module-sklearn.semi_supervised)
|
||||
|
||||
|||
|
||||
|---|---|
|
||||
semi_supervised.LabelPropagation([kernel, ...])
|
||||
Label Propagation classifier.
|
||||
|
||||
|
@ -1407,6 +1459,8 @@ Self-training classifier.
|
|||
|
||||
## [sklearn.svm: Support Vector Machines](https://scikit-learn.org/stable/modules/classes.html#module-sklearn.svm)
|
||||
|
||||
|||
|
||||
|---|---|
|
||||
svm.LinearSVC([penalty, loss, dual, tol, C, ...])
|
||||
Linear Support Vector Classification.
|
||||
|
||||
|
@ -1435,6 +1489,8 @@ Return the lowest bound for C.
|
|||
|
||||
## [sklearn.tree: Decision Trees](https://scikit-learn.org/stable/modules/classes.html#module-sklearn.tree)
|
||||
|
||||
|||
|
||||
|---|---|
|
||||
tree.DecisionTreeClassifier(*[, criterion, ...])
|
||||
A decision tree classifier.
|
||||
|
||||
|
|
Loading…
Reference in a new issue