Update README.md
Signed-off-by: David Rotermund <54365609+davrot@users.noreply.github.com>
This commit is contained in:
parent
df67ce17aa
commit
940bb2d637
1 changed files with 47 additions and 1 deletions
|
@ -128,7 +128,10 @@ import numpy as np
|
||||||
import matplotlib.pyplot as plt
|
import matplotlib.pyplot as plt
|
||||||
|
|
||||||
f_test: float = 50 # Hz
|
f_test: float = 50 # Hz
|
||||||
t_test: np.ndarray = np.arange(0, 1000) / 1000
|
number_of_test_samples: int = 1000
|
||||||
|
dt: float = 1.0 / 1000 # sec
|
||||||
|
|
||||||
|
t_test: np.ndarray = np.arange(0, number_of_test_samples) * dt
|
||||||
test_data: np.ndarray = np.sin(2 * np.pi * f_test * t_test)
|
test_data: np.ndarray = np.sin(2 * np.pi * f_test * t_test)
|
||||||
|
|
||||||
plt.plot(t_test, test_data)
|
plt.plot(t_test, test_data)
|
||||||
|
@ -137,3 +140,46 @@ plt.ylabel("time series")
|
||||||
```
|
```
|
||||||
![figure 4](image4.png)
|
![figure 4](image4.png)
|
||||||
|
|
||||||
|
```python
|
||||||
|
import numpy as np
|
||||||
|
import matplotlib.pyplot as plt
|
||||||
|
import pywt
|
||||||
|
|
||||||
|
f_test: float = 50 # Hz
|
||||||
|
number_of_test_samples: int = 1000
|
||||||
|
|
||||||
|
# The wavelet we want to use
|
||||||
|
mother = pywt.ContinuousWavelet("cmor1.5-1.0")
|
||||||
|
|
||||||
|
# Parameters for the wavelet transform
|
||||||
|
number_of_frequences: int = 25 # frequency bands
|
||||||
|
frequency_range_min: float = 15 # Hz
|
||||||
|
frequency_range_max: float = 200 # Hz
|
||||||
|
dt: float = 1.0 / 1000 # sec
|
||||||
|
|
||||||
|
t_test: np.ndarray = np.arange(0, number_of_test_samples) * dt
|
||||||
|
test_data: np.ndarray = np.sin(2 * np.pi * f_test * t_test)
|
||||||
|
|
||||||
|
# Calculate the wavelet scales we requested
|
||||||
|
s_spacing: np.ndarray = (1.0 / (number_of_frequences - 1)) * np.log2(
|
||||||
|
frequency_range_max / frequency_range_min
|
||||||
|
)
|
||||||
|
scale: np.ndarray = np.power(2, np.arange(0, number_of_frequences) * s_spacing)
|
||||||
|
frequency_axis_request: np.ndarray = frequency_range_min * np.flip(scale)
|
||||||
|
wave_scales: np.ndarray = 1.0 / (frequency_axis_request * dt)
|
||||||
|
|
||||||
|
complex_spectrum, frequency_axis = pywt.cwt(test_data, wave_scales, mother, dt)
|
||||||
|
|
||||||
|
plt.imshow(abs(complex_spectrum) ** 2, cmap="hot", aspect="auto")
|
||||||
|
plt.colorbar()
|
||||||
|
|
||||||
|
plt.yticks(np.arange(0, frequency_axis.shape[0]), frequency_axis)
|
||||||
|
plt.xticks(np.arange(0, t_test.shape[0]), t_test)
|
||||||
|
|
||||||
|
plt.xlabel("Time [sec]")
|
||||||
|
plt.ylabel("Frequency [Hz]")
|
||||||
|
plt.show()
|
||||||
|
```
|
||||||
|
![figure 5](image5.png)
|
||||||
|
|
||||||
|
|
||||||
|
|
Loading…
Reference in a new issue