Update README.md

Signed-off-by: David Rotermund <54365609+davrot@users.noreply.github.com>
This commit is contained in:
David Rotermund 2024-02-15 10:39:37 +01:00 committed by GitHub
parent ec3b932f2d
commit 847c9622b8
No known key found for this signature in database
GPG key ID: B5690EEEBB952194

View file

@ -10,12 +10,46 @@
Questions to [David Rotermund](mailto:davrot@uni-bremen.de)
## The order is important
You are not allowed to average over the trials before calculating the power. This is the same for calculating the fft power as well as the wavelet power.
```python
import numpy as np
import matplotlib.pyplot as plt
t: np.ndarray = np.linspace(0, 1.0, 10000)
f: float = 10
sinus_a = np.sin(f * t * 2.0 * np.pi)
sinus_b = np.sin(f * t * 2.0 * np.pi + np.pi)
plt.plot(t, sinus_a, label="a")
plt.plot(t, sinus_b, label="b")
plt.plot(t, (sinus_a + sinus_b) / 2.0, "k--", label="(a+b)/2")
plt.legend()
plt.xlabel("t [s]")
plt.show()
```
![image0.png]
```python
import numpy as np
import matplotlib.pyplot as plt
t: np.ndarray = np.linspace(0, 1.0, 10000)
f: float = 10
n: int = 1000
rng = np.random.default_rng(1)
sinus = np.sin(f * t[:, np.newaxis] * 2.0 * np.pi + 2.0 * np.pi * rng.random((1, n)))
print(sinus.shape)
plt.plot(t, sinus)
plt.plot(t, sinus.mean(axis=-1), "k--")
plt.show()
```
```shell
```
![image1.png]