Update README.md
Signed-off-by: David Rotermund <54365609+davrot@users.noreply.github.com>
This commit is contained in:
parent
428b66e911
commit
ec25d86cdf
1 changed files with 10 additions and 10 deletions
|
@ -95,7 +95,7 @@ import numpy as np
|
||||||
import matplotlib.pyplot as plt
|
import matplotlib.pyplot as plt
|
||||||
|
|
||||||
N: int = 10000
|
N: int = 10000
|
||||||
correct_a: int = N // 2
|
correct_b: int = N // 2
|
||||||
|
|
||||||
values = np.arange(0, N + 1, 100)
|
values = np.arange(0, N + 1, 100)
|
||||||
results_less = np.zeros((values.shape[0]))
|
results_less = np.zeros((values.shape[0]))
|
||||||
|
@ -104,21 +104,21 @@ results_two_sided = np.zeros((values.shape[0]))
|
||||||
|
|
||||||
|
|
||||||
for i in range(0, values.shape[0]):
|
for i in range(0, values.shape[0]):
|
||||||
correct_b: int = int(values[i])
|
correct_a: int = int(values[i])
|
||||||
res = fisher_exact(
|
res = fisher_exact(
|
||||||
[[N - correct_a, N - correct_b], [correct_a, correct_b]], alternative="less"
|
[[N - correct_a, N - correct_b], [correct_a, correct_b]], alternative="less"
|
||||||
)
|
)
|
||||||
results_less[i] = res.pvalue
|
results_less[i] = res.pvalue
|
||||||
|
|
||||||
for i in range(0, values.shape[0]):
|
for i in range(0, values.shape[0]):
|
||||||
correct_b = int(values[i])
|
correct_a = int(values[i])
|
||||||
res = fisher_exact(
|
res = fisher_exact(
|
||||||
[[N - correct_a, N - correct_b], [correct_a, correct_b]], alternative="greater"
|
[[N - correct_a, N - correct_b], [correct_a, correct_b]], alternative="greater"
|
||||||
)
|
)
|
||||||
results_greater[i] = res.pvalue
|
results_greater[i] = res.pvalue
|
||||||
|
|
||||||
for i in range(0, values.shape[0]):
|
for i in range(0, values.shape[0]):
|
||||||
correct_b = int(values[i])
|
correct_a = int(values[i])
|
||||||
res = fisher_exact(
|
res = fisher_exact(
|
||||||
[[N - correct_a, N - correct_b], [correct_a, correct_b]],
|
[[N - correct_a, N - correct_b], [correct_a, correct_b]],
|
||||||
alternative="two-sided",
|
alternative="two-sided",
|
||||||
|
@ -130,7 +130,7 @@ plt.plot(100.0 * values / N, results_two_sided, label="two-sided")
|
||||||
plt.plot(100.0 * values / N, results_less, label="less")
|
plt.plot(100.0 * values / N, results_less, label="less")
|
||||||
plt.plot(100.0 * values / N, results_greater, label="greater")
|
plt.plot(100.0 * values / N, results_greater, label="greater")
|
||||||
|
|
||||||
plt.title(f"Compared to a performance A of {100.0 * correct_a /N}%")
|
plt.title(f"Compared to a performance B of {100.0 * correct_b /N}%")
|
||||||
plt.ylabel("p-value")
|
plt.ylabel("p-value")
|
||||||
plt.xlabel("Correct [%]")
|
plt.xlabel("Correct [%]")
|
||||||
plt.legend()
|
plt.legend()
|
||||||
|
@ -145,7 +145,7 @@ import numpy as np
|
||||||
import matplotlib.pyplot as plt
|
import matplotlib.pyplot as plt
|
||||||
|
|
||||||
N: int = 10000
|
N: int = 10000
|
||||||
correct_a: int = int(N * 0.99)
|
correct_b: int = int(N * 0.99)
|
||||||
|
|
||||||
values = np.arange(int(N * 0.98), N + 1)
|
values = np.arange(int(N * 0.98), N + 1)
|
||||||
results_less = np.zeros((values.shape[0]))
|
results_less = np.zeros((values.shape[0]))
|
||||||
|
@ -154,21 +154,21 @@ results_two_sided = np.zeros((values.shape[0]))
|
||||||
|
|
||||||
|
|
||||||
for i in range(0, values.shape[0]):
|
for i in range(0, values.shape[0]):
|
||||||
correct_b: int = int(values[i])
|
correct_a: int = int(values[i])
|
||||||
res = fisher_exact(
|
res = fisher_exact(
|
||||||
[[N - correct_a, N - correct_b], [correct_a, correct_b]], alternative="less"
|
[[N - correct_a, N - correct_b], [correct_a, correct_b]], alternative="less"
|
||||||
)
|
)
|
||||||
results_less[i] = res.pvalue
|
results_less[i] = res.pvalue
|
||||||
|
|
||||||
for i in range(0, values.shape[0]):
|
for i in range(0, values.shape[0]):
|
||||||
correct_b = int(values[i])
|
correct_a = int(values[i])
|
||||||
res = fisher_exact(
|
res = fisher_exact(
|
||||||
[[N - correct_a, N - correct_b], [correct_a, correct_b]], alternative="greater"
|
[[N - correct_a, N - correct_b], [correct_a, correct_b]], alternative="greater"
|
||||||
)
|
)
|
||||||
results_greater[i] = res.pvalue
|
results_greater[i] = res.pvalue
|
||||||
|
|
||||||
for i in range(0, values.shape[0]):
|
for i in range(0, values.shape[0]):
|
||||||
correct_b = int(values[i])
|
correct_a = int(values[i])
|
||||||
res = fisher_exact(
|
res = fisher_exact(
|
||||||
[[N - correct_a, N - correct_b], [correct_a, correct_b]],
|
[[N - correct_a, N - correct_b], [correct_a, correct_b]],
|
||||||
alternative="two-sided",
|
alternative="two-sided",
|
||||||
|
@ -180,7 +180,7 @@ plt.plot(100.0 * values / N, results_two_sided, label="two-sided")
|
||||||
plt.plot(100.0 * values / N, results_less, label="less")
|
plt.plot(100.0 * values / N, results_less, label="less")
|
||||||
plt.plot(100.0 * values / N, results_greater, label="greater")
|
plt.plot(100.0 * values / N, results_greater, label="greater")
|
||||||
|
|
||||||
plt.title(f"Compared to a performance A of {100.0 * correct_a /N}%")
|
plt.title(f"Compared to a performance B of {100.0 * correct_b /N}%")
|
||||||
plt.ylabel("p-value")
|
plt.ylabel("p-value")
|
||||||
plt.xlabel("Correct [%]")
|
plt.xlabel("Correct [%]")
|
||||||
plt.legend()
|
plt.legend()
|
||||||
|
|
Loading…
Reference in a new issue