Update README.md
Signed-off-by: David Rotermund <54365609+davrot@users.noreply.github.com>
This commit is contained in:
parent
74374e5f74
commit
7dd52e7e59
1 changed files with 7 additions and 7 deletions
|
@ -29,7 +29,7 @@ A major advantage of Matlab in comparison to a conventional programming language
|
|||
|
||||
| | | |
|
||||
| ------------- |:-------------:|:-------------:|
|
||||
| `a = [3;1];` | defines a column vector | $\vec{a} = \left(\begin{array}{c}3\\1\\\end{array}\right)$ |
|
||||
| `a = [3;1];` | defines a column vector | $\vec{a} = \left(\begin{array}{c}3 & 1 \end{array}\right)$ |
|
||||
| `a(k)` | means the vector component | $a_k$ |
|
||||
| `b = [0,3,-4];` | defines a row vector | $\vec{b} = (0,3,-4)$ |
|
||||
|
||||
|
@ -43,29 +43,29 @@ $3x+y = 1 $
|
|||
|
||||
can be formulated elegantly:
|
||||
|
||||
$$ \left(\begin{array}{cc} 1 & 2 \\\\ 3 & 1 \\ \end{array}\right) \left(\begin{array}{c} x & y \\\\ \end{array}\right) = \left(\begin{array}{c} 3 & 1 \\\\ \end{array}\right) $$
|
||||
$$ \left(\begin{array}{cc} 1 & 2 \\ 3 & 1 \end{array}\right) \left(\begin{array}{c} x & y \end{array}\right) = \left(\begin{array}{c} 3 & 1 \end{array}\right) $$
|
||||
|
||||
respectively
|
||||
|
||||
$D\,\vec{x} = \vec{b} $
|
||||
$$D\,\vec{x} = \vec{b} $$
|
||||
|
||||
with the $2\times 2$ matrix
|
||||
|
||||
$ D = \left(\begin{array}{cc}1 & 2\\3 & 1\\\end{array}\right) \begin{array}{c}\leftarrow\;\;\mbox{1. line}\\\leftarrow\;\;\mbox{2. line}\\\end{array}$
|
||||
$$ D = \left(\begin{array}{cc}1 & 2 \\ 3 & 1 \end{array}\right) \begin{array}{c}\leftarrow\;\;\mbox{1. line} \\ \leftarrow\;\;\mbox{2. line} \\ \end{array}$$
|
||||
|
||||
$\nearrow$ $\nwarrow$
|
||||
$$\nearrow \nwarrow$$
|
||||
|
||||
1. line 2. line
|
||||
|
||||
and the column vectors
|
||||
|
||||
$ \vec{x} = \left(\begin{array}{c}x\\y\\\end{array}\right) \quad\mbox{and}\quad \vec{b} = \left(\begin{array}{c}3\\ 1\\\end{array}\right) $.
|
||||
$$ \vec{x} = \left(\begin{array}{c}x & y \end{array}\right) \quad\mbox{and}\quad \vec{b} = \left(\begin{array}{c}3 & 1 \end{array}\right) $$
|
||||
|
||||
Here, $\vec{x}$ is the solution vector being sought.
|
||||
|
||||
The formal solution of the equation $D\,\vec{x} = \vec{b}$ is given by
|
||||
|
||||
$\vec{x} = D^{-1}\, \vec{b} \, ,$
|
||||
&$\vec{x} = D^{-1}\, \vec{b} \, ,$&
|
||||
|
||||
where $D^{-1}$ denotes the inverse of the matrix $D$.
|
||||
|
||||
|
|
Loading…
Reference in a new issue